函数的奇偶性专题复习
专题06 函数的奇偶性与周期性 复习资料(解析版)
小正周期.
3.函数的对称性常见的结论
a+b (1)函数 y=f(x)关于 x= 对称⇔f(a+x)=f(b-x)⇔f(x)=f(b+a-x).
2
特殊:函数 y=f(x)关于 x=a 对称⇔f(a+x)=f(a-x)⇔f(x)=f(2a-x); 函数 y=f(x)关于 x=0 对称⇔f(x)=f(-x)(即为偶函数). (2)函数 y=f(x)关于点(a,b)对称⇔f(a+x)+f(a-x)=2b⇔f(2a+x)+f(-x)=2b. 特殊:函数 y=f(x)关于点(a,0)对称⇔f(a+x)+f(a-x)=0⇔f(2a+x)+f(-x)=0; 函数 y=f(x)关于(0,0)对称⇔f(x)+f(-x)=0(即为奇函数). (3)y=f(x+a)是偶函数⇔函数 y=f(x)关于直线 x=a 对称; y=f(x+a)是奇函数⇔函数 y=f(x)关于点(a,0)对称. [知识拓展]
数
f(x)就叫做奇函数
称
(2)定义域关于原点对称是函数具有奇偶性的必要不充分条件.
2.函数的周期性
(1)周期函数:对于函数 f(x),如果存在一个非零常数 T,使得当 x 取定义域内的任何值时,都有 f(x+T)=f(x),
那么就称函数 f(x)为周期函数,称 T 为这个函数的周期.
(2)最小正周期:如果在周期函数 f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做 f(x)的最
综上可知:对于定义域内的任意 x,总有 f(-x)=-f(x)成立,∴函数 f(x)为奇函数.
【解法小结】 判断函数的奇偶性,其中包括两个必备条件:
(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;
(2)判断 f(x)与 f(-x)是否具有等量关系,在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关
高中数学 函数的奇偶性与单调性复习
高中数学:函数的奇偶性与单调性复习一、函数奇偶性的复习函数的奇偶性是函数的重要性质之一,它反映了函数在输入与输出之间的内在关系。
根据奇偶性的定义,我们可以将函数分为奇函数和偶函数。
奇函数是指对于定义域内的任意x,都有f(-x)=-f(x)的函数;偶函数是指对于定义域内的任意x,都有f(-x)=f(x)的函数。
在复习过程中,我们需要掌握以下几点:1、掌握奇偶性的定义,理解奇函数和偶函数的特性。
2、掌握奇偶性的判断方法,能够根据函数的图像和性质判断其奇偶性。
3、了解奇偶性在函数性质中的应用,如对称性、单调性等。
二、函数单调性的复习函数的单调性是函数变化的另一种重要性质,它描述了函数在输入增加或减少时输出的变化情况。
如果对于定义域内的任意x1<x2,都有f(x1)<f(x2),则称函数在该区间上单调递增;如果对于定义域内的任意x1<x2,都有f(x1)>f(x2),则称函数在该区间上单调递减。
在复习过程中,我们需要掌握以下几点:1、掌握单调性的定义,理解单调递增和单调递减的含义。
2、掌握判断函数单调性的方法,能够根据函数的图像和性质判断其单调性。
3、了解单调性在函数性质中的应用,如最值、不等式等。
4、能够利用导数工具判断函数的单调性,并了解导数与单调性的关系。
三、总结函数的奇偶性和单调性是高中数学中重要的概念和性质,它们在函数的性质和应用中扮演着重要的角色。
通过复习,我们要能够深入理解奇偶性和单调性的定义和性质,掌握判断方法,并了解它们在解决实际问题中的应用。
我们还要能够利用导数工具判断函数的单调性,为后续的学习打下基础。
高中数学《函数的单调性》公开课一、教学背景分析函数的单调性是高中数学中非常重要的一部分,它不仅对于理解函数的概念有着关键性的作用,而且也是解决实际问题中常常需要用到的工具。
因此,通过对函数的单调性的学习,学生可以更好地理解函数的概念和性质,提高解决实际问题的能力。
高中数学《函数奇偶性的应用》专题复习
函数的奇偶性周期性一、选择题1.f (x )=(m -1)x 2+2mx +3为偶函数,则f (x )在区间(2,5)上是( )A .增函数B .减函数C .有增有减D .增减性不确定2.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( )A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}3.设偶函数f (x ) 的定义域为R ,当x ∈[0,+∞)时f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )A .f (π)>f (-3)>f (-2)B .f (π)>f (-2)>f (-3)C .f (π)<f (-3)<f (-2)D .f (π)<f (-2)<f (-3)4.已知f (x )在[a ,b ]上是奇函数,且f (x )在[a ,b ]上的最大值为m ,则函数F (x )=f (x )+3在[a ,b ]上的最大值与最小值之和为( )A .2m +3B .2m +6C .6-2mD .65.已知偶函数f (x )对于任意x ∈R 都有f (x +2)=f (x ),且f (x )在区间[0,2]上是递 增的,则f (-6.5),f (-1),f (0)的大小关系为( )A .f (0)<f (-6.5)<f (-1)B .f (-6.5)<f (0)<f (-1)C .f (-1)<f (-6.5)<f (0)D .f (-1)<f (0)<f (-6.5)6.设f (x )是周期为4的奇函数,当0≤x ≤1时,f (x )=x (1+x ),则f (-92)=(A) A .-34 B .-14 C.14 D.34二、填空题7.设函数y =f (x )是奇函数.若f (-2)+f (-1)-3=f (1)+f (2)+3,则f (1)+f (2)=__________.8.已知函数f (x )是奇函数,当x >0时,f (x )=x +1,则当x <0时,f (x )=____________.9.已知f (x ),g (x )均为奇函数,F (x )=af (x )+bg (x )-2,且F (-3)=5,则F (3)的值为________.三、解答题10.(本小题满分10分)已知函数f (x )是定义域为R 的奇函数,当x >0时,f (x )=x 2-2x .(1)求出函数f (x )在R 上的解析式;(2)画出函数f (x )的图象.11.已知定义域为R 的函数f (x )=-2x +b2x +1+a 的图象关于原点对称.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (2t 2-2t )+f (t 2-k )<0恒成立,求k 的取值范围.。
高考复习函数的奇偶性
1.4函数的奇偶性(一) 主要知识: 1.函数的奇偶性的定义:设()y f x =,x A ∈,如果对于任意x A ∈,都有()()f x f x -=-,则称函数()y f x =为奇函数;如果对于任意x A ∈,都有()()f x f x -=,则称函数()y f x =为偶函数;2.奇偶函数的性质:()1函数具有奇偶性的必要条件是其定义域关于原点对称;()2()f x 是偶函数⇔()f x 的图象关于y 轴对称;()f x 是奇函数⇔()f x 的图象关于原点对称;()3奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内具有相反的单调性.3.若奇函数()f x 的定义域包含0,则(0)0f =. (二)主要方法:1.判断函数的奇偶性的方法:()1定义法:首先判断其定义域是否关于原点中心对称. 若不对称,则为非奇非偶函数;若对称,则再判断()()f x f x -=-或()()f x f x -=是否定义域上的恒等式;()2图象法: 观察图像是否符合奇、偶函数的对称性()3性质法:①设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域12D D D = 上:奇±奇=奇,偶±偶=偶,奇⨯奇=偶,偶⨯偶=偶,奇⨯偶=奇;②若某奇函数若存在反函数,则其反函数必是奇函数;12()()()()()3()()()()()()f x f x f x f x f x f x f x f x f x f x f x ⎧⎪-⎪⎪-=⇒⎧⎪⎪⎪-=-⇒⎨⎪⎨⎪-≠≠--⇒⎪⎪⎪⎪-=-=⇒⎩⎪⎪⎩()判断函数定义域是否关于原点对称()求出的表达式偶函数函数奇偶性判断:判断步骤奇偶函数()判断关系非奇非偶函数即是奇函数又是函数注:判断奇偶性先求出定义域判断其是否关于原点对称例1 判断下列函数的奇偶性 1)()()21f x x x =+ 2)()f x =3)()f x = 4)()2211021102x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩例2 设()f x 是R 上是奇函数,且当[)0,x ∈+∞时()(1f x x =+,求()f x 在R 上的解析式例3 已知函数()538f x x ax bx =++-且()210f -=,求()2f 的值例4 设函数()f x 是定义域R 上的偶函数,且图像关于2x =对称,已知[2,2]x ∈-时,()21f x x =-+,求[]6,2x ∈--时()f x 的表达式。
函数的奇偶性、周期性与对称性-高考数学复习
法二
− −1
因为 f ( x )是偶函数,所以 f (1)- f (-1)= - −
−1
−1
− −1
=
=0,所以 a -1=1,所以 a =2.故选D.
−1
目录
高中总复习·数学
解题技法
利用函数的奇偶性求参数值的解题策略
目录
高中总复习·数学
考向3 利用奇偶性求解析式及函数值
【例3】 (1)已知偶函数 f ( x ),当 x ∈[0,2)时, f ( x )=2
π
sin x ,当 x ∈[2,+∞)时, f ( x )=log2 x ,则 f (- )+ f (4)
3
=(
)
B. 1
D. 3
目录
高中总复习·数学
解析:∵函数 f ( x )是偶函数,当 x ∈[0,2)时, f ( x )=2 sin
所以 f ( x )既是奇函数又是偶函数.
目录
高中总复习·数学
(3) f ( x )=
36− 2
|+3|−3
解:由 f ( x )=
;
36− 2
|+3|−3
,可得
36 − 2 ≥ 0,
−6 ≤ ≤ 6,
⇒ቊ
故函数 f ( x )的定义域为
൝
| + 3| − 3 ≠ 0 ≠ 0且 ≠ −6,
1(符合题意).故选A.
目录
高中总复习·数学
2. (多选)下列函数中为非奇非偶函数的是(
)
A. y = x +e x
目录
高中总复习·数学
解析:
记 f ( x )= x +e x ,则 f (-1)=-1+e-1, f (1)=
【高中数学】函数的奇偶性专题复习(绝对原创!)
【函数的奇偶性】专题复习一、关于函数的奇偶性的定义定义说明:对于函数)(x f 的定义域内任意一个x :⑴)()(x f x f =- ⇔)(x f 是偶函数; ⑵)()(x f x f -=-⇔)(x f 奇函数;二、函数的奇偶性的几个性质①对称性:奇(偶)函数的定义域关于原点对称;②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =-⇔)(x f 是偶函数; )()(x f x f -=-⇔)(x f 是奇函数; ④等价性:)()(x f x f =-⇔0)()(=--x f x f ; )()(x f x f -=-⇔0)()(=+-x f x f⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;⑥可分性:根据函数奇偶性可将函数分类为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。
三、函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①定义域是否关于原点对称;②数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性(1)x x x f 2)(3+= (2)2432)(x x x f += (3)1)(23--=x x x x f(4)2)(x x f = []2,1-∈x (5)x x x f -+-=22)( (6)2|2|1)(2-+-=x x x f ;(7)2211)(x x x f -+-= (8)221()lg lgf x x x =+; (9)xx x x f -+-=11)1()(例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x xx x f 的奇偶性。
)(0)0(:2x f f -==解 )()()(,0,022x f x x x f x x -=-=--=-<->有时即当)()()()(,0,022x f x x x f x x -=--=-=->-<有时即当.)(),()(为奇函数故总有x f x f x f =-∴第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数; 两个奇函数的积为偶函数; 两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
高三数学 第一轮复习 11:函数的奇偶性
高三数学第一轮复习11函数的奇偶性·知识梳理·模块01:函数的奇偶性1、函数奇偶性的定义:偶函数:如果对于函数()y f x =定义域D 内的任意实数x ,都有,D x ∈-并且)()(x f x f =-,那么就把函数()y f x =叫做偶函数。
奇函数:如果对于函数()y f x =定义域D 内的任意实数x ,都有都有,D x ∈-并且)()(x f x f -=-,那么就把函数()y f x =叫做奇函数。
2、判断函数奇偶性的方法:步骤:第1步:看定义域是否是对称区间(是的话就继续,不是就是非奇非偶函数);第2步:找)(x f 与)(x f -之间的关系,若)()(x f x f -=,那么)(x f 就叫做偶函数;)()(x f x f --=,那么)(x f 就叫做奇函数。
[注意]定义本身蕴涵着:①函数的定义域必须是关于原点的对称区间,这是奇(偶)函数的必要条件——前提;②“定义域内任意”:意味着不存在"某个区间(段)上的"的奇(偶)函数——不研究;③判断函数奇偶性最基本的方法:先看定义域,再用定义——)()(x f x f -±=。
模块02:函数的奇偶性的应用关于函数奇偶性的几个重要结论:(1)具有奇偶性的函数,其定义域关于原点对称(函数具有奇偶性的必要不充分条件)。
(2)若奇函数()y f x =在0x =处有定义,则(0)0f =。
(3)函数()f x 是奇函数⇔曲线()y f x =关于原点对称;函数()f x 是偶函数⇔曲线()y f x =关于y 轴对称。
(4)()f x 既是奇函数又是偶函数()0f x ⇔=(定义域关于原点对称).(5)若()f x 的定义域关于原点对称,则()()()F x f x f x =+-是偶函数,()()()G x f x f x =--是奇函数。
(6)若函数()f x 的定义域关于原点对称,则()f x 可以表示成一个偶函数与一个奇函数的和。
函数的性质(高考总复习)
---------------------------------------------------------------最新资料推荐------------------------------------------------------函数的性质(高考总复习)函数的性质一、函数的奇偶性 1.奇、偶函数的概念一般地,如果对于函数 f(x) 的定义域内任意一个 x,都有 f(-x) =f(x) ,那么函数 f(x)就叫做偶函数.一般地,如果对于函数 f(x)的定义域内任意一个 x,都有 f(-x) =-f(x) ,那么函数f(x)就叫做奇函数. 2.奇、偶函数的性质⑴奇函数的图象关于原点对称;偶函数的图象关于 y 轴对称.⑵奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反⑶若奇函数 f(x)在 x=0 处有定义,则 f(0)=0. 3. 设f(x) , g(x) 的定义域分别是 D1, D2,那么在它们的公共定义域上:奇+奇=奇,偶+偶=偶,偶+非零常数=偶,奇+非零常数=非奇非偶,奇奇=偶,偶偶=偶,奇偶=奇,练习 1.若函数 f(x) =x2-| x+a| 为偶函数,则实数 a=_______.2.若函数 f(x) =(x+a) (bx+2a) (常数 a、 bR) 是偶函数,且它的值域为(-,4],则该函数的解析式f(x) =_____ ___. 3.对于定义域为 R 的奇函数 f(x) ,下列结论成立的是( ) A. f(x) -f(-x) 0 C. f(x) f(-x) 0 4.如下图,给出了奇函数 y=f(x) 的局部图象,则 f(-2) 的值为( ) B. f(x) -f(-x) 0 D. f(x) f(-x) 0 A.32 B.-32 C.12 D.-12 5.已知函数( )f x 是定义在 R 上的奇函数,若1 / 7当时,,则当时,( )f x 的表达式为()A....6.已知函数的图像关于坐标原点对称,则实数a=( ) A、 1 B、 -1 C、 0 D、.如果奇函数在区间[3, 7]上是增函数且最小值为 5,那么在区间上是 ( ) A.增函数且最小值为.增函数且最大值为.减函数且最小值为.减函数且最大值为.若偶函数)(xf在上是增函数,则下列关系式中成立的是() A..) 2 (f)23()..2 (.设奇函数)(xf的定义域为,若当时, )(xf的图象如右图, 则不等式的解是 10.如果定义在区间[2-a, 4]上的函数 y=f(x) 为偶函数,那么 a=___ _____. 11.已知函数 f(x)=ax2+bx+3a+b 为偶函数,其定义域为[a-1, 2a],则 a的值为________. 12.若 f(x) =(m-1) x2+6mx+2 是偶函数,则f(0) 、f(1) 、f(-2) 从小到大的顺序是____ __. 13.已知奇函数 ( )f x 的定义域为上单调递减,且满足条件求a的取值范围。
高考总复习函数的奇偶性习题及详解
高考总复习函数的奇偶性习题及详解一、选择题1.(文)下列函数,在其定义域内既是奇函数又是增函数的是( ) A .y =x +x 3(x ∈R) B .y =3x (x ∈R)C .y =-log 2x (x >0,x ∈R)D .y =-1x (x ∈R ,x ≠0)[答案] A[解析] 首先函数为奇函数、定义域应关于原点对称,排除C ,若x =0在定义域内,则应有f (0)=0,排除B ;又函数在定义域内单调递增,排除D ,故选A.(理)下列函数中既是奇函数,又在区间[-1,1]上单调递减的是( ) A .f (x )=sin xB .f (x )=-|x +1|C .f (x )=12(a x +a -x )D .f (x )=ln 2-x2+x[答案] D[解析] y =sin x 与y =ln 2-x 2+x 为奇函数,而y =12(a x +a -x )为偶函数,y =-|x +1|是非奇非偶函数.y =sin x 在[-1,1]上为增函数.故选D.2.(2010·安徽理,4)若f (x )是R 上周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=( )A .-1B .1C .-2D .2[答案] A[解析] f (3)-f (4)=f (-2)-f (-1)=-f (2)+f (1)=-2+1=-1,故选A.3.(2010·河北唐山)已知f (x )与g (x )分别是定义在R 上奇函数与偶函数,若f (x )+g (x )=log 2(x 2+x +2),则f (1)等于( )A .-12B.12 C .1D.32[答案] B[解析] 由条件知,⎩⎪⎨⎪⎧f (1)+g (1)=2f (-1)+g (-1)=1,∵f (x )为奇函数,g (x )为偶函数.∴⎩⎪⎨⎪⎧f (1)+g (1)=2g (1)-f (1)=1,∴f (1)=12.4.(文)(2010·北京崇文区)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f (x ),当1≤x ≤2时,f (x )=x -2,则f (6.5)=( )A .4.5B .-4.5C .0.5D .-0.5[答案] D[解析] ∵f (x +2)=-1f (x ),∴f (x +4)=f [(x +2)+2]=-1f (x +2)=f (x ),∴f (x )周期为4,∴f (6.5)=f (6.5-8)=f (-1.5)=f (1.5)=1.5-2=-0.5.(理)(2010·山东日照)已知函数f (x )是定义域为R 的偶函数,且f (x +2)=f (x ),若f (x )在[-1,0]上是减函数,则f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数[答案] A[解析] 由f (x +2)=f (x )得出周期T =2, ∵f (x )在[-1,0]上为减函数,又f (x )为偶函数,∴f (x )在[0,1]上为增函数,从而f (x )在[2,3]上为增函数.5.(2010·辽宁锦州)已知函数f (x )是定义在区间[-a ,a ](a >0)上的奇函数,且存在最大值与最小值.若g (x )=f (x )+2,则g (x )的最大值与最小值之和为( )A .0B .2C .4D .不能确定[答案] C[解析] ∵f (x )是定义在[-a ,a ]上的奇函数,∴f (x )的最大值与最小值之和为0,又g (x )=f (x )+2是将f (x )的图象向上平移2个单位得到的,故g (x )的最大值与最小值比f (x )的最大值与最小值都大2,故其和为4.6.定义两种运算:a ⊗b =a 2-b 2,a ⊕b =|a -b |,则函数f (x )=2⊗x(x ⊕2)-2( )A .是偶函数B .是奇函数C .既是奇函数又是偶函数D .既不是奇函数又不是偶函数[答案] B[解析] f (x )=4-x 2|x -2|-2,∵x 2≤4,∴-2≤x ≤2, 又∵x ≠0,∴x ∈[-2,0)∪(0,2]. 则f (x )=4-x 2-x ,f (x )+f (-x )=0,故选B.7.已知f (x )是定义在(-∞,+∞)上的偶函数,且在(-∞,0]上是增函数,设a =f (log 47),b =f (log 123),c =f (0.20.6),则a 、b 、c 的大小关系是( )A .c <b <aB .b <c <aC .b <a <cD .a <b <c[答案] C[解析] 由题意知f (x )=f (|x |).∵log 47=log 27>1,|log 123|=log 23>log 27,0<0.20.6<1,∴|log 123|>|log 47|>|0.20.6|.又∵f (x )在(-∞,0]上是增函数,且f (x )为偶函数, ∴f (x )在[0,+∞)上是减函数. ∴b <a <c .故选C.8.已知函数f (x )满足:f (1)=2,f (x +1)=1+f (x )1-f (x ),则f (2011)等于( )A .2B .-3C .-12D.13[答案] C[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13,f (5)=f (1)=2,故f (x +4)=f (x ) (x∈N *).∴f (x )的周期为4, 故f (2011)=f (3)=-12.[点评] 严格推证如下: f (x +2)=1+f (x +1)1-f (x +1)=-1f (x ),∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为4.故f (4k +x )=f (x ),(x ∈N *,k ∈N *),9.设f (x )=lg ⎝⎛⎭⎫21-x +a 是奇函数,则使f (x )<0的x 的取值范围是( )A .(-1,0)B .(0,1)C .(-∞,0)D .(-∞,0)∪(1,+∞)[答案] A[解析] ∵f (x )为奇函数,∴f (0)=0,∴a =-1. ∴f (x )=lg x +11-x ,由f (x )<0得0<x +11-x<1,∴-1<x <0,故选A. 10.(文)(09·全国Ⅱ)函数y =log 22-x2+x 的图象( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称 [答案] A[解析] 首先由2-x 2+x >0得,-2<x <2,其次令f (x )=log 22-x 2+x ,则f (x )+f (-x )=log 22-x2+x +log 22+x2-x=log 21=0.故f (x )为奇函数,其图象关于原点对称,故选A. (理)函数y =xsin x,x ∈(-π,0)∪(0,π)的图象可能是下列图象中的( )[答案] C [解析] ∵y =xsin x是偶函数,排除A ,当x =2时,y =2sin2>2,排除D , 当x =π6时,y =π6sin π6=π3>1,排除B ,故选C.二、填空题11.(文)已知f (x )=⎩⎪⎨⎪⎧sinπx (x <0)f (x -1)-1 (x >0),则f ⎝⎛⎭⎫-116+f ⎝⎛⎭⎫116的值为________. [答案] -2[解析] f ⎝⎛⎭⎫116=f ⎝⎛⎭⎫56-1=f ⎝⎛⎭⎫-16-2 =sin ⎝⎛⎭⎫-π6-2=-52, f ⎝⎛⎭⎫-116=sin ⎝⎛⎭⎫-11π6=sin π6=12,∴原式=-2. (理)设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)=________.[答案] 0[解析] ∵f (x )的图象关于直线x =12对称,∴f ⎝⎛⎭⎫12+x =f ⎝⎛⎭⎫12-x ,对任意x ∈R 都成立, ∴f (x )=f (1-x ),又f (x )为奇函数, ∴f (x )=-f (-x )=-f (1+x ) =f (-1-x )=f (2+x ),∴周期T =2 ∴f (0)=f (2)=f (4)=0 又f (1)与f (0)关于x =12对称∴f (1)=0 ∴f (3)=f (5)=0 填0.12.(2010·深圳中学)已知函数y =f (x )是偶函数,y =g (x )是奇函数,它们的定义域都是[-π,π],且它们在x ∈[0,π]上的图象如图所示,则不等式f (x )g (x )<0的解集是________.[答案] ⎝⎛⎭⎫-π3,0∪⎝⎛⎭⎫π3,π [解析] 依据偶函数的图象关于y 轴对称,奇函数的图象关于原点对称,先补全f (x )、g (x )的图象,∵f (x )g (x )<0,∴⎩⎪⎨⎪⎧ f (x )<0g (x )>0,或⎩⎪⎨⎪⎧f (x )>0g (x )<0,观察两函数的图象,其中一个在x 轴上方,一个在x 轴下方的,即满足要求,∴-π3<x <0或π3<x <π.13.(文)若f (x )是定义在R 上的偶函数,其图象关于直线x =2对称,且当x ∈(-2,2)时,f (x )=-x 2+1.则f (-5)=________.[答案] 0[解析] 由题意知f (-5)=f (5)=f (2+3)=f (2-3)=f (-1)=-(-1)2+1=0.(理)已知函数f (x )是定义域为R 的奇函数,当-1≤x ≤1时,f (x )=a ,当x ≥1时,f (x )=(x +b )2,则f (-3)+f (5)=________.[答案] 12[解析] ∵f (x )是R 上的奇函数,∴f (0)=0, ∵-1≤x ≤1时,f (x )=a ,∴a =0. ∴f (1)=(1+b )2=0,∴b =-1.∴当x ≤-1时,-x ≥1,f (-x )=(-x -1)2=(x +1)2, ∵f (x )为奇函数,∴f (x )=-(x +1)2, ∴f (x )=⎩⎪⎨⎪⎧-(x +1)2x ≤-10 -1≤x ≤1(x -1)2 x ≥1∴f (-3)+f (5)=-(-3+1)2+(5-1)2=12.[点评] 求得b =-1后,可直接由奇函数的性质得f (-3)+f (5)=-f (3)+f (5)=-(3-1)2+(5-1)2=12.14.(文)(2010·山东枣庄模拟)若f (x )=lg ⎝⎛⎭⎫2x1+x +a (a ∈R)是奇函数,则a =________.[答案] -1[解析] ∵f (x )=lg ⎝⎛⎭⎫2x1+x +a 是奇函数,∴f (-x )+f (x )=0恒成立, 即lg ⎝⎛⎭⎫2x 1+x +a +lg ⎝ ⎛⎭⎪⎫-2x 1-x +a =lg ⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =0.∴⎝⎛⎭⎫2x 1+x +a ⎝⎛⎭⎫2xx -1+a =1,∴(a 2+4a +3)x 2-(a 2-1)=0, ∵上式对定义内的任意x 都成立,∴⎩⎪⎨⎪⎧a 2+4a +3=0a 2-1=0,∴a =-1. [点评] ①可以先将真数通分,再利用f (-x )=-f (x )恒成立求解,运算过程稍简单些. ②如果利用奇函数定义域的特点考虑,则问题变得比较简单.f (x )=lg (a +2)x +a 1+x 为奇函数,显然x =-1不在f (x )的定义域内,故x =1也不在f (x )的定义域内,令x =-aa +2=1,得a =-1.故平时解题中要多思少算,培养观察、分析、捕捉信息的能力.(理)(2010·吉林长春质检)已知函数f (x )=lg ⎝⎛⎭⎫-1+a 2+x 为奇函数,则使不等式f (x )<-1成立的x 的取值范围是________.[答案]1811<x <2 [解析] ∵f (x )为奇函数,∴f (-x )+f (x )=0恒成立,∴lg ⎝⎛⎭⎫-1+a 2-x +lg ⎝⎛⎭⎫-1+a2+x=lg ⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =0,∴⎝⎛⎭⎫-1+a 2-x ⎝⎛⎭⎫-1+a2+x =1,∵a ≠0,∴4-ax 2-4=0,∴a =4,∴f (x )=lg ⎝⎛⎭⎫-1+42+x =lg 2-xx +2,由f (x )<-1得,lg 2-x2+x<-1,∴0<2-x 2+x <110,由2-x 2+x >0得,-2<x <2,由2-x 2+x <110得,x <-2或x >1811,∴1811<x <2.三、解答题15.(2010·杭州外国语学校)已知f (x )=x 2+bx +c 为偶函数,曲线y =f (x )过点(2,5),g (x )=(x +a )f (x ).(1)若曲线y =g (x )有斜率为0的切线,求实数a 的取值范围;(2)若当x =-1时函数y =g (x )取得极值,且方程g (x )+b =0有三个不同的实数解,求实数b 的取值范围.[解析] (1)由f (x )为偶函数知b =0, 又f (2)=5,得c =1,∴f (x )=x 2+1. ∴g (x )=(x +a )(x 2+1)=x 3+ax 2+x +a , 因为曲线y =g (x )有斜率为0的切线, 所以g ′(x )=3x 2+2ax +1=0有实数解. ∴Δ=4a 2-12≥0,解得a ≥3或a ≤- 3. (2)由题意得g ′(-1)=0,得a =2. ∴g (x )=x 3+2x 2+x +2,g ′(x )=3x 2+4x +1=(3x +1)(x +1). 令g ′(x )=0,得x 1=-1,x 2=-13.∵当x ∈(-∞,-1)时,g ′(x )>0,当x ∈(-1,-13)时,g ′(x )<0,当x ∈(-13,+∞)时,g ′(x )>0,∴g (x )在x =-1处取得极大值,在x =-13处取得极小值.又∵g (-1)=2,g (-13)=5027,且方程g (x )+b =0即g (x )=-b 有三个不同的实数解,∴5027<-b <2,解得-2<b <-5027.16.(2010·揭阳模拟)设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,f (x )=2x -x 2.(1)求证:f (x )是周期函数; (2)当x ∈[2,4]时,求f (x )的解析式; (3)计算f (0)+f (1)+f (2)+…+f (2011).[分析] 由f (x +2)=-f (x )可得f (x +4)与f (x )关系,由f (x )为奇函数及在(0,2]上解析式可求f (x )在[-2,0]上的解析式,进而可得f (x )在[2,4]上的解析式.[解析] (1)∵f (x +2)=-f (x ), ∴f (x +4)=-f (x +2)=f (x ). ∴f (x )是周期为4的周期函数.(2)当x ∈[-2,0]时,-x ∈[0,2],由已知得 f (-x )=2(-x )-(-x )2=-2x -x 2,又f (x )是奇函数,∴f (-x )=-f (x )=-2x -x 2, ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 又f (x )是周期为4的周期函数, ∴f (x )=f (x -4) =x 2-6x +8.从而求得x ∈[2,4]时, f (x )=x 2-6x +8.(3)f (0)=0,f (2)=0,f (1)=1,f (3)=-1. 又f (x )是周期为4的周期函数,∴f (0)+f (1)+f (2)+f (3)=f (4)+f (5)+f (6)+f (7)=…=f (2008)+f (2009)+f (2010)+f (2011)=0.∴f (0)+f (1)+f (2)+…+f (2011)=0. 17.(文)已知函数f (x )=1-42a x+a(a >0且a ≠1)是定义在(-∞,+∞)上的奇函数. (1)求a 的值; (2)求函数f (x )的值域;(3)当x ∈(0,1]时,tf (x )≥2x -2恒成立,求实数t 的取值范围.[解析] (1)∵f (x )是定义在(-∞,+∞)上的奇函数,即f (-x )=-f (x )恒成立,∴f (0)=0.即1-42×a 0+a=0,解得a =2.(2)∵y =2x -12x +1,∴2x =1+y1-y ,由2x >0知1+y1-y>0,∴-1<y <1,即f (x )的值域为(-1,1). (3)不等式tf (x )≥2x-2即为t ·2x -t 2x +1≥2x-2.即:(2x )2-(t +1)·2x +t -2≤0.设2x =u , ∵x ∈(0,1],∴u ∈(1,2].∵u ∈(1,2]时u 2-(t +1)·u +t -2≤0恒成立.∴⎩⎪⎨⎪⎧12-(t +1)×1+t -2≤022-(t +1)×2+t -2≤0,解得t ≥0. (理)设函数f (x )=ax 2+bx +c (a 、b 、c 为实数,且a ≠0),F (x )=⎩⎪⎨⎪⎧f (x ) x >0-f (x ) x <0.(1)若f (-1)=0,曲线y =f (x )通过点(0,2a +3),且在点(-1,f (-1))处的切线垂直于y 轴,求F (x )的表达式;(2)在(1)的条件下,当x ∈[-1,1]时,g (x )=kx -f (x )是单调函数,求实数k 的取值范围; (3)设mn <0,m +n >0,a >0,且f (x )为偶函数,证明F (m )+F (n )>0. [解析] (1)因为f (x )=ax 2+bx +c ,所以f ′(x )=2ax +b .又曲线y =f (x )在点(-1,f (-1))处的切线垂直于y 轴,故f ′(-1)=0, 即-2a +b =0,因此b =2a .① 因为f (-1)=0,所以b =a +c .② 又因为曲线y =f (x )通过点(0,2a +3), 所以c =2a +3.③解由①,②,③组成的方程组得,a =-3,b =-6,c =-3. 从而f (x )=-3x 2-6x -3.所以F (x )=⎩⎪⎨⎪⎧-3(x +1)2x >03(x +1)2x <0. (2)由(1)知f (x )=-3x 2-6x -3, 所以g (x )=kx -f (x )=3x 2+(k +6)x +3. 由g (x )在[-1,1]上是单调函数知: -k +66≤-1或-k +66≥1,得k ≤-12或k ≥0. (3)因为f (x )是偶函数,可知b =0. 因此f (x )=ax 2+c . 又因为mn <0,m +n >0, 可知m ,n 异号. 若m >0,则n <0.则F (m )+F (n )=f (m )-f (n )=am 2+c -an 2-c =a (m +n )(m -n )>0. 若m <0,则n >0. 同理可得F (m )+F (n )>0. 综上可知F (m )+F (n )>0.。
函数的的奇偶性-
∴
f
(
x
)
既
是
10
学点二 由奇偶性求函数解析式 设f(x)是定义在R上的奇函数, 当x>0时, f(x)= x2 +x+1,求函 数解析式. 【分析】由奇函数的图象关于原点对称, 找x≥0和x<0时解析 式间的联系.
【 f(x) 解 析 】
11
当
【评析】(1)求f(x)在什么范围上的解析式, 则取x为这一 范围上的任一值, 再转化为条件. (2)在求函数的解析式时, 应紧扣题目中的已知条件, 当 求自变量在不同区间上的不同表达式时, 要用分段函数的 形式表示出来.
22
【
解
析
【评析】该例】在求解过程中用到了前面提到的减函数定
义的逆命题.由
f
23
(
(1)定义在(-1,1)上的奇函数f(x)为减函数, 且f(1-a)+f(1a2)<0, 求实数a的取值范围;
(2)定义在[-2,2]上的偶函数g(x), 当x≥0时, g(x)为减函数, 若g(1-m)<g(m)成立, 求m的取值范围. (1)∵f(1-a)+f(1-a2)<0,∴f(1-a)<-f(1-a2),∵f(x)为奇函数,∴f(1-a)<f(a2-1),
27
1.如果已知函数具有奇偶性, 只要画出它在y轴一侧的图象, 则 另一侧的图象可对称画出.
2.奇函数在关于原点对称的区间上的单调性相同;偶函数在关 于原点对称的区间上的单调性相反.
3.判断函数的奇偶性时, 我们可以根据f(-x)=±f(x), 或是根据 f(-x)±f(x)=0, 或是根据f(-x)/f(x)=±1等途径来判断.
如果一个函数是偶函数,则它的图象是以y轴为对称轴的 轴对称图形;反之如果一个函数的图象关于y轴对称,则 这个函数是偶函数.
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解
高考数学复习----《函数的奇偶性的综合应用》典型例题讲解【典型例题】例1、(2023·全国·高三专题练习)已知定义在R 上的函数()f x 在(],3−∞上单调递增,且()3f x +为偶函数,则不等式()()12f x f x +>的解集为( )A .51,3⎛⎫ ⎪⎝⎭B .()5,1,3⎛⎫−∞⋃+∞ ⎪⎝⎭C .(),1−∞D .()1,+∞【答案】B【解析】∵()3f x +为偶函数, ∴()()33f x f x −+=+,即函数()f x 关于3x =对称,又函数()f x 在(],3−∞上单调递增,∴函数()f x 在[)3,+∞上单调递减,由()()12f x f x +>,可得1323x x +−<−,整理得,23850x x −+>,解得1x <或53x >. 故选:B .例2、(2023·全国·高三专题练习)设()f x 是定义在R 上的奇函数,且当0x ≥时,()2f x x =,不等式()()24f x f x ≥的解集为( )A .(][),04,−∞+∞UB .[]0,4C .(][),02,−∞⋃+∞D .[]0,2【答案】C 【解析】根据题意,当0x ≥时,()2f x x =,所以()f x 在[0,)+∞上为增函数,因为()f x 是定义在R 上的奇函数,所以()f x 在R 上为增函数,因为20x ≥,所以24()f x x =,24124x f x ⎛⎫= ⎪⎝⎭, 所以221()42x f x f ⎛⎫= ⎪⎝⎭, 所以不等式()()24f x f x ≥可化为2()2x f f x ⎛⎫≥ ⎪⎝⎭, 所以22x x ≥,解得0x ≤或2x ≥, 所以不等式()()24f x f x ≥的解集为(][),02,−∞⋃+∞,故选:C例3、(2023·全国·高三专题练习)已知偶函数()f x 的定义域为R ,且当0x ≥时,()11x f x x −=+,则使不等式()2122f a a −<成立的实数a 的取值范围是( ) A .()1,3−B .()3,3−C .()1,1−D .(),3−∞【答案】A 【解析】当0x ≥时,()()12121111x x f x x x x +−−===−+++,所以()f x 在[)0,∞+上单调递增, 且()132f =,不等式()2122f a a −<即为()()223f a a f −<. 又因为()f x 是偶函数,所以不等式()()223f a a f −<等价于()()223f a a f −<, 则223a a −<,所以,222323a a a a ⎧−<⎨−>−⎩,解得13a −<<. 综上可知,实数a 的取值范围为()1,3−,故选:A .例4、(2023·全国·高三专题练习)定义在R 上的奇函数()f x 在(,0]−∞上单调递增,且(2)2f −=−,则不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭的解集为( ) A .10,100⎛⎫ ⎪⎝⎭B .1,100⎛⎫+∞ ⎪⎝⎭C .(0,100)D .(100,)+∞【答案】D【解析】因为函数()f x 为奇函数,所以()()f x f x −=−,又(2)2f −=−,(2)2f =, 所以不等式1(lg )lg 4f x f x ⎛⎫−> ⎪⎝⎭,可化为()2(lg )422f x f >=, 即()(lg )2f x f >,又因为()f x 在(,0]−∞上单调递增,所以()f x 在R 上单调递增,所以lg 2x >,解得100x >.故选:D .例5、(2023春·广西·高三期末)()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则()()20232022f f +−=( )A .-1B .12−C .12D .1【答案】A 【解析】()f x 是定义在R 上的函数,1122f x ⎛⎫++ ⎪⎝⎭为奇函数,则 1111111222222f x f x f x f x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫−++=−++⇒−+++=− ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. ∴()()40451404512023202212222f f f f ⎛⎫⎛⎫+−=++−+=− ⎪ ⎪⎝⎭⎝⎭. 故选:A 例6、(2023春·甘肃兰州·高三兰化一中校考阶段练习)若函数f (x )=e e sin x x x x −−+−,则满足()()22ln 102x f a x f ⎛⎫−++≥ ⎪⎝⎭恒成立的实数a 的取值范围为( )A .12ln 2,2⎡⎫−+∞⎪⎢⎣⎭B .1(ln 2,)4−+∞C .[7,)4+∞D .[3,)2+∞ 【答案】A 【解析】因为()e e sin ()x x f x x x f x −−−=−+=−,所以()f x 是R 上的奇函数,由()e +e cos 1x x f x x −'=+−cos 11cos 0x x ≥−=+≥ ,所以()f x 是R 上的增函数, 所以2(2ln(1))02x f a x f ⎛⎫−++≥ ⎪⎝⎭等价于: 22(2ln(1))22x x f a x f f ⎛⎫⎛⎫−+≥−=− ⎪ ⎪⎝⎭⎝⎭即22ln(1)2x a x −+≥−, 所以22ln(1)2x a x ≥−++, 令2()2ln(1)2x g x x =−++, 则问题转化为:max ()a g x ≥,因为()()g x g x −=且定义域为R ,所以()g x =22ln(1)2x x −++是R 上的偶函数, 所以只需求()g x 在()0,∞+上的最大值即可.当[)0,x ∈+∞时,2()2ln(1)2x g x x =−++, ()()22122()111x x x x g x x x x x +−−−+'=−+==−+++, 则当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<; 所以()g x 在()0,1上单调递增,在()1,+∞上单调递减,可得:max 1()(1)2ln 22g x g ==−, 即12ln 22a ≥−, 故选:A . 本课结束。
3.2函数的单调性与奇偶性课件-2024届高三数学一轮复习
即练即清
1.判断正误(对的打“√”,错的打“✕”)
(1)函数y= 1 的单调递减区间是(-∞,0)∪(0,+∞). ( × )
x
(2)若定义在R上的函数f(x)有f(-1)<f(3),则函数f(x)在R上为增函数. ( × )
(3)偶函数图象不一定过原点,奇函数的图象一定过原点. ( × )
1
2.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是 3 .
因此f(1)≠f(-1), f(-1)≠-f(1),
故f(x)为非奇非偶函数.
(3)由1 x2 0, 得函数的定义域为(-1,0)∪(0,1),关于原点对称,
| x 2 | 2,
∴x-2<0,∴|x-2|-2=-x,∴f(x)= lg(1 x2) .
x
又∵f(-x)= lg[1 (x)2]=- lg(1 x2) =-f(x),
1 0
1
+b=ln +b=0,
2 (1 0)
2
∴b=-ln 1 =ln 2,此时f(x)=ln 1 1 +ln 2=ln 1 x ,满足题意.
2
2 1 x
1 x
综上可知,a=-1 ,b=ln 2.
2
答案 -1 ;ln 2
2
即练即清
3.判断下列函数的奇偶性:
(1)f(x)=
1
3x x2
;(2)f(x)=|x|+x;
2.(2024届江苏淮安期中,7)若函数f(x)=(3aax, x1)x1 4a, x 1,是定义在R上的减函数,则a的 取值范围为 ( A )
A. 18
,
1 3
2023届高三数学一轮复习专题 利用常见函数的奇偶性解题 讲义 (解析版)
专题:利用常见函数的奇偶性解题知识梳理:1、掌握高中常见函数的奇偶性,单调性可提高解题速度2、加强知识的归纳整理工作,由知识点构建知识块3、常见的奇,偶函数类型(10≠>a a 且):①指数型奇函数:f(x)=11+-±x x a a ,f(x)=)(x x a a --±, ②对数型奇函数:f(x)=±lgx b xb +-,f(x)=±lg(x x ++12),③幂函数奇函数:f(x)=m x (为奇数m ),f(x)=xb x ±④常见偶函数:f(x)=m x (为偶数m ) f(x)=|x| 典型例题:例1:已知函数f(x)=11+-x x a a (a>1) (1)判断f(x)奇偶性 (2)求函数f(x)的值域变式:已知函数31()231x x f x x -=++,则满足不等式()(32)0f a f a ++>的实数a 的取值范围是 .变式1:【答案】12⎛⎫-+∞ ⎪⎝⎭例2:(2018·全国卷Ⅱ)函数f (x )=e x -e -xx 2的图象大致为( )变式:已知函数f (x )=e x -1ex ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.例3:判断并证明函数f(x)=lg x x +1-1的奇偶性 (思考f(x)=lg xx-+11的奇偶性?)例4:判断并证明函数f(x)=lg(x x ++12)的奇偶性 (思考f(x)=lg(x x -+12的奇偶性?)变式1:已知函数xxa x f +-=1log )(3为奇函数,则实数a 的值为________.变式2:设函数f(x)=1)1ln(1222+++++x x x x )(的最大值为M ,最小值为N ,试确定M+N 的值变式3:函数())lnf x kx =的图象不可能是( )A. B .C .D .例5:已知,,则( ) A . B . C . D .例6:已知函数2111)(x x x f +-+=,则满足f (x -1)<⎪⎭⎫ ⎝⎛31f 的x 取值范围是( ) A .11(,)33- B .]31,31[- C .24(,)33D .]34,32[课后作业:1、已知函数f(x)=xxa a 22+-是奇函数,则f(a)的值等于( )A.-31B.3C.-31或3D.31或32、(2022年华美月考,多选)已知函数()1212xxf x -=+,())lg g x x =,则( )A .函数()f x 为偶函数B .函数()g x 为奇函数C .函数()()()F x f x g x =+在区间[]1,1-上的最大值与最小值之和为01()1f x x x=+-()2f a =()f a -=4-2-1-3-D .设()()()F x f x g x =+,则()()210F a F a +--<的解集为()1,+∞ 3、(2019·金版创新)已知函数f (x )是奇函数,g (x )=f (x )+21+2x ,x ∈(-1,1),则g ⎪⎭⎫⎝⎛21+g ⎪⎭⎫⎝⎛21-的值为________. 4、(2019·海淀联考)已知函数f (x )=2x-12x +1.(1)判断函数f (x )的奇偶性;(2)判断并证明f (x )在其定义域上的单调性;(3)若f (k ·3x)+f (3x-9x+2)<0对任意x ≥1恒成立,求实数k 的取值范围.专题:利用常见函数的奇偶性解题典型例题: 例1:【答案】(1)奇函数(2)(-1,1) 【解析】(1)()f x 的定义域为R .又()()11111111xxx x xxa a a f x f x a aa ------====-+++,所以()f x 为奇函数. (2)11211,2120<+-<-∴<+<x x a a ,即值域为(-1,1) 变式:【答案】(∞+-,21) 【解析】0313113132131321313)()(=+-++-=-+-+++-=-+--xxx x x x x x x x x f x f 所以x x f x x 21313)(++-=为奇函数,因为1313)(+-=x x x f 在定义域上单调递增,又f(x)=2x 在定义域上单调递增,所以x x f xx 21313)(++-=在定义域上是增函数 2123)23()(->⇒-->⇒-->∴a a a a f a f例2:【答案】B 【解析】依题意,注意到函数的定义域是}0|{≠∈x R x ,且)()()(22x f xe e x e e xf x x x x -=--=--=---,因此)(x f 是奇函数,其图象关于原点成中心对称,选项A 不正确,且当x>0时,)(x f >0,选项D 不正确,又+∞→+∞→)(,x f x ,结合选项知B 正确,故选B变式:【答案】]21,1[-【解析】函数f (x )=e x-1e x 是常见的奇函数,且在定义域内是单调递增的,因为f (a -1)+f (2a 2)≤0a a a f a f a f -≤⇒-=--≤∴12)1()1()2(22解得:211≤≤-a例3:【答案】奇函数【解析】由条件知:函数的定义域为11<<-x 关于原点对称 所以f(x)+f(-x)=lgx x +1-1+lg x x -+11=0,即函数f(x)是奇函数,同理f(x)=lg xx-+11也是奇函数 例4:【答案】奇函数【解析】由条件知:函数的定义域为R 关于原点对称 所以f(x)+f(-x)=lg(x x ++12)+lg(x x -+12)=lg1=0即函数f(x)是奇函数,同理f(x)=lg()x x -+12也是奇函数变式1:【答案】1【解析】由条件知:奇函数的定义域要关于原点对称,所以分母1-≠x ,为了对称,分子a=1变式2:【答案】2【解析】由已知得1)1ln(21)(22+++++=x x x x x f 因为)1ln())(1)(ln(22x x x x ++-=-++-,所以)1ln(2x x y ++=是奇函数,进而可判定,函数1)1ln(2)(22++++=x x x x x g 为奇函数,则)(x g 的最大值1M 和最小值1N ,满足1M+1N =0,因为1,111+=+=N N M M ,所以M+N=2变式3:【答案】C 【解析】因为A,B 选项中,图像关于原点对称,所以f(x)为奇函数,f(x)+f(-x)=0 1010)1ln()1ln(2222±=⇒=-⇒=+++-+k x k kx x kx x )(即当K=1时,f(x)的图像为选项A,当K=-1时,f(x)的图像为选项B 而C,D 选项中,图像关于Y 轴对称,所以f(x)为偶函数,f(x)=f(-x)00)1ln()1ln(22=⇒=⇒++=-+k kx kx x kx x 即当K=0时,0)(≥x f 故f(x)的图像为选项D ,故f(x)的图像不可能为C例5:【答案】A 【解析】设xx x f x g 11)()(+=+=则)(1)()(x g x f x g -=+-=-,所以)(x g 是奇函数,31)()(=+=a f a g 因为)(x g 是奇函数,所以31)()(-=+-=-a f a g 所以4)(-=-a f ,故选A例6:【答案】C 【解析】函数2111)(xx x f +-+=在[)∞+,0上为增函数,所以不等式f (x -1)<⎪⎭⎫ ⎝⎛31f 等价为 f (|x -1|)<⎪⎭⎫ ⎝⎛31f 所以|x -1|)<31⇒3432<<x课后作业:1、【答案】C 【解析】因为函数f(x)=x xa a 22+-是奇函数,所以f(-x)=-f(x)整理得:02,02)22(2122>=-=+-x x x x a a a 因为))((,所以1±=a 代入选C2、【答案】BCD 【解析】函数xx x f 2121)(+-=是奇函数,所以A 错,函数g(x)=lg )x x -+12是奇函数,所以B 正确,.函数()()()F x f x g x =+在区间[]1,1-上是奇函数,在对称区间上,最大值最小值之和为0,C 正确;是减函数xx f 2121)(++-=,010ln 11)()1lg()(2'2<+-=⇒-+=x x g x x x g 故F (x )=f(x)+g(x)是减函数,a a a F a F a F a F +>⇒+<⇒<--+12)1()2(0)1()2(所以1>a ,D 正确3、【答案】2【解析】函数)(x f 是奇函数,所以0)21()21(=+-f f ,令xx h 212)(+=,则22112212)21()21(=+++=-+h h ,所以g ⎪⎭⎫ ⎝⎛21+g ⎪⎭⎫ ⎝⎛21-=2 4、【答案】(1)奇函数(2)在R 上单调递增函数(3)),(34∞-【解析】略。
《函数的奇偶性》复习课件
46
f(-x)+g(-x)=-x1-1, 即f(x)-g(x)=x+1 1.② 联立①②得 f(x)=x2-x 1,g(x)=x2-1 1.
47
利用函数奇偶性求解析式的方法 1“求谁设谁”,既在哪个区间上求解析式,x就应在哪个区间上 设. 2要利用已知区间的解析式进行代入. 3利用fx的奇偶性写出-fx或f-x,从而解出fx. 提醒:若函数fx的定义域内含0且为奇函数,则必有f0=0,但若 为偶函数,未必有f0=0.
(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).
20
(变条件)将本例中的“奇函数”改为“偶函数”,再求解上述问题. [解] (1)如图所示
(2)由(1)可知,使函数值y<0的x的取值集合为(-5,-2)∪(2,5).
21
巧用奇、偶函数的图象求解问题 1依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称. 2求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画 出奇偶函数图象的问题.
31
当堂达标 固双基
32
1.思考辨析
[答案]
(1)函数f(x)=x2,x∈[0,+∞)是偶函数.( ) (1)× (2)×
(2)对于函数y=f(x),若存在x,使f(-x)=-f(x), (3)× (4)×
则函数y=f(x)一定是奇函数.( )
(3)不存在既是奇函数,又是偶函数的函
数.( )
(4)若函数的定义域关于原点对称,则这个函数不
x-1,x<0,
(4)f(x)=0,x=0, x+1,x>0.
12
[解] (1)函数的定义域为R,关于原点对称.
又f(-x)=(-x)3+(-x)=-(x3+x)=-f(x),
函数的奇偶性(复习)
题型二
函数的奇偶性与单调性
【例2】 已知函数f(x),当x,y∈R时,恒有f(x+y)=
f(x)+f(y). (1)求证:f(x)是奇函数; (2)如果x为正实数,f(x)<0,并且f(1)= 1 , 试求 f(x)在区间[-2,6]上的最值. 思维启迪(1)根据函数的奇偶性的定义进行证明, 只需证f(x)+f(-x)=0; (2)根据函数的单调性定义进行证明,并注意函数奇 偶性的应用.
若f(-x)=________,则f(x)为偶函数; f(x) 若f(-x)=_______且f(-x)=________,则f(x)既是 -f(x) f(x) 奇函数又是偶函数;
若f(-x)≠-f(x)且f(-x)≠f(x),则f(x)既
不是奇函数又不是偶函数,即非奇非偶函数.
3.奇、偶函数的性质
均有f(-x)=-f(x).而不能说存在x0使f(-x0)=-f(x0).对 于偶函数的判断以此类推. 4.判断分段函数奇偶性时,要以整体的观点进行判断, 不可以利用函数在定义域某一区间上不是奇偶函数 而否定函数在整个定义域上的奇偶性.
同步作业 1. 判断下列函数的奇偶性
(1) f(x)=x- 1 x
( 1 3 ,即 1 3 x 1 2 , 综上可得
失误与防范
1.定义域关于原点对称是函数具有奇偶性的一个必要条件. 2.对于奇函数f(x),如果x可以取到0,那么f(x)=0
3.判断函数f(x)是奇函数,必须对定义域内的每一个x,
一般地,如果对于函数f(x)的定义域内任意一个x,都 f(-x)=-f(x) 有_______________,那么函数f(x)就叫做奇函数. 奇函数的图象关于原点对称;偶函数的图象关于y轴 对称.
高考总复习函数的奇偶性习题
高考总复习函数的奇偶性习题高中数学高考总复:函数的奇偶性题(附参考答案)一、选择题1.下列函数,在其定义域内既是奇函数又是增函数的是()A.y=x+x^3 (x∈R)B.y=3x (x∈R)C.y=-log_2 x (x>0,x∈R)D.y=-1/x (x∈R,x≠0)答案]A解析]首先函数为奇函数、定义域应关于原点对称,排除C,若x=0在定义域内,则应有f(0)=0,排除B;又函数在定义域内单调递增,排除D,故选A.2.下列函数中既是奇函数,又在区间[-1,1]上单调递减的是()A.f(x)=sinxB.f(x)=-|x+1|/(2-x)C.f(x)=(ax^2+a-x^2)/(2-x^2)D.f(x)=ln|x+2|/(2+x)答案]D解析]y=sinx与y=ln|x+2|为奇函数,而y=(ax^2+a-x^2)/(2-x^2)为偶函数,y=-|x+1|/(2-x)是非奇非偶函数.y=sinx在[-1,1]上为增函数.故选D.二、填空题3.(2010·河北唐山)已知f(x)与g(x)分别是定义在R上奇函数与偶函数,若f(x)+g(x)=log_2(x^2+x+2),则f(1)等于() 答案]1/2解析]由条件知,f(1)+g(1)=2,g(1)-f(1)=1___(x)为奇函数,g(x)为偶函数.f(1)=(g(1)-1)/2=1/2.4.(2010·北京崇文区)已知f(x)是定义在R上的偶函数,并满足f(x+2)=-1/x,当f(x)1≤x≤2时,f(x)=x-2,则f(6.5)=()答案]-1/2解析]∵f(x+2)=-1/x,∴f(x+4)=f[(x+2)+2]=-f(x),∴f(x)周期为4,∴f(6.5)=f(6.5-8)=f(-1.5)=f(1.5)=1.5-2=-0.5.2.已知函数$f(x)=\frac{1}{x^2-3x+2}$,求$f(1)$的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性专题复习
一、关于函数的奇偶性的定义
定义说明:对于函数)(x f 的定义域内任意一个x :
⑴)()(x f x f =- ⇔)(x f 是偶函数;
⑵)()(x f x f -=-⇔)(x f 奇函数;
二、函数的奇偶性的几个性质
①对称性:奇(偶)函数的定义域关于原点对称;
②整体性:奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; ③可逆性:)()(x f x f =-⇔)(x f 是偶函数;)()(x f x f -=-⇔)(x f 是奇函数; ④等价性:)()(x f x f =-⇔0)()(=--x f x f ;)()(x f x f -=-⇔0)()(=+-x f x f ⑤奇函数的图像关于原点对称,偶函数的图像关于y 轴对称;
三、函数的奇偶性的判断
判断函数的奇偶性大致有下列两种方法:
第一种方法:利用奇、偶函数的定义,考查)(x f 是否与)(x f -、)(x f 相等,
判断步骤如下:①定义域是否关于原点对称;
②数量关系)()(x f x f ±=-哪个成立;
例1:判断下列各函数是否具有奇偶性
(1)x x x f 2)(3+= (2)2
432)(x x x f += (3)1)(2
3--=x x x x f
(4)2)(x x f = []2,1-∈x (5)2211)(x x x f -+-= (6)221()lg lg f x x x
=+.
例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。
第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):
两个奇函数的代数和是奇函数; 两个偶函数的和是偶函数;
奇函数与偶函数的和既不非奇函数也非偶函数;
两个奇函数的积为偶函数; 两个偶函数的积为偶函数;
奇函数与偶函数的积是奇函数。
四、关于函数的奇偶性的6个结论.
结论1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。
结论2 两个奇函数的和仍是奇函数;两个偶函数的和仍是偶函数。
结论3 )(x f 是任意函数,定义域关于原点对称,那么)(x f 是偶函数。
结论4 函数)()(x f x f -+是偶函数,函数)()(x f x f --是奇函数。
结论5 已知函数)(x f 是奇函数,且)0(f 有定义,则0)0(=f 。
结论6 已知)(x f 是奇函数或偶函数,方程0)(=x f 有实根,
那么方程0)(=x f 的所有实根之和为零;
若)(x f 是定义在实数集上的奇函数,则方程0)(=x f 有奇数个实根。
五、关于函数奇偶性的简单应用(各种类型题)
1.利用定义解题
例1:已知1()21
x f x a =-+为奇函数,则a =________。
已知21()(32)()
x f x x x a +=+-为偶函数,则 ________。
2.利用奇偶性,求函数值
例2:(1)已知8)(35-++=bx ax x x f 且10)2(=-f ,求)2(f 的值
3.利用奇偶性比较大小
例3(1)已知奇函数)(x f 在R 为减函数,比较)5(-f ,)1(f ,)3(f 的大小。
(2)已知函数()y f x =是R 上的偶函数,且()f x 在[)0,+∞上是减函数,
若()()2f a f ≥-,求a 的取值范围.
**(3)定义域为的函数在上为减函数,且函数为偶函数,则( )
A. B. C. D.
4.利用奇偶性求解析式
a =R ()x f ()+∞,8()8+=x f y ()()76f f >()()96f f >()()97f f >()()107f f >
例4:(1)已知)(x f 为偶函数,时当时当01,1)(,10<≤--=≤≤x x x f x ,求)
(x f 解析式?
(2)已知()f x 为奇函数,当0x ≥时,2()2f x x x =+,当0x <时,求)(x f 解析式?
5.利用奇偶性讨论函数的单调性
例5:若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间?
6.利用奇偶性判断函数的奇偶性
例6:已知)0()(23≠++=a cx bx ax x f 是偶函数,判断cx bx ax x g ++=23)(的奇
偶性。
7.利用奇偶性求参数的值
例7:(1)定义R 上的偶函数)(x f 在)0,(-∞单调递减,若)123()12(22+-<++a a f a a f 恒成立,求a 的范围.
(2)定义R 上单调递减的奇函数()f x 满足对任意t R ∈,若22
(2)(2)0f t t f t k -+-<恒成立,求k 的范围.
8.利用图像解题
例8:(1)设奇函数f(x)的定义域为[-5,5].若当
x∈[0,5]时,f(x)的图象如右图,则不等式()0<x f 的
解是 .
(2)若函数()f x 在(,0)(0,)-∞⋃+∞上为奇函数,
且在(0,)+∞上单调递增,(2)0f -=,则不等式()0xf x <的解集为 .
9.利用性质选图像
x 0 y
1 x 0 y 1 x 0 y 1 x
0 y 1 例9:(1)设1a >,实数,x y 满足1||log 0a x y
-=,则y 关于x 的函数的图像形状大致是( )
A B C D
(2)函数x x x x e e y e e --+=-的图象大致为
奇偶性专题训练
1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )
A .奇函数
B .偶函数
C .既奇又偶函数
D .非奇非偶函数
2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )
A .3
1=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =0 3.如果定义在区间]5,3[a -上的函数)(x f 为奇函数,则a =
4.若y =(m -1)x 2+2mx +3是偶函数,则m =_________.
5.若a x f x x lg 22)(--=为奇函数,则实数=a .
6.函数c bx ax y ++=2是偶函数的条件是 .
7.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )
A .-26
B .-18
C .-10
D .10
8.已知函数=-=+-=)(.)(.11lg
)(a f b a f x
x x f 则若 A .b B .-b C .b 1 D .-b 1
9.若函数)(x f 是定义在R 上的奇函数,则函数)()()(x f x f x F +=的图象关于( )
A. x 轴对称
B. y 轴对称
C. 原点对称
D. 以上均不对
10.已知函数)(x f y =在R 是奇函数,且当0≥x 时,x x x f 2)(2-=,则0<x 时,)(x f 的解析式为_______________
11.下列四个函数中,是奇函数且在定义域上不是单调函数的是( )
A .3y x =
B .y =
C .1y x =
D .1()2
x y = 12.若函数(1)()()x x a f x x ++=
为奇函数,则a =( ) A .1- B .0 C .1
D .2 13.设函数(),()f x g x 的定义域为R ,且()f x 是奇函数,()g x 是偶函数,则下列结论中正确的是( )
A .()()f x g x 是偶函数
B . )(|)(|x g x f 是奇函数
C .|)(|)(x g x f 是奇函数
D . |)()(|x g x f 是奇函数
14.定义在]11[,-上的函数)(x f y =是减函数,且是奇函数,若0)54()1(2>-+--a f a a f ,求实数a 的范围。
15.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,
若f (1-m )<f (m ),求实数m 的取值范围.
16. 若f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.
17.设函数y=f(x)(x R且x≠0)对任意非零实数x、y满足f(x·y)=f(x)+f(y),
求证f(x)是偶函数.
18.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-2x,则f(x)在R上的表达式是()
A.y=x(x-2)B.y =x(|x|-1)
C.y =|x|(x-2)D.y=x(|x|-2)
19.已知函数f(x)是奇函数,且当x>0时,f(x)=x3+2x2—1,求f(x)在R 上的表达式.。