生物技术课件-02基因工程常用工具酶

合集下载

基因工程ppt课件

基因工程ppt课件
提取某种生物的全部DNA 用适当的限制酶切
一定大小的DNA片段
将DNA片段与: cDNA合成法
+ 第一步,反转录酶以RNA为模板合成一条与RNA互补 的DNA单链,形成RNA-DNA杂交分子。
+ 第二步,核酸酶H使RNA-DNA杂交分子中的RNA链降解, 使之变成单链的的基因主要是指___编__码__蛋__白__质__的__结__构__基__因_
请举出三个以上的例子
供体生物细胞
2、获人工化学合成
限制酶
取出 DNA 用限制酶剪 去与模板互补的DNA双链) 重复循环
16
实际具体过程
17
PCR技术
• 原理: DNA复制 • 前提:
一段已知目的基因的核苷酸序列 • 原料
模板DNA;DNA引物;四种脱氧 核苷酸;热稳定DNA聚合酶 (Taq酶)
• 方式:以_指__数__方式扩增,
PCR扩增仪
即_2_n__(n为扩增循环的次数)
18
1、概念:
基因工程又叫做基因拼接技术或DNA重组技术。 通俗地说,就是按照人们的意愿,把一种生物的某种 基因提取出来,加以修饰改造,然后放到另一种生物 的细胞里,定向地改造生物的遗传性状。
1
2. 基因工程最基本的工具 ──限制性内切酶
以大肠杆菌中的一种叫做EcoRІ的限制酶为例:
限制酶
结果:产生黏性未端(碱基互补配对)。
终止子:位于基因的尾端的 一段特殊的DNA片断,能 终止mRNA的转录
标记基因的作用是为了鉴别 受体细胞中是否含有目的基 因,从而将有目的基因的细
27
1、(多选)一个基因表达载体的构建应包括 ABCD
A.目的基因 B.启动子 C.终止子 D.标记基因

基因工程常用的工具酶

基因工程常用的工具酶
Py dCMP、dTMP Pu dAMP、dGMP
2024/10/14
.
6
识别序列呈典型的旋转对称型回文结构
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
回文结构:两条核苷酸链的核酸序列呈双重旋转对称排列的 DNA双螺旋结构
2024/10/14
.
14
第三节 DNA聚合酶
2024/10/14
.
15
DNA聚合酶:能够催化DNA复制和修复DNA分子损伤 的一类酶
❖作用特点
能够把脱氧核苷酸分子连续的加到DNA分子引物链的3’-OH末端,催 化核苷酸的聚合
❖作用条件
➢ 脱氧核苷酸原料:四种脱氧核苷三磷酸dNTP(dATP、dTTP、 dCTP、dGTP)
属名
种名
株名
Haemophilus influenzae d
HindΙ、 HindⅡ、 Hind Ⅲ
不同限制修饰系统
2024/10/14
.
4
三、Ⅱ型限制酶的特性-识别序列
识别双链DNA分子中特定的4 - 8对核苷酸序列
EcoR I的切割位点
EcoR I的识别序列
5‘ … G C T G A A T T C G A G … 3’ 3‘ … C G A C T T A A G C T C … 5’
5‘ HO 3‘ HO
T4-PNP
5‘ p 3‘ HO
OH 3‘ OH 5‘
Mg2+ pppATP(g-32P-ATP)
OH 3‘
5‘ HO
BAP / CIP

基因工程中常用的三种工具酶

基因工程中常用的三种工具酶

一、限制性核酸内切酶(restriction endonuclease)1.定义:凡能识别和切割双链DNA分子内特定核苷酸序列的酶,也称为限制酶(restriction enzyme,RE)。

2.类型:来自原核生物,有三种类型。

Ⅰ型:兼具甲基化修饰和ATP参与的核酸内切酶活性,随机切割。

Ⅱ型:大多能特异识别4~6个核苷酸序列(回文结构),最大识别序列为8个核苷酸,如SfiI、NotI;但有近10种Ⅱ型限制酶的识别序列为非回文结构,如SfaNI、MnlI等,Ⅱ型限制酶均可作为基因工程的工具酶。

另有一些来源不同的限制酶的识别位点是相同的核苷酸序列,将这类酶特称为同工异源酶(isoschizomers)或同裂酶。

同工异源酶切割产生相同的末端;有一些同工异源酶对于切割位点上的甲基化碱基的敏感性有所差别,故可用来研究DNA 甲基化作用,如SmaI和XmaI;HpaII和MspI;MboI和Sau3AI是成对的同工异源酶;其中HpaII和MspI是一对同工异源酶,其识别位点是CCGG。

与同工异源酶对应的一类限制酶,它们虽然来源各异,识别序列也各不相同,但都产生出相同的粘性末端,称为同尾酶(isocaudamers)。

常用的限制酶BamHI、BclI、BglII、Sau3AI和XhoII就是一组同尾酶,它们切割DNA之后都形成由GATC4个核苷酸组成的粘性末端。

显而易见,由同尾酶所产生的DNA片段,是能够通过其粘性末端之间的互补作用而彼此连接起来的,因此在基因克隆实验中很有用处。

但必须指出,由两种同尾酶消化产生的粘性末端,重组之后所形成的序列结构再不能被原来的任何一种同尾酶所识别。

Ⅲ型:功能基本同Ⅰ型,但为特定位点切割。

三种限制酶的区别如下表所示:Ⅰ型Ⅱ型Ⅲ型DNA底物dsDNA dsDNA dsDNA辅助因子Mg2+,A TP,SAM Mg2+ Mg2+,A TP识别序列特异特异特异切割位点非特定(于识别序列前后100~1000bp范围之内)特定(切割于识别序列之中或近处,固定位点)特定(切割点在识别序列后25~75bp处)与甲基化作用的关系内切酶蛋白同时具有甲基化酶的作用酶蛋白不具有甲基化作用内切酶蛋白同时具有甲基化酶的作用3.命名:第一个字母取自产生该酶的细菌属名,用大写;第二、第三个字母是该细菌的种名,用小写;第四个字母代表株。

基因工程基因工程工具酶

基因工程基因工程工具酶

基因工程工具酶引言基因工程是一门利用重组DNA技术来改变生物体遗传性状的学科。

在基因工程的过程中,基因工程工具酶发挥着关键的作用。

本文将介绍几种常用的基因工程工具酶,包括限制性内切酶、连接酶和修饰酶。

一、限制性内切酶1.1 定义限制性内切酶(Restriction Enzyme)是一类具有特异性切割DNA双链的酶。

它可以识别并切割DNA的特定序列,通常这个序列是对称的,在切割后会产生特定的片段。

1.2 工作原理限制性内切酶能够通过识别和结合DNA的特定序列来进行切割。

它们通常识别的序列是4到8个碱基对长,具有一定的对称性。

一旦内切酶与特定序列结合,它会切断DNA的链,在特定的位置形成断裂,从而将DNA切割成特定的片段。

1.3 应用限制性内切酶在基因工程中有着广泛的应用。

它们可以用于构建基因工程载体、进行DNA片段的精确克隆等。

通过选择适当的限制性内切酶,可以对DNA进行特定的切割和连接,从而实现对目标基因的定向操作。

二、连接酶2.1 定义连接酶(Ligase)是一种酶类,能够将两条DNA片段连接起来。

在基因工程中,连接酶通常被用于连接目标基因和载体。

2.2 工作原理连接酶通过催化两条DNA片段之间的磷酸二酯键的形成来连接DNA。

它可以将两条具有互补末端的DNA片段连接在一起,形成一个新的DNA分子。

2.3 应用连接酶在基因工程中的应用非常广泛。

它们可以用于构建重组DNA分子、进行目标基因的插入等。

通过连接酶的作用,可以将多个DNA片段连接起来,构建出符合需要的重组DNA分子。

三、修饰酶3.1 定义修饰酶是指能够修饰DNA分子的酶类。

在基因工程中,修饰酶通常被用于添加或去除特定的DNA序列。

3.2 工作原理修饰酶可以通过催化酸解或碱解反应来改变DNA分子的结构。

它们可以添加或去除DNA上的甲基基团、酶解酶切位点等。

3.3 应用修饰酶在基因工程中起着重要的作用。

它们可以用于DNA甲基化的分析、目标基因的修饰等。

基因工程-工具酶

基因工程-工具酶

基因敲入
2
能。
利用工具酶将外源DNA片段整合到目标基
因中,实现新基因的表达。
3
基因编辑
通过工具酶修饰目标基因的特定碱基, 实现精确的基因改造。
农业、医药和工业领域的应用
农业
利用基因工程和工具酶,开发抗 虫、抗病、耐旱和高产的转基因 作物。
医药
工具酶在基因治疗中起着关键作 用,用于修复人类遗传病和癌症 等疾病的基因。
基因工程-工具酶
基因工程是利用DNA技术对生物体进行改造的科学,工具酶在基因工程中起 着至关重要的作用。
工具酶的作用
工具酶是基因工程中的重要工具,用于切割、连接和修饰DNA分子,使得科 学家能够精确操控基因。
常用的工具酶类型
限制酶
识别和切割DNA序列,用于定位和克隆特定基因。
连接酶
将不同DNA片段连接在一起,构建重组DNA分子。
修饰酶
对DNA分子进行修饰,如甲基化、去甲基化等。
造极酶
用于扩增DNA序列,如聚合酶链反应(PCR)中 的DNA聚合酶。
工具酶的工作原理
工具酶通过与DNA特定序列的互作用,识别并结合到目标序列上,然后以特 定的方式切割、连接或修饰DNA分子。
பைடு நூலகம்
基因修饰的方法
1
基因敲除
通过工具酶切割目标基因,使其失去功
工业
利用工具酶进行工业发酵,生产 各种化学品、药物和生物燃料。
挑战和限制
• 技术限制:某些DNA序列难以切割或修饰。 • 安全问题:基因修饰可能带来意想不到的风险和后果。 • 伦理考虑:对基因工程的道德和伦理问题需引起广泛关注。 • 法律和监管:基因工程面临严格的法律和监管要求。

分子生物学第四章--基因工程常用工具酶

分子生物学第四章--基因工程常用工具酶
A.以酶切特点来分 同位酶:识别相同序列,切点不同。
同裂酶:识别位点相同,酶的来源不同。
同尾酶:识别位点不同,切出片段有相同末端序列。
B.以切出片段末端性质不同可分,粘性末端和平末端。
粘性末端:(Cohesive Ends)两个突出末端可退火互补— — DNA是分子重组的基础
15
同裂酶
又称异源同工酶。指来源不同,但具有相同的识别 序列。 在切割DNA时,其切割点可以是相同的,产生平 头末端,称为同识同切; 切割点也可以是不同的,产生3ˊ或5ˊ粘性末端, 称为同识异切。
第四章 基因工程常用工具酶
1
Manipulating Genes
- Transferring Genes
Restriction Ligation Extract DNA
Transformation
Selection
Culturing
2
重组DNA实验中常见的主要工具酶
3
我们的基本目的是:把外源基因与载体 连接在一起形成重组DNA分子,最少需要以 下两类工具酶:
23
如果用一种限制酶,切割两种不同的DNA时,
产生相同的末端,混合后“退火”,这两种不同的
DNA分子彼此可以连接,形成重组DNA分子。
24
限制性内切酶的剪切方式
25
Yu Zheng, et al. Using shotgun sequence data to find active restriction enzyme genes. Nucleic Acids Res., 2009, 37: e1. Whole genome shotgun sequence analysis has become the standard method for beginning to determine a genome sequence. The preparation of the shotgun sequence clones is, in fact, a biological experiment. It determines which segments of the genome can be cloned into Escherichia coli and which cannot. By analyzing the complete set of sequences from such an experiment, it is possible to identify genes lethal to E. coli.

基因工程常用的工具酶

基因工程常用的工具酶
基因工程被用于培育抗病、抗 虫、抗除草剂等新品种,提高
农作物的产量和质量。
医学领域
基因工程被用于治疗遗传性疾 病、癌症、感染性疾病等,以 及制备疫苗和单克隆抗体。
工业领域
基因工程被用于生产高价值的化 学品、生物燃料和生物材料等, 降低生产成本和提高产品质量。
基础研究
基因工程被用于研究基因的结构 和功能、蛋白质的表达和调控等
常见的限制性核酸内切酶包括EcoRI、BamHI、HindIII等。
DNA聚合酶
DNA聚合酶是催化DNA复制过程中 DNA聚合反应的酶。
常见的DNA聚合酶包括Taq酶和T7噬 菌体DNA聚合酶等。
DNA聚合酶具有合成DNA的功能,可以在 模板DNA的指导下,将脱氧单核苷酸逐个加 到引物RNA的3'-OH末端,形成新的互补链 。
,促进生命科学领域的发展。
02 基因工程常用的工具酶概 述
工具酶的定义与分类
定义
工具酶是指用于基因工程操作的一类 酶,能够催化DNA或RNA的切割、连 接、修饰等反应,是基因工程实验中 必不可少的工具。
分类
根据功能的不同,工具酶可以分为限 制性核酸内切酶、DNA聚合酶、反转 录酶、T4核酸连接酶等。
工具酶在生物制药和农业生产中应用广泛,如基因工程的抗体药物、疫
苗、农作物改良等领域,能够提高产品的产量和质量。
工具酶的来源与生产
来源
工具酶主要来源于微生物、植物和动 物等生物体,其中微生物来源的酶是 最常用的。
生产
工具酶的生产通常采用基因工程技术 ,通过克隆和表达酶的基因来获得相 应的酶蛋白,再经过纯化和复性等步 骤得到高活性的工具酶。
VS
转录激活因子
激活特定基因的表达,实现基因治疗。

基因操作工具酶PPT课件

基因操作工具酶PPT课件

α- 32P-dATP
EcoR I 酶切末端
同位素标记的EcoR I 酶切末端
Back
3.3 Taq DNA聚合酶
显著特点:热稳定性。70℃反应2h残留活性90 %; 93℃ 反应 2 h残留活性60% ;94℃ 反应 2 h残 留活性40%。
应用:(1)对DNA的特定片段进行体外扩增; (2) DNA序列测定。
Back
2 DNA连接酶
2.1 定义及功能 2.2 种类及作用机理 2.3 使用时的注意事项
Home
2.1 定义及功能
DNA连接酶(DNA ligase): 可使一段DNA 3`-OH末端和5`-P 末端
形成3`,5`-磷酸二酯键,把两DNA片段 连在一起封闭双链上形成的切口的酶。
OH P
5`
• 若该微生物有不同的变种和品系,再加上该变种和品系的第一个 字母(大写)
• 若从同一微生物发现多种限制性内切酶,则依照发现和分离的先 后顺序用罗马字母表示。
例如:EcoRⅠ 从大肠杆菌R株分离的第一种限制酶命名为 EcoRⅠ, 其中E 代表属名(Escherichia),co 代表种名(coli), R 代表株系(RY13),Ⅰ 代表该菌株中首次分离到。
应用:缺口平移法制备DNA分子杂交探针
缺口
DNase I DNA聚合酶 I
DNA聚合酶 I dNTP*
缺口
缺口平移法制备DNA分子探针 Back
3.2 Klenow聚合酶
活性: 5`→3`聚合活性,3`→5` 外切酶活性,无5`→3`
外切酶活性。 用途: (1)填补或标记DNA的3`隐蔽末端; (2)催化合成cDNA第二链; (3)DNA序列测定
5-7 bp非对称序 列

基因工程常用工具酶及应用

基因工程常用工具酶及应用

DNA 连接酶
36
DNA连接酶
连接的部位:磷酸二酯键(梯子的扶手), 不是氢键(梯子的踏板)。
37
三.RNA酶
主要功能 降解RNA 由于RNA酶分布广泛,如唾液、 皮肤分泌物中都含此酶,在涉及RNA 的实验中谨防RNA酶污染。
38
四.核酸酶SI
• 降解单链 DNA 或 RNA,形成5’-P的单核苷 酸或寡核苷酸片段
5'粘末端
PstI
3' sticky end
3'粘末端
HpaI
blunt end
平末端
14
四.识别位点与切割方式
• 限制性内切酶识别序列一般为6个核苷酸,如
EcoRI,HindIII,BamHI,居多数。 也有少数限制性内切酶,识别序列为4个、5个、 或更多的核苷酸如8个及8个以上,当识别序列核 苷酸数为单数时,则以中间的核苷酸作为对称轴。 如GTNAC(N 代表四种核苷酸)。
某些碱基被甲基化所保护。这种细菌
内部的限制与修饰作用分别由核酸内
切酶和甲基化酶完成,构成了类似免
疫的防御系统。
6
解释 何谓内切酶
-o-o-o-o-o-o-o-o-o-o-o-o-o-o红色为外切酶的作用位点, 蓝色为内切酶的作用位点
7
限制性核酸内切酶的分类
目前已发现的限制性核酸内切酶600余种,可 分为三大类。 Ⅱ类限制性核酸内切酶广泛用于基因工程;
15
• 一般说来,在DNA分子中,识别序列短的 出现概率大,识别序列长的出现概率小。 有N个核苷酸的识别序列出现概率为1/4n。 如识别4个核苷酸Sau 3A,则间隔256 (4×4×4×4)个核苷酸就有一次机会出 现识别位点。如识别8个核苷酸的Not I,则 需间隔65536个核苷酸才有一次机会出现识 别位点。

基因工程第四章-工具酶

基因工程第四章-工具酶
扩大酶切反映的(体积)体系,使潜在的抑制因素被相应的 稀释。
延长酶反映时间。可切24小时。
2021/2/27
2、DNA的甲基化程度: 核酸内切酶是原核生物限制修饰的组成部分,因 此,识别序列中特定核苷酸的甲基化作用,会强 烈的影响酶的活性,造成DNA只能被局部消化。 为了避免这种问题,在基因克隆中使用的是失去 甲基化酶的大肠杆菌菌株来制备质粒DNA。
❖反转录酶
❖ Taq酶
2021/2/27
共同点:以一条DNA(RNA)为模板,通 过聚合作用能够把脱氧核糖核酸连续的加 到引物链的3-OH末端。
一、DNA聚合酶I
❖ 大肠杆菌的DNA聚合酶I是一条约1000个aa 的多肽链 形成的单亚基蛋白,分子量109x103Da.
1. 三种活性: 聚合活性:将4种脱氧核糖核苷酸聚合为新的DNA链。 5----3外切酶活性: 3----5外切酶活性:防止错配。
1. 概念:能够催化在2条DNA 链之间形成磷酸二 脂键的酶。条件是需要一条链的3末端具有一个 游离的羟基(-OH),在另一条链的5端具有一 个磷酸基团(-P),另外由于形成二脂键是一 种吸能反映所以反应中要有ATP(动物)和 NAD+(原核生物,氧化型)作为能源。
2021/2/27
2. 特性:
❖ DNA连接酶不能连接两条单 链DNA分子或环化的单链 DNA分子,被连接的必须是 双螺旋DNA的一部分。连接 酶的来源有两种,一种是大 肠杆菌染色体编码的DNA连 接酶;另一种是大肠杆菌T4 噬菌编码的叫T4连接酶,这 种酶容易制备,直接从感染 T4大肠杆菌的菌体中分离纯 化,而且他可以连接两条平 末端的DNA片断
2021/2/27
3、酶切温度:
❖ DNA消化反应的温度是影响核酸内切酶活性的 另一个重要的因素。

第二章 生物技术常用的工具酶

第二章 生物技术常用的工具酶

例如:EcoRⅠ 从大肠杆菌(Escherichia coli) R株分离 的第一种限制酶命名为EcoRⅠ, 其中E 代表属名 (Escherichia),co 代表种名(coli),R 代表株系 (RY13),Ⅰ 代表该菌株中首次分离到。
Hind Ⅲ
属 种 株 序
Haemophilus influenzae d株 流感嗜血杆菌d株的第三种酶
Sau3AI的酶切位点为GATC,但胞嘧啶“C”被甲 基化(修饰)后,Sau3AI的内切酶活性即被抑制。
二、限制酶的分类
• 根据其识别和切割序列的特性、催化条件及修饰活性 等,一般将限制酶分为I,Ⅱ,Ⅲ三大类。I类和Ⅲ类酶 不适用于基因工程。
• 基因工程所用的酶一般为Ⅱ类酶。 Ⅱ类酶的特点: Ⅱ型核酸内切限制酶仅有内切核酸酶的活性,而没 有甲基化酶的活性; 反应条件需Mg2+; 对DNA的水解有很强的特异性,它要求严格的识别 序列和切割点。
第二章 生物技术常用的工具酶
使核酸降解的核酸酶类(核酸内切酶和核酸 外切酶) 催化核酸合成的酶类(DNA聚合酶、RNA 聚合酶、DNA连接酶等) 核酸修饰酶类(甲基化酶、激酶、核酸转 移酶、磷酸酶等)
3′→5′外切酶 5′→3′外切酶
核酸外切酶:从DNA或RNA链的一端逐个水解下单核苷酸。 磷酸酶:是一种能够将对应底物去磷酸化的酶。 核苷酸转移酶:催化核糖核苷酸还原、生成相应的脱氧核糖核苷酸的酶。 甲基化酶:是作为限制与修饰系统中的一员,用于保护宿主DNA不被相应的限制酶所切割。 核苷酸激酶:催化ATP的γ -磷酸转移到DNA或RNA的5′-OH末端生成ADP的反应。
1μL
1μL 1μL
四、 使用时的注意事项

1) DNA连接酶不能催化两单链DNA分子连接; 2) 只能连接双链DNA分子的单链缺刻(nick);

基因工程的工具酶

基因工程的工具酶

T
T
A
G
C
C
G
怎样切? • 基因的剪刀——限制性内切酶(简称限制酶)
例:大肠杆菌(E.coli)的一种限制酶能识别GAATTC序列,并在G和A之间切开。
限制酶
限制酶
几种II型限制性核酸内切酶的酶切位点
Pst I
Provindencia stuartii 164
Haemophilus influenzae Rd
4363 pBR322物理图谱
练习题
为了绘制长为3.0kb BamH Ⅰ限制性片段的限制性图谱,分别用EcoR Ⅰ、Hpa Ⅱ、 EcoR Ⅰ+Hpa Ⅱ消化这一片段的三个样品,然后通过凝胶电泳分离DNA片段,溴化乙锭染色后观 察DNA带型。请根据这些结果绘制一个限制性图谱,要标明EcoR Ⅰ和Hpa Ⅱ识别位点间的 相对位置,以及它们之间的距离(kb)。
现非特异性的DNA片段的现象。 易产生星活性的内切酶用*标记。如:EcoR I*
造成星活性参数 甘油浓度12-20%,酶与DNA比例,离子强度,45%聚乙二醇(PEG),有机溶剂,8%二甲基
亚枫,二价阳离子,12%
限制性内切酶的应用
1、重组DNA前的切割 2、构建新质粒 3、构建物理图谱 4、DNA分子杂交 5、制备DNA探针 6、亚克隆以用作序列分析 7、基因定位,DNA同源性研究。
A. 连接的两条链必须分别具有 3′端自由羟基(-OH)和5 ′端磷酸基团(-P),而且只有这两 个基团彼此相邻时才能进行连接反应;
B. 在羟基和磷酸基团间形成磷酸二酯键是一种耗能过程,因此连接反应必须有能量分子的参与, 通常有两种能量分子,即ATP和NAD+。
是两条链-因此不能将两条单链连接起来或使单链环化起来。

《基因工程的工具——酶与载体》 知识清单

《基因工程的工具——酶与载体》 知识清单

《基因工程的工具——酶与载体》知识清单基因工程作为现代生物技术的核心领域之一,为人类带来了前所未有的机遇和挑战。

而在基因工程中,酶和载体是至关重要的工具,它们就像是工匠手中的精巧工具,帮助我们实现对基因的精确操作和转移。

一、基因工程中的酶1、限制性内切酶限制性内切酶,也被称为“分子剪刀”,是基因工程中最重要的工具酶之一。

它能够识别特定的核苷酸序列,并在特定的位点将 DNA 分子切断。

这种特性使得我们能够从复杂的 DNA 分子中切取特定的基因片段。

不同的限制性内切酶识别的序列不同,这为基因工程的操作提供了丰富的选择。

限制性内切酶的作用就像是一把精准的剪刀,能够在 DNA 这个长长的“绳子”上剪出我们需要的特定片段。

比如,EcoRI 能识别GAATTC 序列,并在 G 和 A 之间切断 DNA 双链。

2、 DNA 连接酶当我们用限制性内切酶切下所需的基因片段后,需要将它们与其他DNA 片段连接起来,这时候就轮到 DNA 连接酶发挥作用了。

DNA 连接酶能够将两个具有相同黏性末端或平末端的 DNA 片段连接在一起,形成一个完整的 DNA 分子。

想象一下,DNA 连接酶就像是一个“胶水”,把被剪开的 DNA 片段重新粘在一起,使它们成为一个连续的整体。

3、 DNA 聚合酶在基因工程中,DNA 聚合酶常用于 DNA 的复制和扩增。

例如,PCR(聚合酶链式反应)技术就依赖于耐高温的 Taq DNA 聚合酶。

通过 PCR 技术,我们可以在体外大量扩增特定的 DNA 片段,为后续的实验和应用提供足够的材料。

4、反转录酶反转录酶能够以 RNA 为模板合成互补的 DNA(cDNA)。

这在获取真核生物的基因时非常有用,因为真核生物的基因中含有内含子,而通过反转录得到的 cDNA 不含内含子,更便于在原核生物中表达。

二、基因工程中的载体1、质粒质粒是一种存在于细菌细胞质中的小型环状 DNA 分子。

它具有自主复制能力,可以在细菌细胞内独立存在和复制。

第二章基因工程中常用的工具酶

第二章基因工程中常用的工具酶

第二章 基因工程中常用的工具酶限制性内切酶—主要用于DNA 分子的特异切割分子的特异切割DNA 甲基化酶—用于DNA 分子的甲基化分子的甲基化 核酸连接酶—用于DNA 和RNA 的连接的连接核酸聚合酶—用于DNA 和RNA 的合成的合成核酸酶—用于DNA 和RNA 的非特异性切割的非特异性切割核酸末端修饰酶—用于DNA 和RNA 的末端修饰的末端修饰其它酶类--用于生物细胞的破壁、转化、核酸纯化、检测等。

用于生物细胞的破壁、转化、核酸纯化、检测等。

§2-1 核酸内切限制酶定义:核酸内切限制酶是一类能够识别双链DNA 分子中的某种特定核苷酸序列,并由此切割DNA 双链结构的核酸内切酶。

双链结构的核酸内切酶。

到目前为止已经从许多种不同的微生物中分离出了2300种以上不同的核酸内切限制酶。

种以上不同的核酸内切限制酶。

核酸内切限制酶的发现及其生物功能(图)一 、限制修饰系统的种类(图)限制修饰系统的种类(图)二、 限制性内切酶的定义、命名1. 定义:广义指上述三个系统中的限制酶;广义指上述三个系统中的限制酶;狭义指II 型限制酶。

型限制酶。

2. 命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。

限制酶由三部分构成,即菌种名、菌系编号、分离顺序。

例如:Hin d Ⅲ 前三个字母来自于菌种名称H. influenzae ,“d”表示菌系为d型血清型;“Ⅲ”表示分离到的第三个限制酶。

表示分离到的第三个限制酶。

Eco RI RI——Escherichia coli RI RI Hin d Ⅲ—Haemophilus influensae d ⅢSac I (II)—Streptomyces achromagenes I (Ⅱ)三、Ⅰ型和Ⅲ型核酸内切限制酶的缺点a.Ⅰ型核酸内切限制酶虽然能够识别DNA 分子中的特定序列,但它们的切割作用却是随机的,在距特异性位点至少1000bp 的地方可以随机地切割DNA 分子,因此这类酶在基因克隆中显然是没有用处的。

2基因工程-工具酶

2基因工程-工具酶
酶 HindIII Sma I 最适温度oC 37 25 酶 Apy I BstE II 最适温度oC 30 60 酶 Ban I BsmBI 最适温度oC 50 55



4.DNA的分子结构: DNA分子的不同构型对限制性内切酶的活性也有很大的影 响。某些限制性核酸内切酶切割超螺旋的质粒DNA所需要的酶量要比消化线性 的DNA量高出很多倍。 5.缓冲液:影响限制酶活性的重要因素。商品化的限制酶一般都带有专用缓 冲液。化学组成中MgCl2、NaCl/KCl提供Mg2+和离子强度;Tris-HCl维持pH; 二硫苏糖醇(DTT)保持酶稳定性;牛血清白蛋白BSA等有助于酶的稳定。

限制性核酸内切酶(restriction endonuclease):识别并切割特异的双链
DNA序列的一种内切核酸酶。[单位定义]在指明pH与37℃,在0.05mL反应混合 物中,1小时消化1μg的λDNA的酶量为1单位。
命名:限制酶由三部分构成,即菌种名、菌系编号、分离顺序。
第1个字母取自产生该酶的细菌属名,大写 第2,3二个字母取自它来源细菌的种名的头2个字 母,小写 第4个字母代表株,小写 最后用大写罗马数字,代表同一菌株中不同限制 酶的编号

8 个碱基识别位点:NotⅠ GC↓GGCCGC
以上序列中部分字母代表的碱基如下:

R=A或G;Y=C或T;M=A或C;K=G或T;S=C或G;W=A或T H=A或C或T;B=C或G或T;V=A或C或G;D=A或G或T;N=A或C或G或T
特性
限制和修饰活性 内切酶的蛋白结构 限制作用所需要的 辅助因子 宿主特异性识别 切割位点 酶催转换 DNA易位作用 甲基化作用的位点 识别未甲基化的序 列进行切割 序列特异的切割 基因工程中的用途

生物技术课件——基因工程常用工具酶

生物技术课件——基因工程常用工具酶

HO GCA…5’
5’…ACGAATTCGT…3’
T4DNA连接酶 Mg2+,ATP
3’…TGCTTAAGCA…5
反应系统:ATP,Tris-HCl,MgCl2,DTE(二硫赤藓糖醇),ATP, pH7.5,4~15℃
h
28
也可以连接两条平起末端的DNA分子,但反 应速度较慢。
5’…CGAOH
DNA聚合酶在DNA复制时起关键作用。
DNA聚合酶主要有三类:聚合酶Ⅰ(polⅠ)、 聚合酶Ⅱ(polⅡ) ,聚合酶Ⅲ(polⅢ)。其 中聚合酶Ⅰ参与DNA修复,聚合酶Ⅲ参与DNA 复制。聚合酶Ⅰ是基因工程中的常用酶。
h
32
DNA聚合酶Ⅰ在DNh A复制过程中的作用 33
DNA聚合酶Ⅰ和Ⅲ的比较
h
7
2.1.1.2 R-M系统
细菌中存在位点特异性限制酶和特异性甲基化酶,构 成了寄主控制的限制—修饰系统(R-M Restrictionmodification system)。
R-M系统是细菌安内御外的积极措施。细菌R-M系统的 限制酶可以降解DNA,为避免自身DNA的降解,细菌可 以修饰(甲基化酶)自身DNA,未被修饰的外来DNA则 会被降解。
2 基因工程常用工具酶
h
1
基因工程的重要特点之一是在体外实行DNA分子的切 割和重新连接。因此,工具酶是DNA体外操作必不可 少的工具。
取得编码某种药物的目的基因,大多需要工具酶-限 制性核酸内切酶
将目的基因与载体DNA连接在一起,也需要工具酶- DNA连接酶。
目前,许多厂商都在生产各种优质工具酶,简化了分
感染
E.coli k
Phageλ(k)
B 限制 λ(不k感)染』

基因工程常用的工具酶

基因工程常用的工具酶

基因工程常用的工具酶常州工程职业技术学院制药与生物工程技术系生物制药0911 刁亚军学号:2009423134引言:在基因工程的研究和发展过程当中,有许多必不可少的因素影响和制约着基因工程的进展。

本篇综述主要讲述的是基因工程常用的一些工具酶,他们包括限制性内切酶,DNA聚合酶,T4噬菌体DNA连接酶,T4多聚核苷酸激酶,碱性磷酸酶,核酸酶。

这些酶在基因工程中发挥着非常重要的作用。

限制性内切酶限制性核酸内切酶是可以识别DNA的特异序列,并在识别位点或其周围切割双链DNA的一类内切酶,简称限制酶。

根据限制酶的结构,辅因子的需求切位与作用方式,可将限制酶分为三种类型,分别是第一型(Type I)、第二型(Type II)及第三型(Type III)。

Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。

III型限制性内切酶同时具有修饰及认知切割的作用。

限制性内切酶的由来一般是以微生物属名的第一个字母和种名的前两个字母组限制性核酸内切酶成,第四个字母表示菌株(品系)。

例如,从Bacillus amylolique faciens H中提取的限制性内切酶称为Bam H,在同一品系细菌中得到的识别不同碱基顺序的几种不同特异性的酶,可以编成不同的号,如HindII、HindIII,HpaI、HpaII,MboI、MboI等。

限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。

Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。

别名Endodeoxyribonuclease简称限制酶酶反应限制性内切酶能分裂DNA分子在一限定数目的专一部位上。

它能识别外源DNA并将其降解。

单位定义在指明pH与37℃,在0.05mL反应混合物中,1小时消化1μg的λDNA的酶量为1单位。

基因工程中常用的酶

基因工程中常用的酶

分类与用途
分类
根据识别序列的长度和切割位点的特性,限制性内切核酸酶 可分为Ⅰ型和Ⅱ型。Ⅰ型限制性内切核酸酶识别位点较长, 切割位点不规则;Ⅱ型限制性内切核酸酶识别位点较短,切 割位点规则。
用途
限制性内切核酸酶在基因工程中主要用于DNA的克隆、基因 的定位、突变分析等方面。通过限制性内切核酸酶的切割, 可以将DNA片段分离出来,再进行后续的克隆和转化等操作 。
生物制药
在生物制药中,使用DNA 连接酶将药物基因或疫苗 基因插入到载体中,制备 基因药物或基因疫苗。
03
聚合酶
定义与特性
聚合酶
是一种能够催化DNA复制和修复的酶, 通过聚合核苷酸片段,合成新的DNA 链。
特性
聚合酶具有专一性、高效性和耐受性 等特性,能够在特定的模板指导下, 高效地合成DNA链。
分类与用途
分类
根据来源不同,反转录酶可分为天然反转录酶和重组反转录酶。
用途
在基因工程中,反转录酶主要用于将RNA转录为cDNA,以便进行基因克隆、表达和功能研究。
反转录酶的应用案例
基因克隆
通过反转录酶将mRNA转化为 cDNA,再利用限制性内切酶将其 切割成适当大小的片段,进行基 因克隆和测序。
基因工程中常用的酶
• 限制性内切核酸酶 • DNA连接酶 • 聚合酶 • 反转录酶 • 其他常用酶类
01
限制性内切核酸酶
定义与特性
定义
限制性内切核酸酶是一类能够识 别并切割DNA特定序列的酶,是 基因工程中常用的工具酶之一。
特性
限制性内切核酸酶具有高度的特 异性,能够识别并切割DNA中的 特异序列,切割位点通常是DNA 双链中的特定位点。
限制性内切核酸酶的应用案例
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
性内切酶及对其功能研究的突出贡献获得诺贝尔奖金 限制性核酸内切酶(限制酶):在细胞内能够识别双
链DNA分子中的特定核苷酸序列,并对DNA分子进 行切割的一种酶。 功能:降解不同源DNA,而不降解同源DNA。
根据限制性核酸内切酶的限制修饰活性、 相对分子量大小、酶蛋白结构、切割位点 及限制作用所需的辅助因子等,将限制性 核酸内切酶分为三类:I型酶,II型酶,III型 酶。
(DDT:二硫苏糖醇 BSA:牛血清蛋白)
在DNA分子双链的特异性识别序列部位, 切割DNA分子,产生链的断裂。
2个单链断裂部位在DNA分子上的分布, 通常不是彼此直接相对。断裂结果形成的 DNA片段,具有互补的单链延伸末端。
绝大多数的Ⅱ型限制性核酸内切酶都能够 识别由4-8个核苷酸组成的特定的核苷酸序 列。限制性核酸内切酶就是从其识别序列 内切割DNA分子的,因此这些识别序列又叫 核酸内切酶的切割位点或靶序列。
5’-GG CC-3’源自5’-GG- -CC-3’-CC GG-5’
33’’-CC- -GG-5’
5’粘性末端(如EcoR Ⅰ)
5’-GAATTC-3’
5’-G- -AATTC-
3’-CTTAAG-
33’’-CTTAA- -
5’
G-5’
3’粘性末端(如Pst Ⅰ)
同裂酶:来源不同的限制酶识别相同的核 苷酸靶序列。产生同样的切割,形成同样 的末端。 如:HpaⅡ和MspⅠ均可切割C CGG。
同尾酶:来源不同,识别的核苷酸靶序列 也不相同,但切割后DNA分子产生的粘性 末端相同的限制性核酸内切酶。
5’-GGATCC3’
3’-CCTAGG5’ BamHⅠ
5’-TGATCA3’
3’-ACTAGT5’ BclⅠ
5’-AGATCT3’
3’-TCTAGA5’ BglⅡ
BamHⅠ BclⅠ BglⅡ三种酶 可产生相同的5’GATC粘性 末端,由这种同尾酶产生的 DNA片段可因粘性末端的互 补而彼此再连接起来。
识别序列有连续的(如GATC)和间断的(如 GANTC)两种,它们都呈回文结构。
A B C C’ B’
A’

A’ B’ C’ C BA
A B N B’ A’
A’ B’ N’ B A
不同核酸内切酶的特异识别位点
5’…… C T G C A G……3’ 3’ ……G A C G T C ...…5’
2.1.1.1 细菌的限制—修饰作用
1952年,Luria和Human,
1953年,Bertani和Weigle
发现细菌的限制(restriction)现象:
感染

E.coli k
Phageλ(k)

(k)』
不感染
E .coli B『E .coli B 限制 λ
噬菌体侵染细菌
限制性核酸内切酶(restriction endonucleases):简称工具酶,是一类能够识 别双链DNA分子中的某种特定核苷酸序列,并由 此切割DNA双链结构的核酸内切酶。
限制性核酸内切酶主要从原核生物中分离出来。
仅II型限制型核酸内切酶已有2000多种,可以识 别200多个不同的DNA序列。
特性
限制和修 饰活性
识别与切 割位点
Ⅰ型
单一功能
Ⅱ型
单一功能
Ⅲ型
双功能
分别,随机切 割,相距较远
同一位点 相距5-10bp
对基因工 程中意义
无用
非常有用 意义不大
2.1.3 限制性核酸内切酶的命名
Escherichia Coli Ry13
EcoR I
属名 种名 株系 编号 若种名头2个字母相同则其中一个可用种名的第一 和第三个字母。
PstⅠ
5‘…… G A A T T C ……3’ 3’ ……C T T A A G ……5’
EcoR Ⅰ
HindⅢ切割位点
DNA
HindⅢ
AAGCTT TTCGAA
A
B
DNA
C
D
A
AGCT
TT T C G A
A
核酸内切酶HindⅢ对双链DNA分子的切割作用
平齐末端(如SmaⅠ、AluⅠ、HaeⅢ)
R-M系统是细菌安内御外的积极措施。细菌R-M系统 的限制酶可以降解DNA,为避免自身DNA的降解, 细菌可以修饰(甲基化酶)自身DNA,未被修饰的外 来DNA则会被降解。
个别噬菌体在被降解之前已经发生了修饰,则可免予 被降解。
1968 Linn和Arber从E.coli B中发现限制酶Ⅰ 1970 Smith(美)在流感嗜血杆菌发现限制酶Ⅱ 1978 W. Arber,H. O.Smith,Nathans因发现限制
50μL Buffer中,含1μg底物DNA,于最适反应条件 和温度下,保温1小时,能使1μg DNA完全降解所需 的酶蛋白量即为一个酶单位,用U表示。
buffer (pH=8.0) : 50mmol/L Tris-HCl 10mmol/L MgCl2 1mmol/L DTT或巯基乙醇 100μg BSA/ml
世界大型工具酶生产厂商: (1) Novo Nordisk (诺和诺德公司,丹麦) (2) Gist Broccdes(荷兰) (3) Cultot (科特公司,芬兰) (4) Genencor International (杰能科公司,美国) (5) Solvay (苏尔威公司,比利时) (6) Clr Hansen (汉森公司,丹麦) (7) Rhone Ponlene (罗兰,普朗克公司,法国) (8) Quest (荷兰)
基因工程的重要特点之一是在体外实行DNA分子的切 割和重新连接。因此,工具酶是DNA体外操作必不可 少的工具。
取得编码某种药物的目的基因,大多需要工具酶-限 制性核酸内切酶
将目的基因与载体DNA连接在一起,也需要工具酶- DNA连接酶。
目前,许多厂商都在生产各种优质工具酶,简化了分 子克隆操作,拓宽了基因工程的研究领域。
仍有少量phage λ (K)可在 E. coli B中生 存,是因为这些phage对自身进行了修饰。
普通的phage λ (K) 1
10-4(限制作用)
大肠杆菌K
大肠杆菌B
1 修饰的phage λ (K)
细菌中存在位点特异性限制酶和特异性甲基化酶,构 成了寄主控制的限制—修饰系统(R-M Restrictionmodification system)。
相关文档
最新文档