高等代数教学大纲

合集下载

高等代数课程教学大纲

高等代数课程教学大纲

《高等代数》课程教学大纲适用专业数学与应用数学(师范)、数学与应用数学总学时 168学分 10一、编写说明(一)本课程的性质、地位和作用高等代数是数学与应用数学专业(师范)、数学与应用数学专业的一门重要的专业基础课,其主要内容有多项式理论与线性代数两部分。

本课程的教学目的是使学生初步驾驭基本的、系统的代数学问和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、计算方法等供应必需具备的代数学问,也为进一步学习数学与应用数学专业的各门课程所须要的抽象思维实力供应肯定的训练。

高等代数课程是中学代数的接着和提高。

通过本课程的教学,要使学生加深对中学代数的理解。

本课程在教学中要求学生准确理解高等代数中的基本概念,不仅要正确驾驭这些概念的内涵,还要了解这些概念的实际背景。

对于一些基本的重要概念,还要求了解它们产生与发展的过程及概念推广的原则;与中学代数有干脆联系或者平行的概念,要求学生能与中学数学中相应概念加以比较,以确立较高的观点。

对于高等代数中的基本理论,要求学生驾驭基本理论的结果,对于典型定理还要求驾驭论证方法或思想,同时要求学生能了解严谨的理论体系,体会建立这种体系的抽象的代数方法。

通过本课程的教学,要求学生能显著地提高应用基本概念、基本理论作抽象论证的实力;较好地驾驭基本的论证方法与基本的计算方法,特殊要驾驭基本的线性代数计算法。

(二)本大纲制订的依据依据本专业人才的培育目标所须要的基本理论和基本技能的要求,依据本课程的教学性质、条件和教学实践而制定。

(三)大纲内容选编原则与要求1.本大纲所列各单元讲授依次与北京高校数学系几何与代数教研室代数小组编《高等代数》(高等教化出版社其次版)所列基本相同,讲授时可依据详细状况作适当调整。

2.为了避开教学上的难点过于集中,有些定理的驾驭可以侧重于定理的结果和证明定理的方法,以达到驾驭基本的代数方法的目的。

3.每一章的重点内容要重点讲解,在讲清概念的基础上,通过适当的练习(习题课、作业、问题探讨)以达到驾驭高等代数中常用的计算方法、基本运算中的技能和技巧以及提高综合计算和解决问题的实力的目的。

《高等代数》课程教学大纲

《高等代数》课程教学大纲

《高等代数》课程教学大纲一、教学大纲说明(一)课程的性质、地位、作用和任务《高等代数》是数学专业本科学生的三门主要基础课程之一。

它不仅是代数学的基础,也是其它数学课程必要的前提。

该课程是为大学一年级的学生开设的,总课时144学时,开设时间为一年。

通过本课程的教学,使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法。

本课程的任务是使学生系统地掌握基本的、系统的代数知识和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、计算方法等提供必须具备的代数知识,也为进一步学习数学与应用数学专业的各门课程所需要的抽象思维能力提供一定的训练。

(二)教学目的和要求通过本课程的学习,使学生掌握高等代数的基本概念、基本理论与基本方法,熟悉代数的语言、工具、方法,具有一定理解问题、分析问题、解决问题的能力。

为今后的学习打下扎实的基础。

1.熟练掌握:集合、映射、单射、满射、双射的概念,第一、第二数学归纳法,带余除法,不可约多项式,线性方程组的消元法,矩阵的行(列)初等变换,矩阵的秩,初等矩阵的性质,可逆矩阵,向量空间的基、维数,线性相关与线性无关,齐次线性方程组的基础解系,线性变换,矩阵特征值、特征向量的概念与求法,内积的定义,正交变换与正交矩阵,二次型的概念及与其矩阵的对应关系。

2.掌握:整数的整除性、素数的性质,集合的表示与运算,辗转相除法,综合除法,多项式的互素,根与系数的关系,重因式及其判定,行列式的性质,行列式的展开,矩阵的乘法,矩阵的行列式,子空间的交与和,坐标,过渡矩阵,线性方程组的特解与通解,线性变换的运算及其形成的向量空间,线性变换的向量空间与矩阵的向量空间的同构,矩阵的相似,几类向量空间的内积,Cauchy不等式,正交基与正交化,三维空间中的几种正交变换,正交变换与正交矩阵的关系,二次型的矩阵的合同及其求法,对称矩阵合同于对角矩阵,复数域上的二次型的规范形、实数域上二次型的惯性定理、规范形、分类,正定二次型的判定。

高等代数课程教学大纲

高等代数课程教学大纲

《高等代数》课程教学大纲一.课程教学目的与任务本课程是我院数学系数学教育专业的一门重要基础课程。

其主要任务是使学生获得数学的基本思想方法和多项式理论、行列式、线性方程组、矩阵论、向量空间、线性变换、欧氏空间、二次型等方面的系统知识。

它一方面为后继课程(如近世代数、数论、离散数学、计算方法、微分方程、泛函分析)提供一些所需的基础理论和知识;另一方面还对提高学生的抽象思维、辑推理及运算能力,开发学生智能,加强“三基”(基础知识、基本理论、基本理论)和培养学生创造性能力等起到重要作用。

二.与各课程的联系本课程是数学专业的后继课程:如近世代数、数论、离散数学、计算方法、微分方程、泛函分析等的先导课程和基础课程。

三.教学时数及分配总学时198,其中课堂讲授 151学时,习题课(包括复习课)47学时。

各学期教学时数安排情况:第二学期:108学时,自第一章至第五章,周学时6第三学期:90学时,自第五章至第九章,周学时5四.讲授内容与要求:第一章基本概念(12学时)一.教学目的和要求:1. 正确理解集合的概念,明确集合的相等、子集、空集、交集、卡氏集等概念及他们之间的关系。

2.掌握映射、满射、单射、双射、映射的合成、可逆映射的概念和映射可逆的充要条件。

3.理解和掌握数学归纳法原理,能熟练运用数学归纳法。

4.理解和掌握整数的性质及带余除法、最大公因数与互素、素数的一些简单性质。

5.掌握数环,数域的概念,能够判别一些数集是否为数环、数域,懂得任意数域都包含有理数域。

二.教学内容:1.1 集合(2学时)1.2 映射(3学时)1.3 数学归纳法(2学时)1.4 整数的一些整除性质(3学时)1.5 数环,数域(2学时)第二章多项式(37学时)一.教学目的和要求:1.掌握数域上一元多项式的概念、运算以及多项式的和与积的次数。

2.正确理解多项式的整除概念和性质。

理解和掌握带余除法。

3.掌握最大公因式的概念、性质、求法以及多项式互素的概念和性质4.理解不可约多项式的概念,掌握多项式唯一因式分解定理。

高等代数教学大纲

高等代数教学大纲

高等代数课程教学大纲一、课程说明1、课程性质:高等代数是高等院校数学系数学与应用数学专业的一门重要基础课。

对学生数学思想的形成有着重要意义,是进一步学习近世代数、常微分方程等后继课的基础,也为深入理解中学数学打下必要的基础。

高等代数是现代数学的基础知识,是学习其它数学学科和现代科学知识的必备基础和重要工具,尤其在本世纪,计算机技术、通讯信息技术和现代生物工程技术已成为最热门的学科领域,这些学科的发展均需要代数学的知识与支持。

高等代数也是师范院校数学与应用数学专业的一门重要基础课程,既是中学代数的继续和提高,对于中学数学教学工作具有重要的理论指导作用,又是输送更高层次优秀人才的专业知识保证。

2、课程教学目的要求(1)使学生掌握多项式理论、线性代数理论的基础知识和基本理论,着重培养学生解决问题的基本技能。

(2) 使学生熟悉和掌握本课程所涉及的现代数学中的重要思想方法,提高其抽象思维、逻辑推理和代数运算的能力。

(3) 使学生进一步掌握具体与抽象、特殊与一般、有限与无限等辩证关系,培养其辩证唯物主义观点。

(4) 逐步培养学生的对真理知识的发现和创新的能力,训练其对特殊实例的观察、分析、归纳、综合、抽象概括和探索性推理的能力。

(5) 使学生对中学数学有关内容从理论上有更深刻的认识,以便能够居高临下地掌握和处理高级中学数学教材,进一步提高中学数学教学质量。

(6) 根据教学的实际内容的需要,对大纲所列各章内容,分别提出了具体的目的要求,教学时必须着重抓住重点内容进行教学。

本课程分以一元多项式为主体的多项式理论和线性代数两部分。

线性代数部分涉及行列式、矩阵、线性方程组、二次型、线性空间、线性变换、λ-矩阵、欧几里得空间等。

本课程教学重点应放在多项式理论与线性代数理论。

多项式理论以一元多项式的因式分解唯一性定理为主体介绍了有关多项式的一些必要的知识,为后继课提供准备;线性代数部分则较为系统地介绍了线性方程组,线性空间与线性变换理论。

高等代数课程教学大纲

高等代数课程教学大纲

《高等代数》课程教学大纲课程编号:总学时数:160(理论160)总学分数:10课程性质:学科基础课程适用专业:数学与应用数学、信息与计算科学一、课程的任务和基本要求:本课程是本科院校数学与应用数学、信息与计算科学专业的一门必修的重要基础课。

课程的主要任务是系统介绍多项式理论、行列式、线性方程组和矩阵、二次型和双线性函数、线性空间和线性变换,λ-矩阵和欧氏空间等内容,通过课程学习,要求学生系统地掌握这些内容的基本概念和基本理论以及代数学研究问题的基本方法,培养学生的抽象思维、逻辑推理和运算能力,为学生后继课程的学习打下坚实的基础。

二、基本内容和要求:(一)多项式1、数域及一元多项式的概念和运算2、多项式的整除性、带余除法、最大公因式3、多项式的因式分解、重因式、多项式函数及多项式的根4、复数域,实数域和有理数域上多项式的因式分解5、多元多项式及对称多项式要求:理解一元多项式的有关概念,掌握多项式的运算,最大公因式和有理根的求法,互素,有无重因式的判别方法,能够熟练运用一元多项式的基本概念、基本理论和基本方法证明多项式中的一些问题。

了解多元多项式。

(二)行列式1、n阶行列式的定义和性质2、行列式按行(列)展开的公式3、拉普拉斯定理4、克兰姆法则要求:理解行列式的概念,行列式的性质,掌握行列式的计算方法,克兰姆法则的运用。

(三)线性方程组1、线性方程组的消元法2、n维向量的概念、运算、性质3、向量组的线性相关性4、矩阵的秩,线性方程组有解的判别法5、线性方程组的解结构要求:能熟练运用消元法解线性方程组,掌握矩阵的秩、向量组的秩及极大线性无关组的求法,掌握向量组的线性相关性的基本概念和结论,矩阵秩的相关概念和方法。

能够熟练利用向量组的有关知识分析讨论关于线性方程组的一些问题并能正确使用有解判别法。

(四)矩阵1、矩阵的运算、性质2、可逆矩阵的概念、性质,逆矩阵的求法3、矩阵的分块运算、应用4、初等矩阵与初等变换的关系,用初等变换求逆矩阵的方法要求:能熟练地进行矩阵的运算,熟悉矩阵乘积的行列式及秩的定理,掌握可逆矩阵的概念、性质、初等变换和初等矩阵的关系。

《高等代数》课程教学大纲

《高等代数》课程教学大纲

《高等代数》课程教学大纲一、大纲说明课程名称: 高等代数课程名称(英文):Advanced Algebra适用专业:数学与应用数学课程性质:学科教育必修课程总学时: 192其中理论课学时: 192 实践(实验)课学时:0学分:12先修课程:二、本课程的地位、性质和任务《高等代数》是数学与应用数学专业最重要的基础课程之一,是数学各专业报考硕士研究生的必考课程之一。

通过本课程的学习,使学生掌握多项式和线性代数的系统知识和理论,提高学生抽象思维、逻辑推理和运算能力,培养学生运用抽象的、严格的代数思想方法分析问题、解决问题的能力,为常微分方程、近世代数、计算方法、泛函分析等后续课程的学习打下坚实的基础。

三、教学内容、教学要求第一章基本概念教学内容本章主要介绍了集合、映射、数环、数域等基本概念,这些概念是学习本课程及其它数学分支的基础知识。

1、集合子集集合的相等集合的交与并及其运算律笛卡儿积2、映射映射满射单射双射映射的相等映射的合成可逆映射映射可逆的充要条件3、数学归纳法自然数的最小数原理第一数学归纳法第二数学归纳法4、整数的一些整除性质5、数环和数域教学要求了解:整数的一些整除性质理解:集合掌握:映射;数学归纳法;数环和数域重点与难点映射;可逆映射;数域。

第二章多项式本章主要介绍数域上一元多项式的概念及其运算、整除性、因式分解和有理系数多项式有理根的求法,简单介绍了多元多项式及对称多项式。

多项式理论是高等代数的重要内容,是中学数学有关知识的加深和扩充,是学习其它数学分支的必要基础。

教学内容1、一元多项式的定义和运算2、多项式的整除性整除的基本性质带余除法定理3、多项式的最大公因式最大公因式概念、性质辗转相除法多项式互素概念、性质4、多项式的唯一因式分解定理不可约多项式概念唯一因式分解定理典型分解式5、多项式的重因式多项式的重因式概念多项式有重因式的充要条件6、多项式函数与多项式的根多项式函数的概念余式定理综合除法多项式的根的概念根与一次因式的关系多项式根的个数7、复数域和实数域上多项式的因式分解(代数基本定理不证明)8、有理数域上多项式的可约性及有理根本原多项式的定义Gauss引理整系数多项式在有理数域上的可约性问题Eisenstein判别法有理数域上多顶式的有理根※9、多元多项式多元多项式的概念字典排列法多元多项式的和与积的次数※10、对称多项式对称多项式的概念初等对称多项式对称多项式基本定理教学要求了解:多元多项式对称多项式理解: 一元多项式的定义和运算;多项式的整除性;多项式函数与多项式的根;复数域和实数域上多项式的因式分解掌握: 多项式的重因式;多项式的最大公因式;复数域和实数域上多项式的因式分解;有理数域上多项式的可约性及有理根重点与难点整除概念、带余除法及整除的性质、最大公因式、互素、辗转相除法、不可约多项式概念、性质、因式分解及唯一性定理、因式分解定理的应用、k重因式与k 重根的关系、复(实)系数多项式分解定理、本原多项式、Eisenstein判别法。

高等代数教学大纲

高等代数教学大纲

高等代数教学大纲一、课程基本信息课程名称:高等代数课程类别:数学专业基础课课程学分:具体学分课程总学时:具体学时授课对象:具体专业、年级二、课程目标高等代数是数学专业的一门重要基础课程,通过本课程的学习,学生应达到以下目标:1、掌握代数的基本概念、定理和方法,包括多项式、行列式、矩阵、线性方程组、向量空间、线性变换、特征值与特征向量、二次型等。

2、培养学生的逻辑推理能力、抽象思维能力和运算能力,能够熟练运用代数方法解决数学问题。

3、使学生了解代数的发展历程和应用领域,激发学生对数学的兴趣和探索精神。

三、课程内容与教学要求(一)多项式1、数域理解数域的概念。

掌握常见数域的性质。

2、多项式掌握多项式的定义、次数、系数等基本概念。

了解多项式的运算规则。

掌握多项式的整除、最大公因式、互素等概念和求法。

熟练掌握因式分解定理。

(二)行列式1、行列式的定义理解行列式的定义。

掌握二阶、三阶行列式的计算方法。

2、行列式的性质熟练掌握行列式的性质。

能够利用行列式的性质计算行列式的值。

3、行列式的展开掌握行列式按行(列)展开定理。

能够用展开定理计算行列式。

(三)矩阵1、矩阵的概念理解矩阵的定义。

掌握矩阵的加法、数乘、乘法运算。

2、矩阵的秩理解矩阵秩的概念。

掌握求矩阵秩的方法。

3、逆矩阵掌握逆矩阵的概念和性质。

熟练掌握求逆矩阵的方法。

(四)线性方程组1、线性方程组的解掌握线性方程组的解的存在性和唯一性定理。

能够用消元法求解线性方程组。

2、线性方程组解的结构理解齐次线性方程组解的结构。

掌握非齐次线性方程组解的结构。

(五)向量空间1、向量空间的定义理解向量空间的概念。

掌握向量空间的基本性质。

2、向量的线性相关性掌握向量线性相关和线性无关的概念和判定方法。

了解向量组的秩的概念和求法。

(六)线性变换1、线性变换的定义理解线性变换的定义。

掌握线性变换的运算。

2、线性变换的矩阵掌握线性变换在给定基下的矩阵表示。

了解相似矩阵的概念和性质。

高等代数教学大纲

高等代数教学大纲

高等代数教学大纲一、课程简介本课程主要介绍高等代数的基本概念、定义和定理,包括线性空间、线性变换、矩阵、行列式、特征值、特征向量等内容。

通过本课程的学习,学生应该能够掌握高等代数的基本理论和方法,进一步培养其分析问题的能力和解决问题的能力。

二、教学目标1.掌握高等代数的基本概念、定义和定理。

2.熟练掌握线性空间、线性变换、矩阵、行列式、特征值、特征向量等内容。

3.培养学生分析问题、解决问题的能力。

4.培养学生数学建模的能力。

三、教学内容和教学方法1. 教学内容1.线性空间的定义与基本性质。

2.线性变换的定义与基本性质。

3.矩阵的基本运算和性质。

4.行列式的概念和性质。

5.特征值、特征向量和对角化。

6.线性方程组和矩阵消元算法。

7.正定矩阵、二次型和极值问题。

8.线性代数应用:最小二乘法、主成分分析、特征值应用等。

2. 教学方法1.讲授理论,强调概念的起源和本质。

2.给出典型例题,讲解例题的解法和思路,以帮助学生理解和掌握知识。

3.组织学生进行课上小组讨论和课后思考题目,促使学生主动思考问题、独立思考问题。

4.给学生提供大量题目,帮助学生掌握基本概念和技能。

5.激发学生兴趣,带领学生开展独立或团队研究性学习,鼓励学生探索和创新。

四、教学进度和考核方式1. 教学进度本课程可设置为2个学期,共36周,每周2-3次课程。

章节教学内容学时数第1章线性空间4周第2章线性变换4周第3章矩阵与行列式5周第4章特征值与特征向量3周第5章线性方程组与消元法4周章节教学内容学时数第6章正定矩阵与二次型3周第7章应用3周综合总复习2周2. 考核方式1.平时表现:包括出勤、作业、小测、小论文等,占总成绩的30%。

2.期中考试:占总成绩的30%。

3.期末考试:占总成绩的40%。

五、参考资料1.《线性代数及其应用》(美)Gilbert Strang 著,机械工业出版社。

2.《线性代数基础教程》(美)Bernard Kolman 著,高等教育出版社。

高等代数教学大纲(教学计划)

高等代数教学大纲(教学计划)

《高等代数》教学大纲(教学计划)第一学期第一周:(第一章§1)代数系统的概念;数域的定义;定理任一数域都包含有理数域;集合的运算,集合的映射(像与原像、单射、满射、双射)的概念;求和号与求积号。

(第一章§2)高等代数基本定理及其等价命题;推论数域上的两个次数小于m的多项式如果在m个不同的复数处的取值相等,则此二多项式相等;韦达定理;实系数代数方程的根成对出现;推论实数域上的奇数次一元代数方程至少有一个实根。

第二周:(第一章§3)数域K上的线性方程组的初等变换的定义;命题线性方程组经过初等变换后与原方程组同解;线性方程组的系数矩阵和增广矩阵的以及矩阵的初等变换的定义;线性方程组无解、有唯一解和有无穷多解的判别准则;命题变元个数大于方程个数的齐次线性方程组必有非零解;线性方程组的解的存在性与数域的变化无关(这不同于高次代数方程)。

(第二章§1)向量和n维向量空间的定义及性质;线性组合和线性表出的定义;向量组的线性相关与线性无关的定义以及等价表述。

第三周:(第二章§1)向量组的秩;向量组的线性等价;极大线性无关组;集合上的等价关系。

(第二章 §2)矩阵的行秩与列秩,行(列)初等变换不改变行(列)秩;命题 矩阵的行(列)初等变换不改变列(行)秩;矩阵的转置;推论 矩阵的行、列秩相等,称为矩阵的秩,矩阵A 的秩记为r )(A ;满秩方阵;矩阵的相抵;相抵是等价关系;秩是相抵等价类的完全不变量;用初等变换求矩阵的秩。

第四周:(第二章 §3)齐次线性方程组的基础解系;定理 数域上的齐次线性方程组的基础解系中的向量个数等于变元个数减去系数矩阵的秩;基础解系的求法;非齐次线性方程组的解的结构。

(第二章 §4)矩阵的加法和数乘的定义;矩阵的乘法的定义,矩阵的运算(加法、数乘、乘法、转置)的性质;矩阵的和与积的秩。

第五周:(第二章 §5)n 阶方阵,对角矩阵,数量矩阵,单位矩阵,初等矩阵,对称、反对称、上三角、下三角矩阵;命题 矩阵的初等行(列)变换等价于左(右)乘初等矩阵;定理 一个方阵是满秩的当且仅当它能表示为初等矩阵的乘积。

教学大纲-厦门大学高等代数

教学大纲-厦门大学高等代数

教学大纲-厦门大学高等代数第一篇:教学大纲-厦门大学高等代数教学大纲一.课程的教学目的和要求通过这门课的学习,使学生掌握高等代数的基本知识,基本方法,基本思路,为进一步学习专业课打下良好的基础,适当地了解代数的一些历史,一些背景。

要突出传授数学思想和数学方法,让学生尽早地更多地掌握数学的思想和方法。

突出高等代数中等价分类的思想,分解结构的思想,同构对应的思想,揭示课程内部的本质的有机联系。

二.课程的主要内容:代数学是研究代数对象的结构理论与表示方法的一门学科。

代数对象是在一个集合上定义若干运算,且满足若干公理所构成的代数系统,线性空间则是数学类专业本科生所接触和学习的第一个代数对象。

本课程力求突出代数学的思想和方法。

《高等代数》分为两个部分主要内容。

一部分是基本工具性质的,包括多项式,行列式,矩阵初步,二次型。

既然是工具性质的,因而除了多项式内容外,也是数学专业以外的理科、工科、经管类《线性代数》的内容,以初等变换为灵魂的矩阵理论是这部分内容的核心。

另外一部分是研究线性空间的结构,这是研究代数结构的起点和模型,也是《高等代数》有别于《线性代数》之所在。

《高等代数》从三个角度进行研究。

从元素的角度看,研究向量间的线性表示,线性相关性,基向量;从子集角度看,研究子空间的运算和直和分解;从线性空间之间的关系来研究线性空间结构,就是线性映射,线性变换,线性映射的像与核,Jordan标准形对应的空间分解。

而欧氏空间则是具体的研究空间的例子。

在研究线性空间中,始终贯穿着几何直观和矩阵方法的有机结合,矩阵的相似标准形和对应的线性空间分解则是这种有机结合的生动体现和提升,因而是本课程的精华内容。

本课程力求突出几何直观和矩阵方法的对应和互动。

我们强调矩阵理论,把握简洁和直观的代数方法,同时重视线性空间和线性映射(变换)的主导地位和分量,从几何观点理解和把握课程内容。

三.课程教材和参考书:教材:林亚南编著,高等代数,高等教育出版社,第一版参考书:1.姚慕生编著,高等代数(指导丛书),复旦大学出版社,第二版2.北京大学数学系编,高等代数,高等教育出版社,北京(1987)3.张禾瑞、郝炳新,高等代数,高等教育出版社,北京(1999)4.樊恽、郑延履、刘合国,线性代数学习指导,科学出版社,北京(2003)5.林亚南编:高等代数方法选讲,2002年,见厦门大学精品课程“高等代数”网站四.课程内容及学时分配本课程开课时间:一学年(共两学期),共170学时,其中课堂讲授122学时,习题讨论课42学时,考试6学时。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国海洋大学本科生课程大纲
课程属性:学科基础
课程性质:必修
一、课程介绍
1.课程描述:
高等代数是数学科学学院各专业的重要专业必修基础课,是学习其它数学课程的主要先修课之一。

高等代数的内容主要包含两个模块:第一模块,方程和方程组的求解问题,主要内容有:多项式、行列式、线性方程组、矩阵、二次型;第二模块,线性空间相关理论,主要内容有:线性空间、线性变换、λ-矩阵、欧几里得空间。

高等代数内容包含理工科所开设的线性代数的主要内容。

2.设计思路:
开设高等代数课程的目的是:一方面,使数学院本科生在中学所学初等代数的基础上继续学习更加高深的代数学知识,使其掌握系统的经典代数内容,为学习其它数学课程(如数值代数、近世代数、计算方法等等)提供坚实的代数基础知识;另一方面,通过本课程的学习,逐步培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生在数学思想、数学方法方面的修养。

19世纪以前的代数研究内容主要是解方程和方程组以及由此产生的相关理论,称为经典代数;19世纪以后的代数主要研究一些抽象代数结构,如群、环、域、模等,称为抽象代数或近世代数。

高等代数课程的内容主要是经典代数内容,涵盖学习其它数学课程所要求的基本的代数基础知识。

- 2 -
高等代数的内容基本按照经典代数的发展编排的,主要有两条主线:第一,方程和方程组求解问题,第二,线性空间相关理论。

第一条主线的主要内容有:多项式理论——对应高次方程,其求解需要降次,需研究多项式的因式分解;行列式理论——求解线性方程组的主要工具之一;线性方程组理论——解的判定与求法;矩阵理论——解线性方程组时用到的矩阵运算与性质;二次型理论——二次齐次方程的化简与对称矩阵。

第二条主线的主要内容多是解析几何中内容的推广,主要有:线性空间——几何空间的推广与抽象;线性变换——线性空间中点的运动的描述;λ-矩阵——证明线性变换的矩阵与其标准形相似;欧几里得空间——带有长度、夹角与距离等度量性质的线性空间,是几何空间的推广。

3.课程与其他课程的关系:
先修课程:无;
并行课程:数学分析、空间解析几何;
后置课程:近世代数。

高等代数与近世代数内容恰好实现对接,完整体现了代数学的基本内容,联系密切。

二、课程目标
本课程目标是:一方面使学生系统地掌握经典代数的内容,包括多项式、线性方程组、矩阵、二次型、线性空间、线性变换、欧几里得空间等,为学习其它数学课程打下坚实的代数知识基础;另一方面,通过本课程的学习,培养学生的数值计算能力、逻辑分析能力和抽象思维能力,提高学生运用数学思想、数学方法分析问题、解决问题的能力。

到课程结束时,学生应达到以下几方面要求:
(1)知识掌握良好。

会判断多项式的可约性,能计算两多项式的最大公因式;会计算行列式;会判定线性方程组是否可解,掌握线性方程组解的结构;熟练掌握矩阵的各种运算;可将二次型化为标准形;掌握线性空间基底理论以及子空间的运算;会写线性变换的矩阵,会判定矩阵是否对角化、准对角化,并能求出其相应对角形与准
- 2 -
对角形(若当标准形与有理标准形);掌握欧式空间上的正交变换与对称变换。

(2)能力得到提高。

通过课程中大量计算题目的练习使得数值计算能力得到提高;通过课程中大量证明题目的练习,使得问题分析能力和逻辑思维能力得到提高;通过线性空间与欧氏空间都是几何空间的抽象,来锻炼抽象思维能力。

(3)数学素质得到提升。

通过多项式理论学习,知道解高次方程时应降次,就需因式分解;研究线性方程组时只需研究其系数,从而引出矩阵与行列式;通过学习线性空间时先学子空间,再学同构,知道研究一个代数系统的方法——由内到外,即先研究其子代数系统,再通过映射研究这个代数系统与其它代数系统的关系;通过线性变换在不同基底下的矩阵相似引出矩阵的对角化与准对角化;几何空间中有长度、夹角、距离等,将其推广到一般线性空间便得到欧氏空间。

想明白这些“自然想法”,则学生的数学思想与数学素养便会得到有效提升。

三、学习要求
为达到教学目标和良好的学习效果,希望学生:
(1)课前要预习。

通过预习,了解本堂课主要学习哪些知识,从而做到心中有数。

对自己不能看懂的知识,上课时特别注意听讲;能看懂的知识,注意教师讲解时有何补充。

(2)课上有效听讲。

一是不缺课,因为后面内容的学习要用到前面内容作为基础,各节知识环环相扣,漏掉一次会严重影响后续内容的学习;二是做好笔记,记下教师举过的例题与补充的知识,过后仔细体会;三是要理解,在理解的基础上加以记忆,不理解的要赶紧问。

(3)课后主动学习。

一是按时完成常规练习作业,才能有助于掌握课堂所学内容,提高自己分析问题、解决问题的能力。

二是善于与同学交流,相互讨论有助于对知识的理解;三是主动寻求一些参考书进行阅读,只有见多才能识广。

四是学会利用网络资源,比如主动看一些国内高等代数精品课视频、微课视频等,提高自己对课程的兴趣和某个知识点的理解;也可看一些外文线性代数课程视频,学习一些数学专业术语的英文表达,为以后参与国际交流打下基础。

四、参考教材与主要参考书
1、选用教材:
- 2 -
《高等代数》(第4版),王萼芳、石生明修订,高等教育出版社,2013年8月出版。

2、主要参考书:
[1] 高等代数(上、下册),丘维声著,清华大学出版社,2010年6月出版。

[2] 高等代数,张贤科许甫华编著,清华大学出版社,2004年7月出版。

[3] 高等代数习题解(上、下册), 杨子胥编,山东科学技术出版社,2008年10月第二版。

[4] 高等代数导教∙导学∙导考, 徐仲等编,西北工业大学出版社,2014年8月第四版。

五、进度安排
- 2 -
- 2 -
- 2 -
- 2 -
- 2 -
六、成绩评定
(一)考核方式A:A.闭卷考试 B.开卷考试 C.论文 D.考查 E.其他(二)成绩综合评分体系:
附:作业和平时表现评分标准
1)作业的评分标准
2)课堂讨论及平时表现评分标准
- 2 -
七、学术诚信
学习成果不能造假,如考试作弊、盗取他人学习成果、一份报告用于不同的课程等,均属造假行为。

他人的想法、说法和意见如不注明出处按盗用论处。

本课程如有发现上述不良行为,将按学校有关规定取消本课程的学习成绩。

八、大纲审核
教学院长:院学术委员会签章:
- 2 -。

相关文档
最新文档