六年级数学上---分数除法的意义和计算法则
小学六年级数学教案分数除法的意义和计算法则教案-最新教学文档
小学六年级数学教案——分数除法的意义和计算法则教案教学目标1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算.2.掌握分数除以整数的计算法则,并能正确的进行计算.3.培养学生分析能力、知识的迁移能力和语言表达能力.教学重点正确归纳出分数除以整数的计算法则,并能正确的进行计算.教学难点正确归纳出分数除以整数的计算法则,并能正确的进行计算.教学过程一、复习引新(一)说出下面各数的倒数.0.3 6(二)已知12645=5670,直接说出567045和5670126的得数,再说说你是怎样想的,根据是什么.(学生回答后教师总结:根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数除法的意义是什么?已知两个因数的积与其中一个因数,求另一个因数的运算.)(三)引新:同学们想不想知道分数除法的意义吗?分数除法如何计算呢?这节课我们就一起来学习分数除法.(板书课题:分数除法的意义和计算法则)二、新授教学(一).教学分数除法的意义(演示课件:分数除法的意义)1.每人吃半块月饼,4个人一共吃多少块月饼?教师提问:半块月饼用分数怎么表示?求4个人一共吃多少块月饼就是求几个?求4个是多少怎样列算式?()2.两块月饼,平均分给4人,每人分得多少块?怎样列式?列式:243.两块月饼,分给每人半块,可以分给几个人?列式:教师提问:说一说结果是多少?你是如何得出结果的?4.组织学生讨论:分数除法的意义.总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算.5.练习反馈.根据:,写出,(二)教学分数除以整数的计算法则1.出示例1.把米铁丝平均分成2段,每段长多少米(演示课件:分数除以整数)(1)求每段长多少米怎样列算式?(2)以小组为单位讨论一下得多少呢?米平均分成2段就是要把6个米平均分成2份,每份是3个米是米.(3)教师板书整理.(米)2.教师质疑:如果把米铁丝平均分成3段、6段怎样计算?也可以这样想:把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求。
六年级上第三单元分数除法
第三单元 分数除法单元目标:1、理解并掌握分数除法的计算方法,会进行分数除法计算。
2、会解答已知一个数的几分之几是多少求这个数的实际问题。
3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。
能够正确地化简比和求比值。
4、能运用比的知识解决有关的实际问题。
单元重点:一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。
单元难点:一个数除以分数的计算法则的推导。
1、 分数除法(1)分数除法的意义和整数除以分数教学目标:1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。
2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。
3、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。
教学重点:使学生理解算理,正确总结、应用计算法则。
教学难点:使学生理解整数除以分数的算理。
教学过程: 一、复习1、复习整数除法的意义(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。
(2)根据已知的乘法算式:5×6=30,写出相关的两个除法算式。
(30÷5=6,30÷6=5) 2、口算下面各题51×3 43×32 83×38 94×43 121×6 115×51二、新授 1、教学例1(1)出示插图及乘法应用题,学生列式计算:100×3=300(克) (2)学生把这道乘法应用题改编成两道除法应用题,并解答。
A 、3盒水果糖重300克,每盒有多重? 300÷3=100(克) B 、300克水果糖,每盒100克,可以装几盒? 300÷100=3(盒)(3)将100克化成101千克,300克化成103千克,得出三道分数乘、除法算式。
六年级数学上册第3课分数除法必备知识点
六年级数学上册3 分数除法必备知识点一、分数除法的意义分数除法实际上是“分数的除法运算是分数乘法的逆运算”。
即,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法的计算法则1.分数除以整数:分母不变,如果分子是整数的倍数,则用分子除以整数,商写在分子上。
分子不是整数的倍数时,这个除法可以写成“分数乘以这个整数的倒数”。
2.一个数除以分数:等于这个数乘以分数的倒数。
三、分数除法的简便运算1.约分:在计算过程中,能约分的要约分,以提高计算效率。
2.利用倒数:将除法转化为乘法,利用乘法的交换律、结合律进行简便运算。
四、分数除法的应用1.解决实际问题:分数除法常用于解决涉及比例、分率等问题的实际应用,如工程问题、行程问题等。
2.比较大小:通过分数除法,可以比较两个分数(或小数)的大小。
五、典型题型与解题技巧1.基本题型:分数除以整数整数除以分数分数除以分数2.解题技巧:明确除法的意义,将其转化为乘法。
确定计算顺序,先约分后计算。
检查结果,确保答案的准确性。
六、注意事项1.除数不能为0:与整数除法相同,分数除法中除数(或分数的分母)不能为0。
2.结果的化简:计算后得到的分数结果需要化简到最简形式。
3.理解题意:在应用分数除法解决实际问题时,要准确理解题意,确定正确的数学模型。
七、示例1.计算2÷4:3方法一:23÷4=23×14=212=16。
方法二:23÷4=23×4=212=16。
2.计算5÷34:方法:5÷34=5×43=203=623。
通过以上知识点的学习和练习,你可以掌握分数除法的基本概念和计算方法,并能够运用它来解决实际问题。
人教版六年级上册数学第3单元 分数除法 小学六年级 第三单元《分数除法》知识总结
《分数除法》知识总结1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法:把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1、填空 (1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是51,这个数是多少? (2)51的61是多少? 3.看图列式计算。
? ? ? ?811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0. 练习:1.算一算4851625÷44392213÷ 1427277⨯ 210÷ 2.填空。
(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
3.判断。
(1)两个真分数相除,商大于被除数。
《分数除法的意义和分数除以整数的计算法则》分数除法
《分数除法的意义和分数除以整数的计算法则》分数除法分数除法是数学中重要的概念之一,它可以帮助我们解决很多实际问题。
在本文中,我将解释分数除法的意义以及分数除以整数的计算法则。
首先,让我们明确分数的含义。
分数是指一个数被另一个数除所得的商。
它由一个分子和一个分母组成,分子表示被除数,分母表示除数。
例如,对于分数2/3,2是分子,3是分母。
分数除法的意义是将一个分数除以另一个分数得到的商。
这样做的目的是在数学上解决实际问题,如比例比较、比例扩展、数字关系等。
分数除法的结果通常是一个新的分数,但在特定情况下,它也可以是一个整数,如1/2÷1/4=2当我们要计算一个分数除以一个整数时,有以下几个步骤:1.将整数转化为分数:将整数的分母设置为1,分子设置为整数的值。
例如,将整数3转化为分数3/12.将分数除法转化为乘法:将除法转化为乘法的方法是将被除数乘以除数的倒数。
例如,分数2/3除以整数3可以转化为2/3乘以1/3的倒数,即2/3×1/3=2/93.简化分数:如果结果是一个分数,我们可以进一步简化它。
简化分数的方法是找到分子和分母的最大公约数,并将它们都除以最大公约数。
例如,对于分数2/9,最大公约数是1,所以它已经简化到最简分数。
除了上述基本步骤之外1.分母为0的情况:分数的分母不能为0,因为除以0是没有意义的。
2.两个分数相除:两个分数相除时,我们需要先求出它们的倒数,然后再进行乘法运算。
例如,分数3/4除以分数5/6可以转化为3/4乘以6/5的倒数,即3/4×6/5=18/20。
3.整数除以分数:整数除以分数时,我们需要将整数转化为分数,并按照上述步骤进行计算。
例如,将整数3除以分数2/3可以转化为3/1除以2/3,然后按照乘法的规则进行计算。
综上所述,分数除法是一种重要的数学运算方法,它可以帮助我们解决实际问题。
当我们计算分数除以整数时,可以将整数转化为分数,然后按照乘法的规则进行计算。
分数除法的意义和计算方法
分数除法的意义和计算方法分数除法的意义和计算方法一、引言分数是数学中非常重要且常见的概念,它包含了整数以及小数的一部分,可以表示出更精确的数值。
而分数除法作为数学运算中的一种基本运算,具有重要的意义。
本文将从两个方面来探讨分数除法的意义和计算方法。
二、分数除法的意义1. 精确表示分数除法可以将两个数的比例精确地表示出来。
例如,如果有10个苹果需要平均分给5个人,那么我们可以通过10除以5得到2,即每个人可以分到2个苹果。
而这个结果可以通过分数除法来表示,即10除以5等于10/5,表示每个人可以分到10的1/5,也就是2个苹果。
2. 比较大小分数除法还可以方便地比较两个数的大小。
我们可以将两个分数进行比较,从而得出它们的大小关系。
例如,若需要比较1/2和1/4的大小,我们可以通过进行分数除法计算。
将1/2除以1/4得到2,即1/2大于1/4。
这说明分数除法不仅能用于求精确结果,还可以方便地比较大小。
3. 应用于实际问题分数除法在解决实际问题中也有着广泛的应用。
例如,如果有一块地,其中1/3的面积是用来种花的,而1/4的面积是用来种果树的,那么我们可以通过分数除法计算出种花地和种果树地的比例,进而判断出种花地和种果树地的大小关系。
三、分数除法的计算方法1. 基本计算法则分数除法的计算方法可以通过将除法问题转化为乘法问题来解决。
具体方法是将除数的倒数乘以被除数,即将除号变为乘号。
例如,计算2/3 除以1/4,我们可以将其转化为2/3 乘以4/1,最终结果为8/3。
2. 取倒数法分数除法也可以通过取倒数的方式来计算。
具体方法是将除数的分子与分母交换位置。
例如,计算2/3 除以1/4,我们可以将1/4的分子与分母交换位置得到4/1,然后将2/3与4/1进行乘法运算,最终结果为8/3。
3. 变分数法如果除数是一个整数,可以使用变分数法来进行计算。
具体方法是将整数变为分数,分子为该整数,分母为1。
例如,计算4 除以2,我们可以将4变为4/1,然后将4/1与2进行乘法运算,最终结果为8/1。
最新人教版六年级数学上册《分数除法》知识点总结
分数除法1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1、填空(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。
811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0. 练习:1.算一算4851625÷ 44392213÷ 1427277⨯210÷ 2.填空。
(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
3.判断。
(1)两个真分数相除,商大于被除数。
(2)一个数除以假分数,商一定小于被除数。
六年级上册数学第三单元分数除法知识点归纳
六年级上册数学第三单元分数除法知识点归纳一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例÷3= × = 3÷ =3×=52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
【研究院】[2017]人教版同步教参数学六年级上册——分数除法:分数除法运算(学生版)
第三章分数除法2.分数除法运算【知识梳理】一、分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
二、分数除法的计算方法1.分数除以整数的计算方法分数除以整数(0除外)等于分数乘这个整数的倒数。
2.一个数除以分数的计算方法一个数(可以是整数、分数,也可以是小数)除以分数,等于这个数乘分数的倒数。
3.分数除法的统一计算法则一个数除以一个不等于0的数,等于乘这个数的倒数。
4.商与被除数的大小关系小于1的数(0除外),商大于被除数。
一个数(0除外)除以 1,商等于被除数。
大于1的数,商小于被除数。
三、分数四则混合运算1.含有括号的分数四则混合运算和分数连除的运算顺序(1)含有括号的分数四则混合运算的运算顺序与含有括号的整数四则混合运算的运算顺序相同,即先算括号里面的,再算括号外面的。
(2)分数连除的运算顺序:与整数连除的运算顺序相同,都是按照从左到右的顺序计算。
(3)分数连除也可以根据分数除法的计算方法直接转化成分数连乘,再约分计算。
2.不含括号的分数四则混合运算的运算顺序如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算乘除法,再算加减法。
3.整数的运算定律或运算性质在分数混合运算中的运用在进行分数混合运算时,可以运用加法、乘法的运算定律或减法、除法的运算性质,使计算简便。
加法交换律:a+b=b+a加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)×c=ac+bc减法性质:a-b-c=a-(b+c)除法性质:a ÷b ÷c=a ÷(b ×c)【诊断自测】1.填空。
(1)根据2510=3721 写出两道除法算式:( )和( )。
(2)67÷2是把( )平均分成( )份,每份是( ),也就是求( )的()是多少。
(3把310米长的绳子平均分成3份,每份是全长的( ),每份长( )米。
新苏教版六年级上册数学-分数除法知识题型归纳总结
新苏教版六年级上册数学-分数除法知识题型归纳总结分数除法(一)知识梳理1、分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:甲数除以乙数(除外),等于甲数乘乙数的倒数。
模块一分数除以整数例1:一个货物有48吨,每次运走40吨,运了5次,还剩下53吨,问平均每次运走这堆货物的几分之几?照这样计算,14次一共运走这堆货物的几分之几?例2:小明用6分钟从1楼跑到6楼,问小明平均每上一层楼需要几分钟?例3:一块菜地有7公顷,现在要将这块菜地平均分成4份种不同的蔬菜,每种蔬菜占地多少公顷,列式是(12÷4)=3,每种蔬菜占地3公顷。
变式2:一个正方体的棱长总和是12米,这个正方体的棱长是多少米?设正方体的棱长为x,则有4x=12,x=3,所以正方体的棱长是3米。
变式1:如果m、n都是不为0的自然数,请比较(m÷n)和(n÷m)的大小。
因为(m÷n)×(n÷m)=1,所以(m÷n)和(n÷m)互为倒数,由于倒数的大小关系与原数的大小关系相反,所以当m(n÷m);当m>n时,有(m÷n)<(n÷m)。
模块二整数除以分数例4:一台拖拉机每小时耕地2公顷,要耕完2公顷地需要(2÷2)=1小时。
某工程队30天修了一段地铁的(30÷5)=6次,平均每天修(5÷6)=5/6次,(5÷6)天可以修完。
例5:某化工厂生产了25吨化肥,如果每1吨装一袋,这些化肥能装多少袋?25÷1×20=500,这些化肥能装500袋。
例6:一个同学在做题时,粗心大意,把除数看成35,得到的商是18,那么正确的商是多少?由于商和除数的乘积等于被除数,所以正确的商是53÷35=1余18.变式4:食堂运来6吨煤,每天要用(6÷5)=1.2吨,可以用几天?可以用5天。
六年级数学上学期--分数除法的意义与计算
一对一辅导教案学生姓名性别 年级 小六 学科 数学 授课教师上课时间 年 月 日 第()次课 共()次课 课时:3课时 教学课题 分数除法的意义与应用教学目标 (1)使学生理解分数除法的意义,正确计算分数除法的算式题(2)掌握分数除法在实际问题中的应用。
教学重点与难点分数除法的计算法则,分数除法在实际问题中的应用。
教学过程知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例题1:(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
例题2:列式计算。
(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?例题3:看图列式计算。
? ? ? ?811知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
例题1: (1)1427277⨯ (2)537327723÷÷ (3) 4851625÷(4)210÷ (5)92÷72÷1514例题2:(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.例题3:判断。
苏教版六上数学分数除法知识点归纳
苏教版六上数学分数除法知识点归纳(1)分数除法的意义和分数除以整数➢知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
➢知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
(2)一个数除以分数➢知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
➢知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
➢知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.(3)分数除法的混合运算➢知识点一:分数除加、除减的运算顺序除加、除减混合运算,如果没有括号,先算除法,后算加减。
➢知识点二:连除的计算方法分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
➢知识点三:不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
➢知识点四:含有括号的分数混和运算的运算顺序在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
➢知识点五:整数的运算定律在分数混和运算中的运用在进行分数的混和运算中,可以利用加法、减法、乘法、除法的运算定律或运算性质,使计算简便。
分数乘除法对比练习题1、直接写出得数:2、下面各题怎样简便怎样算:47 ÷32 +47 ÷3 (1-21-41)÷8112÷(1+31-65) 52×4÷52×4 43-43÷3+53 5-23×2110-72524 ×12 = 6×524 = 49 ×2710 = 23 +34 = 225 ×56= 72÷89 = 617 -1351 = 56 ÷12= 1320 ÷91100 = 78 ÷47 = 14 ×15 ×10= 34 -(17 -14 )= 130 ÷15 ÷15 = =215647 ×1522 ×712 12×( 1112 - 348 ) 910 ×1317 +910 ×4171113 -1113 ×1333 36×937 926 ÷ 813 ×8271639 ÷914 +1639 ×49 ( 94 - 32 )× 83 ( 38 -0.125)×413。
最新版六年级数学上册第三单元小学六年级分数除法知识总结(整理版)
最新版六年级数学上册第三单元分数除法1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1.填空(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。
811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.练习:1.算一算4851625÷ 44392213÷ 1427277⨯ 210÷2.填空。
(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
4.判断。
(1)两个真分数相除,商大于被除数。
人教版六年级上册数学《分数除法》知识点+练习解析
《分数除法》知识点1.分数除法计算(1)分数除法的意义和分数除以整数知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
(2)一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数。
除以1,商等于被除数。
除以大于1的数,商小于被除数。
0除以任何数商都为0.(3)分数除法的混合运算知识点一:分数除加、除减的运算顺序例:8÷-4=8×-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法例:÷÷分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
填空练习1()()()()()。
考查目的:进一步强化对倒数概念的理解,熟练掌握求一个数的倒数的方法。
答案:,,,1,。
解析:引导学生通过审题明确意图,先找出最简单的共同结果“1”。
该题分别考查了求分数、整数、小数的倒数,1的倒数,以及用代数式表示互为倒数的关系等知识。
2既可以表示已知两个因数的积是(),其中一个因数是(),求另一个因数的运算;还可以表示已知一个数的是(),求这个数。
考查目的:对分数除法意义的理解。
答案:5,;,5。
解析:将除法的意义和解决问题的数量关系有机地结合在一起,对于加深理解、深化知识间的联系具有重要作用。
六年级上册数学分数除法讲解
六年级上册数学分数除法讲解一、分数除法的意义。
1. 与整数除法意义相同。
- 分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
- 例如:如果(3)/(4)×(2)/(3)=(1)/(2),那么(1)/(2)÷(3)/(4)=(2)/(3),这里就是已知积(1)/(2)和其中一个因数(3)/(4),求另一个因数(2)/(3)。
二、分数除法的计算方法。
1. 分数除以整数。
- 计算法则:分数除以整数(0除外),等于分数乘这个整数的倒数。
- 例如:(4)/(5)÷2=(4)/(5)×(1)/(2)=(4×1)/(5×2)=(2)/(5)。
- 推导过程:把(4)/(5)平均分成2份,求每份是多少,也就是求(4)/(5)的(1)/(2)是多少,所以(4)/(5)÷2=(4)/(5)×(1)/(2)。
2. 一个数除以分数。
- 计算法则:一个数除以分数,等于这个数乘分数的倒数。
- 例如:(2)/(3)÷(4)/(5)=(2)/(3)×(5)/(4)=(2×5)/(3×4)=(5)/(6)。
- 推导过程:- 我们可以通过画线段图来理解。
假设一个整体为单位“1”,(4)/(5)表示把单位“1”平均分成5份,取其中的4份。
(2)/(3)÷(4)/(5)的意义就是已知一个数的(4)/(5)是(2)/(3),求这个数。
- 从分数乘法的角度看,这个数乘(4)/(5)等于(2)/(3),那么这个数就等于(2)/(3)除以(4)/(5),也就是(2)/(3)乘(5)/(4)。
3. 分数除法的统一计算法则。
- 无论是分数除以整数,还是一个数除以分数,都可以统一为:除以一个不为0的数,等于乘这个数的倒数。
三、分数除法的应用。
1. 已知一个数的几分之几是多少,求这个数。
人教版六年级上册《分数除法的意义和计算法则》数学教案
米铁丝平均分成 4 段每段长多少米?怎样计
为什幺采用转化成分数乘法这种方法比较好呢?
幸福像花儿一样,学习像溪水一般
好好学习,天天向上
组织学生观察 在转变中,什幺变了,什幺没变?讨论分数除以整数的计 算法则.
4.学生边概括教师边板书:分数除以整数(0 除外)等于分数乘以这个整 数的倒数.
好好学习,天天向上
总结:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与 其中一个因数,求另一个因数的运算.
5.练习反馈.
根据: 写出 ,
(二)教学分数除以整数的计算法则
1.出示例 1.把 米铁丝平均分成 2 段,每段长多少米(演示课件:分数 除以整数)
(1)求每段长多少米怎样列算式?
0.3 6
(二)已知 126 45=5670,直接说出 5670 45 和 5670 126 的得数,再说说 你是怎样想的,根据是什幺. (学生回答后教师总结:根据整数除法的意义, 不用计算就能知道这两题的结果,谁还记得整数除法的意义是什幺?已知两 个因数的积与其中一个因数,求另一个因数的运算. )
好好学习,天天向上
人教版六年级上册《分数除法的意义和计算法则》数 学教案
人教版六年级上册《分数除法的意义和计算法则》数学教案
1.使学生理解分数除法的意义与整数除法的意义相同,就是已知两个因
数的积与其中一个因数,求另一个因数的运算.
2.掌握分数除以整数的计算法则,并能正确的进行计算.
3.培养学生分析能力、知识的迁移能力和语言表达能力.
幸福像花儿一样,学习像溪水一般
好好学习,天天向上
2.两块月饼,平均分给 4 人,每人分得多少块?怎样列式?
列式:2 4
3.两块月饼,分给每人半块,可以分给几个人?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数除法的意义和计算法则
学生姓名___________学科_________年级_____________
教师姓名___________平台_________上课时间_____________
1.通过对整数除法和分数除法的类比,理解分数除法的意义和计算法则
2.通过对学生的视觉刺激,促进学生对分数除法的意义和计算法则的有效记忆
3.通过视觉类比法,引导学生建构学科知识体系,激发解决相关问题的潜能
(25分钟)
回顾旧知识
(一)说出下面各数的倒数.
0.3 6
(二)已知126×45=5670,直接说出5670÷45和5670÷126的得数,再说
说你是怎样想的,根据是什么.
根据整数除法的意义,不用计算就能知道这两题的结果,谁还记得整数
除法的意义是什么?
已知两个因数的积与其中一个因数,求另一个因数的运算.)
标注出关键词,包括:数字字母、公式
探索新知识
2.两块月饼,平均分给4人,每人分得多少块?怎样列式?3.两块月饼,分给每人半块,可以分给几个人?
(二)教学分数除以整数的计算法则
1.把米铁丝平均分成2段,每段长多少米?
2.如果把米铁丝平均分成3段、6段怎样计算?
也可以这样想:
把米铁丝平均分成3段,就是求米的是多少,列式是:把米铁丝平均分成6段,就是求米的是多少,列式是:3.如果把米铁丝平均分成4段每段长多少米?怎样计算?
(米)
标注出关键词,包括:数字字母、公式
(老师写出新知识)
分数除法的意义:
已知两个因数的积和其中一个因数,求另一个因数的运算。
分数除法的计算法则:
一个数除以分数,等于乘以另一个分数的倒数,然后再按照分数乘法的法则进行计算,注意能约分的要先约分再计算
(15分钟)
至少2个例题
(15分钟)
练习题与例题知识点内容、难度、题型匹配
点评_________________________________________________________________________
点评_________________________________________________________________________三、判断。
1.分数除法的意义与整数除法的意义相同.()
2.已知两个分数的积与其中一个分数,求另一个分数,用除法解答.()3.()
4.()
至少2个习题
(5分钟)打印版和手写版,每个不少于3行
(20分钟)
(一)计算下面各题.
(二)解下列方程.
注:
1.原则上,所有知识点均需用类比模板呈现,如遇到不易用类比关系讲解的知识,可用对比关系模板;
2.用类比关系讲解出新知识,新知识顺带的知识点可以直接呈现。
观往知来 4
617 310 6
1 5670÷45=126 5670÷126=45 记忆再现 一、
1、× × × × × × × × × × × ×
二、 0 54 101 4
3 三、
1、23 71
0 1 2、114 91 5
7 1
3、5 10
4、1
5、6
6
1 四、
C B C (2) 五、
< > < < > < 小于 大于 等于
追踪演练 一、 1、
1076
5
2、49 154
3、6 61
4、272÷31=92 272÷92=3
1
二、
1、1603 225 512 23 3
7
2、24 214 4 8
9
三、
√ √ √ × 任务A
互为倒数 交换位置 倒数 乘以 倒数 乘以 倒数 任务B
(一)72 61 107 643 (二)101 152 503 45
4。