2018年中考数学必背知识点

合集下载

(完整word版)2018中考数学知识点大全

(完整word版)2018中考数学知识点大全

2018年中考数学知识点大全第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1,零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数a 的平方根记做“a ±”。

2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。

一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

2018年中考数学知识点总结-位置与坐标一

2018年中考数学知识点总结-位置与坐标一

2018年中考数学知识点总结:位置与坐标一
1、平面直角坐标系
在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有”,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标
点的坐标:设点P是坐标平面内的任一点,由点P向轴作垂线,垂足对应着轴上的一个实数;由点P向轴作垂线,垂足对应着轴上一个实数,则点P的坐标就是(),其中叫点P 的横坐标,叫做点P的纵坐标.
说明:点的坐标的定义实际上给出了求点的坐标的一种非常重要的方法,要注意横坐标与纵坐标的顺序不能颠倒.。

2018中考数学知识点【五篇】

2018中考数学知识点【五篇】

2018中考数学知识点【五篇】导读:本文2018中考数学知识点【五篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇:一次函数】一次函数的定义一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。

解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。

图象法:形象直观,但只能近似地表达两个变量之间的函数关系。

一次函数的性质一般地,形如y=kx+b(k,b是常数,且k≠0),那么y叫做x的一次函数,当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数注:一次函数一般形式y=kx+b(k不为0)a).k不为0b).x的指数是1c).b取任意实数一次函数y=kx+b的图像是经过(0,b)和(-b/k,0)两点的一条直线,我们称它为直线y=kx+b,它可以看做直线y=kx平移|b|个单位长度得到。

(当b>0时,向上平移;b【第二篇:有关圆的字母表示方法】有关圆的字母表示方法圆--⊙半径—r弧--⌒直径—d扇形弧长/圆锥母线—l周长—C面积—S三、有关圆的基本性质与定理(27个)1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。

圆也是中心对称图形,其对称中心是圆心。

3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。

2018年中考数学备考资料:补角的公式性质

2018年中考数学备考资料:补角的公式性质

2018年中考数学备考资料: 补角的公式性质
2018年中考数学备考资料:补角的公式性质
我们常说的余角必须是由两个锐角组成, 但是补角中必须有钝角或直角。

补角的性质
补角的性质:同角或等角的补角相等。

它包括以下两方面的内容:
1.同角的补角相等。

即:若∠A+∠B=180°,∠A+∠C=180°, 则∠C=∠B。

2.等角的补角相等。

即:∠A+∠B=180°, ∠D+∠C=180°, ∠A=∠D, 则∠C=∠B。

补角与余角的区别
1.定义有些不同
如果两个角的和是一个平角, 那么这两个角叫互为补角.其中一个角叫做另一个角的补角。

∠A+∠C=180°即:∠C的补角=180°-∠C;∠A的补角=180°-∠A。

如果两个角的和是一个直角, 那么称这两个角互为余角,简称互余。

其中一个角是另一个角的余角。

∠A+∠C=90°即:∠C的余角=90°-∠C;∠A的余角=90°-∠A。

2.计算方法不同
补角:180度减去这个角的度数;
余角:90度减去这个角的度数。

其实余角和补角的公式要领很容易区分, 其实只要了解基础公式就可以轻松答题了。

2018中考数学知识点:几种常见的轴对称图形和中心对称图形

2018中考数学知识点:几种常见的轴对称图形和中心对称图形

2018中考数学知识点:几种常见的轴对称图形和中心对称图形新一轮中考复习备考周期正式开始,中考网为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《2018中考数学知识点:几种常见的轴对称图形和中心对称图形》,仅供参考!
几种常见的轴对称图形和中心对称图形:
轴对称图形:线段、角、等腰三角形、等边三角形、菱形、矩形、正方形、等腰梯形、圆
对称轴的条数:角有一条对称轴,即该角的角平分线;等腰三角形有一条对称轴,是底边的垂直平分线;等边三角形有三条对称轴,分别是三边上的垂直平分线;菱形有两条对称轴,分别是两条对角线所在的直线,矩形有两条对称轴分别是两组对边中点的直线;
中心对称图形:线段、平行四边形、菱形、矩形、正方形、圆
对称中心:线段的对称中心是线段的中点;平行四边形、菱形、矩形、正方形的对称中心是对角线的交点,圆的对称中心是圆心。

说明:线段、菱形、矩形、正方形以及圆它们即是轴对称图形又是中心对称图形。

2018中考数学知识点口诀汇总

2018中考数学知识点口诀汇总

2018中考数学知识点口诀汇总合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。

去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。

恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。

(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。

“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。

一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。

一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。

一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。

分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。

分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。

2018中考数学知识点:实数的运算法则

2018中考数学知识点:实数的运算法则

2018中考数学知识点:实数的运算法则
实数的运算法则:
1、加法法则:
(1)同号两数相加,取相同的符号,并把它们的绝对值相加;
(2)异号两数相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。

可使用
①加法交换律:两个数相加,交换加数的位置,和不变;即:a+b=b+a;
②加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,和不变;即:(a+b)+c=a+(b+c)。

2、减法法则:减去一个数等于加上这个数的相反数。

即a-b=a+(-b)
3、乘法法则:
(1)两数相乘,同号取正,异号取负,并把绝对值相乘。

(2)n个实数相乘,有一个因数为0,积就为0;若n个非0的实数相乘,积的符号由负因数的个数决定,当负因数有偶数个时,积为正;当负因数为奇数个时,积为负。

(3)乘法可使用
①乘法交换律:两个数相乘,交换因数的位置,积不变,即:ab=ba;
②乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变,即:(ab)c=a(bc);
③分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加,即:a(b+c)=ab+ac。

4、除法法则:
(1)两数相除,同号得正,异号得负,并把绝对值相除。

(2)除以一个数等于乘以这个数的倒数。

(3)0除以任何数都等于0,0不能做被除数。

5、乘方:所表示的意义是n个a相乘,即an,正数的任何次幂是正数,负数的偶次幂是正数,负数的奇次幂是负数,乘方与开方互为逆运算。

精心整理,仅供学习参考。

(完整版)2018中考数学知识点大全,推荐文档

(完整版)2018中考数学知识点大全,推荐文档

3 2 a a a a 3 - a 2018 年中考数学知识点大全第一章 实数考点一、实数的概念及分类 (3 分)1、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数 正无理数 无理数无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如 7, 等;π(2) 有特定意义的数,如圆周率 π,或化简后含有 π 的数,如 +8 等;3(3)有特定结构的数,如 0.1010010001…等;(4)某些三角函数,如 sin60o 等考点二、实数的倒数、相反数和绝对值 (3 分)1、相反数实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=—b ,反之亦成立。

2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。

零的绝对值是它本身,也可看成它的相反数,若 |a|=a ,则 a≥0;若|a|=-a ,则 a≤0。

正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。

3、倒数如果 a 与 b 互为倒数,则有 ab=1,反之亦成立。

倒数等于本身的数是 1 和-1,零没有倒数。

考点三、平方根、算数平方根和立方根 (3—10 分)1、平方根如果一个数的平方等于 a ,那么这个数就叫做 a 的平方根(或二次方跟)。

一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。

正数 a 的平方根记做“ ± ”。

2、算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作“ ”。

正数和零的算术平方根都只有一个,零的算术平方根是零。

a ( a ≥ 0)≥ 0= a =3、立方根- a ( a <0);注意 的双重非负性:a ≥ 0如果一个数的立方等于 a ,那么这个数就叫做 a 的立方根(或 a 的三次方根)。

2018初中数学知识点中考总复习总结归纳[人版]

2018初中数学知识点中考总复习总结归纳[人版]

2018年初中数学知识点中考总复习总结归纳第一章 有理数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数实数 负有理数正无理数无理数 无限不循环小数负无理数2、无理数在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等第二章 整式的加减考点一、整式的有关概念 (3分)1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。

单独的一个数或一个字母也是代数式。

2、单项式只含有数字与字母的积的代数式叫做单项式。

注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如b a 2314-,这种表示就是错误的,应写成b a 2313-。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如c b a 235-是6次单项式。

考点二、多项式 (11分)1、多项式几个单项式的和叫做多项式。

其中每个单项式叫做这个多项式的项。

多项式中不含字母的项叫做常数项。

多项式中次数最高的项的次数,叫做这个多项式的次数。

单项式和多项式统称整式。

用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。

注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。

(2)求代数式的值,有时求不出其字母的值,需要利用技巧,“整体”代入。

2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。

几个常数项也是同类项。

3、去括号法则(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。

(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。

4、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项。

2018中考数学必考知识点:轴对称与轴对称图形-等边三角形

2018中考数学必考知识点:轴对称与轴对称图形-等边三角形

2018中考数学必考知识点:轴对称与轴对称图形/等边三角形轴对称与轴对称图形
1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

注意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

等边三角形的性质:
(1)等边三角形的三个角都相等,并且每个角都等于60°;
(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有“三线合一”。

因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。

判定定理:有一个角是60°的等腰三角形是等边三角形。

说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。

2018中考数学知识点【四篇】

2018中考数学知识点【四篇】

2018中考数学知识点【四篇】导读:本文2018中考数学知识点【四篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】1、反比例函数的概念一般地,函数(k是常数,k0)叫做反比例函数。

反比例函数的解析式也可以写成的形式。

自变量x的取值范围是x0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x0,函数y0,所以,它的图像与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、反比例函数的性质反比例函数k的符号k>0k y的取值范围是y0;②当k>0时,函数图像的两个分支分别在第一、三象限。

在每个象限内,y随x 的增大而减小。

①x的取值范围是x0,y的取值范围是y0;②当k 在第二、四象限。

在每个象限内,y随x 的增大而增大。

4、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。

由于在反比例函数中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。

5、反比例函数的几何意义设是反比例函数图象上任一点,过点P作轴、轴的垂线,垂足为A,则(1)△OPA的面积.(2)矩形OAPB的面积。

这就是系数的几何意义.并且无论P怎样移动,△OPA的面积和矩形OAPB的面积都保持不变。

矩形PCEF面积=,平行四边形PDEA面积= 【第二篇】1、二次函数的概念一般地,如果,那么y叫做x 的二次函数。

叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于对称的曲线,这条曲线叫抛物线。

抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴(2)求抛物线与坐标轴的交点:当抛物线与x轴有两个交点时,描出这两个交点A,B及抛物线与y轴的交点C,再找到点C的对称点D。

2018年中考数学必背知识点

2018年中考数学必背知识点

2018年中考数学必背知识点一.不为0的量。

1.分式AB中,分母B ≠0; 2.二次方程ax 2+bx +c =0(a ≠0) 3.一次函数y =kx +b (k ≠0) 4.反比例函数ky x=(k ≠0) 5.二次函数y = ax 2+bx +c =0(a ≠0)二.非负数1.│a │≥02.(a ≥0)3. a 2n ≥0(n 为自然数)三.绝对值:(0)(0)aa a aa ≥?=?-?<四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=,其中x 的算术平方根.2. 负指数:1p p a a-=3. 零指数:a 0=1(a ≠0)4. 科学计数法:a ×10 n (n 为整数,1≤a <10)五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +?= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)。

4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ). (二)整式的运算1.平方差公式:22()()a b a b a b +-=-2.完全平方公式:222()2a b a ab b ±=±+ (三)二次根式的运算)0,00,0)a b a b =≥≥≥>(四)一元二次方程一元二次方程ax 2+bx +c =0(a ≠0)当△=b 2-4ac ≥0时,x x 1+x 2= -b a ;x 1x 2=ca(五)二次函数抛物线的三种表达形式:一般式:y = ax 2+bx +c =0(a ≠0)顶点式:2()y a x h k =-+ 双根式:12()()y a x x x x =--其中2b h a=-,244ac b k a -=,12x x 、为抛物线与x 轴两交点的横坐标,且此两交点间距离为12x x -=(六)统计1.平均数:121()n x x x x n=++… 2.加权平均数:11221()k k x x f x f x f n =++…,其中12k f f f n +++=3.方差:222212n 1()()()s x x x x x x n ??=-+-+-?… (七)锐角三角函数1.2. sin A 22sin sin cos 1tan cot 1tan cos ααααααα+=,=,=(八)圆1.面积2S r π=,周长2C r π=,弧长180n rl π=,213602n R S lR π==扇。

(最新整理)2018年中考数学总复习知识点总结(最新版)

(最新整理)2018年中考数学总复习知识点总结(最新版)

b
b
b
(4)绝对值比较法:设 a、b 是两负实数,则 a b a b .
(5)平方法:设 a、b 是两负实数,则 a2 b2 a b .
3
考点六、实数的运算
2018 年中考数学总复习知识点总结(最新版)
(做题的基础,分值相当大)
1、加法交换律
ab ba
2、加法结合律
(a b) c a (b c)
个字母也是代数式。 2、单项式 只含有数字与字母的积的代数式叫做单项式。
4
2018 年中考数学总复习知识点总结(最新版)
注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,
如 4 1 a2b ,这种表示就是错误的,应写成 13 a2b .一个单项式中,所有字母的指数的
3
3
和叫做这个单项式的次数。如 5a3b2c 是 6 次单项式.
3、倒数 如果 a 与 b 互为倒数,则有 ab=1,反之亦成立.倒数等于本身的数是 1 和—1.零 没有倒数。
考点三、平方根、算数平方根和立方根
1、平方根
如果一个数的平方等于 a,那么这个数就叫做 a 的平方根(或二次方根)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数 a 的平方根记做“ a ”.
考点二、多项式
1、多项式
几个单项式的和叫做多项式.其中每个单项式叫做这个多项式的项.多项式中不
含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数.
单项式和多项式统称整式。
用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的
值。
注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重心定理:D 、E 、F 分别为ABC 三边中点,则A D 、BE 、CF 交于一点G ,且AG =2GD 、BG =2GE 、CG =2GF A B D E F G 2018年中考数学必背知识点一.不为0的量。

1.分式AB中,分母B ≠0; 2.一元二次方程ax 2+bx +c =0(a ≠0) 3.a 0=1(a ≠0) 4.一次函数y =kx +b (k ≠0) 5.反比例函数ky x=(k ≠0) 6.二次函数y = ax 2+bx +c (a ≠0)二.非负数1.│a≥0(a ≥0) 3. a 2n ≥0(n 为自然数) 三.绝对值:(0)(0)aa a aa ≥⎧=⎨-⎩< 四.重要概念1. 平方根与算术平方根:如果x 2=a (a ≥0),则称x 为a 的平方根,记作:x=a 的算术平方根.2. 负指数:1p pa a -=, p p -ba ab )()(= 3. 零指数:a 0=1(a ≠0) 4. 科学计数法:a ×10 n (n 为整数,1≤a <10)五.重要公式(一)幂的运算性质1.同底数幂的乘法法则: m n m n a a a +⋅= ( a ≠0,m,n 都是正数)2.幂的乘方法则:()m n mn a a = (m,n 都是正数)3.积的乘方法则:()n n n ab a b =(n 为正整数)。

4.同底数幂的除法法则: m n m n a a a -÷= (a ≠0,m 、n 都是正数,且m >n ).(二)整式的运算 1.平方差公式:22()()a b a b a b +-=- 2.完全平方公式:222()2a b a ab b ±=±+)0,00,0)a b a b =≥≥=≥>(四)一元二次方程:①一元二次方程ax 2+bx +c =0(a ≠0);②当△=b 2-4ac ≥0时,x;③x 1+x 2= -b a ;x 1x 2=c a(五)二次函数抛物线的三种表达形式:一般式:y = ax 2+bx +c (a ≠0); 顶点式:2()y a x h k =-+ ;交点式:12()()y a x x x x =--其中2b h a =-,244ac b k a -=,12x x 、为抛物线与x 轴两交点的横坐标,且此两交点间距离为12x x - (六)统计 1.平均数:121()n x x x x n =++… ; 2.加权平均数:11221()k k x x f x f x f n=++…,其中12k f f f n +++=3.方差:222212n 1()()()s x x x x x x n ⎡⎤=-+-+-⎣⎦…(七)锐角三角函数1.2. sin A =cos(90°-A ),cos A =sin(90-A ),ααααcos tan 1cos sin22==+, (八)圆1.面积2S r π=, 2.周长2C r π=, 3.弧长180n r l π=, 4.213602n R S lR π==扇。

5.直角三角形内切圆半径1()2r a b c =+-c b a ab ++=6.n 边形内角和:(n -2)180°;7.正n 边形内角:(2)180n n - 或180°-n ︒360; 8.正n 边形一个外角=中心角=360n ;9.正n 边形的边长=2R sin 180n ; 10. 正n 边形的边心距= R cos 180n ;11. 正n 边形面积=nn nR ︒︒180cos 180sin 2; 12.n 边形对角线条数:1(3)2nn -(九)面积 1. S △=12底×高=12ab sin ∠C =12(a +b +c )r (a 、b 、c 为三角形三边,∠C 为a 、b 边夹角,r 为三角形内切圆半径) 2.在△ABC 中,R 2sinCcsinB b sinA a ===(a 、b 、c为△ABC 的各边长,R 为△ABC 外接圆半径)3. S □ =底×高= ab sin ∠C (a 、b 为平行四边形两临边,∠C 为a 、b 边夹角,)4.S 菱形=12a ·b (a 、b 为菱形两对角线长) 5. S 正△2(a 为正三角形边长)(十)平面直角坐标系1.中点坐标公式:坐标平面内两点A (x 1,y 1)、B (x 2,y 2)的中点坐标为1212,22x x y y ++⎛⎫⎪⎝⎭2. 两点间坐标公式:A (x 1,y 1)、B (x 2,y 2六.重要定理 (一)角平分线角平分线上一点到角两边距离相等;到角两边距离相等的点在角的平分线上. (二)线段中垂线线段中垂线上一点到线段两端点距离相等,到线段两端点距离相等的点在线段中垂线上. (三)三角形1.三角形第三边大于另两边之差,小于另两边之和.2.三角形的中位线平行于三角形第三边,并等于第三边的一半.3. 三角形的一个外角等于和它不相邻的两个内角的和;一个外角大于任意一个与它不相邻的内角.4.重心定理:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。

该点叫做三角形的重心。

(四)直角三角形 1. 直角三角形的两个锐角互余 2. 直角三角形斜边上的中线等于斜边的一半。

3. 直角三角形中30°所对直角边等于斜边的一半4. ∠C=90°,则a 2+b 2=c 2 (五)等腰三角形1.等边对等角2.“三线合一”3. 有一个角等于60°的等腰三角形是等边三角形 (六)平行四边形1.两组对边分别平行的四边形是平行四边形2.两组对角分别相等的四边形是平行四边形3.两组对边分别相等的四边 形是平行四边形4. 对角线互相平分的四边形是平行四边形5. 一组对边平行且相等的四边形是平行四边形(七)矩形 1.有一个内角是直角的平行四边形叫矩形。

2.有三个角是直角的四边形是矩形 3. 对角线相等的平行四边形是矩形 (八)菱形1.一组邻边相等的平行四边形是菱形;2.四边都相等的四边形是菱形;3.对角线互相垂直的平行四边形是菱形(九)正方形正方形的四个角都是直角,四条边都相等 ,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角(十)轴对称1.关于某条直线对称的两个图形是全等形2.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线3.两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 (十一)旋转与中心对称1.把一个图形绕着某一点O 转动一个角度的图形变换叫做旋转。

点O 叫做旋转中心,转动的角叫做旋转角。

2.关于中心对称的两个图形是全等的3. 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分(十二)梯形与等腰梯形1.梯形的中位线平行于梯形的底边,并等于上、下两底和的一半;2.等腰梯形在同一底上的两个角相等;3.等腰梯形的两条对角线相等; (十三)相似形1. 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似;2. 两角对应相等的两三角形相似;3. 两边对应成比例且夹角相等,两三角形相似;4. 三边对应成比例的两三角形相似;5. 相似三角形对应边、对应高的比,对应中线的比与对应角平分线的比都等于相似比;6. 相似三角形周长的比等于相似比;7. 相似三角形面积的比等于相似比的平方. 8.射影定理:9.位似图形:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,对应边互相平行(或共线),那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。

(十四)圆1.垂径定理:如果一条直线满足:①过圆心②垂直于弦③平分弦④平分弦所对优弧⑤平分弦所对劣弧; 中的任意两条(当以①③为题设时,弦不能是直径),必满足其它三条;2. 在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等,那么它们所对应的其余各组量都相等;3. 一条弧所对的圆周角等于它所对的圆心角的一半;4. 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径;5. 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;6. 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角;7. 切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线;8. 切线的性质定理:如果一条直线满足:①过圆心②过切点③垂直于切线 中的任意两条,必满足第三条; 9. 切线长定理 从圆外一点引圆的两条切线,它们的切线长相等;圆心和这一点的连线平分两条切线的夹角 ; 10. 圆的外切四边形的两组对边的和相等;11. 弦切角定理: 弦切角等于它所夹的弧对的圆周角;12. 相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等;13. 从圆外一点引圆的两条割线,这一点到每条 割线与圆的交点的两条线段长的积相等2018中考数学必背的8个知识点知识点1:一元二次方程的基本概念1.一元二次方程3x 2+5x-2=0的常数项是-2.2.一元二次方程3x 2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x 2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x 化为一般式为3x 2+x-2=0. 知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y 轴上。

2.直角坐标系中,x 轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限。

4.直角坐标系中,点A(-2,3)在第四象限。

5.直角坐标系中,点A(-2,1)在第二象限。

知识点3:已知自变量的值求函数值1. 当x=2时,函数y=3x-5的值为1.2.当x=3时,函数y=(x-3)2+1的值为1.3.当x=-1时,函数y=-(x+3)2+5的值为1. 知识点4:基本函数的概念及性质1.函数y=-8x 是正比例函数。

2.函数y=4x+1是一次函数。

3.函数x4y -=是反比例函数。

4.抛物线y=-3(x-2)2-5的开口向下。

5.抛物线y=4(x-3)2-10的对称轴是直线:x=3. 6.抛物线y=4(x-1)2+2的顶点坐标是(1,2)。

7.反比例函数x4y =的图象在第一、三象限。

知识点5:数据的平均数、中位数与众数1. 数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3;数据2,3,3,6,6,10的中位数是4.5 知识点6:特殊角的三角函数值1. cos30°=23。

相关文档
最新文档