PZT压电陶瓷介绍和测试方法讲义资料
pzt-8 大功率压电陶瓷 特点
pzt-8 大功率压电陶瓷特点PZT-8(铅锆钛-8)是一种高功率压电陶瓷材料,具有以下特点:1.高电机械耦合系数:PZT-8具有较高的电机械耦合系数,能够将输入的电能有效地转换为机械振动能量。
这使得PZT-8在声波发射、接收和传感等领域具有出色的表现。
2.高机械强度:PZT-8具有较高的机械强度,使其能够承受较大的压力和负荷,具有良好的耐磨损性能。
3.宽工作温度范围:PZT-8具有较宽的工作温度范围,能够在高温和低温环境下保持稳定性能。
它适用于在恶劣环境条件下的应用,如航空航天、核工程等。
4.快速响应速度:PZT-8具有快速的响应和振动速度,能够实现快速的工作和控制。
这使其在快速响应和精准控制要求较高的领域,如超声波成像、精密加工和精确定位等方面表现出色。
5.高效能转换:PZT-8能够将电能有效地转换为机械能,并且具有较高的功率密度。
这意味着在同样输入功率的情况下,PZT-8能够提供更高的输出功率,具有较高的能量转换效率。
6.宽频响范围:PZT-8具有宽带频率特性,能够在较宽的频率范围内工作。
这使得PZT-8适用于需要在不同频率下进行振动、检测或传感的应用,如压电换能器、声波发射器和接收器等。
7.良好的温度稳定性:PZT-8在较宽的温度范围内具有较好的稳定性,能够在不同温度条件下保持一致的性能。
这使得PZT-8适用于需要在高温或低温环境中工作的应用,如热敏控制、温度传感和热能转换等。
总的来说,PZT-8大功率压电陶瓷具有高耦合系数、高机械强度、宽工作温度范围、快速响应速度、高效能转换、宽频响范围和良好的温度稳定性等特点。
这使得它在声波、震动、传感、控制和能量转换等领域具有广泛应用的潜力。
阐述压电陶瓷对蓄电池充电的方法
阐述压电陶瓷对蓄电池充电的方法压电陶瓷是一种具有压电效应的功能陶瓷,压电效应是指由应力诱导出电场或磁场,或者由电场或磁场诱导出应力或应变的一种现象,前者为正压电效应,后者为负压电效应。
本文研究压电陶瓷的正压电效应,并提出了将阻尼振动机械能存储到蓄电池中的技术。
本文分析了两种悬臂梁附着压电陶瓷的阻尼振动特性和电压输出特性,结合国内外的一些蓄电池模型提出了铅酸蓄电池的充电电路模型,并分析了压电陶瓷对蓄电池充电的方法。
1 压电陶瓷发电分析及其等效电路模型1.1 压电陶瓷PZT介绍压电陶瓷PZT(钛酸铅)是呈正方体或菱面体形式的铁电体聚合晶粒状,接近立方体结构。
在居里温度(470℃~490℃)以上时,晶粒呈正方对称的结构,但是当温度下降到居里温度以下时,氧离子O2-和钛离子Ti4+一起相对于铅离子Pb2+发生了偏移,表现出了正负极性,由于材料的这种微观不对称性,使之具有了压电性。
1.2 悬臂梁附着压电陶瓷的发电分析图1 悬臂梁结构与压电陶瓷极化方向假设将压电陶瓷功能材料附着在悬臂梁上,如图1所示,用ANSYS软件建模技术分别分析压电陶瓷的极化方向与悬臂梁相垂直(A)和相平行(B)两种情况。
模型(A)用以模拟压电陶瓷片结构,模型(B)用以模拟PFC(压电陶瓷纤维复合材料)结构,PFC为将压电陶瓷纤维镶嵌到聚乙烯等材料中得到UD型等形式的复合材料。
假设悬臂梁的自由端N3与振动源相连,振源的表达式U=UMsin(2πft),UM=0.05mm,f=20Hz。
将该振源施加在模型的N3点,设N4和N5点为零电压,其他节点连接方式如图1所示,使用ANSYS的瞬态响应分析法,采样时间为0.001秒,不断采集模型的两电极的电势差,得到输出电压特性。
得到压电陶瓷纤维复合材料(B)的输出电压可达到1300V,这种材料常用来做高压脉冲设备,不易于对蓄电池充电,所以本文选择纯压电陶瓷片作为研究对象。
模型(A)纯压电陶瓷片的电压输出特性,电压幅值为8.02V,而且稳定和易于控制。
pzt-4压电陶瓷电学参数
pzt-4压电陶瓷电学参数
PZT-4是一种常见的压电陶瓷材料,具有优良的压电性能和电
学参数。
关于PZT-4的电学参数,我们可以从多个方面来进行全面
的回答。
首先,PZT-4的介电常数通常在1000至1500之间,这意味着
它在外加电场下的极化能力非常强。
这也使得PZT-4成为一种优秀
的压电材料,可用于传感器、换能器和压电马达等应用。
其次,PZT-4的压电常数通常在600至750之间,这表明它对
于机械应力的响应非常敏感。
这使得PZT-4在压电传感器和执行器
方面有着广泛的应用,例如压力传感器、声波发生器等。
此外,PZT-4的电机械耦合系数通常在0.6至0.7之间,这意
味着它能够高效地将电能转换为机械能,或者将机械能转换为电能,因此在压电换能器和压电马达中有着重要的应用。
另外,PZT-4的电阻率通常在10^9至10^11Ω·cm之间,这使
得它在一些特定的电学应用中能够表现出良好的绝缘性能。
总的来说,PZT-4作为一种压电陶瓷材料,具有较高的介电常数、压电常数和电机械耦合系数,以及较高的电阻率,这些优秀的电学参数使得它在压电传感器、换能器、压电马达等领域有着广泛的应用前景。
希望这些信息能够对你有所帮助。
pzt压电陶瓷片的密度
pzt压电陶瓷片的密度
pzt压电陶瓷片是一种具有多种功能的陶瓷材料,因其较高的性能,广泛地应用于电子电路及机械加工等领域。
1. pzt压电陶瓷片的特点:
(1)能够产生拉力变形,具有良好的压电效应;
(2)具有较为稳定的表观温度系数,热稳定性好;
(3)具有良好的泄漏电流特性,使得它成为最常用的气体绝缘材料;(4)耐生化腐蚀性,耐电压冲击的能力较强。
2. pzt压电陶瓷片的密度:
PZT压电陶瓷片的密度通常为7.4~7.7 g/cm3,少数情况下达到8.5
g/cm3,它的重量要比碳化硅陶瓷的重量要轻;此外,它能够长时间使用,具有很高的绝缘水平,使得它成为非常有效的智能传感器和传感器内电路元件。
3. pzt压电陶瓷片的应用:
(1)它在电子电路中可以作为高精度控制元件及保护设备;
(2)也可以用作压力、温度以及湿度的传感器;
(3)具有传导和透射功能的复合型光电器件;
(4)也可以用于声学设备,用于发射和接收声音振动,具有良好的稳定性;
(5)还可以用作气体分离膜,提高产品性能。
4. pzt压电陶瓷片的研发前景
PZT压电陶瓷片在发电、驱动和容纳等领域都有应用,具有极大的潜力。
随着人们对新型气体和微纳米技术的不断发展,PZT压电陶瓷片应用领域也将不断扩展,开发出更多高性能的新型PZT压电陶瓷片。
未来的PZT压电材料将具有更好的性能,使得开发者可以实现新的技术和产品,这可以被很好地应用于消费电子设备领域,例如电子游戏机、导航仪等等。
PZT陶瓷的压电性能测试实验报告
2.实验报告要求:
1)理解压电效应和掌握PZT的制备流程; 2)简要说明PZT压电陶瓷的d33的测试过程; 3)实验报告用正规的报告纸书写,要求思路清晰、书写工整。
行星球磨机
手动式粉末压片机
准静态d33测量 仪
3.PZT压电陶瓷的制备
3.2 PZT陶瓷的制备:
球磨 成型及增塑 预烧排塑及烧结
1.使各种原材 料分布均匀, 便于固相反应 的生成 2.使物料粉碎 达到一定的细 度,以利于降 低烧成温度
1.赋予材料可塑 性,便于成型, 使坯件具有较高 的致密度 2.增加瓷料的粘结 性,并减少与模壁 的摩擦力,便于脱 模
快速模式即连续测量,被测元件均为极化后已放置一点时间并已彻 底放电后的试样,此时“放电提示”红色发光二极管闪烁,随时提醒 操作人员首先对压电元件放电后再进行测量,以避免损坏仪器。选择 “快速模式”测量,每更换一个被测元件,表头会迅速显示d33结果及 正负极性。
3.4“安全模式”测量
对于刚刚极化完的压电试样,在短时间内,即使多次放电也很难彻 底放完,压电试样上仍然会存在少则几千伏,多则几万伏的电压。选 择“安全模式”可使仪器在测量过程中能自动对被测元件进行放电, 以确保仪器安全。在插入被测试样后,放电过程开始并自动完成,此 时表头指示为零,按下“测量触发”键,表头才能显示出测量结果。 每测一只元件,都要重复一次上述过程。在“安全模式”状态下, “放电提示”指示灯熄灭,“测量触发”按钮内的绿色发光二极管一 直点亮。
预烧温度800℃, 主要目的是排除 粘结剂,并使坯 体有一定的强度 烧结温度1200℃, 烧成好坏标准: 陶瓷收缩情况和 表面裂纹
3.PZT压电陶瓷的制备
3.3 极化:
硅油的作用: 1:保温; 2:绝缘。
PZT压电陶瓷介绍和测试方法-PPT精选文档
– 具有显著的介电、压电和铁电特性 – PZT铁电厚膜兼有块状材料和薄膜的优点,可在低压和高频条件工作
– 压电厚膜微致动器作为磁记录行业的首选材料,被用来解决硬盘驱动器磁头精确定位的难题
应用范围:机械能电能相互转换类传感器
Q Ua Ca
电荷等效模型
F
压电常数 d
Q=U*C
HSA PZT 压电陶瓷应用介绍
HSA (磁头悬臂装置)结构及功能介绍
PZT元件作用是利用其高压电常数特性,使读写磁头发生水平位移,从而使HSA 水平旋转和 精确寻轨
交变电压
U 型刚体 电荷变化
PZT 元件
位移变化
精确寻轨
HSA
HSA PZT 工作原理
定义
在外力作用下产生电流,或反过来在电流作用下产生力或形变的一种功能材料
类别
类 别
石英晶体 压电陶瓷
材 料
单晶体、水晶 (人造、天然) 人造多晶体 压电半导体
成 分
SiO2 钛酸钡、PZT 钡、铌酸盐系 压电特性 半导体特性
特 性
d11=2.31×10-12C/N, 压电系数稳定,固有频率稳定 承受压力700-1000Kg/cm2 压电系数高 d33=190×10-11C/N 品种多、性能各异 集成压电传感器 质轻柔软、抗拉强度高、 机电耦合系数高
正压电效应:F(应力或形变)输入--->Q\U (电量或电压) 逆压电效应: Q\U (电量或电压)输入--->F(应力或形变)输出
压力输入F
电压输出
形变输出
电压输入
压电介质
关于PZT
压电陶瓷主要用于制造超声换能器、水声换能器、电声换能器、陶瓷滤波 器、陶瓷变压器、陶瓷鉴频器、高压发生器、红外探测器、声表面波器件、电 光器件、引燃引爆装置和压电陀螺等。
1.保定市宏声声学电子器材有限公司提供的参数
2,联能科技的 PZT 参数 3,哈尔滨芯明天科技有限公司 (1)输出力与位移的关系曲线
(2)输出位移于电压的关系曲线
二.PZT 的重要参数 1.压电应变常数 D(Piezoelectric Strain Constant)是压电体把机械能转变
为电能或把电能转变为机械能的转换系数。它反映压电材料弹性(机械)性能 与介电性能之间的耦合关系。 d33,d15,d31 ?
2.谐振频率 fr,并联谐振频率 fp,串联谐振频率 fs、最小导纳频率 fn (minimum admittance frequency)、基频(fundamental frequency)、泛音 频率(fundamental frequency)
压电陶瓷只在某一温度范围C 时,压电陶瓷发生结构相转变,这个临界温度 TC 称为居里温度。 6 温度稳定性(TEMPERATURE STABILITY) 指压电陶瓷的性能随着温度变化的特性,一般描述温度稳定性有温度系
数或最大相对漂移二种方法。 7.电 学 品 质 因 素 Qe( electrical quality factor ) 与 机 械 品 质 因 数 Qm
3.机电耦合系数 平面机电耦合系数 KP,横向机电耦合系数 K31、纵向机电耦合系数 K33、厚度 伸缩机电耦合系数 KT、厚度切变机电耦合系数 K15
整理的压电陶瓷基本介绍
压电陶瓷报告1.基本概念压电陶瓷由一颗颗小晶粒无规则“镶嵌”而成,如图1所示。
图1 BSPT压电陶瓷样品断面SEM照片每个小晶粒内还具有铁电畴组织,如图所示。
图PZT陶瓷中电畴结构的电子显微镜照片1.1晶胞结构目前应用最广泛的压电陶瓷是钙钛矿(CaTiO3)型结构,如PbTiO3、BaTiO3、KxNa1-xNbO3、Pb(ZrxTi1-x)O3等。
该类材料的化学通式为ABO3。
式中A的电价数为1或2,B的电价为4或5价。
其晶胞(晶格中的结构单元)结构如图所示。
压电陶瓷的晶胞结构随温度的变化是有所变化的。
如下式及图6所示。
PbTiO3(PT ):四方相 立方相BaTiO3(BT ):三角相 正交相 四方相 立方相自发极化的产生以BT 材料由立方到四方相转变为例,分析自发极化的产生,如图7所示。
(a )立方相 (b )四方相由图可知,立方相时,正负电荷中心重合,不出现电极化;四方相时,因490℃ 120℃ 5℃ -90℃Ti4+沿c轴上移,O2-沿c轴下移,正负电荷中心不重合,出现了平行于c 轴的电极化。
这种电极化不是外加电场产生的,而是晶体内因产生的,所以成为自发极化,其相变温度TC称为居里温度。
1.2压电效应某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。
反之,施加激励电场,介质将产生机械变形,称逆压电效应。
其中,如果压力是一种高频震动,产生的就是高频电流。
如果将高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动)。
1.3压电陶瓷具有这种性能的陶瓷称为压电陶瓷,发生正压电效应时,表面电荷的密度与所受的机械应力成正比。
当发生负压电效应时,形变的大小与电场强度成正比。
1.4压电作用机理压电效应首先是在水晶晶体上发现的,现在我们以水晶晶体为模型,说明产生压电效应的物理机理。
当不施以压力时,水晶晶体正、负电荷中心如上图分布,设这时正、负电荷中心重合,整个晶体的总电矩等于零,晶体表面不荷电(不呈压电性)。
pzt压电陶瓷泡沫
PZT压电陶瓷泡沫概述PZT压电陶瓷泡沫是一种新型的材料,具有压电效应和泡沫材料的特点。
本文将从材料特性、制备方法、应用领域等方面对PZT压电陶瓷泡沫进行全面、详细、完整且深入地探讨。
材料特性PZT压电陶瓷泡沫具有以下特性: 1. 压电效应:PZT材料具有压电效应,能够在受到外力作用时产生电荷,从而实现能量转换。
2. 轻质高强度:PZT泡沫材料由于具有泡沫结构,重量轻而强度高,适用于一些需要轻质材料的领域。
3. 隔热性能:PZT泡沫材料具有较好的隔热性能,可以在高温环境下应用。
4. 吸音性能:PZT泡沫材料具有较好的吸音性能,可以在噪音控制领域应用。
制备方法PZT压电陶瓷泡沫的制备方法主要包括以下几个步骤: 1. 原料准备:根据配方比例准备PZT陶瓷粉末、发泡剂、粘结剂等原料。
2. 混合:将PZT陶瓷粉末、发泡剂、粘结剂等原料按照一定比例混合均匀。
3. 发泡:将混合后的原料放入发泡装置中,在一定温度条件下进行发泡处理,使材料形成泡沫结构。
4. 成型:将发泡后的材料进行成型,可以采用压制、注射等方法进行。
5. 烧结:将成型后的材料进行烧结处理,使其形成致密的陶瓷结构。
6. 表面处理:对烧结后的材料进行表面处理,以提高其性能和使用寿命。
应用领域PZT压电陶瓷泡沫在以下领域具有广泛的应用: 1. 声波传感器:PZT泡沫材料具有较好的压电效应和吸音性能,可以用于制造声波传感器,应用于声学领域。
2. 压电发电装置:由于PZT泡沫材料具有压电效应,可以将其应用于压电发电装置,实现能量转换。
3. 隔热材料:PZT泡沫材料具有较好的隔热性能,可以用于制造隔热材料,应用于高温环境中。
4. 噪音控制:PZT泡沫材料具有吸音性能,可以用于制造吸音材料,应用于噪音控制领域。
结论PZT压电陶瓷泡沫是一种具有压电效应和泡沫材料特性的新型材料。
它具有轻质高强度、隔热性能和吸音性能等特点,适用于声学、能源、隔热和噪音控制等领域。
压电陶瓷分析PPT课件
2021
8
(2)预烧
经过煅烧粉碎的原料混合配料后要进行预烧,其目的 是为了使化学反应充分进行。
实验表明,如果预烧温度恰当,烧结温度可以在很宽 的范围内波动,对致密度无显著影响,预烧温度如果 偏低,烧成温度无论如何提高(或延长保温时间), 也不能得到很高的致密度。此外,预烧温度和保温时 间比较起来,预烧温度所起作用更为重要。
瓷的必要工序及制作方法。 压电陶瓷生产的主要工艺流程:
配料→球磨→过滤、干燥→预烧→二次球磨→过滤、 干燥→过筛→成型→排塑→烧结→精修→上电极→ 烧银→极化→测试。
2021
7
(1) 原料处理
➢ 原料的纯度是制备优良压电陶瓷的首要条件。通常来 说, 希望原料的纯度要高一些,特别是用量比较大的 原料,如 Pb3O4(或PbO)、ZrO2和TiO2等, 若纯度 低,引入杂质总量就很大,所以纯度要高些。小剂量 的原料则纯度要求相对低些。
❖ 1940年以前,只有单晶体压电材料,由于存在多种 缺点(如易溶于水),未能得到广泛应用。
❖ 第一批商业性压电陶瓷器件是美国人在1947年用陶 瓷制造的BaTiO3留声机拾音器,但BaTiO3存在压电 性弱和压电性随温度变化大的缺点。
2021
14
❖ 1954年Leabharlann 国B.贾菲等人发现了PbZrO3-PbTiO3
2021
22
(1)压电陶瓷变压器
❖ 压电变压器是利用极化后压电体的压电效应来实现电 压输出的。其输入部分用正弦电压信号驱动,通过逆 压电效应使其产生振动,振动波通过输入和输出部分 的机械藕合到输出部分,输出部分再通过正压电效应 产生电荷,实现压电体的电能-机械能-电能的两次变换, 在压电变压器的谐振频率下获得最高输出电压。
压电陶瓷材料
压电陶瓷材料湖南工学院学院:材料与化学工程专业:无机非金属材料工程学号:09701540130姓名:姜庭燕时间:2012年5月16日压电陶瓷材料—PZT陶瓷一、压电陶瓷材料简介压电陶瓷,一种能够将机械能和电能互相转换的功能陶瓷材料,属于无机非金属材料。
这是一种具有压电效应的材料。
它在工业生产和日常生活中得到了广泛的应用。
由压电陶瓷构成的超高精度、低能耗、控制简便的驱动器,在精密工程中起到了非常重要的作用。
1、压电陶瓷材料的基本原理压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。
如果压力是一种高频震动,则产生的就是高频电流。
而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。
也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。
压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。
例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。
二、PZT压电陶瓷的发展压电陶瓷是一种能够将机械能和电能互相转换的信息功能陶瓷材料。
当在某些各向异性的晶体材料上施加机械应力时,在晶体的某些表面上会有电荷出现。
这一效应称为正压电效应,晶体的这一性质,称为压电性。
1880年,居里兄弟最早发现电气石具有压电效应,1881年,居里兄弟实验发现,在晶体上施加电压时,则晶体会产生几何形变。
这一效应被称为逆压电效应,并给出石英相同的正逆压电常数。
1894年沃伊特(Voigt)指出,仅无对称中心的20种点群的晶体才可能具有压电效应。
石英是压电晶体的代表,它一直被广泛应用至今。
利用石英的压电效应可制成振荡器和滤波器等频控元件。
PZT压电陶瓷介绍和测试方法-文档资料
Prepared by : Wenjie Zhuang
主要内容
基本知识介绍
压电材料 压电效应 压电式传感器工作原理、技术参数及等效模型
HSA PZT 压电陶瓷应用介绍
组成架构及工作原理
PZT 不良背景介绍
测试方法推荐
基本知识介绍
压电材料
正压电效应
形变前的状况 形变后的状况
------ ++++++
逆压电效应
电 场 方 向
基本知识介绍
压电传感器工作原理
是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现 非电量测量
受力、表面形变
压电器件
电荷
表现形式
基本知识介绍
等效模型
正压电效应和逆压电效应等效模型如下:
P-->“Pb”(铅元素),Z-->“Zr” (锆元素),T-->“Ti” (钛元素) 特点
– 具有显著的介电、压电和铁电特性 – PZT铁电厚膜兼有块状材料和薄膜的优点,可在低压和高频条件工作
– 压电厚膜微致动器作为磁记录行业的首选材料,被用来解决硬盘驱动器磁头精确定位的难题
应用范围:机械能电能相互转换类传感器
电极
电极
基本知识介绍
压电效应
正压电效应:外界应力作用下(机械能),表面产生电荷(电能)
逆压电效应:外加电场作用下(电能),一定方向产生机械形变或机械压力
电能
正压电效应
逆压电效应
电能
机械能
------
机械能
F ----- - +++++
机械能
电能
++++++
PZT压电陶瓷介绍和测试方法PPT课件
表现形式
.
Page 6
基本知识介绍
等效模型
正压电效应和逆压电效应等效模型如下:
正压电效应:F(应力或形变)输入--->Q\U (电量或电压) 逆压电效应: Q\U (电量或电压)输入--->F(应力或形变)输出
压力输入F
电压输出
形变输出
电压输入
压电介质
压电介质
HSA PZT 结构示意图
U 型刚体
悬臂弹性区 压电微制动器 滑块
音圈电机
悬臂刚性区
HSA 系统架构
.HSA PZT 结构切片示意图
PZT 元件
PZT 元件
环氧胶
U 型刚体
环氧胶
HSA 压电微制动器
Page 9
HSA PZT 压电陶瓷应用介绍
PZT 不良背景介绍
.
Page 10
The End
.
Page 11
品种多、性能各异
集成压电传感器
质轻柔软、抗拉强度高、 机电耦合系数高
参数
压电常数 弹性常数(刚度) 介电常数 机电耦合系数
电阻 居里点
压电效应强弱:灵敏度 固有频率、动态特性 固有电容、频率下限 机电转换效率 泄漏电荷、改善低频特性
. 丧失压电性的温度
Page 3
基本知识介绍
压电材料
PZT 压电陶瓷 (锆钛酸铅陶瓷)---压电效应
基本知识介绍
等效电路
静电发生器或绝缘介质平板电容器:外部机械硬力作用下,电极两端产生极性相 反电量相等的电荷
机械应力 F
+++++ 等效
____ _
电极
锆钛酸铅系压电陶瓷PZT课件
电子乐器
PZT也被用于制作各种电子乐 器,如电子琴和电子鼓。
PZT压电陶瓷的制造工艺
配料与混合
配料
按照所需的化学计量比,称取锆 酸铅(PbZrO3)、钛酸铅( PbTiO3)和二氧化钛(TiO2) 等原料。
混合
将称取好的原料放入球磨机中, 加入适量的溶剂和磨球,进行长 时间球磨,使原料混合均匀并形 成均一的浆料。
表面金属化与极化
表面金属化
在陶瓷表面涂覆一层金属电极材料,如镍、银等,以便于与 外部电路连接。
极化
在陶瓷上施加直流电场,使其内部正负电荷中心发生相对位 移,从而获得压电效应。
PZT压电陶瓷的性能优化
掺杂改性
掺杂改性是通过在锆钛酸铅(PZT)中加入其他元素来改变其性能的一种方法。
常见的掺杂元素包括镧、锶、铯等,这些元素可以取代PZT中的部分锆或钛离子, 从而改变其电学、热学和机械性能。
掺杂改性有助于提高PZT的压电常数、机电耦合系数和机械品质因数等关键性能参数。
热处理与晶界工程
热处理是优化PZT性能的重要手段, 通过控制热处理温度和气氛,可以影 响PZT的相变、晶体结构和缺陷状态。
热处理与晶界工程结合使用,可以实 现PZT性能的综合优化,提高其稳定 性和可靠性。
晶界工程是通过优化晶界结构来改善 PZT性能的方法,例如通过控制晶粒 尺寸和晶界相组成,可以提高PZT的 抗疲劳性能和降低漏电流。
PZT压电陶瓷的市场与未 来发展
PZT的市场现状
全球PZT压电陶瓷市场规模持 续增长,应用领域不断扩大。
PZT压电陶瓷在智能传感器、 超声波仪器、电子陶瓷等领域 占据主导地位。
中国PZT压电陶瓷市场发展迅 速,成为全球最大的生产国和 出口国。
俗称直探头压电晶片采用PZT压电陶瓷材料制作PPT幻灯片课件
2019/10/4
44
空气传导型超声发生、接收器结 构示意图
1—外壳 2—金属丝网罩 3—锥形共振盘 4—压电晶体片 5—引脚 6—阻抗匹配器 7—超声波束
2019/10/4
33
超声波探头结构示意
1—接插件 2—外壳 3—阻尼吸收块 4—引线 5—压电晶体 6—保护膜 7—隔离层 8—延迟块 9—有机玻璃斜楔块 10—试件 11—耦合剂
2019/10/4
34
超声波的发射和接收虽然均是利用同一 块晶片,但时间上有先后之分,所以单 晶直探头是处于分时工作状态,必须用 电子开关来切换这两种不同的状态。
超声波为直线传播方式,频率越高,绕射能力 越弱,但反射能力越强
2019/10/4
3
声波频率的界限划分
2019/10/4
4
声波的分类 1.次声波
次声波是频率低于20赫兹的声波,人耳听不到, 但可与人体器官发生共振,7~8Hz的次声波会引起人 的恐怖感,动作不协调,甚至导致心脏停止跳动。
2019/10/4
2.声速、波长与指向性
(1)声速 纵波、横波及表面波的传播速度取决于
介质的弹性系数、介质的密度以及声阻 抗。
介质的声阻抗Z 等于介质的密度ρ和声速 c的乘积,即
Z=ρc
2019/10/4
13
常用材料的密度、声阻抗与声速 (环境温度为0℃)
材料
钢 铝 铜 有机玻璃 甘油 水(20℃) 油 空气
2019/10/4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正压电效应
电能
机械能
逆压电效应
电能
F- - - - - -
电能
+++++
机械能
E
极化方向
----- +++++ +
正压电效应
形变前的状况
形变后的状况
- - - - - - 机械能
++++++ --- 向
++++++
逆压电效应
基本知识介绍
压电传感器工作原理
是以某些电介质的压电效应为基础,在外力作用下,在电介质的表面上产生电荷,从而实现 非电量测量
类别
类别 石英晶体 压电陶瓷
新型压电材料
材料 单晶体、水晶 (人造、天然)
人造多晶体
压电半导体
有机高分子 压电材料
成分
SiO2
钛酸钡、PZT 钡、铌酸盐系
压电特性 半导体特性
特性 d11=2.31×10-12C/N, 压电系数稳定,固有频率稳定 承受压力700-1000Kg/cm2 压电系数高 d33=190×10-11C/N
受力、表面形变 压电器件 电荷
表现形式
基本知识介绍
等效模型
正压电效应和逆压电效应等效模型如下:
正压电效应:F(应力或形变)输入--->Q\U (电量或电压) 逆压电效应: Q\U (电量或电压)输入--->F(应力或形变)输出
压力输入F
电压输出
形变输出
电压输入
压电介质
压电介质
应力输入电压输出正压电效应
品种多、性能各异
集成压电传感器
质轻柔软、抗拉强度高、 机电耦合系数高
参数
压电常数 弹性常数(刚度)
压电效应强弱:灵敏度 固有频率、动态特性
介电常数 机电耦合系数
固有电容、频率下限 机电转换效率
电阻 居里点
泄漏电荷、改善低频特性 丧失压电性的温度
基本知识介绍
压电效应
正压电效应:外界应力作用下(机械能),表面产生电荷(电能) 逆压电效应:外加电场作用下(电能),一定方向产生机械形变或机械压力
PZT 元件
PZT 元件
环氧胶
U 型刚体
环氧胶
HSA 压电微制动器
HSA PZT 压电陶瓷应用介绍
PZT 不良背景介绍
The End
Page 11
PZT元件作用是利用其高压电常数特性,使读写磁头发生水平位移,从而使HSA 水平旋转和 精确寻轨
U 型刚体
交变电压 电荷变化
PZT 元件
位移变化
精确寻轨
HSA
HSA PZT 工作原理
HSA PZT 结构示意图
U 型刚体
悬臂弹性区 压电微制动器 滑块
音圈电机
悬臂刚性区
HSA 系统架构
HSA PZT 结构切片示意图
电压输入形变输出产生逆压电效应
正压电效应:Q =d33 *F d33 为压电参数 :压电材料把机械能转变为电能或把电能转变为机械能的转换系数,它为反映力学
量 (应力或应变)与电学量(电位移或电场)间相互耦合的线性响应系数 测量仪器: ZJ-3AN型准静态d33测量仪
基本知识介绍
等效电路
静电发生器或绝缘介质平板电容器:外部机械硬力作用下,电极两端产生极性相 反电量相等的电荷
PZT 压电陶瓷介绍和测试方法
Prepared by : Wenjie Zhuang
主要内容
基本知识介绍
压电材料 压电效应 压电式传感器工作原理、技术参数及等效模型
HSA PZT 压电陶瓷应用介绍
组成架构及工作原理 PZT 不良背景介绍 测试方法推荐
基本知识介绍
压电材料
定义
在外力作用下产生电流,或反过来在电流作用下产生力或形变的一种功能材料
机械应力 F 压电传感器
电极
+++++ 等效
____ _
++++ Q ――――
形变时电极会 产生异性等量 电荷
压电晶体
静电发生器
电极
Q Ca
电容器
Ca Ua
U
a
Q Ca
电压等效模型
F 压电常数 d Q=U*C
Q Ca
QUaCa
电荷等效模型
HSA PZT 压电陶瓷应用介绍
HSA (磁头悬臂装置)结构及功能介绍