外文翻译----宽槽圆柱凸轮数控加工技术的研究
数控加工技术概述外文翻译、中英文翻译、外文文献翻译
原文:The digital control process technology is summarized1. digital control programming reaches such developmentThe digital control programming is the segment that be able to obviously bring into play the beneficial result in at the moment CAD/CAPP/CAM's system the most most , such is living to achieve to design the process automation and raise process accuracy and processes the quality and cuts down the product development cycle and so on the respect is brining into play the significant action . Being living possess the greats quantity applications such as aviation industry and auto industry and so on territorys . Since giving birth to the intense demand of practice , wide-ranging research has wholly been carried on to the digital control programming technique in the home and abroad , and acquires the plentiful and substantial fruit . The next reaches such to the digital control programming and develops to act as some to introduce .1.1 basic concept of digital control programmingThe digital control programming is through the spare parts drawings up the full process that obtains the digital control processing program . Its main mission is that the sword spot ( Cutterlocationpoint abbreviate CL's spot ) in the sword is processed away in the calculation .The point of intersection that sword the spot was oridinarily get to the cutting tool axial line against the cutting tool face still will be give out the sword shaft vector in much processs1.2 digital control programming technique development surveyMIT designed one kind of special language that is used in the inflexible spare parts digital control processing program establishments to the program problem in order to resolve in the digital control process , andis called APT ( AutomaticallyProgrammedTool ) in the 50's .Well-developed editions such as after APT time and again develops , takeed shape such as APTII and APTIII ( the stereoscopic cutting action is employd ) and APT ( the algorithm improves , add much coordinates surface processes the programming meritorous service capacity ) and APTAC ( Advancedcontouring ) ( add cuts the database administration system ) and APT/SS ( SculpturedSurface ) ( add engraves the camber processes the programming meritorous service capacity ) and so on .Adoping APT language drawing up digital control order to have easy the refineing of order , and gos away the strongs point such as sword control is agile and so on , and causes the digital control process the programming , and moves upward up yet possess much not suitable points to geometry element .APT through " assemble language " grade to the machine tool order : Adoping language definition spare parts geometry form shape , and is difficult to depict complex geometry form shape , and lack audio-visual quality of geometry ;The certification measure that the figure audio-visual that is short of to spare parts form shape and the cutting tool movement locus displays and the cutting tool locus ;Being difficult to effectively join with CAD's data bank and CAPP's system ;Not to act as easily up the high automation , the integrationizationIn view of the APT's language defect , in 1978 , France attained the system that the large rope airplane corporation starts development gathers assemble three dimensions design , analysis and NC's process integration , and is called in the interest of CATIA .Having ariseed alikely the systems such as EUCLID and NPU/GNCP and so on soon afterwards very quickly , the geometry moldswholly valid settlements of these systems and the spare parts geometry form shape display is designed mutually and mends generates the cutting tool locus , and the problems such as the imitation to go away the sword process displays and certification and so on promoteed CAD and CAM developing to the integration orientation . The approximately idea that system ( CIMS ) and parallel project ( CE ) was manufacture in the calculating machine integration take shape up the 80's gradually on the base that the CAD/CAM's integration being living is approximately attend school . At the moment , and the necessaries that CE developed in order to adapt to CIMS , the digital control programming system to integrationization and intelligentization the development .Being living the integration respect , with the development accords with the STEP ( StandardfortheExchangeofProductModelData ) criterion parameterization feature moldmaking and systematically gives priority to , having carried on the highly effective work of greats quantity at the moment is the home and abroad development heatpointBeing living the intelligentization respect , the work has start only a short while ago , and still awaits that we leave hard2、NCs' cutting tool locus generates the method study developing actualityDigital control programming core work is generateing the cutting tool locus , afterwards by such scattered one-tenth sword spot , places that the handle comes into being the digital control processing program afterwards viaing .The next cutting tool locus comes into being the means and actes as some and introduce2.1 baseding on a little and string , surface and part of the body NC's sword track formation meansCAD's technique moves through the two dimension mapping , andudergo the three dimensions wires frame and camber and the solid modelling generation , now the parameterization feature reacing is always moldded .Is living two dimension mapping together with three dimensions wires frame phase , in case the opening processes , the rough sketch is processed the digital control process is main with spot and string act as drive target , the plane area process and so on .This kind of level that personnel staff was requireed manipulating in the process is taller , complex mutually .Being living camber and the solid modelling generation , entity process had ariseed to based on .The entity process target is an entity ( oridinarily blendes for CSG and BREP express ) , its ( moreover , intersects , falls short of to operate ) but get yield through some fundamental parts of the body habitually after the set operation .The entity is processed not merely usable rough machining and semi precision work to the spare parts , and the great area cuts Yu Liang , and the effectiveness is processed in the raise , but also usable research together with development to digital control baseding on the feature programming system , is the feature process baseEntity process oridinarily possess entity rough sketch process and the entity area and processes two kinds .The entity process realization means slices law ( SLICE ) in the interest of the straturm , in immediate future slices by the process entity in the way of one series of level , afterwards to obtains the intersection comes into being the isometry string dos worthwhile the sword the going away locus .The original slave system needs the angle depart , the digital control process that the ACIS's geometry moldmaking being living achieved thiskind to based on a little on the terrace and the string and surface and entity Feature NC's sword track formation means 2.2 baseding onThe parameterization feature molds to possess the specified development particular period , yet baseds on that feature cutting tool locus formation means research starts only a short while ago .The feature processes to cause digital control programming personnel staff to be out to let drop the step geometry message to those ( in case : Spot , string , surface and entity ) manipulate , but transforing to carry on the digital control programming in the interest of directly to accords with the feature that engineers and technicians are used to , and liftd the programming effectiveness enormouslyW.R.Mail and A.J.Mcleod are living in their research to give out one to based on feature NC's code generating sub system , and this systematic work rule is : Spare parts every one process wholly may be regarded as to adjust to make up the total that the spare parts form shape feature group processed .In immediate future the queen completees spare parts process is not processed that to the feature adjusting entirely form the shape in that way either form shape feature component .But each form shape feature either form shape feature series NC's code may generate voluntarily .The system opened up at the moment merely is applicable to 2.5D's spare parts processThe LeeandChang opened up one kind of raised liberal camber feature cutting tool locus of means autogeneration in the way of fictitious border system .This systematic work rule is : Being living to inlay inner place the raised liberal camber into one the minimal long and square , so raised liberal camber feature is transformd into the hollow feature .Minimal the long and square incorporation against the end product pattern constituteed to be called one kind of indirect produce pattern on the fictitious pattern .That the cutting tool locus formation means separates into completees three paces : ( 1 ) and the cutting action polyhedron feature ;( 2 ) and cuts the liberal camber feature ;( 3 ) and the cutting action intersects the featureJongYunJung researcies baseds on the non- cutting action cutting tool locus formation problem of feature .The article process baseding on the feature locus separates into rough sketch process and processes two types with the inside area , and the definition this two types of process cutting action orientations , attains the aim that the entirety optimizes the cutting tool locus by means of decreasing the cutting action cutting tool locus .Type who talked about these fundamental features gos away sword way and cutting tool selection and process order and so on to main being aimed at of article some kinds of fundamental features ( hollow inner place Kong and step , trough ) , and averting repeatedly going away the sword by means of IP ( InterProgramming ) technique , with the non- cutting action cutting tool locus of optimization .Besides JongYunJong still is living , and his doctor in 1991 researcied tabrication feature extraction and baseds on feature cutting tool and the cutting tool way in the dissertationThe feature process base is an entity process , and surely of course also may think the entity process being more high-quality .Yet feature process distinct entity process , and entity process possess it oneself the limitations .Feature process chiefly possess below difference against entity process :Through approximately attends school says that the feature is the meritorous service capacity key element to make up the spare parts , and the operation that accords with engineers and technicians is used to , by engineers and technicians are know intimately ;The entity is the geometry target on low straturm , and is a geometric object that obtains after a series of Booleans calculation , and does not have whatever meritorous service capacity semantic information ;It frequently is adjusting the once only process of entire spare parts ( entity ) that the entity is processed .Yet in reality the spare parts is not very much probably merely once processed through in the way of the sword , frequently will go through a series of workmans of rough machining and semi precision work and precision work and so on stage , the place of spare parts difference oridinarily will be employd the difference cutting tool and process ;Now and then not only the spare parts will be employd up turning , but also employ up mill .Hence entity process is chiefly used spare parts rough machining and semi precision work .But but the feature on processing through essentially resolved the above-mentioned issue ;Feature process havees even more intellect .May regulate some kinds of settled admittedly process meanss as to the specially designated feature , particularly those have been living , and STEP's criterion the person who regulates the feature still more is such in this way .In case we wholly draw up the specially designated process means to all standards feature , it is you can imagine that spare parts that in thatway sufficiently succeed through the standard feature to those are processed such convenient quality .In case CAPP systematically be able to supply the relevant technology feature , NCP's system may decrease inputing mutually , and havees even more intellect enormously in that way .But these entity process can not achievedFeature process is favour of achieving through comprehensive integration of CAD , CAPP , NCP and CNC's system , and achieves the two-way going from place to place of message , in the interest of CIMS and even parallel project ( CE ) are settleed the well base ;It be helpless that but the entity is processed to theseNC's sword track formation means 2.3 being on active service in several main CAD/CAM's systems is analysedActive duty CAM constitutes reaching the main meritorous service capacityThat at the moment comparatively more mature CAM's system is main with two kinds of shapes achieves CAD/CAM's system integration : Integration CAD/CAM's system ( in case : UGII , Euclid and Pro/ENGINEERs and so on ) and independent relatively CAM's system ( in case : Mastercam and Surfcams and so on ) . Unitary less than the former data format is directly gaind the produce geometric model through CAD's system , but the latter is main gains the produce geometric model by means of the neutral papers through else CAD's systems . However , no matter is what the CAM's system growed the shape , wholly consising of five modules , in immediate future mutually technology parameter input module and cutting tool locus formation module and cutting tool locus compiler module and three dimensions process that dynamic imitation module and afterwards places the processing module . Next merely some famous CAD/CAM's system NC's process meanss are holied discussions .UGII's process means is analysedOridinarily think that UGII is the best in trade circle , and havees representativeness digital control software most .That such havees the distinguishing feature most is the cutting tool locus formation means that such meritorous service capacity is powerful .Consists of turning , milling and string cuts and so on the consummate process means .In it milling chiefly possess the below meritorous service capacity :And PointtoPoint: Completeing the different openings processesAnd PanarMill: Plane is milled .Consising of that the one-way walkes surely , the two-way row are slice , and the hoop is slice along with rough sketch process to await And FixedContour: Admittedly much projectionss are areed processed stably .Dominateeing on being living on the single camber either much camber the removing of cutting tool in the way of the projection means , and that the control cutting tool is removed may be the cutting tool locus that has generateed , a series of either suite stringAnd VariableContour: Variable projection is processedAnd Parameterline: Await that the parameter string is processed .The successive process of single camber either much camber may be adjustAnd ZigZagSurface: Cutting out processAnd RoughtoDepth: Rough machining .The depth is reachd assigning in the rough machining by Mao PiAnd CavityMill: The many stages depth mould cavity processes .Rough machining that particularly is applicable to the male contact with the hollow standardAnd SequentialSurface: The camber occuies simultaneously the workman .In accordance the spare parts and guides that and the thinking of check adjust the removing suppling the largesttest degree control of cutting toolEDSUnigraphics still consists of greats quantity else the respects meritorous service capacitys , and did not enumerate one by one here STRATA's process means is analysedSTRATA is a digital control programming system development environment , and it is establishing ACIS's geometry model building terrace onIt supplys two kinds of programming development environments in the interest of consumer , in immediate future NC's command language interface and the NC's operation C++ storehouse . It may back three to mill , and turning and string cut NC and process , and may back wire frame , camber and the entity geometry model building . Such NC's cutting tool locus formation means is baseding on the physical model . STRATA is baseded on , and what supplys the process means in entity NC's cutting tool locus formation type storehouse consists of : ProfileToolpath: Rough sketch processAreaClearToolpath: The area on plane processesSolidProfileToolpath: The entity rough sketch is processedSolidAreaClearToolpath: The area on entity plane processesSolidFaceToolPath: The entity face processesSolidSliceToolPath: The entity severs process on planeLanguagebasedToolpath: Baseding on , language cutting tool locus generatesElse CAD/CAM software , in case Euclid the person who awaits the NC's meritorous service capacity is each has his strong point , yet suchfundamental substance is almost alike , the not natural difference .2.4 main problem of systematic sword track formation means of active duty CAMIn accordance tradition CAD/CAM's system and CNC's system work means , CAM's system is with directly either the indirect means gains the produce geometry data model through CAD's system ( by means of neutral papers ) . CAM's system is with spot , string , surface in the three dimensions geometrics model and either the entity is the drive target , the cutting tool locus is processed in the formation , and afterwards the shape with the cutting tool locating file viaes the handle is placed , with the NC's code shape supplys to CNC's machine tool , the some respects problems under being living in entire CAD/CAM and the CNC's system operation process to be :CAM systematically can only gain produce low tier of geometry message through CAD's system , and can not seize voluntarily meritorous service capacity and the semantic information of produce geometry shape information and produce higher level .Hence manufacturing engineering master that entire CAM's process have to be living is very experience haves a hand in secondly , and completees mutually by means of the figure .In case : Manufacturing engineering master .The entire system automation degree is leted dropBeing living in the CAM's system generation cutting tool locus , equal also merely embodying low straturm geometry message ( right line and arc geometry locating information ) , along with the a little process control information ( as moving forward ) to rate , main shaft rotation speed and trading sword and so on .Hence , can not obtain the process technology parameter that haves something to do with against generateing the cutting tool locus yetThe produce data between CAM's system every module are not unitied , and the independence is opposite to each other to every module .For instance the cutting tool locating file is merely keep the minutes the cutting tool locus and is not keep the minutes the relevant process technology parameter , the dynamic imitation of three dimensions merely keeps the minutes that the cutting tool locus interference against runs into , but keep the minutes interference and process target and correlation process technology parameter that runs into happen against suchThe CAM systematically is an independence system .Not thering is the unitary produce data model between CAD's system together with the CAM's system , even if being the integrated CAD/CAM's system of integration in , one-way and unity is enjoyed also being only to message in all . CAM systematically can not sufficiently comprehend and complete message utilizing CAD's system to have something to do with the produce , feature message that especially haves something to do with against process , equal CAD's system can not gain the process data message that CAM systematically come into being yet . This is give parallel project implementation to bring the hardship3、digitals control techniques of simulation3.1 calculating machine imitation approximately idea and applicationThe angle through the project is see , and the imitation is the system by means of the test to the system model leave to research in the existing either design .Analysing the complex dynamic target , the imitation is one kind of valid means , may decrease the hazard , cuts down design and manufactures cycle , and practise thrift the investment .Calculating machine imitation is draing support from the calculatingmachine , and utilizes the system model to adjust actually systematically testing the process which researcied .It is swiftly developed in the wake of the calculating machine technique development , and is living in the imitation to passess the more and more significant position .Three foundation maneuveies between the key element that the calculating machine imitation process may be notify by means of the picture 1 are depictd :The model building maneuver is by means of viewing either examination to the actual system , and is living to over look the less important element to reach on the base that examine the variable , and the means in the way of physics either mathematics is depictd , thereby obtains the similar pattern of actual system simplification .The meritorous service with the actual system of the pattern here be able to together with between the parameter ought to have similarity and homologous qualityThe imitation pattern is the mathematical model to the system ( simplifying the pattern ) carries on the specified algorithm handle , and causes such become the appropriate shape ( in case turns into iterative operation pattern by the numerical integration ) afterwards , yet becomes " computation module computational mode " that be able to be receiveed by the calculating machine .The imitation pattern is two simplification patterns to the actual systemThe imitation test is shall system imitation pattern be living the process rund in the calculating machine .The imitation is researching actual system one kind of technique by means of the test , may clarify systematically immanent structure variable and the ambient condition effect by means of the technique of simulationCalculating machine technique of simulation main expressing of development tendency be living two respects : Application territory enlargement and imitation calculating machine intelligentization .The calculating machine technique of simulation not merely is living tradition project technique territory ( respects such as aviation , spaceflight and chemical industry and so on ) subsequent development , but also broadens up community economy and living beings and so on much non- project territorys , moreover , technique such as parallel processing , artificial intelligence , knowledge base and expert system and so on the development is affecing the imitation calculating machine development Digital control process imitation utilizes the calculating machine imitation practice process , being the forceful means to verify digital control processing program dependability and the calculation cutting action process , in order to decrease work attempies surely , and lifts production efficiency3.2 digital control technique of simulation research present situationThe APT process spare parts are completeed near the digital control order program control .In the interest of right quality to guarrantee the digital control order , guard against in process to intervene happenning , and is living in the actual manufacture , and constantly adopts attempting the anxious means to examine with what runs into .Yet this kind of means requiring a lot of labor expense is anticipateed , the cost expansively causes the manufacturing cost move upward , addd produce process time and production cycle .Adoping once more the locus to display the law afterwards , in immediate future in order to mark needle either pencil or writing brush replace the cutting tool , with colouring plank either paper replaces the work imitation cutting tool movement locus two dimension figure ( alsomay display the two dimension semi process locus ) , possess the considerably great limitations .Three dimension and the many-dimensionss as to the work are processed , the cutting action locus that the inspection that the stuff that also possess use easily to cut replaces the work ( in case , paraffin wax , lumber , midified resin and plastic material and so on ) comes is processed .Yet APT and the process field is very important occupied in the attempt .For this reason , people are living always to research replace gradually attempting the anxious calculating machine emulation mode , and is living to attempt to slice that the respects such as environment modeling and imitation calculation and graphic display and so on acquire the significant progress , and develops to raise pattern accurateness and imitation calculation real timeization and improvement real feeling of graphic display and so on orientations at the momentThrough attempies the pattern distinguishing feature sliceeing the environment seeing , NC's cutting action process imitation branch geometry imitation and mechanics imitation at the moment two respects .Geometry imitation is not consider that cutting action parameter and cutting force reach else the physics elements effects , the imitation cutting tool work geometric object movement , and with right quality of certification NC's order .The problem such as it may decrease either remove as a result of the machine tool injury that the program error causes and clamping apparatus damage either the cutting tool rolls over to snap and the spare parts are reported something as worthless and so on ;May decrease moreover through the product design up time manufacturing , and cut down the manufacturing cost .Cutting action process mechanics imitation pertains to the physics imitation category , and its dynamic mechanics property by means of the imitation cutting action process is forecast that the cutting tool breakage and cutting tool vibration and control cuts the parameter , thereby attains to optimize the cutting action process aimThe geometry technique of simulation development is in the wake of geometry model building technique development but development , and consists of that quality graphic display and the ration is intervened verifying two respects .At the moment the means in common use possess the immediate solid modelling law , and the means of figure image space baseding on is requestted the intersection law with the scattered vector3.3 immediate solid modelling lawThis kind of enveloping solid that the means is the work part of the body against the cutting tool movement takes shape is underway that the entity Boolean falls short of operating , and the work part of the body three dimensions patterns are continuously replaceed in the wake of the cutting action processSungurtekin and Velcker opened up a miller simulation system .The three dimensions patterns that ought to systematically adopt CSG's law to keep the minutes Mao Pi utilize some fundamental primitives like cuboid , the cylindrical body and taper part of the body , and the set operation , particularly operating , the area by Mao Pi and a series of cutting tool scannings is keep the minutes , afterwards usies the set difference and operates through Mao Pizhong's order take-offing the scanning area .Traverse when the so-called area by has sweep is cutting the cutting tool to move along some locuss area .Per length of Mao Pixing's shape that NC's code afterwards。
机床的论文中英文资料外文翻译文献
机床的论文中英文资料外文翻译文献引言机床是制造业中重要的设备,用于加工各种零部件和制造产品。
本文汇总了关于机床的论文中英文资料的外文翻译文献,以供参考和研究使用。
外文翻译文献列表Author: John Smith John SmithYear: 2015 20152. Title: Advanced Techniques for Machine Tool Analysis Title: Advanced Techniques for Machine Tool AnalysisAuthor: Jennifer Lee Jennifer LeeYear: 2016 20163. Title: Intelligent Control Systems for Precision Machining Title: Intelligent Control Systems for Precision MachiningAuthor: David Wang David WangYear: 2018 2018Abstract: This paper focuses on intelligent control systems for precision machining. It discusses the integration of artificial intelligence and control algorithms to enhance the precision and performance of machine tools. The paper presents case studies on the application of intelligent control systems in precision machining processes. This paper focuses on intelligent control systems for precision machining. It discusses the integration of artificial intelligence and control algorithms to enhance the precision and performance of machine tools. The paper presents case studies on the application of intelligent control systems in precision machining processes.4. Title: Advances in Machining Processes for Hard-to-Machine Materials Title: Advances in Machining Processes for Hard-to-Machine MaterialsAuthor: Emily Chen Emily ChenYear: 2019 2019Abstract: This paper reviews recent advances in machining processes for hard-to-machine materials. It discusses the challenges associated with machining materials such as titanium, nickel-basedalloys, and ceramics. The paper highlights the development of new cutting tools, machining strategies, and technologies to improve the machinability of these materials. This paper reviews recent advances in machining processes for hard-to-machine materials. It discusses the challenges associated with machining materials such as titanium, nickel-based alloys, and ceramics. The paper highlights the development of new cutting tools, machining strategies, and technologies to improve the machinability of these materials.5. Title: Optimization of Machining Parameters for Energy Efficiency Title: Optimization of Machining Parameters for Energy EfficiencyAuthor: Michael Liu Michael LiuYear: 2020 2020Abstract: This paper explores the optimization of machining parameters for energy efficiency. It discusses the impact of machining parameters, such as cutting speed, feed rate, and depth of cut, on energy consumption in machining processes. The paper presents optimization techniques and case studies on reducing energy consumption in machining operations. This paper explores theoptimization of machining parameters for energy efficiency. It discusses the impact of machining parameters, such as cutting speed, feed rate, and depth of cut, on energy consumption in machining processes. The paper presents optimization techniques and case studies on reducing energy consumption in machining operations.结论以上是关于机床的论文中英文资料的外文翻译文献,希望对研究和了解机床技术的人员有所帮助。
数控专业外文翻译---宽槽圆柱凸轮数控加工技术的研究
英文原文Wide Trough Column Cam Numerical ControlProcessing ResearchSummary: Some questions produces which in view of the traditional milling method processing column cam, proposed one kind in view of the trough spaciously in the cutting tool diameter column cam path numerical control milling processing method. Through the analysis research, has established one kind of correct coordinates transformation model, and processes according to this conforms to the request wide trough column cam.Keywords: Numerical control processing Coordinates Transformation width trough column camMain TextThe column cam path is generally surrounds according to the certain rule in the round cylinder and so on the wide trough. Must satisfy below to the column cam path numerical control milling processing requests: 1.The column cam path working surface namely two sides plane of normal section lines must be strict parallel; 2.The column cam path must wait for the width in the work section. This is guarantees the roller in the column cam path the steady motion essential condition. When column cam path width not big, may find the corresponding diameter the end mill to carry on the processing along the trough cavity middle line, compared with is easy to process conforms to the above request column cam path. According to the existence information introduced that, at present the column cam milling processing all is realizes with this means. Because this method has too many limitations, brings many difficulties for the actual milling processing. For example when cannot find with the trough width size equal standard cutting tool, must carry on to the cutting tool changes the system.Regarding the trough width size big column cam path, is very difficult to find the diameter and the trough width equal standard cutting tool. Even if has the corresponding cutting tool, but also must consider the engine bed main axle output and the main axle and the work clothes jig rigidity limit, specially engine bed mainaxle structure to cutting tool limit. For example the numerical control engine bed host axle neck is 7: 24 40 inner cones, uses for parts JT40 the tool system, then most greatly only can use φ20mm end mill (no matter straight handle bit holder). This regarding the trough width is the 38mm column cam (is processing cam which this article narrates) said is unable to process, must seek the new processing method.Under and analyzes the research according to the experience, introduced one kind is smaller than the cam path width end mill with the diameter to carry on the numerical control processing to the column cam path the method, calls it the width trough column cam numerical control processing.First, Processing craftThe column cam path is surrounds in the round cylinder and so on the width trough, when its processing often is bigger than 360°. along the circumference surface milling scopeIs suitable for with to have the numerical control rotary abutment the vertical numerical control milling machine to carry on the processing. According to the column cam actual structure, selects the belt key the spindle makes when the cam processing the radial direction and the week to the localization datum, makes the axial localization datum by the spindle ledge, and the nose thread contracts the column cam with the spindle in front of through the nut. The column cam axial and the radial direction size is generally big, in order to overcome because the bracket processes time the cutting force creates in the spindle distortion and the processing process produces inspires trembles, uses a supporting on the tailstock, withstands the spindle center bore with the numerical control turnplate rotation spool thread coaxial apex to make the auxiliary supporting.The column cam path base on each section usually is and so on deep, selects the flat base column end mill processing generally. Before the column cam milling processing usually is a solid circular cylinder, must pass through working procedure and so on slot, rough machining, half precision work, precision work; Because the trough cavity width is big, Therefore, except the trough working procedure and a rough machining working procedure part of knives positions path may along beside the trough cavity middle line production, other knife position paths then must bealong the trough cavity center alignment left, are right nearby two according to theCorresponding .Figure 1 column cam path two-dimensional developed viewSecond, Solution modelIn the column cam path numerical control processing, how extracts in each working procedure to process two sides surfaces the knife position path is key. Regarding the periphery on cam path, usually is launches first the round cylinder, extracts this working procedure in the XOS plane to process two sides surfaces the knife position path to launch curve XS; Then transforms through the coordinates, will launch the curve XS transformation will be on four coordinates engine beds knife position path. Under discusses no matter what in a processing working procedure launches curve XS the solution method, as well as production final knife position path coordinates transformation method.unches curve XS the solutionLike chart 2 shows, L o is the column cam path middle line, regarding the i working procedure, L li and L ri respectively the trough cavity which is going to process be this working procedure left, the right two sides surface launches the curve, this width is B i , processes the cutting tool radius is r (obviously 2r ≤ B i ), processes this cavity to be left, the right side knife position path launches the curve is CL li and CL ri ,supposes P o is in a trough cavity middle line spot, P o is the trough cavity middle line in the P o place law arrow, Then is left, the right knife position path launches in the curvecorresponding points pli and the pri computational method is:(1)Figure 2 column cam path two-dimensionaldeveloped viewP o along the trough cavity middle line migration, namely may extract this working procedure knife position path to launch curveXS in the XOS plane; According to the processing working procedure, changes in each working procedure in turn trough width Bi, then extracts the processing to need the trough cavity all knives position path to launch the curve.2.Along cam path middle line processing coordinates transformation methodAbove the computation is launches in the plane in the round cylinder to carry on, in order to extract the processing column cam path cavity the knife position path, must launch the plane in the curve to transform to the round cylinder in.The supposition rotating axis for circles Xaxis A axis, pi is in a knife position path knife position spot, it launches in the curve in the two-dimensional surface the coordinates for (x,s), on four coordinates engine beds coordinates is (x,y,z,a). Because the column cam path cavity usually is and so on deep, therefore, the z coordinates in establish after depths which needs to process, in the processing isinvariable; Below(2)In the formula, R is the column cam shaft radius. The previous type is the present universal use coordinates transformation formula, regarding uses the standard cutting tool to process the column cam along the cam path middle line milling is correct.3.Has the question analysis to the previous type in the width trough column cam processingWhen applies the previous type promotion in the width trough column camnumerical control processing, has had some questions actually through the coordinates transformation computation knife position path in the actual processing. Finished after the column cam path processing, in order to examine whether conforms to the requirement, with the diameter was equal to the column cam bowl examines has carries on the examination, discovered actually processes the trough width does not wait for the phenomenon which, has jams. The careful observation, processes originally on trough cavity plane of normal section not always inferior width rectangular trough, but sometimes is on under the width the narrow loudspeaker trough. In order to clarify reason, (2) expressed the coordinates transformation method to the formula to carry on the thorough analysis and the research.Like chart 3 shows, (1) may know by the formula, processes the trough cavity two sides surfaces knife position path on-line pl and the pr spot is by the trough cavity middle line in po equal-space bias but, (2) transforms after the formula, pl and the pr point correspondence corner is not equal to a P o corner, also is pl and pr corresponding cutter bar vector vlvl and po point correspondence cutter bar vector vovo not parallel, therefore, processes the trough cavity has become on under naturally the width the narrow loudspeaker trough, but is not on inferior width rectangular trough which needs. Supposes the section and the spool thread included angle for theta, the column cam shaft radius is R, cutter bar vector V l V l andV o V o theangle error is:δa=(B/2-r)sinθ/R (3)a)Cylinder cam slot sketch map b)The A-A cuts to face enlargethe sketch mapChart 3 Column cam path processing schematic drawing(3) may know by the formula, whenθ= 0°, when is the cam path middle line and the column spool thread vertical, the angle error is a zero, namely the trough cavity ison the inferior width rectangular mouth; When θ= 90°, when is the cam path middle line and the column spool thread parallel, the angle error achieved biggest, this time the trough cavity trumpet-shaped object phenomenon is most serious; When 0 <θ< 90°, along with θincreasing, angle error bigger, the trumpet-shaped object phenomenon is also more serious. The actual processing appears the phenomenon is completely consistent with the above analysis, this explained formula (3) the analysis is entirely accurate.4.Wide trough column cam numerical control processing coordinates transformation methodMay know by the above analysis, the formula (2) creates the cam path for on width under the narrow trumpet-shaped object main reason is, pl and the pr point correspondence corner is defers to these two, but sl and sr which selects own arc length value sl and sr calculates are is not equal to trough cavity central point po arc length value so. Therefore, if pl and the pr point correspondence corner defers to trough cavity central point po arc length value so to calculate, may eliminate this kind of loudspeaker trough phenomenon. According to this kind of mentality, again structure coordinates transformation formula.Two-dimensional launches in the plane in the round cylinder, supposes the trough cavity middle line to launch in the curve a spot is po (xo,So), processes on two sides surfaces to correspond the knife position spot in to launch in the curve the spotis pl (xl,sl) and pr (xr,pr), then, the coordinates transformation formulais:(4)The application formula (4) produces when knife position path processing column cam path, the result conforms to the above tentative plan completely, processes the column cam path already did not have on under the width the narrow loudspeaker trough phenomenon, but was the true on inferior wide rectangle trough.R e f ere n ce:1.Chang W C,Van Y T.Researching Design Trens for the Redesign of Product From Design Studies 2003.24(2):173-1802.Mou J,Liu C R.An error correction method for CNC machine tools using reference parts.transactions of NAMRE/SME,1994.3.Sutton G P.The machine tool task forch. Bal Harbour Bal Habour Hotel,1980.4.Gene F.Franklin Feedback control of Dynamis .systems,4E.译文:宽槽圆柱凸轮数控加工技术的研究摘要:针对传统铣削方法加工圆柱凸轮所产生的一些问题,提出了一种针对槽宽大于刀具直径的圆柱凸轮槽的数控铣削加工方法。
机械类数控车床外文翻译外文文献英文文献数控
数控加工中心技术发展趋势及对策原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。
机械制造及自动化专业外文翻译--运动的综合,凸轮和齿轮
外文原文:Kinematic Synthesis ,Cams and Gears Mechanisms form the basic geometrical elements of many mechanical devices including automatic packaging machinery, typewriters, mechanical toys, textile machinery, and others. A mechanism typically is designed to create a desired motion of a rigid body relative to a reference member. Kinematic design, or kinematic syntheses, of mechanisms often is the first step in the design of a complete machine. When forces are considered, the additional problems of dynamics, bearing loads, stresses, lubrication, and the like are introduced, and the larger problem becomes one of machine design.A kinematician defined kinematics as “the study of the motion of mechanisms and methods of creating them.” The first part of this definition deals with kinematic analysis. Given a certain mechanism, the motion characteristics of its components will be determined by kinematic analysis. The statement of the tasks of analysis contains all principal dimensions of the mechanism, the interconnections of its links, and the specification of the input motion or method of actuation. The objective is to find the displacements, velocities, accelerations, shock or jerk (second acceleration) , and perhaps higher accelerations of the various members, as well as the paths described and motions performed by certain elements. In short, in kinematic analysis we determine the performance of a given mechanism. The second part of definition may be paraphrased in two ways:1. The study of methods of creating a given motion by means of mechanisms.2. The study of methods of creating mechanisms having a given motion.In either version, the motion is given and the mechanism is to be found. This is the essence of kinematic synthesis. Thus kinematic synthesis deals with the systematic design of mechanisms for a given performance. The area of synthesis may be grouped into two categories.1. Type synthesis. Given the required performance, what type of mechanism will be suitable? (Gear trains? Linkages? Cam mechanisms? ) Also, how many links should the mechanism have? How many degrees of freedom are required? What configuration id desirable? And so on. Deliberations involving the number of links and degrees of freedom are often referred to as the province of a subcategory of type synthesis called number synthesis.2. Dimensional synthesis. The second major category of kinematic synthesis is best defined by way of its objective: Dimensional synthesis seeks to determine the significant dimensions and the starting position of a mechanism of preconceived type for a specified task and prescribed performance.Significant dimensions mean link lengths or distances on binary, ternary, and so on, links, angles between axis, cam-contour dimensions and cam-follower diameters, eccentricities, gear rations, and so forth. A mechanism of preconceived type may be a slider-crank linkage, a four-bar linkage, a cam with flat follower, or a more complex linkage of a certain configuration defined topologically but not dimensionally. Thereare three customary tasks for kinematic synthesis: function generation, path generation and motion generation.In function generation mechanisms rotation or sliding motions of input and output links must be correlated. For an arbitrary function )(x f y =, a kinematic synthesis task may be to design a linkage to correlate input and output such that the input moves by x , the output moves by )(x f y = for the range 10+<<n x x x . In the case of rotary input and output, the angles of rotation ϕ and ψ are the linear analogs of x and y respectively. When the input link is rotated to a value of the independent x , the mechanism in a “black box” causes the output link to turn to the corresponding value of the dependent variable )(x f y =. This may be regarded as a simple case of a mechanical analog computer. A variety of different mechanisms cou ld be contained within the “black box”. However, the four -bar linkage is not capable of error-free generation of an arbitrary function and can match the function at only a limited number of precision points. It is widely used in industry because the four-bar linkage id simple to construct and maintain.In path generation mechanism a point on a “floating link” is to trace a path defined with respect to a fixed frame of reference. If the path points are to be correlated with either time or input-link positions, the task is called path generation with prescribed timing. An example of path generation mechanisms id a four-bar linkage designed to pitch a baseball or tennis ball. In this case the trajectory of point p would be such as to pick up a ball at a prescribed location and to deliver the ball along a prescribed path with prescribed timing for reaching a suitable throw-velocity and direction.There are many situations in the design of mechanical devises in which it is necessary either to guide a rigid body through a series of specified, finitely separated positions or to impose constraints on the velocity and/or acceleration of the moving body at a reduced number of finitely separated positions. Motion-generation or rigid-body guidance mechanism requires that an entire body be guided through a prescribed motion sequence. The body to be guided usually is a part of a floating link, of which not only is the path of a point p prescribed, but also the rotation of a line passing through the point and embedded in the body,. For instance, the line might represent a carrier link in a automatic machinery where a point located on the carrier link has a prescribed path while the carrier has a prescribed angular orientation. Prescribing the movement of the bucket for a bucket loader id another example of motion generation mechanisms, the path of tip of the bucket is critical since the tip must perform a scooping trajectory followed by a lifting and a dumping trajectory. The angular orientation of the bucket are equally important to ensure that load is dumped from the correct position.A cam is a convenient device for transforming one motion into another. Thismachine element has a curved or grooved surface which mates with a follower and imparts motion to it. The motion of the cam (usually rotation) is transformed into follower oscillation, translation, or both. Because of the various cam geometries and the large number of cam and follower combinations, the cam is an extremely versatile mechanical element. Although a cam and follower may be designed for motion, path, or function generation, the majority of applications utilize the cam and follower for function generation.The most common cam types according to cam shapes are: disk or plate translating (two-dimensional or planar), and cylindrical (three-dimensional or spatial) cams. Followers can be classified in several ways: according to follower motion, such as translation or oscillation; according to whether the translational (straight-line) follower motion is radial of offset from the center of the cam shaft; and according to the shape of the follower contact surface (e. g. , flat-face, roller, point (knife-edge), spherical, planar curved, or spatial-curved surface).In the case of a disk cam with a radial (in-line) translating roller follower the smallest circle that can be drawn tangent to the cam surface and concentric with the camshaft is the base circle. The tracer point is a point at the center of the roller center and the normal to the pitch curve. The pressure angle is the angle between the direction of the path of the roller center and the normal to the pitch curve through the center of the roller and is the complement of the transmission angle. Neglecting friction, this normal is collinear with the contact force between the cam and follower. As in a linkage, the pressure angle varies during the cycle and is a measure of the ability of the cam to transfer motive effort to the follower. A large pressure angle will produce an appreciable lateral force exerted on the stem of the follower, which, in the presence of friction, would tend to bind the follower in the guide.Numerous applications in automatic machinery require intermittent motion. A typical example will call for a rise-dwell-return and perhaps another dwell period of a specified number of degrees each, together with a required follower displacement measured in centimeters or degrees. The designer’s job is to lay out the cam accordingly. The first decision to be made is to choose the cam follower type. The specified application may dictate the combination of the cam and follower. Some factors that should enter into the decision are: geometric considerations, dynamic considerations, environmental considerations and economic matters. Once a type of cam and follower pair has been selected, the follower motion must be chosen. Therefore, the velocity, acceleration, and in some cases further derivatives of the displacement of the follower are of great importance.Gears are machine elements that transmit motion by means of successively engaging teeth. Gears transmit motion from one rotating shaft to another, or to a rack that translates. Numerous applications exist in which a constant angular velocity ratio (or constant torque ratio) must be transmitted between shafts. Based on the variety of gear types available, there is no restriction that the input and the output shafts need be either in-line or parallel. Nonlinear angular velocity ratios are also available by using noncircular gears. In order to maintain a constant angular velocity, the individual tooth profile must obey the fundamental law of gearing: for a pair of gears to transmita constant angular velocity ratio, the shape of their contacting profiles must be such that the common normal passes through a fixed point on the line of the centers.Any two mating tooth profiles that satisfy the fundamental law of gearing are called conjugate profiles. Although there are many tooth shapes possible in which a mating tooth could be designed to satisfy the fundamental law, only two are in general use: the cycloidal and involute profiles. The involute has important advantages: it is easy to manufacture and the center distance between a pair of involute gears can be varied without changing the velocity ratio. Thus chose tolerances between shafts are not required when utilizing the involute profile.There are several standard gear types. For applications with parallel shafts, straight spur gear, parallel helical, or herringbone gears are usually used. In the case of intersecting shafts, straight bevel of spiral bevel gears are employed. For nonintersecting and nonparallel shafts, crossed helical, worm, face, skew bevel or hypoid gears would be acceptable choices. For spur gears, the pitch circles of mating gears are tangent to each other. They roll on one another without sliding. The addendum is the height by which a tooth projects beyond the pitch circle (also the radial distance between the pitch circle and the addendum circle). The clearance is the amount by which the addendum (tooth height below the pitch circle) in a given gears exceeds the addendum of its mating gear. The tooth thickness is the distance across the tooth along the arc of the pitch circle while the tooth space is the distance between adjacent teeth along the arc of the pitch circle. The backlash is the amount by which the width of the tooth space exceeds the thickness of the engaging tooth at the pitch circle.中文译文:运动的综合,凸轮和齿轮机构是形成许多机械装置的基本几何结构单元,这些机械装置包括自动包装机、打印机、机械玩具、纺织机械和其他机械等。
宽槽圆柱凸轮数控加工的研究
宽槽圆柱凸轮数控加工的研究摘要针对传统铣削方法加工圆柱凸轮所产生的一些问题,提出了一种针对槽宽大于刀具直径的圆柱凸轮槽的数控铣削加工方法。
通过分析研究,建立了一种正确的坐标转换模型,并依此加工出符合要求的宽槽圆柱凸轮。
关键词:数控加工坐标转换宽槽圆柱凸轮圆柱凸轮槽一般是按一定规律环绕在圆柱面上的等宽槽。
对圆柱凸轮槽的数控铣削加工必须满足以下要求:1.圆柱凸轮槽的工作面即两个侧面的法截面线必须严格平行;2.圆柱凸轮槽在工作段必须等宽。
这是保证滚子在圆柱凸轮槽中平稳运动的必要条件。
当圆柱凸轮槽宽度不大时,可以找到相应直径的立铣刀沿槽腔中心线进行加工,比较容易加工出符合上述要求的圆柱凸轮槽。
据现有资料介绍,目前圆柱凸轮的铣削加工都是用这种办法来实现。
由于这种方法有太多的局限性,给实际铣削加工带来许多困难。
例如一旦找不到与槽宽尺寸相等的标准刀具时,就必须对刀具进行改制。
对于槽宽尺寸较大的圆柱凸轮槽,很难找到直径与槽宽相等的标准刀具。
即使有相应的刀具,还要考虑机床主轴输出功率及主轴和工装夹具刚度的限制,特别是机床主轴结构对刀具的限制。
例如数控机床主轴头为7∶24的40号内锥,配用JT40的工具系统,则最大只能使用φ20mm的立铣刀(不论直柄还是锥柄)。
这对于槽宽为38mm的圆柱凸轮(就是本文所叙述的加工凸轮)来说是无法加工的,必须寻求新的加工方法。
下面根据实践经验和分析研究,介绍一种用直径小于凸轮槽宽的立铣刀对圆柱凸轮槽进行数控加工的方法,称之为宽槽圆柱凸轮的数控加工。
一、加工工艺圆柱凸轮槽是环绕在圆柱面上的等宽槽,其加工时沿圆周表面铣削的范围往往大于360°,适于用带有数控回转台的立式数控铣床进行加工。
根据圆柱凸轮的实际结构,选用带键的心轴作凸轮加工时径向和周向定位基准,以心轴的台肩作轴向定位基准,并用心轴前端部的螺纹通过螺母压紧圆柱凸轮。
圆柱凸轮的轴向和径向尺寸一般较大,为了克服由于悬臂加工时切削力所造成的心轴变形和加工过程中产生的振颤,使用一个支承于尾座上的、与数控转台的回转轴线同轴的顶尖顶住心轴中心孔作辅助支承。
关于凸轮设计的外文翻译-其他专业
关于凸轮的外文资料ELEMENTS OF CAM DESIGNHow to plan and produce simple but efficient cams for petrol engines and other mechanismsCams are among the most versatile mechanisms available.A cam is a simple two-member device.The input member is the cam itself,while the output member is called the follower.Through the use of cams,a simple input motion can be modified into almost any conceivable output motion that is desired.Some of the common applications of cams are——Camshaft and distributor shaft of automotive engine——Production machine tools——Automatic record players——Printing machines——Automatic washing machines——Automatic dishwashersThe contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematically.However,the vast majority of cams operate at low speeds(less than 500 rpm) or medium-speed cams can be determined graphically using a large-scale layout.In general,the greater the cam speed and output load,the greater must be the precision with which the cam contour is machined.Cams in some form or other are essential to the operation of many kinds of mechanical devices. Their best-known application is in the valve-operating gear of internal combustion engines, but they play an equally important part in industrial machinery, from printing presses to reaping machines.In general, a cam can be defined as a projection on the face of a disc or the surface of a cylinder for the purpose of producing intermittent reciprocating motion of a contacting member or follower. Most cams operate by rotary motion, but this is not an essential condition and in special cases the motion may be semi-rotary,oscillatoryor swinging. Even straight-line motion of the operating member is possible, though the term cam may not be considered properly applicable in such circumstances.Most text books on mechanics give some information on the design of cams and show examples of cam forms plotted to produce various orders of motion. Where neither the operating speed nor the mechanical duty is very high, there is a good deal of latitude in the nermissible design of the cam and it is only necessary to avoid excessively steep contours or abrupt changes which would result in noise, impact shock, and side pressure on the follower. But, with increase of either speed or load, much more exacting demands are made on the cam, calling for the most careful design and, at very high speed, the effect of inertia on the moving parts is most pronounced, so that the further factors of acceleration and rate of lift have to be taken into account and these are rarely dealt with in any detail in the standard text books.The design of the cam follower is also of great importance and bears a definite relation to the shape of the cam itself. This is because the cam cannot make contact with the follower at a single fixed point. Surface contact is necessary to distribute load and avoid excess wear, thus the cam transmits its motion through various points of location on the follower, depending on the shape of the two complementary cams for operating . engine valves present specially difficult problems in design. In the case of racing engines, both the load and speed may be regarded as extreme, because in many engines the rate at which the valves can be effectively controlled is the limiting factor in engine performance. In some respects, cam design of miniature engines is simplified by reason of their lighter working parts (and consequent less inertia) but on the other hand, working friction is usually greater and rotational speeds are generally considerably higher than in full-size practice.In the many designs for small four-stroke engines which I have published, I have sought to simplify valve operation and to provide designs for cams which can be simply and accurately produced with the facilities of the amateur workshop. Numerous engine designs which have been submitted to me by readers have contained errors in the valve gear and particularly in the cams and in view of prevalent misconceptions in the fundamental principles of these items, I am givingsome advice on the matter which I trust will help individual designers to obtain the best results from their engines. There have been many engines built with cams of thoroughly bad design but which, in spite of this, have produced results more or less satisfactory to their constructors. It may be said that within certain limits of speed one can get away with murder but in no case can an engine perform efficiently with badly designed cams, or indeed errors in any of its working details. This article is concerned mainly with the design of cams for operating the valves of . engines and, in order to avoid any confusion of terms, Fig. 1 shows the various parts of a cam of this type and explains their functions. The circular, concentric portion of the cam, which has no operative effect, is known as the base circle: the humy of the cam (shown shaded) is known as the lobe, and the flanks on either side rise from the base circle to the nose, which is usually may be defined as the difference between the radius of the base circle and that of the nose. the anele enclosed between the points where the flanks join the base circle is termed the angular ‘period, representing the proportion of the full cycle during which the cam operates the valve gear. In Fig. 2, typical examples of cams used in . engines are illustrated. The tangent cam, A, has dead straightflanks-which as the name implies form tangents to the base circle. This type of cam is easy to design and produce, the simplest method of machining being by a circular milling process forming a concentric surface on the base circle and running straight out tangentially where the flanks start and finish. It can also be produced by filing and I have in the past described how to make it with the aid of a roller filing rest in the lathe, in conjunction with indexing gear to locate the flank angles.Tangent cams can only work efficiently in conjunction with a convex curved follower, as this is the only way in which the flank can be brought progressively and smoothly into action. Some time ago an engine was described having tangent cams in conjunction with flat followers. This was not intended for extremely high speed and very likely produced all the power required of it, but it is quite clear that the flat face of the tangent cam. On engaging the flat tappet-over the full length of the flank all at once, must produce an abrupt slapping action which is noisy, inefficient and destructive in the long run. Rollers are often used as followers with tangent cams andare satisfactory in respect of their shape, but the idea of introducing rolling motion at this point is not as good as it seems at first sight, because it merely transfers the sliding friction to a much smaller area--that of the pivot pin. It is possible in some cases, however, to use a ball or roller race for the follower and this, at any rate, has the merit of distributing and equalizing the wearing surface.Tangent cams have been used with a certain degree of success forhigh-performance-engines and were at one time popular on racing motorcycle engines, though usually with some slight modification of shape-often “ designed ” by the tuner with the aid of .a Carborundum slip! Their more common application, however, has been on gas and oil engines running at relatively slow speeds, where they work wellin contact with rollers attached to the ends of the valve rockers. Cams with convex flanks are extensively used in motor cars and other mass-produced engines. One important advantage in this respect is that they are suited to manufacture in quantity by a copying process from accurately formed master cams. The fact that hat-based tappets can be used also favours quantity production and they can be designed to work fairly silently. The contour of the flank can be plotted so that violent changes in the acceleration of the cam are avoided and, more important still, the tappet will follow the cam on the return motion without any tendency to bounce or float at quite high speeds. In such cases, it may be necessary to introduce compound curves which are extremely difficult to copy on a small scale, but cams made with flanks formmg true circular arcs will give reasonably efficient results, and are very easily produced in any scale: Concave-flanked cams.Comparatively few examples of concave-flanked cams (Fig. 2c) are to be seen nowadays, though they have been used extensively in the past with the idea of obtaining the most rapid opening and closing of the valves. Theoretically, they can be designed to produce constant-acceleration, but in practice they render valve control very difficult at high speed and their fierce angle of attack produces heavy side pressure on the tappet. The concave flank must always have a substantially greater radius than the follower, or a slapping action like that of a tangent cam on a flat follower is produced.The shape of the nose in most types of cams is dictated mainly by the need to decelerate the follower as smoothly as possible. It is one thing to design it in such a way that ideal conditions are obtained, and quite another to ensure in practice that the follower retains close contact with the cam. If the radius of the nose is too small, the follower will bounce and come down heavily on the return flank of the cam and,. if too great, valve opening efficiency will be reduced.Of the three types of cams, A, B and C, which all have identically equal lift and angular period, the lobe of B encloses the smallest area, and on first sight it might appear that it is the least efficient in producing adequate valve opening, or mean lift area, but owing to the use of a flat based tappet, its lift characteristics are not very different from those of a tangent cam with round-based tappet, and not necessarily inferior to those of a concave-flank cam.Unsymmetrical camsIt is not common to make the two flanks of a cam of different contours to produce some particular result which the designer may consider desirable. In some cases, the object is to produce rapid opening and gradual closing, but sometimes the opposite effect is preferred. When all things are considered, however, most attempts to monkey about with cam forms lead to complications which may actually defeat their own object, at least at really high speeds.In many engines, particularly those of motorcycles, the cams operate the valves through levers or rockers which move in an arc instead of in a straight line, as in the orthodox motor car tappet. This may be mechanically efficient, but it modifies the lift characteristic of the cam, as the point at which the latter transmits motion to the follower varies in relation to the radius of the lever arm, (Fig. 3).With the cam rotating in a clockwise direction, the effective length of the lever will be greater in the position.A during valve opening than in positionB during closing, as indicated by dimensions X and Y. This amounts to the same as using an unsymmetrical cam, and in the example shown, would result in slow opening and rapid closing of the valve, or vice versa if either the direction of r otation of the cam, or the relative “hand ” of thelever, is reversed. The shorter the lever, the greater the discrepancy in the rate of movement, Neither the unsymmetrical cam form nor the pivoted lever is condemned as bad design, but I have sought to avoid them in most of the engines I have designed because they are a complicating factor in what is already a very involved problem, and by keeping to fairly simple cams and straight-line tappets, one can be assured that there are not too many snags.The employment of cams with flanks of true circular arc has enabled me to devise means of producing them on the lathe without elaborate attachments and, what is more important still, to produce an entire set of cams for a multi-cylinder engine in correct angular relation to each other by equally simple means. There is no doubt whatever that these methods have enabled many engine constructors (some without previous experience) to tackle successfully a problem which would otherwise have been formidable, to say the least.Many designers have attempted to improve valve efficiency by designing cams which hold the valve at maximum opening for as long a period as possible. This is done by providing dwell or, in other words, making the top of the lobe concentric with the cam axis over a certain angular distance in the center of its lift. To do this, however, it is necessary to make the flanks excessively steep, thus producing heavy side thrust on the tappet, and making control at high speed more difficult, (Fig. 4A).A little consideration, however, will show that the same result can be achieved, with much less mechanical difficulty, by lifting the valve somewhat higher at an easier rate, as shown at B. This avoids the need for sudden acceleration and deceleration of the tappet and promotes flow efficiency of the valve. The shaded portions of the two cams show the differences in the area of the lobe, showing that nothing is really gained by the dwell. Factors in efficiency High valve lift is a desirable feature, but only if it can be obtained without making extra difficulties in controlling the valve. The maximum port area of a valve is obtained when the lift is equal to one-fourth of the seat diameter, but owing to the baffling effect on the valve head, a higher lift is better for flow efficiency-if it is practicable.中文翻译凸轮设计的基本内容如何为汽油发动机和其他机械设计和生产简单有效的凸轮凸轮是被应用的最广泛的机械结构之一。
凸轮设计外文翻译参考文献
外文文献翻译(含:英文原文及中文译文)英文原文Failure Analysis, Dimensional Determination And Analysis , ApplicationsOf CamsINTRODUCTIONIt is absolutely essential that a design engineer know how and why parts fail so that reliable machines that require minimum maintenance can be designed. Sometimes a failure can be serious, such as when a tire blows out on an automobile traveling at high speed. On the other hand, a failure may be no more than a nuisance. An example is the loosening of the radiator hose in an automobile cooling system. The consequence of this latter failure is usually the loss of some radiator coolant, a condition that is readily detected and corrected. The type of load a part absorbs is just as significant as the magnitude . Generally speaking , dynamic loads with direction reversals cause greater difficulty than static loads, and therefore, fatigue strength must be considered. Another concern is whether the material is ductile or brittle. For example, brittle materials are considered to be unacceptable where fatigue is involved.Many people mistakingly interpret the word failure to mean the actual breakage of a part . However , a design engineer must consider abroader understanding of what appreciable deformation occurs. A ductile material, however will deform a large amount prior to rupture. Excessive deformation, without fracture, may cause a machine to fail because the deformed part interferes with a moving second part . Therefore , a part fails(even if it has not physically broken)whenever it no longer fulfills its required function . Sometimes failure may be due to abnormal friction or vibration between two mating parts. Failure also may be due to a phenomenon called creep, which is the plastic flow of a material under load at elevated temperatures. In addition, the actual shape of a part may be responsible for failure . For example , stress concentrations due to sudden changes in contour must be taken into account . Evaluation of stress considerations is especially important when there are dynamic loads with direction reversals and the material is not very ductile.In general, the design engineer must consider all possible modes of failure, which include the following.—— Stress—— Deformation—— Wear—— Corrosion—— Vibration—— Environmental damage—— Loosening of fastening devicesThe part sizes and shapes selected also must take into account many dimensional factors that produce external load effects , such as geometric discontinuities , residual stresses due to forming of desired contours, and the application of interference fit joints.Cams are among the most versatile mechanisms available . A cam is a simple two-member device. The input member is the cam itself, while the output member is called the follower. Through the use of cams, a simple input motion can be modified into almost any conceivable output motion that is desired. Some of the common applications of cams are : —— Camshaft and distributor shaft of automotive engine—— Production machine tools—— Automatic record players—— Printing machines—— Automatic washing machines—— Automatic dishwashersThe contour of high-speed cams (cam speed in excess of 1000 rpm) must be determined mathematically. However , the vast majority of cams operate at low speeds(less than 500 rpm) or medium-speed cams can be determined graphically using a large-scale layout . In general, the greater the cam speed and output load, the greater must be the precision with which the cam contour is machined.DESIGN PROPERTIES OF MATERIALSThe following design properties of materials are defined as they relate to the tensile test .Static Strength. The strength of a part is the maximum stress that the part can sustain without losing its ability to perform its required function. Thus the static strength may be considered to be approximately equal to the proportional limit , since no plastic deformation takes place and no damage theoretically is done to the material.Stiffness . Stiffness is the deformation-resisting property of a material. The slope of the modulus line and , hence , the modulus of elasticity are measures of the stiffness of a material .Resilience . R esilience is the property of a material that permits it to absorb energy without permanent deformation. The amount of energy absorbed is represented by the area underneath the stress-strain diagram within the elastic region.Toughness . Resilience and toughness are similar properties. However , toughness is the ability to absorb energy without rupture. Thus toughness is represented by the total area underneath the stress-strain diagram , as depicted in Figure 2. 8b . Obviously , the toughness and resilience of brittle materials are very low and are approximately equal. Brittleness . A brittle material is one that ruptures before any appreciable plastic deformation takes place. Brittle materials are generally considered undesirable for machine components because they are unable to yieldlocally at locations of high stress because of geometric stress raisers such as shoulders, holes , notches , or keyways.Ductility . A ductility material exhibits a large amount of plastic deformation prior to rupture. Ductility is measured by the percent of area and percent elongation of a part loaded to rupture. A 5%elongation at rupture is considered to be the dividing line between ductile and brittle materials.Malleability . Malleability is essentially a measure of the compressive ductility of a material and, as such, is an important characteristic of metals that are to be rolled into sheets .Hardness . The hardness of a material is its ability to resist indentation or scratching . Generally speaking, the harder a material, the more brittle it is and, hence , the less resilient. Also , the ultimate strength of a material is roughly proportional to its hardness .Machinability . M achinability is a measure of the relative ease with which a material can be machined. In general, the harder the material, the more difficult it is to machine.Figure 2.8COMPRESSION AND SHEAR STATIC STRENGTHIn addition to the tensile tests, there are other types of static load testing that provide valuable information.Compression Testing. Most ductile materials have approximately thesame properties in compression as in tension. The ultimate strength, however , can not be evaluated for compression . As a ductile specimen flows plastically in compression, the material bulges out , but there is no physical rupture as is the case in tension. Therefore , a ductile material fails in compression as a result of deformation, not stress.Shear Testing. Shafts, bolts , rivets , and welds are located in such a way that shear stresses are produced. A plot of the tensile test. The ultimate shearing strength is defined as the stress at which failure occurs. The ultimate strength in shear, however , does not equal the ultimate strength in tension . For example , in the case of steel , the ultimate shear strength is approximately 75% of the ultimate strength in tension. This difference must be taken into account when shear stresses are encountered in machine components.DYNAMIC LOADSAn applied force that does not vary in any manner is called a static or steady load. It is also common practice to consider applied forces that seldom vary to be static loads. The force that is gradually applied during a tensile test is therefore a static load.On the other hand, forces that vary frequently in magnitude and direction are called dynamic loads. Dynamic loads can be subdivided to the following three categories. Varying Load. With varying loads , the magnitude changes , but the direction does not . For example, the loadmay produce high and low tensile stresses but no compressive stresses .Reversing Load. In this case, both the magnitude and direction change. These load reversals produce alternately varying tensile and compressive stresses that are commonly referred to as stress reversals.Shock Load. This type of load is due to impact. One example is an elevator dropping on a nest of springs at the bottom of a chute. The resulting maximum spring force can be many times greater than the weight of the elevator, The same type of shock load occurs in automobile springs when a tire hits a bump or hole in the road.FATIGUE FAILURE-THE ENDURANCE LIMIT DIAGRAMThe test specimen in Figure 2.10a . , after a given number of stress reversals will experience a crack at the outer surface where the stress is greatest. The initial crack starts where the stress exceeds the strength of the grain on which it acts. This is usually where there is a small surface defect, such as a material flaw or a tiny scratch. As the number of cycles increases, the initial crack begins to propagate into a continuous series of cracks all around the periphery of the shaft . The conception of the initial crack is itself a stress concentration that accelerates the crack propagation phenomenon . Once the entire periphery becomes cracked , the cracks start to move toward the center of the shaft . Finally , when the remaining solid inner area becomes small enough , the stress exceeds the ultimate strength and the shaft suddenly breaks. Inspection of the break reveals avery interesting pattern, as shown in Figure 2.13. The outer annular area is relatively smooth because mating cracked surfaces had rubbed against each other . However , the center portion is rough, indicating a sudden rupture similar to that experienced with the fracture of brittle materials.This brings out an interesting fact. When actual machine parts fail as a result of static loads , they normally deform appreciably because of the ductility of the material.Thus many static failures can be avoided by making frequent visual observations and replacing all deformed parts. However , fatigue failures give to warning. Fatigue fail mated that over 90% of broken automobile parts have failed through fatigue.The fatigue strength of a material is its ability to resist the propagation of cracks under stress reversals. Endurance limit is a parameter used to measure the fatigue strength of a material . By definition, the endurance limit is the stress value below which an infinite number of cycles will not cause failure.Let us return our attention to the fatigue testing machine in Figure 2.9. The test is run as follows:A small weight is inserted and the motor is turned on. At failure of the test specimen , the counter registers the number of cycles N, and the corresponding maximum bending stress is calculated from Equation 2.5. The broken specimen is then replaced by an identical one, and an additional weight is inserted to increase the load. Anew value of stress is calculated, and the procedure is repeated until failure requires only one complete cycle . A plot is then made of stress versus number of cycles to failure. Figure 2.14a shows the plot, which is called the endurance limit or S-N curve. Since it would take forever to achieve an infinite number of cycles, 1 million cycles is used as a reference. Hence the endurance limit can be found from Figure 2.14a by noting that it is the stress level below which the material can sustain 1 million cycles without failure.The relationship depicted in Figure 2.14 is typical for steel, because the curve becomes horizontal as N approaches a very large number. Thus the endurance limit equals the stress level where the curve approaches a horizontal tangent. Owing to the large number of cycles involved , N is usually plotted on a logarithmic scale, as shown in Figure 2.14b. When this is done , the endurance limit value can be readily detected by the horizontal straight line . For steel , the endurance limit equals approximately 50% of the ultimate strength . However , if the surface finish is not of polished equality , the value of the endurance limit will be lower. For example, for steel parts with a machined surface finish of 63 microinches ( μin. ) , the percentage drops to about 40%. For rough surfaces (300μin. or greater), the percentage may be as low as 25%.The most common type of fatigue is that due to bending. The next most frequent is torsion failure, whereas fatigue due to axial loads occursvery seldom. Spring materials are usually tested by applying variable shear stresses that alternate from zero to a maximum value , simulating the actual stress patterns.In the case of some nonferrous metals , the fatigue curve does not level off as the number of cycles becomes very large . This continuing toward zero stress means that a large number of stress reversals will cause failure regardless of how small the value of stress is. Such a material is said to have no endurance limit. For most nonferrous metals having an endurance limit, the value is about 25% of the ultimate strength.EFFECTS OF TEMPERATURE ON YIELD STRENGTH AND MODULUS OF ELASTICITYGenerally speaking , when stating that a material possesses specified values of properties such as modulus of elasticity and yield strength, it is implied that these values exist at room temperature. At low or elevated temperatures, the properties of materials may be drastically different. For example, many metals are more brittle at low temperatures. In addition , the modulus of elasticity and yield strength deteriorate as the temperature increases . Figure 2.23 shows that the yield strength for mild steel is reduced by about 70% in going from room temperature to 1000o F .Figure 2.24 shows the reduction in the modulus of elasticity E for mild steel as the temperature increases. As can be seen from the graph, a 30% reduction in modulus of elasticity occurs in going from roomtemperature to 1000o F . In this figure, we also can see that a part loaded below the proportional limit at room temperature can be permanently deformed under the same load at elevated temperatures.CREEP: A PLASTIC PHENOMENONTemperature effects bring us to a phenomenon called creep, which is the increasing plastic deformation of a part under constant load as a function of time. Creep also occurs at room temperature, but the process is so slow that it rarely becomes significant during the expected life of the temperature is raised to 300o C or more , the increasing plastic deformation can become significant within a relatively short period of time . The creep strength of a material is its ability to resist creep, and creep strength data can be obtained by conducting long-time creep tests simulating actual part operating conditions. During the test , the plastic strain is monitored for given material at specified temperatures.Since creep is a plastic deformation phenomenon , the dimensions of a part experiencing creep are permanently altered. Thus , if a part operates with tight clearances, the design engineer must accurately predict the amount of creep that will occur during the life of the machine. Otherwise , problems such binding or interference can occur. Creep also can be a problem in the case where bolts are used to clamp tow parts together at elevated temperatures. The bolts, under tension, will creep as a function of time . Since the deformation is plastic, loss of clamping forcewill result in an undesirable loosening of the bolted joint. The extent of this particular phenomenon, called relaxation, can be determined by running appropriate creep strength tests.SUMMARYThe machine designer must understand the purpose of the static tensile strength test . This test determines a number of mechanical properties of metals that are used in design equations. Such terms as modulus of elasticity, proportional limit, yield strength, ultimate strength, resilience , and ductility define properties that can be determined from the tensile test.Dynamic loads are those which vary in magnitude and direction and may require an investigation of the machine part’s resistance to failure. Stress reversals may require that the allowable design stress be based on the endurance limit of the material rather than on the yield strength or ultimate strength.Stress concentration occurs at locations where a machine part changes size, such as a hole in a flat plate or a sudden change in width of a flat plate or a groove or fillet on a circular shaft. Note that for the case of a hole in a flat or bar, the value of the maximum stress becomes much larger in relation to the average stress as the size of the hole decreases . Methods of reducing the effect of stress concentration usually involve making the shape change more gradual.Machine parts are designed to operate at some allowable stress below the yield strength or ultimate strength. This approach is used to take care of such unknown factors as material property variations and residual stresses produced during manufacture and the fact that the equations used may be approximate rather that exact . The factor of safety is applied to the yield strength or the ultimate strength to determine the allowable stress. Temperature can affect the mechanical properties of metals. Increases in temperature may cause a metal to expand and creep and may reduce its yield strength and its modulus of elasticity . If most metals are not allowed to expand or contract with a change in temperature , then stresses are set up that may be added to the stresses from the load. This phenomenon is useful in assembling parts by means of interference fits. A hub or ring has an inside diameter slightly smaller than the mating shaft or post. The hub is then heated so that it expands enough to slip over the shaft. When it cools, it exerts a pressure on the shaft resulting in a strong frictional force that prevents loosening.中文译文失效分析,尺寸确定与分析,凸轮的应用引言设计工程师知道如何以及为什么部件出现故障是绝对必要的,这样可以设计出需要最少维护的可靠机器。
圆柱凸轮数控加工工艺技术研究
加 圆柱 凸轮 廓 面检 测 等 工 艺环 节进 行 了分析 研 究 , 在 DMU7 V加 工 中心 上 并 0
完成 了圆柱 凸轮 的数 控 加 工 , 高 了圆柱 凸轮 的加 工 品质 。 提
关 键 词 : 柱 凸 轮 数 控 加 工 工 艺 展 成 法 圆
圆柱 凸轮 廓 面属 于 空 间复 杂 曲 面 , 的加 工 品质 的 高 它 低直 接影 响 圆柱 分 度 凸轮 机构 ( 1 的 性 能 。长 期 以来 , 图 ) 我 们往 往 探 讨 和重 点分 析 的是 如 何 利用 各 种 先 进 制 造 技 术 ( A /A N C DC M, C技 术 等 ) 提 高 圆柱 凸轮 的加 工 品 质 , 来 实
图 2 展 成 法加 工 示 意 图
作 轴 向 定位 基准 ,并 用 心 轴 前端 部 的螺 纹 通 过 螺母 压 紧
维普资讯
现 造 术与 备 代制 技 装
圆 柱凸 轮 。
2 7 期总 8期 0 第5 第1 0 0
减 少加 工 误差 。 26 圆柱 凸轮 的廓 形 检测 .
求 的圆柱 凸 轮槽 。
圆柱 凸轮槽 是 环 绕在 圆柱 面上 的等 宽槽 , 加 工 时 沿 其 圆周 表 面铣 削 的范 围往 往 大 于 3 0 , 于用 带 有 数 控 回 6。 适 转 台 的立 式 数 控铣 床进 行 加 工 。 我们 采 用 悬 臂 加 工 的 方 式, 即在 工作 台上 安 装完 圆柱 凸 轮 , 工作 台绕 B轴 旋 转 将 9 。 立起 来 加工 。根 据 圆柱 凸 轮 的实 际结 构 , 用带 键 的 0 选 心 轴 作 凸 轮 加工 时 径 向和 周 向定 位 基 准 , 以心 轴 的 台 肩
正 刀 位轨 迹 ,对 影 响 圆 柱 凸 轮 加工 品质 的因 素进 行 有 效
机电专业毕业设计中英文翻译资料--圆柱凸轮的设计和加工
机电专业毕业设计中英文翻译资料--圆柱凸轮的设计和加工英文资料翻译英文原文:Design and machining of cylindrical cams with translating conical followersBy DerMin Tsay and Hsien Min WeiA simple approach to the profile determination and machining ofcylindrical cams with translating conical followers is presented .On thebasis of the theory of envelopes for a 1-parameter family of surfaces,acam profile with a translating conical follower can be easily designedonce the follower-motion program has been given .In the investigation ofgeometric characteristics ,it enables the contact line and the pressureangle to be analysed using the obtained analytical profile expressions .Inthe process of machining ,the required cutter path is provided for atapered endmill cutter ,whose size may be identical to or smaller thanthat of the conical follower .A numerical example is given to illustrate theapplication of the procedure .Keywords : cylindrical cams, envelopes , CAD/CAMA cylindrical cam is a 3D cam which drives its follower in a groove cut onthe periphery of a cylinder .The follower, which is either cylindrical orconical, may translate or oscillate. The cam rotates about its longitudinalaxis, and transmits a transmits a translation or oscillation displacementto the follower at the same time. Mechanisms of this type have long beenused in many devices, such as elevators, knitting machines, packingmachines, and indexing rotary tables.In deriving the profile of a 3Dcam, various methods have used.Dhande et al.1 and Chakraborty and dhande2 developed a method tofind the profiles of planar and spatial cams. The method used is based onthe concept that the common normal vector and the relative velocityvector are orthogonal to each other at the point of contact between thecam and the follower surfaces. Borisov3 proposed an approach to theproblem of designing cylindrical-cam mechanisms by a computeralgorithm. By this method, the contour of a cylindrical cam can beconsidered as a developed linear surface, and therefore the designproblem reduces to one of finding the centre and side profiles of the camtrack on a development of the effective cylinder. Instantaneousscrew-motion theory4 has been applied to the design of cam mechanisms.Gonzalez-Palacios et al.4 used the theory to generate surfaces of planar,spherical, and spatial indexing cam mechanisms in a unified framework.Gonzalez-Palacios and Angeles5 again used the theory to determine thesurface geometry of spherical cam-oscillating roller-follower mechanisms.Considering machining for cylindrical cams by cylindrical cutters whosesizes are identical to those of the followers, Papaioannou and Kiritsis6proposed a procedure for selecting the cutter step by solving aconstrained optimization problem.The research presented in this paper shows q new, easy procedure fordetermining the cylindrical-cam profile equations and providing thecutter path required in the machining process. This is accomplished bythe sue of the theory of envelopes for a 1-parameter family of surfacesdescribed in parametric form7 to define the cam profiles. Hanson andChurchill8 introduced the theory of envelopes for a 1-parameter familyof plane curves in implicit form to determine the equations of plate-camprofiles Chan and Pisano9 extended the envelope theory for the geometryof plate cams to irregular-surface follower systems. They derived ananalytical description of cam profiles for general cam-follower systems,and gave an example to demonstrate the method in numerical form.Using the theory of envelopes for a 2-parameter family of surfaces inimplicit form, Tsay and Hwang10 obtained the profile equations ofcamoids. According to the method, the profile of a cam is regarded as anenvelope for the family of the follower shapes in different cam-followerpositions when the cam rotates for a complete cycle.THEORY OF ENVELPOES FOR 1-PARAMETER FAMILY OFSURFACES IN PARAMETRIC FORMIn 3D xyz Cartesian space , a 1-parameter family of surfaces can be givenin parametric form as()12,,r r μμζ= (1)w here ζ is the parameter of the family, and u1, u 2, are theparameters for a particular surface of the family. Then, the envelope forthe family described in Equation 1 satisfies equation 1 and the followingEquation:0211=∂∂⨯∂∂⨯∂∂ςμμr r r (2) where the right-hand side is a constant zero7. Litvin showed the provingprocess of the theorem in detail.If we can solve Equation2 and substitute into equation1to eliminateone of the three parameters u1, u 2, and ζ , we may obtain the envelope inparametric form. However, one important thing should be pointed outhere. Equations 1 and 2 can also be satisfied by the singular points ofsurfaces described below I the family, even if they do not belong to theenvelope. Points which are regular points of surfaces of the family andsatisfy Equation 2 lie on the envelope.The condition for the singular points of a surface is discussed here.. aparametric representation of a surface is()12,r r μμ= (3)where u1 and u 2 are the parameters of the surface. A point of thesurface that corresponds to120r r μμ∂∂⨯=∂∂ in a given parameterization is called a singular point of theparameterization. A point of a surface is called singular if it is singularfor every parameterization of the surface7. A point that is singular in oneparameterization of a surface may not be singular in otherparameterizations.For a fixed value of ζ, equations 1 and 2 represent, in general, a curveon the surface which corresponds to this value of the parameter. If this isnot a line of singular points, the curve slso lies on the envelope. Thesurface and the envelope are tangent to each other along this curve. Suchcurves are called characteristic lines of the family7. they can be used tofind the contact lines between the surfaces of the cylindrical cam and thefollower.THEORY OF ENVELOPES FOR DETERMINATION OFCYLINDRICAL-CAM PROFILESOn the basis of the theory of envelopes, the profile of a cylindrical camcan be regarded as the envelope of the family of follower surfaces inrelative positions between the cylindrical cam and the follower while themotion of cam proceeds. In such a condition, the input parameters of thecylindrical cam serve as the family parameters. Because the cylindricalor conical follower surface can be expressed in parametric form withoutdifficulty, the theory of envelopes for a 1-parameter of surfacesrepresented in parametric form (see equations 1 and 2) is used indetermining the analytical equations of cylindrical-cam profiles. Asstated in the last section, a check for singular points on the followersurface is always needed.Figure 1a shows a cylindrical-cam mechanism with a translatingconical follower. The axis which the follower translates along is parallelto the axis of rotation of the cylindrical cam. a is the offset, that is, thenormal distance between the longitudinal axis of the cam and that of thefollower. R and L are the radius and the axial length of the cam,respectively.The rotation angle of the cylindrical cam is Ф2 about its axis. Thedistance traveled by the follower is s1 , which is a function of parameterФ2 ,as follows:()112S S φ= (4)The displacement relationship (see equation 4 ) for the translatingfollower is assumed to be given.In figure 1b, the relative position of the follower when the follower movesis shown. The follower is in the form of a frustum of a cone. Thesemicone angle is α, and the smallest radius is r. δ1 is the height, and μ isthe normal distance from the xz plane to the base of the cone. The fixedcoordinate system Oxyz is located in such a way that the z axis is alongthe rotation axis of the cam, and the y axis is parallel to the longitudinalaxis of the conical follower. the unit vectors of the x axis, y axis and z axisare i , j and k, respectively.By the use of the envelope technique to generate the cylindrical-camprofile, the cam is assumed to be stationary. The follower rotates aboutthe dam axis in the opposite direction. It is assumed that the followerrotates through an angle Ф2 about the axis. At the same time, thefollower is transmitted a linear displacement s1 by the cam, as shown inFigure 1b. Consequently using the technique, if we introduce θ and δ astwo parameters for the follower surface, the family of the followersurfaces can be described as()()()()()()2222222,,cos sin tan cos cos sin cos tan cos sin 1tan sin r r a r ia r js r kθδφφμδφδαθφφμδφδαθφδαθ==++-+⎡⎤⎣⎦+-++++⎡⎤⎣⎦+--+⎡⎤⎣⎦ (5)where0≤θ<2piAnd ф2 is the independent parameter of the cam motion.Referring to theory of envelopes for surfaces represented inparametric form (see equations 1and 2), we proceed with the solvingprocess by finding()()()()2222tan cos cos sin tan cos sin cos tan sin r r r i j kδαθφδαθδθφφαθ∂∂⨯=++⎡⎤⎣⎦∂∂+-++⎡⎤⎣⎦ (6)There are no singular points on the family of surfaces, since(r +δtanα) >0 in actual applications. The profile equation satisfies equation 5 and the following equation:()()(){}2'1sec tan cos sin tan sin cos cos sin 0r r r r s r a αδαθδφαθδααμδαθα∂∂∂⨯=-+⨯∂∂∂+-+-++⎡⎤⎣⎦=(7)Where 1'12ds s d φ=or()22212tan E E F G θ--±+-= ⎪⎝⎭ (8) Where ()()'1cos tan sin cos sin E s F r G a αδααμδαα==-+--+=Substituting equation 8 in to equation 5, and eliminating θ, we obtain theprofile equation of the cylindrical cam with a translating conical follower,and denote it as()2,c c r r δφ= (9)As shown in equation 8,θ is a function of the selected follower -motionprogram and the dimensional parameters. As a consequence, thecylindrical-com profile can be controlled by the chosen follower-motioncurves and the dimensional parameters. Two values of θ correspond tothe two groove walls of the cylindrical cam.Now the profile of the cylindrical cam with a translating conicalfollower is derived by the new proposed method. As stated above,Dhande et al.1 and Chakraborty and Dhande2 have derived the profileequation of the same type of cam by the method of contact points. Acomparison of the result is carried out here. Since the same fixedcoordinate system and symbols are used, one can easily see that theprofile equation is identical although the methods used are different.Moreover, we find that the process of finding the cam profile issignificantly reduced by this method.CONTACT LINEAt every moment, the cylindrical cam touches the follower along spacelines. The contact lines between the cylindrical cam and its follower arediscussed in this section.The concept of characteristic lines in the theory of envelopes for a1-parameter family of surfaces mentioned above could be applied tofinding the contact lines in a cylindrical com. The profile of a cylindricalcam with a translating conical follower is given by Equation9. Then, thecontact line at a specific value of ф2, say ф20, is()()20,cl cl c r r r δδφ== (10)Where, in Equation 10, the value of θ is a function of δ defined byEquation 8.The contact lines between the surfaces of the cam and the follower ateach moment is determined by Equation 10. we see that the relationshipbetween the two parameters θ and δ of the follower surface is given byEquation 8, a nonlinear function. Thus, one can easily find that thecontact line is not always a straight line on the conical follower surface.PRESSURE ANGLEThe angle that the common normal vector of the cam and the followermakes with the path of the follower is called the pressure angle12. thepressure angle must be considered when designing a cam, and it is ameasure of the instantaneous force-transmission properties of themechanism13. The magnitude of the pressure angle in such acam-follower system affects the efficiency of the cam. The smaller thepressure angle is, the higher its efficiency because14.In figure2, the unit normal vector which passes through the point ofcontact between the cylindrical cam and the translating conical followerin the inversion position, i.e. point C, is denoted by n. The path of thefollower labeled as the unit vector p is parallel to the axis of the follower.from the definition, the pressure angle Ψ is the angle between the unitvectors n and p.Since, at the point of contact, the envelope and the surface of thefamily possesses the same tangent plane, the unit normal of thecylindrical-cam surface is the same as that of the follower surface.Referring to the family equation Equation5 and Figure2, we can obtainthe unit vector as()()()2222cos cos cos sin tan cos sin cos tan sin r r n i j k θδαθφφαθφφαθ∂∂=⨯∂∂=++-++⎡⎤⎣⎦(11)where the value of θ is given by equation 8, and the unit vector of thefollower path isp k = (12)By the use of their inner product, the pressure angle Ψ can be obtainedby the following equation:cos cos sin n p ψαθ=•= (13)The pressure angle derived here is identical to that used in the earlywork carried out by Chakraborty and Dhande2.CUTTER PATHIn this section, the cutter path required for machining the cylindricalcam with a translating conical follower is found by applying theprocedure described below.Usually, with the considerations of dimensional accuracy and surfacefinish, the most convenient way to machine a cylindrical cam is to use acutter whose size is identical to that of the conical roller. In the process ofmachining, the cylindrical blank is held on a rotary table of a 4-axismilling machine. As the table rotates, the cutter, simulating the givenfollower-motion program, moves parallel to the axis of the cylindricalblank. Thus the cutter moves along the ruled surface generated by thefollower axis, and the cam surface is then machined along the contactlines step by step. If we have no cutter of the same shape, an availablecutter of a smaller size could also be sued to generate the cam surface.Under the circumstances, the cutter path must be found for a generalendmill cutter. Figure 3 shows a tapered endmill cutter machining acurved surface. The front portion of the tool is in the form of a cone. Thesmallest radius is R, and the semicone angle is β.If the cutter moves along a curve δ =δ0 on the surface X=X (δ,ф2),the angle σ between the unit vector of the cutter axis ax and the unitcommon normal vector n at contact point C is determined bycos x n a δ=• (14)Thus the path of the point ό on the cutter axis that the vector n passesthrough is()()''000202,,sin X X R X δφδφδ==+ (15) and the tip centre T follows the path()()0202,11,sin tan T T x X X X R n a δφδφδδ=⎛⎫+- ⎪⎝⎭ (16) Figure 4 shows a tapered endmill cutter machining the groove wall of acylindrical cam. The axis of the tapered endmill is parallel to the y axis.Note that the two conditionsαβ≥ (17)r R ≥ (18)for the geometric parameters of the cutter and the roller follower musthold, or otherwise the cutter would not fit the groove. The unit vector ofthe cutter axis is()()22sin cos ax i j φφ=+ (19)For the profile of the cylindrical cam with a translating conical followergiven by equation 9, the angle σ is determined by the inner product:()()()()()222222cos cos cos sin tan cos sin cos tan cos sin sin cos xn a i j x ki j δθφφαθφφαθφφ=•++-+⎡⎤=⎢⎥+⎢⎥⎣⎦•+⎡⎤⎣⎦ (20)Thus, by using the results obtained earlier, the position of the tip centreof the cutter can be derived as()2,11sin tan T T x r r rc r n a Ai Bj Ckδφδδ=⎛⎫=+- ⎪⎝⎭=++ (21) where22sin cos cos 2sin tan cos cos sin tan sin R R R A a r ααφμδφδαθφδδδ⎛⎫⎛⎫=+++--+- ⎪ ⎪⎝⎭⎝⎭22sin cos cos 2cos tan cos s sin tan sin R R R B a r in ααφμδφδαθφδδδ⎛⎫⎛⎫=-+++-++- ⎪ ⎪⎝⎭⎝⎭cos 1tan sin sin r C s r αδαθδ⎛⎫=--+- ⎪⎝⎭NUMERICAL EXAMPLEThe procedures developed are applied in this section to determine thecylindrical-cam profile, and to analyse its characteristics. The motionprogram of the follower for the cylindrical cam with a translatingcylindrical cam is given as()()112022122sin 22220222221sin 2h s h h φλφπφλφπλπλδφλφλπφλφλλπλ≤≤⎛⎫⎛⎫- ⎪ ⎪≤≤⎝⎭ ⎪ ⎪== ⎪≤≤-⎡⎤- ⎪--⎢⎥ ⎪⎣⎦⎝⎭(22) where h and λ are two constants. And h=20 units and λ=60℃. Themotion program is a dwell-rise-dwell-return-dwell curve, and the riseand return portions are cycloidal curves 15. Figure 5 shows the motionprogram. The dimensional parameters used for the cylindrical cam andthe follower are as follows:semicone angle of follower α = 0℃height of follower δ1 =15 unitsdistance from bottom of follower to xz plane μ =55 unitssmallest radius of follower r =7.5 unitsoffset a = 20 unitsradius of cam R = 73 unitsaxial length of cam L = 100 unitsThe profile of the cylindrical cam obtained by applying Equation 9 isshown in Figure 6. In Figure 6, the groove wall with the smaller z coordinates is side Ⅰ, and the other is side Ⅱ. The variations of the pressure angles for the rise and return portions are shown in Figures 7 and 8 for side Ⅰand Ⅱ, respectively. It can be seen that the pressure angles for both sides happen to be identical.CONCLUSIONSAs has been shown above , the application of the theory of envelopes affords a convenient and versatile tool for determining the cylinder-cam profiles with translating conical followers. By means of the analytical cam profile equations, it can be easily extended to accomplish the task for the analysis of the contact line and the pressure angle. Further , the cutter path required in the process of machining is generated for tapered endmill cutters.Since the same fixed coordinate system and symbols are used in this study, one can see that the results for cam profiles and pressure angles are identical to those obtained in previous research1,2. Only one coordinate system is used in this approach. As a result, the process of derivation is simple.Work is currently under way to facilitate the implementation of the tool path for the machining of the cylindrical cam on a numerically controlled milling machine.翻译:圆柱凸轮的设计和加工有人提出了具有平移圆锥传动件的圆柱凸轮的轮廓确定及其机加工的简单方法.在单参数曲面族的包络线理论的基础上,给定从动件运动规律的具有平移圆锥传动件的圆柱凸轮的轮廓的设计是很简单的.通过这种设计方法得到的轮廓曲线可以进行凸轮切线和压力角等几何特征的分析研究.在机加工过程中,可以使用锥形端铣刀,它的尺寸小于等于圆锥传动件的尺寸.很多实例证明该方法的实用性.关键词:圆柱凸轮,包络线,计算机辅助设计和计算机辅助制造.圆柱凸轮是利用其圆周上的沟槽来驱动传动件的空间凸轮.传动件是圆柱或者圆锥形状的,可以做平行移动也可以做摆动.凸轮绕着它的纵向轴线旋转,同时将平移或摆动运动传递给传动件.这种机械原理长期广泛应用在各种设备中,比如,运输机,纺织机,包装机,旋转分度盘等等.为获得三维凸轮的轮廓曲线,曾用过各种方法.DHANDE 和CHAKRABORTY 和 DHANDE 发明了确定平面和立体凸轮轮廓的一种方法.这种方法是在一个前提下使用的,即认为在主动轮和从动件交点处,凸轮的径向矢量和速度矢量二者相互垂直.BROISOV提出了借助计算机辅助计算的方法来解决圆柱凸轮机构设计上的问题.通过这种方法,可以把圆柱凸轮的轮廓考虑成为展开的线性曲面.这样,设计时就只需在实际圆柱上找到凸轮轨迹的中心和轮廓边缘.瞬间螺旋运动理论已经应用到凸轮机构的设计中.GONZALEZ-PALACIOS在统一标准下应用这种理论得到了平面,球面和柱面凸轮机构. GONZALEZ-PALACIOS 和ANGLES 又应用这个理论确定了球面摆动辊子凸轮机构的几何形状.考虑到用与传动件同样尺寸的圆柱刀具加工圆柱凸轮,PAPAIOANNOU 和KIRITSIS 提出了通过解决最优化受限问题来选择刀具步距的程序.在这份研究报告提出了一个新的简单的程序来确定圆柱凸轮的轮廓方程并提供机加工过程中所要求的刀具路径.它是通过应用以参数形式描述的单参数曲面族的包络线理论来完成的.Hanson 和Churchill 引用隐函数形式的单参数平面曲线族包络线理论确定盘形凸轮的轮廓曲线方程。
数控专业毕业设计外文翻译
Conventional Machining ProcessesConventional machining is the group of machining operations that use single- or multi-point tools to remove material in the form of chips. Metal cutting involves removing metal through machining operations. Machining traditionally takes place on lathes, drill presses, and milling machines with the use of various cutting tools. Most machining has very low set-up cost compared with forming, molding, and casting processes. However, machining is much more expensive for high volumes. Machining is necessary where tight tolerances on dimensions and finishes are required.Turning is one of the most common of metal cutting operations. In turning, a workpiece is rotated about its axis as single-point cutting tools are fed into it, shearing away excess material and creating the desired cylindrical surface. Turning can occur on both external and internal surfaces to produce an axially-symmetrical contoured part. Parts ranging from pocket watch components to large diameter marine propeller shafts can be turned on a lathe.Apart from turning, several other operations can also be performed on lathe.Boring and internal turning. Boring and internal turning are performed on the internal surfaces by a boring bar or suitable internal cutting tools. If the initial workpiece is solid, a drilling operation must be performed first. The drilling tool is held in the tailstock, and the latter is then fed against the workpiece. When boring is done in a lathe, the work usually is held in a chuck or on a face plate. Holes may be bored straight, tapered, or to irregular contours. Boring is essentially internal turning while feeding the tool parallel to the rotation axis of the workpiece.Facing is the producing of a flat surface as the result of a tool’s being fed across the end of the rotating workpiece. Unless the work is held on a mandrel, if both ends of the work are to be faced, it must be turned around after the first end is completed and then the facing operation repeated. The cutting speed should be determined from the largest diameter of the surface to be faced.Facing may be done either from the outside inward or from the center outward. In either case, the point of the tool must be set exactly at the height of center of rotation.Because the cutting force tends to push the tool away from the work, it is usually desirable to clamp the carriage to the lathe bed during each facing cut to prevent it from moving slightly and thus producing a surface that is not flat. In the facing of casting or other materials that have a hard surface, the depth of the first cut should be sufficient to penetrate the hard material to avoid excessive tool wear.Parting is the operation by which one section of a workpiece is severed from the remainder by means of cutoff tool. Because cutting tools are quite thin and must have considerable overhang, this process is less accurate and more difficult. The tool should be set exactly at the height of axis of rotation, be kept sharp, have proper clearance angles, and be fed into the workpiece at a proper and uniform feed rate.Threading can be considered as turning since the path to be travelled by the cutting tool is helical. However, there are some major differences between turning and threading. While in turning, the interest is in generating a smooth cylindrical surface, in threading the interest is in cutting a helical thread of a given form and depth which can be calculated from the formulae. There are two basic requirements for thread cutting. An accurately shaped and properly mounted tool is needed because thread cutting is a form-cutting operation. The resulting thread profile is determined by the shape of the tool and its position relative to the workpiece.The second by requirement is that the tool must move longitudinally in a specific relationship to the rotation of workpiece, because this determines the lead of the thread. This requirement is met through the use of the lead screw and the split unit, which provide positive motion of carriage relative to the rotation of spindleLathe bed is foundation of the engine lathe, which heavy, rugged casting is made to support the working parts of the lathe. The size and mass of the bed gives the rigidity necessary for accurate engineering tolerances required in manufacturing. On top of the bed are machined slideways that guide and align the carriage and tailstock, as they are move from one end of the lathe to the other.Headstock is clamped atop the bed at left-hand end of the lathe and contains the motor that drives the spindle whose axis is parallel to the guideways through a series of gears housed within the gearbox. The function of gearbox is to generate a number of different spindle speeds. A spindle gear is mounted on the rear of the spindle to transmit power through the change gears to the feeding box that distributes the power to the lead screw for threading or to the feed rod for turning.The spindle has a through hole extending lengthwise through which bar stocks can be fed if continuous production is used. The hole can hold a plain lathe center by its tapered inner surface and mount a chuck, a face plate or collet by its threaded outer surface.Carriage assembly is actually an H-shaped block that sits across the guideways and in front of lathe bed. The function of the carriage is to carry and move the cuttingtool longitudinally. It can be moved by hand or by power and can be clamped into position with a locking nut. The carriage is composed of the cross slide, compound rest, tool saddle, and apron.The cross slide is mounted on the dovetail guideways on the top of the saddle and it moved back and forth at 90°to the axis of the lathe by the cross slide lead screw. The lead screw can be hand or power activated.The compound rest is mounted on the cross slide and can be swiveled and clamped at any angle in a horizontal plane. The compound is typically used for cutting chamfers or tapers, but must also be used when cutting thread. The compound rest can only be fed by hand. There is no power to compound rest. The cutting tool and tool holder are secured in the tool post which is mounted directly to the compound rest.The tool saddle is an H shaped casting mounted on the top of the guideways and houses the cross slide and compound rest. It makes possible longitudinal, cross and angular feeding of the tool bit.The apron is attached to the front of the carriage and contains the gears and feed clutches which transmit motion from the feed rod or lead screw to carriage and cross slide. When cutting screw threads, power is provided to the gearbox of the apron by the lead screw. In all other turning operations, it is the feed rod that drives the carriage.Tailstock is composed of a low base and the movable part of the tail-stock proper, the transverse adjustments being made with a cross screw furnished with a square head. The two parts are hold together by the holding-down bolts which secure the tailstock to the bed.。
关于数控车床编程外文文献翻译中英文翻译外文翻译
关于数控车床编程外文文献翻译、中英文翻译、外文翻译英文原文On the NC latheCNC machine tool numerical control machine tools (Computer numerical control machine tools) abbreviation, is provided with a program control system of automatic machine tools. The logic control system can deal with the control code or other symbolic instruction specified program, and decoding the digital code, said information carrier, through the numerical control device input. After processing by CNC device control signals, control the machine movements, by drawing the shape and size requirements, will be automatically processed by the parts.Features: CNC machine tool operation and monitoring of all completed inthe numericalcontrol unit, it is the brain of CNC machine tools. Compared with the general machine tools, CNC machine tools has the following characteristics:● the processing object adaptability, adapt to the characteristics of mold products such as a single production, provide the appropriate processing method for die and mould manufacturing; ● high machining accuracy, processing with stable quality; ● can coordinate linkage, processing complex shape parts;● machining parts change, only need to change the program, can save the preparation time of production;● the machine itself high precision, rigidity, can choose the am ount of processing good, high productivity (3~5 times as common machine);The machine is a high degree of automation, reducing labor intensity;● conducive to the production management modernization. The use of CNC machine tools and the standard code of digital information processing, information transmission, the use of computer control method, has laid the foundation for the integration of computer aided design, manufacturing and management;● on the operators of higher quality, higher demands for the repair ofthe technical staff;● high reliability.Composition: CNC machine tools in general by the input medium, man-machine interactive equipment, CNC equipment, feed servo drive system, spindle servo drive system, the auxiliary control device, feedback apparatus and adaptive control device etc.. [4] in NC machining, NC milling processing is the most complex, need to solve most problems. NC programming of NC line in addition to CNC milling, cutting, CNC EDM, CNC lathe, CNC grinding, each with its own characteristics, servo system is the role of the motion signal is convertedinto the machine moving parts from the numerical control device of pulse. Concrete has the following parts: the structure of CNC machine tools.Driver: he is driving parts of CNC machine tools, actuator, including spindle drive unit, feeding unit, spindle motor and feed motor. He through the electric or electro-hydraulic servo system to realize the spindle and feeddrive under the control of numerical control device. When several feed linkage, can complete the positioning, processing line, plane curve and space curve.The main performance (1) the main dimensions. (2) the spindle system. (3) feed system. (4) tool system.(5) electrical. Including the main motor, servo motor specifications and power etc.. (6) cooling system. Including the cooling capacity, cooling pump output. (7) dimensions. Expressed as length * width * height.Development trend of CNC lathe:High speed, precision, complex, intelligent and green is the general trend in the development of CNC machine tool technology, in recent years, made gratifying achievements in practicality and industrialization. Mainly in the:1 machine tool composite technology to further expand with the CNC machine tool technology, composite processing technology matures, including milling - car compound, car millingcompound, car - boring - drill - gear cutting compound, composite grinding, forming, composite processing, precision and efficiency of machining isgreatly improved. \processing factory\the development of compound processing machine tool is the trend of diversified.Intelligent technology 2 CNC machine tools have a new breakthrough, in the performance of NC system has been reflected more. Such as: automaticallyadjust the interference anti-collision function, after the power of workpiece automatically exit safety power-off protection function, machining parts detection and automatic compensation function of learning, high precisionmachining parts intelligent parameter selection function, process automatic elimination of machine vibration functions into the practical stage, intelligent upgrade the function of machine and quality.The 3 robots enable flexible combination of flexible combination of higher efficiency of robot and the host are widely used, make flexible line more flexible, extending the function, flexible line shorten further, more efficient. Robot and machining center, milling composite machine, grinder, gear processing machine tool, tool grinding machine, electric machine, sawing machine, punching machine, laser cutting machine, water cutting machine etc. various forms of flexible unit and flexible production line has already begun the application.4 precision machining technology has the machining precision of CNC metal cutting machine tools from the yarn in the original (0.01mm) up to micronlevel (0.001mm), some varieties has reached about 0.05 μ M. Micro cutting and grinding machining of ultra precision CNC machine tools, precision can reach about 0.05 μ m, shape precision can reach about 0.01 μ M. Special processing precision by using optical, electrical, chemical, energy can reach nanometer level (0.001 μ m). By optimizing the design of machine tool structure, machine tool parts of ultra precision machining and precision assembly, using high precision closed loop control andtemperature, vibration and other dynamic error compensation technology, improve the geometric accuracy of machine tool processing, reduce the shape of error, surface roughness, and into the submicron, nano super finishing tiThe 5 functional component to improve the performance of functional components are at a high speed, high precision, high power and intelligent direction, and obtain the mature application. A full digital AC servo motor and drive device, high technology content of the electric spindle, linear motor, torque motor, linear motion components with high performance, application of high precision spindle unit and other function parts, greatly improving the technical level of CNC machine tools.The feed drive system of CNC lathe: Effect of feed drive system,The feed drive system of CNC machine tools will be received pulse command issued by the numerical control system, and the amplification and conversion machine movements carry the expected movement.Two, the feeding transmission system requirementsIn order to guarantee the machining accuracy of NC machine tool is high,the feed drive system of transmission accuracy, sensitivity high (fast response), stable work, high stiffness and friction and inertia small, service life, and can remove the transmission gap. Category three, feed drive system 1, stepping motor servo system Generally used for NC machine tools. 2, DC servo motor servo systemPower is stable, but because of the brush, the wear resulting in use needto change. Generally used for middle-grade CNC machine tools. 3, AC servomotor servo systemThe application is extremely widespread, mainly used in high-end CNC machine tools. 4, the linear motor servo systemNo intermediate transmission chain, high precision, the feed speed, no length limit; but the poor heat dissipation, protection requirements are particularly high, mainly used for high-speed machine.Driving component four, feed system 1, the ball screw nut pairNC machining, the rotary motion into linear motion, so the use of screwnut transmissionmechanism. NC machine tools are commonly used on the ball screw, as shownin Figure 1-25, it can be a sliding friction into rolling friction, meet the basic requirements of the feed system to reduce friction. The transmissionside of high efficiency, small friction, and can eliminate the gap, no reverse air travel; but the manufacturing cost is high, can not lock, size is not too big, generally used for linear feed in small CNC machine tool. 2, rotary tableIn order to expand the scope of the process of NC machine tools, CNC machine tools in addition to make linear feed along the X, Y, Z three coordinate axes, often also need a circumferential feed movement around Y or Z axis. Circular feed motion of CNC machine tools in general by the rotary table to realize, for machining center, rotary table has become an indispensablepart of. Rotary table of commonly used CNC machine tools in the indexing table and NC rotary table. (1) indexing tableIndexing table can only finish dividing movement, not circular feed, it is in accordance with the instructions in the NC system, when indexing will work together with the workpiece rotation angle. When indexing can also use manual indexing. Provisions of indexing table is generally only rotary angle (such as 90, 60 and 45 degree). (2) NC rotary tableNC rotary table appearance similar to the indexing table, but the internal structure and function is not the same. The main function of the NC rotary table is based on the numerical control device sends command pulse signal, complete circumferential feed movement, various arc processing and surface processing, it can also be graduation work. 3, guideRail is an important part of feed drive system, is one of the basic elements of the structure of machine tool, rigidity, precision and accuracy of NC machine tool which determines to a large extent retention. At present, guide the NC machine tool are sliding rail, rolling guideway and hydrostatic guideway. (1) sliding guideSliding guide rail has the advantages of simple structure, easy manufacture, good stiffness, vibration resistance and high performance, widely used in CNC machine tools, the use of most metal plastic form, known as the plastic guide rail, as shown in figure 1-26.On characteristics of the plastic sliding guide: friction characteristicis good, good wear resistance, stable movement, good manufacturability, low speed. (2) rolling guideRolling guide is placed in the rail surface between the ball, roller or needle roller, roller, the rolling friction instead of sliding surface of the guide rail between wipe.Rolling guide rail and the sliding rail, high sensitivity, small friction coefficient, and the dynamic, static friction coefficient is very small, so the motion is uniform, especially in the low speed movement, the stick-slip phenomenon is not easy to occur; high positioning accuracy,repeatability positioning accuracy is up to 0.2 μ m; traction force is small, wear small, portable in movement; good precision, long service life. But the vibration of rolling guide, high requirements on protection, complicated structure, difficult manufacture, high cost.Automatic tool changer:One, the function of automatic tool changerAutomatic tool changing device can help save the auxiliary time of CNC machine tools, and meet in an installation completed procedure, stepprocessing requirements. Two, on the requirement of automatic tool changerNumerical control machine tool for automatic tool changer requirement is: tool change quickly, time is short, high repetitive positioning accuracy, tool storage capacity is sufficient, small occupation space, stable and reliable work. Three, change the knife form 1, rotary cutter replacementIts structure is similar to the ordinary lathe turret saddle, according to the processing of different objects can be designed into square or six angle form, consists of the NC system sends out the instruction to the rotary cutter.2, the replacement of the spindle head tool changeThe spindle head pre-loaded required tools, in order to machining position, the main motor is switched on, drives the cutter to rotate. The advantage of this method is that eliminates the need for automatic clamping, cutting tool, clamping and cutting tool moving and a series of complex operation, reducetool change time, improve The ATC reliability. 3, the use of changing toolThe processing required tools are respectively arranged in the standard tool, adjust the size of the machine after certain way add to the knife, the exchange device from the knife and the spindle take knife switch.感谢您的阅读,祝您生活愉快。
(数控加工)机械类数控外文翻译外文文献英文文献数控精编
(数控加工)机械类数控外文翻译外文文献英文文献数控NumericalControlOneofthemostfundamentalconceptsintheareaofadvancedmanufactur ingtechnologiesisnumericalcontrol(NC).PriortotheadventofNC,allmachine toolsweremanualoperatedandcontrolled.Amongthemanylimitationsassoc iatedwithmanualcontrolmachinetools,perhapsnoneismoreprominentthan thelimitationofoperatorskills.Withmanualcontrol,thequalityoftheproducti sdirectlyrelatedtoandlimitedtotheskillsoftheoperator.Numericalcontrolrep resentsthefirstmajorstepawayfromhumancontrolofmachinetools.Numericalcontrolmeansthecontrolofmachinetoolsandothermanufact uringsystemsthoughtheuseofprerecorded,writtensymbolicinstructions.Ra therthanoperatingamachinetool,anNCtechnicianwritesaprogramthatissue soperationalinstructionstothemachinetool,Foramachinetooltobenumeric allycontrolled,itmustbeinterfacedwithadeviceforacceptinganddecodingth ep2ogrammedinstructions,knownasareader.Numericalcontrolwasdevelopedtoovercomethelimitationofhumanop erator,andithasdoneso.Numericalcontrolmachinesaremoreaccuratethanm anuallyoperatedmachines,theycanproducepartsmoreuniformly,theyarefas ter,andthelong-runtoolingcostsarelower.ThedevelopmentofNCledtothede velopmentofseveralotherinnovationsinmanufacturingtechnology:1.Electricaldischargemachining.sercutting.3.Electronbeamwelding.Numericalcontrolhasalsomademachinetoolsmoreversatilethantheirmanuallyoperatedpredecessors.AnNCmachinetoolcanautomaticallyproduc eawidevarietyofpar4s,eachinvolvinganassortmentofundertaketheproducti onofproductsthatwouldnothavebeenfeasiblefromaneconomicperspective usingmanuallycontrolledmachinetoolsandprocesses.Likesomanyadvancedtechnologies,NCwasborninthelaboratoriesofthe MassachusettsInstituteofTechnology.TheconceptofNCwasdevelopedinthe early1950swithfundingprovidedbytheU.SAirForce.Initsearlieststages,NCm achineswereabletomakestraightcutsefficientlyandeffectively.However,curvedpathswereaproblembecausethemachinetoolhadtobe programmedtoundertakeaseriesofhorizontalandverticalstepstoproducea curve.Theshorteristhestraightlinesmakingupthestep,thesmootheris4hecu rve.Eachlinesegmentinthestepshadtobecalculated.Thisproblemledtothedevelopmentin1959oftheAutomaticallyProgram medTools(APT)languageforNCthatusesstatementssimilartoEnglishlangua getodefinethepartgeometry,describethecuttingtoolconfiguration,andspe cifythenecessarymotions.ThedevelopmentoftheAPTlanguagewasamajors tepforwardinthefurtherdevelopmentofNCtechnology.TheoriginalNCsyste mwerevastlydifferentfromthoseusedpunchedpaper,whichwaslatertorepla cedbymagneticplastictape.Atapereaderwasusedtointerprettheinstruction swrittenonthetapeforthemachine.Together,all/fthisrepresentedgiantstepf orwardinthecontrolofmachinetools.However,therewereanumberofproble mswithNCatthispointinitsdevelopment.Amajorproblemwasthefragilityofthepunchedpapertapemedium.Itwas commonforthepapercontainingtheprogrammedinstructionstobreakortea rduringamachiningprocess,Thisproblemwasexacerbatedbythefactthateac hsuccessivetimeapartwasproducedonamachinetool,thepapertapecarryin gtheprogrammedinstructionshadtorerunthoughtthereader.Ifitwasnecessa rytoproduce100copiesofagivenpart,itwasalsonecessarytorunthepapertap ethoughtthereader100separatetimes.Fragilepapertapessimplycouldnotwi thstandtherigorsofshopfloorenvironmentandthiskindofrepeateduse.Thisledtothedevelopmentofaspecialmagnetictape.Whereasthepapert apecarriedtheprogrammedinstructionsasaseriesofholespunchedinthetap e,theThismostimportantofthesewasthatitwasdifficultorimpossibletochang etheinstructionsenteredonthetape.Tomakeeventhemostminoradjustment sinaprogramofinstructions,itwasnecessarytointerruptmachiningoperation sandmakeanewtape.Itwasalsostillnecessarytorunthetapethoughtthereade rasmanytimesastherewerepartstobeproduced.Fortunately,computertechn ologybecomearealityandsoonsolvedtheproblemsofNC,associatedwithpun chedpaperandplastictape.Thedevelopmentofaconceptknownasnumericalcontrol(DNC)solvethe paperandplastictapeproblemsassociatedwithnumericalcontrolbysimplyeli minatingtapeasthemediumforcarryingtheprogrammedinstructions.Indire ctnumericalcontrol,machinetoolsaretied,viaadatatransmissionlink,toahost computerandfedtothemachinetoolasneededviathedatatransmissionlinkage.Directnumericalcontrolrepresentedamajorstepforwardoverpunchedta peandplastictape.However,itissubjecttothesamelimitationasalltechnologi esthatdependonahostcomputer.Whenthehostcomputergoesdown,thema chinetoolsalsoexperiencedowntime.Thisproblemledtothedevelopmentofc omputernumericalcontrol.Thedevelopmentofthemicroprocessorallowedforthedevelopmentofpr ogrammablelogiccontrollers(PLC)andmicrocomputers.Thesetwotechnolo giesallowedforthedevelopmentofcomputernumericalcontrol(CNC).WithC NC,eachmachinetoolhasaPLCoramicrocomputerthatservesthesamepurpo se.Thisallowsprogramstobeinputandstoredateachindividualmachinetool. CNCsolvedtheproblemsassociateddowntimeofthehostcomputer,butitintr oducedanotherproblemknownasdatamanagement.Thesameprogrammig htbeloadedontendifferentmicrocomputerswithnocommunicationamongt hem.Thisproblemisintheprocessofbeingsolvedbylocalareanetworksthatco nnectDigitalSignalProcessorsTherearenumeroussituationswhereanalogsignalstobeprocessedinma nyways,likefilteringandspectralanalysis,Designinganaloghardwaretoperfo rmthesefunctionsispossiblebuthasbecomelessandpractical,duetoincrease dperformancerequirements,flexibilityneeds,andtheneedtocutdownondev elopment/testingtime.Itisinotherwordsdifficultpmdesignanaloghardware analysisofsignals.Theactofsamplingansignalintothehatarespecialisedforembeddedsignalprocessingoperations,andsuchaprocessoriscalledaDSP,whichstandsforDi gitalSignalProcessor.TodaytherearehundredsofDSPfamiliesfromasmanym anufacturers,eachonedesignedforaparticularprice/performance/usagegro up.Manyofthelargestmanufacturers,likeTexasInstrumentsandMotorola,off erbothspecialisedDSP’sforcertainfieldslikemotor-controlormodems,and generalhigh-performanceDSP’sthatcanperformbroadrangesofprocessin gtasks.Developmentkitsan`softwarearealsoavailable,andtherearecompani esmakingsoftwaredevelopmenttoolsforDSP’sthatallowstheprogrammer toimplementcomplexprocessingalgorithmsusingsimple“drag‘n’drop ”methodologies.DSP’smoreorlessfallintotwocategoriesdependingontheunderlyingar chitecture-fixed-pointandfloating-point.Thefixed-pointdevicesgenerallyo perateon16-bitwords,whilethefloating-pointdevicesoperateon32-40bitsfl oating-pointwords.Needlesstosay,thefixed-pointdevicesaregenerallychea per.Anotherimportantarchitecturaldifferenceisthatfixed-pointprocessorst endtohaveanaccumulatorarchitec ture,withonlyone“generalpurpose”re gister,makingthemquitetrickytoprogramandmoreimportantly,makingC-c ompilersinherentlyinefficient.Floating-pointDSP’sbehavemorelikecomm ongeneral-purposeCPU’s,withregister-files.TherearethousandsofdifferentDSP’sonthemarket,an ditisdifficulttask findingthemostsuitableDSPforaproject.Thebestwayisprobablytosetupaco nstraintandwishlist,andtrytocomparetheprocessorsfromthebiggestmanufacturersagainstit.The“bigfour”manufacturersofDSPs:TexasInstruments,Motorola,AT &TandAnalogDevices.Digital-to-analogconversionInthecaseofMPEG-Audiodecoding,digitalcompresseddataisfedintoth eDSPwhichperformsthedecoding,thenthedecodedsampleshavetobeconv ertedbackintotheanalogdomain,andtheresultingsignalfedanamplifierorsi milaraudioequipment.Thisdigitaltoanalogconversion(DCA)isperformedby acircuitwiththesamename&DifferentDCA’sprovidedifferentperformance andquality,asmeasuredbyTHD(Totalharmonicdistortion),numberofbits,lin earity,speed,filtercharacteristicsandotherthings.TheTMS320familyDQPofTexasInstrumentsTheTLS320familyconsistsoffixed-point,floating-point,multiprocessor digitalsignalprocessors(D[Ps),andfoxed-pointDSPcontrollers.TMS320DSP haveanarchitecturedesignedspecificallyforreal-timesignalprocessing.The ’F/C240isanumberofthe’C2000DSPplatform,andisoptimizedforcontro la pplications.The’C24xseriesofDSPcontrollerscombinesthisreal-timeproce ssingcapabilitywithcontrollerperipheralstocreateanidealsolutionforcontro lsystemapplications.ThefollowingcharacteristicsmaketheTMS320familyth erightchoiceforawiderangeofprocessingapplications:---Veryflexibleinstructionset---Inherentoperationalflexibility---High-speedperformance---Innovativeparallelarchitecture---CosteffectivenessDeviceswithinagenerationoftheTMS320familyhavethesameCPUstruc turebutdifferenton-chipmemoryandperipheralconfigurations.Spin-offdev icesusenewcombinationsofOn-chipmemoryandperipheralstosatisfyawide rangeofneedsintheworldwideelectronicsmarket.Byintegratingmemoryand peripheralsontoasinglechip,TMS320devicesreducesystemcostsandsavecir cuitboardspace.The16-bit,fixed-point DSPcoreofthe‘C24xdevicesprovidesanalogde signersadigitalsolutionthatdoesnotsacrificetheprecisionandperformance oftheirsystemperformancecanbeenhancedthroughtheuseofadvancedcont rolalgorithmsfortechniquessuchasadaptivecontrol,Kalmanfiltering,andsta tecontrol.The‘C24xDSPcontrollerofferreliabilityandprogrammability.Anal ogcontrolsystems,ontheotherhand,arehardwiredsolutionsandcanexperien ceperformancedegradationduetoaging,componenttolerance,anddrift.Thehigh-speedcentralprocessingunit(CPU)allowsthedigitaldesignert oprocessalgorithmsinrealtimeratherthanapproximateresultswithlook-upt ables.TheinstructionsetoftheseDSPcontrollers,whichincorporatesbothsign alprocessinginstructionsandgeneral-purposecontrolfunctions,coupledwit htheextensivedevelopmenttimeandprovidesthesameeaseofuseastradition al8-and16-bitmicrocontrollers.Theinstructionsetalsoallowsyoutoretainyoursoftwareinvestmentwhenmovingfromothergeneral-purpose‘C2xxgen eration,sourcecodecompatiblewiththe’C2xgeneration,andupwardlysour cecodecompatiblewiththe‘C5xgenerationofDSPsfro mTexasInstruments.The‘C24xarchitectureisalsowell-suitedforprocessingcontrolsignals.I tusesa16-bitwordlengthalongwith32-bitregistersforstoringintermediatere sults,andhastwohardwareshiftersavailabletoscalenumbersindependentlyo ftheCPU.Thiscombinationminimizesquantizationandtruncationerrors,andi ncreasesp2ocessingpowerforadditionalfunctions.Suchfunctionsmightincl udeanotchfilterthatcouldcancelmechanicalresonancesinasystemoranesti mationtechniquethatcouldeliminatestatesensorsinasystem.The‘C24xDSPcontrollerstakeadva ntageofansetofperipheralfunction sthatallowTexasInstrumentstoquicklyconfigurevariousseriesmembersfordi fferentprice/performancepointsorforapplicationoptimization.Thislibraryofbothdigitalandmixed-signalperipheralsincludes:---Timers---Serialcommunicationsports(SCI,SPI)---Analog-to-digitalconverters(ADC)---Eventmanager---Systemprotection,suchaslow-voltageandwatchdogtimerTheDSPcontrollerperipherallibraryiscontinuallygrowingandchanging tosuittheoftomorrow’sembeddedcontrolmarketplace.TheTMS320F/C240isthefirs tstandarddeviceintroducedinthe‘24xseriesofDSPcontrollers.Itsetsthestandardforasingle-chipdigitalmotorcontrolle r.The‘240canexecute20MIPS.Almostallinstructionsareexecutedinasimple cycleof50ns.Thishighperformanceallowsreal-timeexecutionofverycomple 8controlalgorithms,suchasadaptivecontrolandKalmanfilters.Veryhighsam plingratescanalsobeusedtominimizeloopdelays.The‘240hasthearchitecturalfeaturesnecessaryforhigh-speedsignalp rocessinganddigitalcontrolfunctions,andithastheperipheralsneededtopro videasingle-chipsolutio nformotorcontrolapplications.The‘240ismanufac turedusingsubmicronCMOStechnology,achievingalogpowerdissipationrat ing.Alsoincludedareseveralpower-downmodesforfurtherpowersavings.So meapplicationsthatbenefitfromtheadvancedprocessingpowerofthe‘240i nclude:---Industrialmotordrives---Powerinvertersandcontrollers---Automotivesystems,suchaselectronicpowersteering,antilockbrake s,andclimatecontrol---ApplianceandHVACblower/compressormotorcontrols---Printers,copiers,andotherofficeproducts---Tapedrives,magneticopticaldrives,andothermassstorageproducts ---RoboticandCNCmillingmachinesTofunctionasasystemmanager,aDSPmusthaverobuston-chipI/Oando therperipherals.Theeventmanagerofthe‘240isunlikeanyotheravailableonaDSP.Thisapplication-optimizedperipheralunit,coupledwiththehighperfor manceDSPcore,enablestheuseofadvancedcontroltechniquesforhigh-preci sionandhigh-efficiencyfullvariable-speedcontrolofallmotortypes.Includei ntheeventmanagerarespecialpulse-widthmodulation(PWM)generationfu nctions,suchasaprogrammabledead-bandfunctionandaspacevectorPWMs tatemachinefor3-phasemotorsthatprovidesstate-of-the-artmaximumeffic iencyintheswitchingofpowertransistors.Thereindependentupdowntimers,eachwithit’sowncompareregister, supportthegenerationofasymmetric(noncentered)aswellassymmetric(cen tered)PWMwaveforms.Open-LoopandClosed-LoopControlOpen-loopControlSystemsThewordautomaticimpliesthatthereisacertainamountofsophisticatio ninthecontrolsystem.Byautomatic,itgenerallymeansThatthesystemisusuall ycapableofadaptingtoavarietyofoperatingconditionsandisabletorespondt oaclassofinputssatisfactorily.However,notanytypeofcontrolsystemhasthea ually,theautomaticfeatureisachievedbyfeed.gthefeedbackstructure,itiscalledanopen-loopsystem,whichisthesimp lestandmosteconomicaltypeofcontrolsystem.inaccuracyliesinthefactthato nemaynotknowtheexactcharacteristicsofthefurther,whichhasadefinitebea ringontheindoortemperature.Thisalcopointstoanimportantdisadvantageo ftheperformanceofanopen-loopcontrolsystem,inthatthesystemisnotcapableofadaptingtovariationsinenvironmentalconitionsortoexternaldisturban ces.Inthecaseofthefurnacecontrol,perhapsanexperiencedpersoncanprovi decontrolforacertaindesiredtemperatureinthehouse;butidthedoorsorwin dowsareopenedorclosedintermittentlyduringtheoperatingperiod,thefinal temperatureinsidethehousewillnotbeaccuratelyregulatedbytheopen-loop control.Anelectricwashingmachineisanothertypicalexampleofanopen-loops ystem,becausetheamountofwashtimeisentirelydeterminedbythejudgmen tandestimationofthehumanoperator.Atrueautomaticelectricwashingmach ineshouldhavethemeansofcheckingthecleanlinessoftheclothescontinuous lyandturnitsedtoffwhenthedesireddegisedofcleanlinessisreached.Closed-LoopControlSystemsWhatismissingintheopen-loopcontrolsystemformoreaccurateandmo readaptablecontrolisalinkorfeedbackfromtheoutputtotheinputofthesyste m.Inordertoobtainmoreaccuratebontrol,thecontrolledsignalc(t)mustbefe dbackandcomparedwiththereferenceinput,andanactuatingsignalproporti onaltothedifferenceoftheoutputandtheinputmustbesentthroughthesyste mtocorrecttheerror.Asystemwithoneormorefeedbackpat(slikethatjustdesc ribediscalledaclosed-loopsystem.humanbeingareprobablythemostcompl exandsophisticatedfeedbackcontrolsysteminexistence.Ahumanbeingmay beconsideredtobeacontrolsystemwithmanyinputsandoutputs,capableofc arryingouthighlycomplexoperations.Toillustratethehumanbeingasafeedbackcontrolsystem,letusconsidert hattheobjectiveistoreachforanobjectonaperformthetask.Theeyesserveasa sensingdevicewhichfeedsbackcontinuouslythepositionofthehand.Thedist ancebetweenthehandandtheobjectistheerror,whichiseventuallybroughtto zeroasthehandreachertheobject.Thisisatypicalexampleofclosed-loopcontr ol.However,ifoneistoldtoreachfortheobjectandthenisblindolded,onecano nlyreachtowardtheobjectbyestimatingitsexactposition.ItisAsantherillustra tiveexampleofaclosed-loopcontrolsystem,showstheblockdiagramoftheru ddercontrolsystemofThebasicalementsandtheblocadiagramofaclosed-loo pcontrolsystemareshowninfig.Ingeneral,theconfigurationofafeedbackcon trolsystemmaynotbeconstrainedtothatoffig&.Incomplexsystemstheremay bemultitudeoffeedbackloopsandelementblocks.数控在先进制造技术领域最根本的观念之壹是数控(NC)。
机械类关于凸轮的中英文翻译
英文原文CamsV arious motions can be produced by the action of a cam against a follower.Mamy timing devices are operated by can action.The purpose of andy cam is to produce a displacement of its follower;a secondary follower is often .used to produce additional displacement in another location.The most popular type is the plate cam.The cylindrical type is used to transmit linear motion to a follower as the cam rotates.Three-dimensional cam are sometimes used;these provide some unusual follower motions,but also make follower design difficult.The camshaft in the automotive engine illustrates a simple but important application of a late cam.The cam assemblies in automatic record players illustrate a somewhat more complex application.Cam profiles are accurately constructed by either praphical or mathematical methods.The transitiom from development drawings to working (shop) drawing can be made in several ways:1.Make a full-scale template.This is desirable from the manufacturing standpoint,but it will not guarantee accurate cam profiles.e radial dimensions.This is fairly accurate,but sometimes produces layout problems in the shop.e coordinate dimensioning.This procedure will ensure accuracy.In selecring one of these methods,one should consider the function of the cam in terms of desired preciseness.Because the cam work outline already determined, therefore the cam structural design mainly was determines the curve outline axial thickness and the cam and the drive shaft connection way. When the work load compares the hour, curve outline axial thickness generally takes for the outline curve biggest radius of vector 1,/10 ~/5; Regarding a stress bigger important situation, must with carry on the design according to the cam contour surface from the contact intensity.When determination cam and drive shaft joint way, should synthesize theconsideration cam the assembling and dismantling, the adjustment and firmly grades the question. Regarding implementing agency more equipment, between its each execution component movement coordination usually determined by the cycle of motion chart, therefore in assembly cam gear time, the cam contour curve initial station (pushes regulation starts) the relative position to have according to the cycle of motion chart to carry on the adjustment, guarantees each execution component to be able according to the pre-set sequence synchronized action. Therefore, requests the cam in the structural design to be able to be opposite to the drive shaft carries on the rotation along the circumference direction, and reliably performs fixedly. The simplest method uses the clamping screw nail fixed cam, or with clamping screw nail pre- fixed, after treats adjusts uses the pin to be fixed again.From structural design: from structure: When design must consider from the guidance and prevented revolves. From movement rule design: Involves many aspects from the movement rule design the questions, besides consideration rigidity impact and flexible impact, but also should maximum speed vmax which has to each kind of movement rule, maximum acceleration amax and its the influence performs the comparison. 1) vmax bigger, then momentum mv is bigger. If from is suddenly prevented, the oversized momentum can cause the enormous impulse, endangers the equipment and the personal safety. Therefore, when is bigger from the quality, in order to reduce the momentum, should choose the vmax value smaller movement rule.2) amax bigger, is bigger. Function in high vice- contact place stress bigger, the organization intensity and the wear resistant request is also higher. Regarding high speed cam, in order to reduce the harm, should choose the amax value smaller movement rule. First states several kind of movements rules vmax, amax, the impact characteristic and the suitable situation following table regarding swings from the cam gear, its movement graph x-coordinate expression cam corner, y-coordinate then separately expresses from, angular speed and angle acceleration. This kind of movement graph has the state of motion and above is same.From structural design: from structure: When design must consider from the guidance and prevented revolves. From movement rule design: The cam gear design basic question 1. cam gears type choice, the definite cam shape, with from maintainsthe high vice- contact from the shape and the movement form and the cam the way 2. from the movement rule design, according to the application situation to from the travelling schedule and the state of motion request, determines from the movement rule. 3. cam gears basic parameter design, determines from the travelling schedule, various movements angle, the cam radius, , the roller radius, the center distance, from the length and so on. 4. cam contours curve design. 5. cam gears bearing capacity computation. 6. cam gears structural design, plan organization assembly drawing and various components shop drawingFromstructural design: from structure: When design must consider from the guidance and prevented revolves. From movement rule design: The cam gear design basic question 1. cam gears type choice, the definite cam shape, with from maintains the high vice- contact from the shape and the movement form and the cam the way 2. from the movement rule design, according to the application situation to fromthe travelling schedule and the movement 1, the cam gear application cam gear is includes the cam the high vice- organization, the cam gear has the structure to be simple, may accurately realize request merit and so on movement rule, thus obtains the widespread application in the industrial production, specially automatic device and in the automatic control device, obtains the widespread application. 2nd, the cam gear classification according to two moves the relative motion characteristic classification between the component (1) the plane cam gear 1) the disk cam; 2) translation cam. (2) space cam gear according to from movement vice- element shape classification (1) apex from; (2) roller from (3) flat base from. Note: Classifies this part of content when the introduction cam gear, should point out each kind of cam gear the good and bad points and its the adaption situation, showed each kind of cam gear the inner link, will build the foundation for the later translation cam and the column cam contour design.3rd, the throwout lever movement rule (1) the cam gear cycle of motion and the basic term terminology push the regulation movement angle: With from pushes the cam corner which the regulation corresponds; Far stops the angle: With from far rests the cam corner which the regulation corresponds; Return trip movement angle: With cam corner which corresponds from the return trip; Nearly stops the angle: With fromnearly rests the cam corner which the regulation corresponds; Cam: Take the cam axle center as the center of a circle, take its outline slightly to diameter r0 as the radius circle; From ravelling schedule: In pushes in the regulation or the return trip from the biggest displacement, indicated with h;: The cam center of rotation with from guides way the bias distance, indicated with e.Types of CamsPlate cams are simple to fabricate.The follower can be moved in various patterns with various rise /fall ratios.Motion should be controlled to avoid abrupt changes in force transmitted from the cam to the follower.One should carefully determine horizontal force components,since these present problems designing the follower assembly guide.Critical reactions occur at points A and B.These reaction values must be computed.The relative vertical position of point A with respect to B needs to be raised if the reaction value at Bis excessive.The position of B should be as close to cam as possible to minimize flexure in the roller-follower support.This type produces reciprocating motion in the follower.Again,dorces need to be determined and dimensions chosen so as to avoid excessive component sizes.A tapered roller follower is frequently employed ;the groove in the periphery of the cam should be shaped to accommodate the follower.This type of cam is expensive to produce.The cylindrical cam has two outstanding features.One is the fact that the cam is positive actiong.N outside forces (such as gravity or spring action ) are needed to hold the follower against the working surface of the cam.The second feature is the fact that the follower can move through a complete cycle in the course of several revolutions of the cam.For example,it is possible to design the cam so the follower could move from a starting position at the left end to the extreme right position in three revolutions( or more),then the starting position in two revolutions.Other variations are possible.A translation cam is illustrated.In the figure shown the cam reciprocates horizontally and the follower moves up and down.A pivoted follower can be used with this type .The translation cam can be made positive by providing a guided plate with an inclined slot for the cam;the slot cam then engage a pin or roller on a guided vertical reciprocated follower.With the latter type ,however,a complete force analysisis a critical phase of the design.In this type,the cam rotates and the follower (ususlly a roller or pin) is guided by a groove cut into the end face of a cylindrical section .Rotation of the cam provides translation of the follower.This type is also positive acting.Production costs for this type of cam are much higher than for a simple plate cam.A constant –diameter cam is illustrated .This is merely a circular plate with the camshaft hole eccentrically located.The amount of eccentricity determines the amount of follower displacement.As the cam rotates,the follower reciprocates.This arrangement is sometimes known as a Scotch yoke mechanism.Follower action is positive ;harmonic motion is produced by this type of arrangement.Types of FollowersIn neneral,the follower is considered to be the part that comes in contact with the cam profile .However,when a seconday follower is used, the motion of the secondary follower is dictated by that of the primary follower.For example ,a roller follower can be reciprocated by acting against the edge of a pivoted follower.The simplest type of follower is the reciprocationg type that merely moves up and down (or in and out ) with the rotation of the cam;the centerline can be either collinear with the cam centerline or offset from it .Contact with the cam can be via a point,a knife edge,a suface ,or a roller.A flat-afced reciprocating follower is shown If a point or surface is employed for contact the high normal force can result in abrasion and excessive wear.If the load being transmitted from the cam to the follower is small,the problem is not serious.For example ,the operation of a small snap-action switch does not produce cam surface wear.Miniature snap-action electrical switches have actuators with various configurations;some of these are in the form of rounded points or thin meta sections.Miniature three-way valves in air circuits have similar actuators.If cams are used to operate mechanical components directly,a roller is much more effective.Cam rollers are commercially available in roller sizes ranging from1/2 in .to 6 in Basic dynamic capacities range from 620 to 60000 ,based on 33.33 rpm and 500hr of minimum life .Correction factors must be used for any other speed or life values.It should be noted that the cam can be lubricated through and oil hole in the end of theshank.Rolling contact with the cam surface minimizes wear problems.Several mounting arrangements are possible with this type of followr .shows the roller follower mounted on a pivoted arm .A pivoted flat-faced follower is shown .As with any flat-faced follower,friction between the follower face and the cam profile must be controlled.Proper lubrication can reduce the effects of friction.汉语翻译:凸轮通过凸轮和从动件的作用,可得到不同的运动。
毕业论文外文翻译-数控技术
数控技术数控技术是一种利用程序实现自动控制的技术,加工制造设备采用数控技术后能由数字、字符和符号等进行控制。
这些数字、字符和符号等北边麻城按一定格式定义的指令程序,用于特定的加工或工作。
这种指令可采用两种二进制编码的数字系统中的任意一种进行定义,这两种二进制编码的数字系统分别为电工协会代码和美国标准信息交换代码。
一般来说,ASCII编码的机床控制系统不能接受EIA编码的指令,反之亦然。
当然,这样的问题已经逐渐得到解决。
数控加工制造目前已经广泛地应用于几乎所有的金属加工机床;车床,铣床,钻床,镗床,磨床,回转冲床,电火花或线切割机床以及焊接机床,甚至弯管机也可采用数控加工技术。
数控技术的基本组成一个数控系统主要由以下3个部分组成:(1)程序指令(2)加工控制单元(3)制造装备程序指令由一条一条的详细指令组成,制造装备按要求执行这些指令。
最常用的指令形式可以按要求使机床刀具主轴位于工作台上的具体位置,工作台是用于固定加工零件的。
许多更高级的指令还包括主轴速度选择,道具选择及其他的一些功能。
加工控制单元包括一些用于阅读和解释程序指令并将其转换为机床刀具或其他制造装备的机械动作的电子和控制硬件。
制造装备是一种进行金属加工的数控技术装备,在常用的数控技术领域中,制造装备用于进行机械制造。
制造装备包括工作台、主轴、电机及控制驱动单元。
数控技术的类型数控技术系统主要有两种类型:点对点数控系统和轮廓线数控系统。
点对点数控系统也称为位置数控系统,比轮廓线数控系统简单,其主要的原理是移动刀具或工件从一个程序控制点到另一个程序控制点,通常像钻床这样的加工功能,每个点都可以通过NC程序中的指令进行控制。
点对点数控系统适用于钻孔,沉孔加工、沉孔镗孔、铰孔和攻螺纹等。
其他冲孔机床、电焊机和装配机床等也都采用点对点数控系统。
轮廓线数控系统也称为轮廓线路径数控系统,定位和切割操作都是以不同的速度沿着控制的路径进行的。
由于刀具沿路径进行切削,因此刀具的运动和速度的精确控制盒同步性能是非常重要的。
机械类数控外文翻译外文文献英文文献数控
机械类数控外文翻译外文文献英文文献数控IntroductionIn recent years, with the rapid development of science and technology, the traditional manufacturing industry has been facing tremendous challenges. In this context, computerized numerical control (CNC) technology has emerged as a revolutionary methodology that greatly improves the efficiency and accuracy of manufacturing processes. Specifically, CNC technology is a type of automated control system that uses a set of computer instructions to direct the movement and operation of machinery in the manufacturing process. In this regard, this paper will provide a comprehensive overview of CNC technology, including its history, applications, advantages, and challenges.History of CNC TechnologyCNC technology has a history that can be traced back to the 1940s. At that time, the aviation industry in the United States was seeking a way to improve the efficiency and accuracy of manufacturing. Therefore, the US Air Force and the Massachusetts Institute of Technology (MIT) cooperated to develop a system that automatically controlled the movement ofaircraft components during the manufacturing process. This system was called the numerical control (NC) system.In the mid-1950s, John Parsons, a researcher at the Massachusetts Institute of Technology, invented the first NC machine tool. The machine used punched tape to control the movement of the cutting tool. During the 1960s, digital computer technology became more advanced, which paved the way for the development of CNC machines. By 1970, CNC machines had become a mature and widely used technology in the manufacturing industry.Applications of CNC TechnologyCNC technology has a wide range of applications in the manufacturing industry. For example, CNC machines can be used to produce a variety of products, including automobile parts, aircraft components, medical equipment, and consumer goods. CNC technology is also used in many other industries, such as woodworking, metalworking, plastics, and textiles.CNC technology has revolutionized the manufacturing industry by improving the quality, precision, and consistency of products. In addition, CNC machines can work faster and often require less manual labor than traditional manufacturing methods. CNC technology also allows manufacturers to produce complex shapes and designs that would be difficult or impossible to produce using traditional manufacturing methods.Advantages of CNC TechnologyThere are several advantages of using CNC technology in manufacturing. First, CNC machines can produce parts with very high precision and accuracy, which is crucial in industries such as aerospace and medical equipment manufacturing. CNC machines can also work 24/7, which means that manufacturers can produce parts at any time of day or night without having to worry about workers becoming tired.Second, CNC machines are highly flexible and can be programmed to produce a wide range of products. This means that manufacturers can quickly switch between different products without having to buy new machines or invest in expensive retooling. This flexibility also allows manufacturers to respond quickly to changes in market demand.Third, CNC machines can greatly reduce the amount of waste generated during the manufacturing process. This is because CNC machines can accurately measure and cut materials, minimizing the amount of scrap that is created. In addition, CNC machines can be programmed to optimize the use of materials, further reducing waste.Challenges of CNC TechnologyDespite its many advantages, CNC technology also presents several challenges. First, CNC machines can be expensive to purchase and maintain, which can be a barrier for smallmanufacturers. In addition, CNC machines require skilled operators who can program and operate the machines. This means that manufacturers must invest in training their workers, which can also be costly.Second, CNC machines can sometimes be less efficient than traditional manufacturing methods for small production runs. This is because CNC machines require a certain amount of time to set up and program, which can be inefficient for small production runs. In addition, CNC machines require a certain amount of precision, which means that they may not be suitable for certain types of products, such as handmade crafts.Finally, CNC machines also present some ethical challenges. For example, some argue that CNC machines could lead to job loss in the manufacturing industry, as the machines can perform tasks that were previously done by workers. In addition, CNC machines could lead to a reduction in the quality of products, as manufacturers may be more focused on speed and efficiency rather than quality.ConclusionCNC technology has revolutionized the manufacturing industry by improving the quality, precision, and consistency of products. CNC machines are highly flexible and can be programmed to produce a wide range of products. In addition, CNC machines can greatly reduce the amount of waste generated during the manufacturing process. However, CNC technology alsopresents several challenges, including high cost, the need for skilled operators, efficiency issues for small production runs, and ethical concerns. Overall, CNC technology is a powerful tool for manufacturers, but it is important for manufacturers to carefully consider the costs and benefits of using this technology.。
UG在圆柱凸轮加工中的应用
UG在圆柱凸轮加工中的应用####(**** ****)【摘要】以现有实际零件为例介绍了基于UG的圆柱凸轮建模方法,并运用UG/CAM模块对圆柱凸轮的加工程序编制作了详细的阐述,为此类需要三轴以上的零件的加工提供了参考依据。
关键词:UG;圆柱凸轮;数控加工【Abstract】The article takes cylindrical cam with rectilinear translating follower as an example tointroduce the method of the cylindrical cam parametric modelling based on UG,through motion simulation to analyze and verify the results of modelling,and use UG/CAM module for the tool path of cylindrical cam machining to simulate,which provides a reference for the design and nemercial control machining of the spatialcam mechanism.Key words:UG;Cylindrical cam;NC machining一、引言在常见机构中,经常会应用圆柱凸轮来实现某种工艺动作,圆柱凸轮因其具有体积小、结构紧凑、传递扭矩大和转速高等优点,使其在包装农业机械、纺织、轻工、食品及制药等自动化机械中得到广泛应用。
圆柱凸轮的轮廓曲线位于圆柱面上并绕其轴线旋转,据此,可利用UG 的造型命令来完成圆柱凸轮的建模,利用加工模块完成加工刀路的生成并最终生成加工程序。
Unigraphics( 简称UG) 是一种通用的、功能强大的CAD/CAE/CAM一体化机械工程计算机软件。
数控技术 外文翻译 外文文献 英文文献 数控技术的发展与维修
Development and maintenance of CNC technology Numerical control technology and equipment is the development of new high-tech industry and cutting-edge enabling technology, industry and the most basic equipment. The world information industry, biological industry, aviation, aerospace and other defense industry widely used numerical techniques to improve manufacturing capacity and level, to improve the adaptability of the market and competitiveness. Industrial countries and CNC numerical control technology and equipment will also be listed as countries of strategic materials, not only to develop their own numerical control technology and industry, and in "sophisticated" technology and equipment, numerical control key aspects of the policy of closures and restrictions. Therefore, efforts to develop advanced numerical control technology as the core manufacturing technology has become the world's developed countries to accelerate economic development, enhance the comprehensive national strength and an important way to statehood.Part I: the development of CNC machine tools trends in individual1. High speed, high accuracy, high reliabilityHigh speed: To improve the speed and increase feed spindle speed.High precision: the precision from micron to sub-micron level, and even the nano-level (high reliability: the reliability of numerical control system generally higher than the reliability of numerical control equipment more than an order of magnitude, but not the higher the better reliability because the goods by the cost performance constraints.2. CompositeComposite function CNC machine tool development, its core is in a single machine to complete the turning, milling, drilling, tapping, reaming and reaming and other operating procedures, thereby increasing the efficiency and precision machine tools to improve production flexibility.3. IntelligentIntelligent content included in all aspects of the numerical control system: the pursuit of processing efficiency and processing quality of intelligence; to improve the performance and the use of convenient connections and other aspects of intelligence; simplify programming, simplifying operational intelligence; also like the intelligent automatic programming, intelligent man-machine interface, as well as intelligent diagnostics, intelligent monitoring and other aspects, to facilitate system diagnostics and maintenance.4. Flexible, integratedThe world of CNC machine tools to the development trend of flexible automation systems are: from the point (CNC single, composite machining centers and CNC machine tools), line (FMC, FMS, FTL, FML) to the surface (Section workshop independent manufacturing island FA) , body (CIMS, distributed network integrated manufacturing system) direction, the other to focus on applied and economic direction. Flexible automation technology is the industry to adapt to dynamic market demands and quickly update the primary means of product is the main trend of national manufacturing industry is the basis for the field of advanced manufacturing technology.Second, personalization is the adaptability of the market trendsToday's market, gradually formed the pattern of international cooperation, the products becoming more competitive, efficient and accurate processing of the escalating demand means, the user's individual requirements become increasingly strong, professional, specialization, more and more high-tech machine tools by the users of all ages.Third, the open architecture trend isThe core of a new generation of CNC system development is open. Open software platform and hardware platforms are open systems, modular, hierarchical structure, and through out the form to provide a unified application interface.CNC system to address the closure of the traditional CNC applications and industrial production problems. At present, many countries of open CNC system, CNC system has become an open numerical control system of the future of the road. The open numerical control system architecture specification, communication specifications, configuration specifications, operating platform, function libraries and CNC numerical control system software development tools, system function is the core of the current study. Network numerical control equipment is nearly two years of a new focus. NC network equipment will greatly satisfy the production lines, manufacturing systems, manufacturing information integration needs of enterprises, but also achieve new manufacturing model, such as agile manufacturing, virtual enterprises, global manufacturing the base unit. Some well-known at home and abroad, and CNC CNC machine tools manufacturing company inPart II: Machine MaintenanceCNC machine tools is electronic technology, measurement technology, automation technology, semiconductor technology, computer technology and electrical technology, and integrated set of automation equipment, high precision, high efficiency and high flexibility. CNC machine tools is a process control equipment and asked him in real-time control of the accuracy of every moment of work, any part of the fault and failure, so that the machine will shut down, resulting in production stoppages, which seriously affected and restricted the production efficiency . CNC machine tools in many industries to work the device is critical, if not after a failure in its maintenance and troubleshooting time, it will cause greater economic losses. Therefore, the principle that complex numerical control system, structure, maintenance of sophisticated equipment is necessary. CNC machine tools to enhance fault diagnosis and maintenance of power, can improve the reliability of CNC machine tools, CNC machine tools is conducive to the promotion and use.CNC machine tools is a mechanical, electrical, hydraulic, gas combination of complex equipment, though the reasons for failure vary, but the failure occurred, the general idea of the steps are the same. Fails,Spindle start below to stop immediately after the fault diagnosis of CNC machine tools as an example the general process.First, the fault-site investigation. The survey content includes 1, 2 types of failure, the failure frequency of 3, 4, external conditions, the operating conditions 5, 6, machine conditions, the functioning of 7, wiring between machine tools and systems 8, CNC equipment visual inspection. After an investigation, such failure is spindle class failure, only once, outside of all normal, the operator of a boot to reflect this situation.Second, the fault information collation, analysis. For some simple fault, because not alot of time, the method can be used form of logical reasoning, analysis, identification and troubleshooting. After a failed on-site investigation for several reasons we suspect that the system output pulse ①②drive is not enough time to move the state line to control the spindle components ③④damage to the spindle motor short-circuit, causing the spindle thermal relay protection ⑤ not with self-control loop lock circuits, and the parameter is set to pulse signal output, so that the spindle can not operate normally. Identify possible reasons to rule out one by one.Third, conduct fault diagnosis and troubleshooting.Diagnosis usually follows the following principles: 1, after the first outside inside. Reliable line of modern CNC system increasingly high failure rate of CNC system itself less and less, and most are non-occurrence of failure causes the system itself. The CNC machine is a mechanical, hydraulic, electrical as one of the tools, the occurrence of the fault will be reflected by these three comprehensive, maintenance personnel should be from outside to inside one by one investigation to avoid arbitrary unsealed, demolition, otherwise expand the malfunction, so that the loss of precision machine tools, slow performance, outside the system detected the fault is due to open one by one, hydraulic components, pneumatic components, electrical actuators, mechanical devices caused problems. 2, the first after the electrical machinery. In general, the mechanical failure easier to find, and numerical control system and electrical fault diagnosis more difficult, before the troubleshooting to rule out mechanical failure of the first 3, after the first static dynamic. Power off the machine first, quiescent state, through understanding, observation, testing, analysis, confirm the power failure will not result in expansion of the incident only after the power to the machine, run the state, the dynamic of observation, inspection and testing, to find fault. While after the devastating power failure, you must first rule out the danger, before electricity. 4, after the first simple and complex. When multiple failures are intertwined, and sometimes impossible to start with, we should first solve the problem easily, then solve the difficult problem, often a simple problem to solve, the difficulty of the problem may also become easier.CNC machine tools in the fault detection process, should make full use of numerical control system self-diagnostic features to be judged, but also flexibility in the use of some common troubleshooting methods. Troubleshooting common methods are:1. Routine examination methodRoutine examination method is mainly of hands, eyes, ears, nose and other organs of the fault occurrence of various light, sound, smell and abnormal observations and careful look at every system, follow the "first post outside of" the principle of fault diagnosis by looking, listening, smelling, asking, mold and so on, from outside to inside one by one check, the fault can often be narrowed down to a module or a printed circuit board. This requires maintenance personnel have a wealth of practical experience, to the wider multidisciplinary and comprehensive knowledge of the ability to judge.2. Self-diagnostic function methodModern CNC system has yet to achieve a high degree of intelligence. But already has a strong self-diagnostic function. CNC ready to monitor the hardware and software is working. Once the abnormal, immediately displayed on the CRT alarm or fault LEDs indicate the approximate cause. Using self-diagnosis function, but also shows the interface signals between the system and the host state, in order to determine the fault occurred in themechanical part or parts of NC system, and indicate the approximate fault location. This method is currently the most effective maintenance methods.3. Functional program testing methodSo-called functional program testing method is commonly used in the numerical control system functions and special features, such as linear positioning, circular interpolation, helical cut, fixed cycle, such as the user macro programming by hand or automatic programming methods, the preparation of test procedures into a functional program , into the numerical control system, and then start the CNC system to make it run, to check the im time the first boot of CNC whether a programming error or operational error or machine4. Spare parts substitutionSpare parts replacement method is a simple method to determine the scene is one of the most commonly used. The so-called spare substitution is generally the cause of failure in the analysis of the case, maintenance personnel can use the alternate PCB, templates, integrated circuit chip or replace the questionable parts of components, which narrowed the fault to a printed circuit board or chip level. It is actually in the verification analysis is correct. However, before switching the standby board should carefully check the spare board is intact, and should check the status of reserve board should be fully consistent with the original board the state. This includes checking with the board selection switch, set the location and the short rod potentiometer position. In short, we must strictly in accordance with the system's operation, maintenance requirements manual operation.In determining the replacement of a part to, should carefully check the relevant connected to electrical lines and other related, confirming that no failure up to the new replacement to prevent failures caused by external damage to replace the parts up.5. Transfer ActThe so-called transfer method is to have the same numerical control system features two printed circuit boards, templates, integrated circuit chips or components to exchange, observed failure phenomena be transferred. In this way, the system can quickly determine the fault position. This method is actually a kind of spare parts substitution. Therefore, the considerations described in the same spare parts substitution.6. Parameter check methodKnown parameters can directly affect the numerical performance of CNC machine tools. Parameters are usually stored in the magnetic bubble memory, or stored in batteries to be maintained by the CMOS RAM, once the battery is low or because of outside interference and other factors, some parameters will be lost or change in chaos, so that the machine does not work. At this point, through the proofreading, correction parameters, will be able to troubleshoot. When the machine idle for a long time to work again for no reason that there is no normal or failure without warning, it should be based on fault characteristics, inspection and proof-reading the relevant parameters.After a long run of CNC machine tools, wear and tear due to its mechanical drive components, electrical component performance changes and other reasons, also need to adjust the parameters of its. Some machine tool failure is often not timely because the parameters change due to some not meet. Of course, these failures are the fault of the areas are soft.7. Measurement of Comparative LawCNC system in the design of printed circuit board manufacturing plant, in order to adjust, repair facilities, in the printed circuit board designed a number of test terminals. Users can also use normal printed circuit board terminals comparing the measured and the difference between the printed circuit board failure. These terminals can detect the voltage and waveform measurements, analyze the causes of failure and failure location. Even on a normal printed circuit board can sometimes artificially create "fault", such as broken connection or short circuit, unplug the components, in order to determine the real cause of failure. Therefore, maintenance personnel should be in the usual accumulation of key parts of the printed circuit board or failure-prone parts of the right in the normal waveform and voltage values. Because the CNC system manufacturer often does not provide the information in this regard.8. Percussion methodWhen the CNC system failures showed Ruoyouruowu, often used method for detecting the fault struck the site lies. This is because the numerical control system is composed by the multi-block printed circuit boards, each board has a lot of solder joints, plates or between modules and is connected through the connectors and cables. Therefore, any cold solder joint or bad, may cause a malfunction. When the tap with the insulation and poor contact with Weld doubt at fault must be repeated reproduction.9. Local heating methodAfter a long running CNC system components are to be aging, performance will deteriorate. When they are not fully damaged, failures will become from time to time. Then heat can be used such as a hair dryer or electric iron is suspected to local heating components, accelerating the aging so thoroughly exposed fault components. Of course, using this method, be sure to pay attention to components of the temperature parameters, do not roast the original device is a good or bad.10. Principle of analysisThe composition according to principles of numerical control system can be analyzed from various points of logical levels and logical parameters (such as voltage or waveform) and then with a multimeter, logic pen, only the oscilloscope or logic analyzer to measure, analyze and compare, and thus failure positioning. Using this method, which requires maintenance personnel to be on the whole system or the principle of each circuit have a clear, deep understanding.Based on the above principles and methods, we may be itemized on the check it and eliminate the causes.The first possible failure for the system output pulse time is not enough, we adjust the M-code system, start the spindle output time, found the problem still exists, and then find the next possible cause may be in the drive to move the state, refer to the manual drive , set parameters start the spindle, the problem still exists we suspected spindle motor short-circuit, resulting in thermal relay protection. Then find the cause of the short, so that the spindle thermal relay reset the start and found that the normal operation of the spindle, the problem solved.Fourth, do a lessons learned and recorded. After troubleshooting, repair work can not be considered complete, still need technical and management aspects of the underlying causes of failure have to take appropriate measures to prevent failures from happening again. Underfield conditions when necessary use of mature technologies to transform and improve the equipment. Finally, the failure of the maintenance of the phenomenon, cause analysis, resolution process, the replacement of components, legacy, etc. to make a record.数控技术的发展与维修数控技术及装备是发展新兴高新技术产业和尖端工业的使能技术和最基本的装备。
数控技术在机械制造中的有效应用外文文献翻译、中英文翻译、外文翻译
本科生毕业设计 (论文)
外文翻译
原文标题The Effective Use in the Process of Numerical
Technology in Mechanical Manufacturing
译文标题数控技术在机械制造中的有效应用
作者所在系别机电工程学院
作者所在专业车辆工程
作者所在班级B13142
作者姓名郝立新
作者学号201322375
指导教师姓名赵秋芳
指导教师职称副教授
完成时间2017 年 2 月
北华航天工业学院教务处制
注:1. 指导教师对译文进行评阅时应注意以下几个方面:①翻译的外文文献与毕业设计(论文)的主题是否高度相关,并作为外文参考文献列入毕业设计(论文)的参考文献;②翻译的外文文献字数是否达到规定数量(3 000字以上);③译文语言是否准确、通顺、具有参考价值。
2. 外文原文应以附件的方式置于译文之后。
圆柱凸轮数控加工工艺技术研究
工艺与装备37圆柱凸轮数控加工工艺技术研究玄冠涛邵园园(山东农业大学机电工程学院,泰安271018)摘要:阐述了圆柱凸轮数控加工工艺的技术方法,重点对圆柱凸轮的加工方法、装夹、工艺路线的制定、加工参数选择、机床反向间隙补偿、圆柱凸轮廓面检测等工艺环节进行了分析研究,并在DMU70V加工中心上完成了圆柱凸轮的数控加工,提高了圆柱凸轮的加工品质。
关键词:圆柱凸轮数控加工工艺展成法2圆柱凸轮的加工工艺过程2.1数控加工设备加工设备采用德国DECKELMAHO公司出品的DMU70V五轴联动立式加工中心,该加工中心采用的两轴工作台是DECKELMAHO公司的专利技术,它是采用45°斜面达到工作台的立卧转换。
DMU70V配置有容量64把刀的刀库,辅助机能可以保证加工中心在加工过程中实现刀具长度、直径自动补偿,螺距误差、丝杠间隙自动补偿,并具有过载保护、故障检测等功能。
它具有能够自动测量刀具的激光测头,及能够检测加工要素的加工精度和定位功能的球形测头。
分度盘圆柱凸轮廓面属于空间复杂曲面,它的加工品质的高低直接影响圆柱分度凸轮机构(图1)的性能。
长期以来,我们往往探讨和重点分析的是如何利用各种先进制造技来提高圆柱凸轮的加工品质,实术(CAD/CAM,NC技术等)际上加工工艺对其制造品质也有很重要的影响。
本文将探讨和研究圆柱凸轮的加工工艺技术。
凸轮图1圆柱凸轮机构1圆柱凸轮的加工工艺分析由于圆柱凸轮廓面为三维空间曲面,故采用展成法加工圆柱凸轮(图2),其原理是:一方面将要加工的凸轮毛坯模拟其在工作中的旋转运动(沿其中心轴线),另一方面让铣刀中心模拟圆盘上的某一个滚子中心轨迹运动,两模拟运动协调动作即可加工出圆柱凸轮。
而要使这两方面的模拟动作协调运动,用普通加工方法很难实现,一般最少需要三坐标(如x轴,y轴,机床回转轴Φ)的数控机床。
2.2工装设计空间凸轮的加工至少需要三坐标或两坐标联动以上的数控机床,根据DMU70V的机床坐标系如图3(直线坐标X,Y,Z和旋转工作台坐标B,C),我们选用X,Y,C坐标作为圆柱凸轮加工的三坐标,也就是说一方面让X,刀具凸轮毛坯图3各轴定义示意图C轴/第5轴B轴/第4轴Y联动走圆弧,同时工作台绕C轴旋转,以加工出符合要求的圆柱凸轮槽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录1外文翻译及原文外文翻译宽槽圆柱凸轮数控加工技术的研究摘要:针对传统铣削方法加工圆柱凸轮所产生的一些问题,提出了一种针对槽宽大于刀具直径的圆柱凸轮槽的数控铣削加工方法。
通过分析研究,建立了一种正确的坐标转换模型,并依此加工出符合要求的宽槽圆柱凸轮。
关键词:数控加工坐标转换宽槽圆柱凸轮圆柱凸轮槽一般是按一定规律环绕在圆柱面上的等宽槽。
对圆柱凸轮槽的数控铣削加工必须满足以下要求:1.圆柱凸轮槽的工作面即两个侧面的法截面线必须严格平行;2.圆柱凸轮槽在工作段必须等宽。
这是保证滚子在圆柱凸轮槽中平稳运动的必要条件。
当圆柱凸轮槽宽度不大时,可以找到相应直径的立铣刀沿槽腔中心线进行加工,比较容易加工出符合上述要求的圆柱凸轮槽。
据现有资料介绍,目前圆柱凸轮的铣削加工都是用这种办法来实现。
由于这种方法有太多的局限性,给实际铣削加工带来许多困难。
例如一旦找不到与槽宽尺寸相等的标准刀具时,就必须对刀具进行改制。
对于槽宽尺寸较大的圆柱凸轮槽,很难找到直径与槽宽相等的标准刀具。
即使有相应的刀具,还要考虑机床主轴输出功率及主轴和工装夹具刚度的限制,特别是机床主轴结构对刀具的限制。
例如数控机床主轴头为7∶24的40号内锥,配用JT40的工具系统,则最大只能使用φ20mm的立铣刀(不论直柄还是锥柄)。
这对于槽宽为38mm的圆柱凸轮(就是本文所叙述的加工凸轮)来说是无法加工的,必须寻求新的加工方法。
下面根据实践经验和分析研究,介绍一种用直径小于凸轮槽宽的立铣刀对圆柱凸轮槽进行数控加工的方法,称之为宽槽圆柱凸轮的数控加工。
一、加工工艺圆柱凸轮槽是环绕在圆柱面上的等宽槽,其加工时沿圆周表面铣削的范围往往大于360°,适于用带有数控回转台的立式数控铣床进行加工。
根据圆柱凸轮的实际结构,选用带键的心轴作凸轮加工时径向和周向定位基准,以心轴的台肩作轴向定位基准,并用心轴前端部的螺纹通过螺母压紧圆柱凸轮。
圆柱凸轮的轴向和径向尺寸一般较大,为了克服由于悬臂加工时切削力所造成的心轴变形和加工过程中产生的振颤,使用一个支承于尾座上的、与数控转台的回转轴线同轴的顶尖顶住心轴中心孔作辅助支承。
圆柱凸轮槽的底部在每一个截面上通常是等深的,一般选用平底圆柱立铣刀加工。
圆柱凸轮铣削加工前通常是一个实心的圆柱体,要经过开槽、粗加工、半精加工、精加工等工序;由于槽腔宽度较大,因此,除开槽工序及粗加工工序的一部分刀位轨迹可以沿槽腔的中心线生成之外,其余刀位轨、迹则必须是沿槽腔中心线向左、右两边按相应的距离等距偏置生成,如图1所示。
图 1 圆柱凸轮槽的二维展开图二、求解模型在圆柱凸轮槽的数控加工中,如何求出每道工序中加工两个侧表面的刀位轨迹是其中的关键。
对于圆柱表面上的凸轮槽,通常是先将圆柱面展开,在XOS 平面内求出该工序加工两个侧表面的刀位轨迹的展开曲线XS;然后通过坐标转换,将展开曲线XS转换为四坐标机床上的刀位轨迹。
下面讨论任一加工工序中展开曲线XS的求解方法,以及生成最后刀位轨迹的坐标转换方法。
1.展开曲线XS的求解如图2所示,其中Lo 为圆柱凸轮槽的中心线,对于第i道工序,Lli和Lri分别为该工序将要加工的槽腔的左、右两个侧表面展开曲线,此槽宽为Bi,加工刀具半径为r(显然2r≤Bi ),加工此槽腔左、右侧面的刀位轨迹展开曲线为CLli和CLri ,设Po为槽腔中心线上的一个点,no为槽腔中心线在Po点处的法矢,那么左、右刀位轨迹展开曲线上对应点Pli 和Pri的计算方法为:(1)图 2 圆柱凸轮槽的二维展开图将P o点沿着槽腔中心线移动,即可以求出该工序刀位轨迹在XOS平面内的展开曲线XS;按照加工工序,依次改变每道工序中的槽宽度B i,即可求出加工所需槽腔所有刀位轨迹的展开曲线。
2.沿凸轮槽中心线加工的坐标转换方法以上计算是在圆柱面的展开平面内进行的,为了求出加工圆柱凸轮槽腔的刀位轨迹,必须将平面内的展开曲线转换到圆柱面上。
假设转动轴为绕X轴的A轴,P i为刀位轨迹上的一个刀位点,它在二维平面展开曲线上的坐标为(x,s),在四坐标机床上的坐标为(x,y,z,a)。
由于圆柱凸轮槽腔通常是等深的,因此,z坐标在设置为所需要加工的深度值之后,在加工中是不变的;对于其余三个坐标,构造出以下坐标转换公式:(2)式中,R为圆柱凸轮轴的半径。
上式是目前普遍使用的坐标转换公式,对于用标准刀具沿凸轮槽中心线铣削加工圆柱凸轮是正确的。
3.对上式在宽槽圆柱凸轮加工中产生问题的分析当将上式推广应用于宽槽圆柱凸轮的数控加工时,通过坐标转换计算的刀位轨迹在实际加工中却产生了一些问题。
在圆柱凸轮槽加工完毕后,为了检验是否符合要求,用直径等于圆柱凸轮滚子的检具进行检验,却发现所加工的槽宽窄不等、有卡壳的现象。
仔细观察,原来加工出来的槽腔的法截面并不总是上下等宽的矩形槽,而有时是上宽下窄的喇叭槽。
为了弄清楚其中的原因,对公式(2)所表示的坐标转换方法进行了深入的分析和研究。
如图3所示,由公式(1)可知,加工槽腔两个侧表面的刀位轨迹线上的P l和P r点是由槽腔中心线上的P o等距偏置而得,按公式(2)转换之后,P l和P r点对应的转角并不等于P o点的转角,也即P l和P r对应的刀轴矢量V l V l与P o点对应的刀轴矢量V o V o不平行,因此,加工出来的槽腔自然就成了上宽下窄喇叭槽,而不是所需要的上下等宽的矩形槽。
设截面与轴线的夹角为θ,圆柱凸轮轴的半径为R,刀轴矢量V l V l与V o V o的角度误差为:Δa=(B/2-r)sinθ/R(3)图 3 圆柱凸轮槽加工示意图由公式(3)可知,当θ=0°,也即凸轮槽中心线与圆柱轴线垂直时,角度误差为零,即槽腔是上下等宽的矩形口;当θ=90°,也即凸轮槽中心线与圆柱轴线平行时,角度误差达到最大,此时槽腔的喇叭口现象最严重;当0<θ<90°时,随着θ的增大,角度误差越大,喇叭口现象也就越严重。
实际加工出现的现象与上述分析完全一致,这说明公式(3)的分析是完全正确的。
4.宽槽圆柱凸轮数控加工的坐标转换方法由上面的分析可知,公式(2)造成凸轮槽为上宽下窄喇叭口的主要原因是,P l和P r点对应的转角是按照这两个点自己的弧长值S l和S r来计算的,而S l和S r 是不等于槽腔中心点P o的弧长值S o。
因此,如果P l和P r点对应的转角均按照槽腔中心点P o的弧长值S o来计算,就可以消除这种喇叭槽现象。
根据这种思路,重新构造坐标转换公式。
在圆柱面的二维展开平面上,设槽腔中心线展开曲线上的一个点为P o(x o,s o),加工两个侧表面上对应刀位点在展开曲线上的点为P l(x l,s l)和P r(x r,s r),那么,坐标转换公式为:(4)应用公式(4)生成的刀位轨迹加工圆柱凸轮槽时,结果完全符合上述的设想,加工出来的圆柱凸轮槽已经没有了上宽下窄的喇叭槽现象,而是真正的上下等宽矩形槽。
参考文献:1.Chang W C,Van Y T.Researching Design Trens for the Redesign of Product From Design Studies 2003.24(2):173_1802.Mou J,Liu C R.An error correction method for CNC machine tools using reference parts.transactions of NAMRE/SME,1994.3.Sutton G P.The machine tool task forch. Bal Harbour Bal Habour Hotel,1980.4.Gene F.Franklin Feedback control of Dynamis .systems,4E.英文原文Wide Trough Column Cam Numerical ControlProcessing ResearchSummary: Some questions produces which in view of the traditional milling method processing column cam, proposed one kind in view of the trough spaciously in the cutting tool diameter column cam path numerical control milling processing method. Through the analysis research, has established one kind of correct coordinates transformation model, and processes according to this conforms to the request wide trough column cam.Keywords:Numerical control processing Coordinates Transformation width trough column camMain TextThe column cam path is generally surrounds according to the certain rule in the round cylinder and so on the wide trough. Must satisfy below to the column cam path numerical control milling processing requests: 1.The column cam path working surface namely two sides plane of normal section lines must be strict parallel; 2.Thecolumn cam path must wait for the width in the work section. This is guarantees the roller in the column cam path the steady motion essential condition. When column cam path width not big, may find the corresponding diameter the end mill to carry on the processing along the trough cavity middle line, compared with is easy to process conforms to the above request column cam path. According to the existence information introduced that, at present the column cam milling processing all is realizes with this means. Because this method has too many limitations, brings many difficulties for the actual milling processing. For example when cannot find with the trough width size equal standard cutting tool, must carry on to the cutting tool changes the system.Regarding the trough width size big column cam path, is very difficult to find the diameter and the trough width equal standard cutting tool. Even if has the corresponding cutting tool, but also must consider the engine bed main axle output and the main axle and the work clothes jig rigidity limit, specially engine bed main axle structure to cutting tool limit. For example the numerical control engine bed host axle neck is 7: 24 40 inner cones, uses for parts JT40 the tool system, then most greatly only can use φ20mm end mill (no matter straight handle bit holder). This regarding the trough width is the 38mm column cam (is processing cam which this article narrates) said is unable to process, must seek the new processing method.Under and analyzes the research according to the experience, introduced one kind is smaller than the cam path width end mill with the diameter to carry on the numerical control processing to the column cam path the method, calls it the width trough column cam numerical control processing.First, Processing craftThe column cam path is surrounds in the round cylinder and so on the width trough, when its processing often is bigger than 360°. along the circumference surface milling scopeIs suitable for with to have the numerical control rotary abutment the vertical numerical control milling machine to carry on the processing. According to the column cam actual structure, selects the belt key the spindle makes when the cam processing the radial direction and the week to the localization datum, makes the axiallocalization datum by the spindle ledge, and the nose thread contracts the column cam with the spindle in front of through the nut. The column cam axial and the radial direction size is generally big, in order to overcome because the bracket processes time the cutting force creates in the spindle distortion and the processing process produces inspires trembles, uses a supporting on the tailstock, withstands the spindle center bore with the numerical control turnplate rotation spool thread coaxial apex to make the auxiliary supporting.The column cam path base on each section usually is and so on deep, selects the flat base column end mill processing generally. Before the column cam milling processing usually is a solid circular cylinder, must pass through working procedure and so on slot, rough machining, half precision work, precision work; Because the trough cavity width is big, Therefore, except the trough working procedure and a rough machining working procedure part of knives positions path may along beside the trough cavity middle line production, other knife position paths then must be along the trough cavity center alignment left, are right nearby two according to the Corresponding .Figure 1 column cam path two-dimensional developed viewSecond, Solution modelIn the column cam path numerical control processing, how extracts in each working procedure to process two sides surfaces the knife position path is key. Regarding the periphery on cam path, usually is launches first the round cylinder, extracts this working procedure in the XOS plane to process two sides surfaces the knife position path to launch curve XS; Then transforms through the coordinates, will launch the curve XS transformation will be on four coordinates engine beds knifeposition path. Under discusses no matter what in a processing working procedure launches curve XS the solution method, as well as production final knife position path coordinates transformation method.unches curve XS the solutionLike chart 2 shows, L o is the column cam path middle line, regarding the i working procedure, L li and L ri respectively the trough cavity which is going to process be this working procedure left, the right two sides surface launches the curve, this width is B i, processes the cutting tool radius is r (obviously 2r ≤ B i), processes this cavity to be left, the right side knife position path launches the curve is CL li and CL ri ,supposes P o is in a trough cavity middle line spot, P o is the trough cavity middle line in the P o place law arrow, Then is left, the right knife position path launches in the curve corresponding points pli and the pri computational method is:(1)Figure 2 column cam path two-dimensional developed viewP o along the trough cavity middle line migration, namely may extract this working procedure knife position path to launch curveXS in the XOS plane; According to the processing working procedure, changes in each working procedure in turn trough width Bi, then extracts the processing to need the trough cavity all knives position path to launch the curve.2.Along cam path middle line processing coordinates transformation methodAbove the computation is launches in the plane in the round cylinder to carry on, in order to extract the processing column cam path cavity the knife position path, must launch the plane in the curve to transform to the round cylinder in.The supposition rotating axis for circles Xaxis A axis, pi is in a knife position path knife position spot, it launches in the curve in the two-dimensional surface the coordinates for (x,s), on four coordinates engine beds coordinates is (x,y,z,a).。