自然数的整除

合集下载

数的整除

数的整除

数的整除性质、特征【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:1、能被2整除的数:个位数能被2整除,则这个数就能被2整除。

如个位上是2、4、6、8、0的数都能被2整除。

2、每一位上数字之和能被3整除,那么这个数就能被3整除。

3、最后两位能被4整除的数,这个数就能被4整除。

4、个位上是0或5的数都能被5整除。

5、一个数只要能同时被2和3整除,那么这个数就能被6整除。

6、把个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

另外,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是7的倍数,则原数能被7整除。

7、最后三位能被8整除的数,这个数就能被8整除。

8、每一位上数字之和能被9整除,那么这个数就能被9整除。

9、若一个整数的末位是0,则这个数能被10整除。

10、若一个整数的奇位数字之和与偶位数字之和的差值能被11整除,则这个数能被11整除。

另外1,把个位数字截去,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。

另外2,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是11的倍数,则原数能被11整除.12、若一个整数能被3和4整除,则这个数能被12整除。

13、若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

另外,把末三位数字截去,再从余下的数中减去截去的末三位数,如果差是13的倍数,则原数能被13整除.14、若一个整数能被2和7整除,则这个数能被14整除。

小升初数学总复习知识梳理数的整除(附答案)

小升初数学总复习知识梳理数的整除(附答案)

小升初总复习数与代数第一单元数的认识第2节数的整除知识梳理典例精讲【例1】把自然数A和B分解质因数后分别是A=2×3×11×m,B=2×3×7×m。

A、B两数的最大公因数是78,这两个数的最小公倍数是多少?【分析】这里要明白最大公因数和最小公倍数的意义,A、B两数的最大公因数就是这两个数的全部公有的质因数的积,也就是2×3×m;A、B两数的最小公倍数就是这两个数的全部公有质因数及各自独有质因数的积,也就是2×3×m×11×7.根据两个数的最大公因数是78,求出m的值,本题便迎刃而解。

【解】因为2×3×m=78,所以m=78÷2×3=13,因此2×3×m×11×7=78×11×7=155。

答:这两个数的最小公倍数是155.即时演练1.25和30的最大公因数是(),最小公倍数是()。

2. 把自然数A和B分解质因数后分别是A=2×3×m,B=2×7×m。

A、B两数的最大公因数是22,这两个数的最小公倍数是多少?3.两个数的最小公倍数是150,最大公因数是15.这两个数分别是()和()。

【例2】有一些糖果,如果把6个装一包少1个;如果8个装一包也少一个;如果把5个装一包还是少一个。

这些糖果至少有多少个?【分析】这些糖果,把6个装一包少1个说明糖果的总个数比6的倍数少1个;8个装一包也少一个说明糖果总个数比8的倍数少1个;把5个装一包还是少一个说明糖果的总个数比5的倍数少1个。

所以这些糖果的总个数比5、6、8的公倍数少1,这里求至少有糖果多少个,就是求比5、6、8的最小公倍数少1的数。

【解】5、6、8的最小公倍数是120.120-1=119(个)答:这些糖果至少有119个。

1.数的整除性

1.数的整除性

数的整除性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被5整除的数,个位上的数都能被5整除(即个位为0或5)那么这个数能被5整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。

例1在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被9整除?234,789,7756,8865,3728,8064。

例2从0,2,5,7四个数字中任选三个,组成能同时被2,5,3整除的数,并将这些数从小到大进行排列。

例3六位数是6的倍数,这样的六位数有多少个?例4要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?1、能被3整除的最小三位数是(),能被5整除的最大三位数是()2,又能被3整除,而且还是5的倍数的最小三位数是()3、在自然数中,()既不是质也不是合。

既是奇数又是质数的最小的数是(),()既是质数又是合数。

4、用三个一位质数组成能同时被3和5整除的三位数,最大的是(),最小的数是()。

4、自然数a除以自然数b,商是15,那么a和b的最大公约数是()。

5、三个质数的最小公倍数是42,这三个质数是()。

6、100以内同时能被3和7整除的最大奇数是(),最大偶数是()。

1.6539724能被4,8,9,24,36,72中的哪几个数整除?2.个位数是5,且能被9整除的三位数共有多少个?3.一些四位数,百位上的数字都是3,十位上的数字都是6,并且它们既能被2整除又能被3整除。

自然数的整除性质(全)

自然数的整除性质(全)

若一个整数的末两位与三倍的前面的隔出数的差能被97整除,则这个数能被97整除。
(4)如果整数a能被自然数c整除,那么a的倍数(整数倍)也能被c整除
(5)如果a、b、c这三个数中,a能被b整除,b又能被c整除,那么a一定能被c整除(这是整除的传递性).
(6) 若一个数能同时被a、b整除,则这个数能被ab整除
若一个整数的末n位能被2^n整除,则这个数能被2^n整除(n=1,2,3,……)
若一个整数的末一位的4倍与前面的隔出数的差能被41整除,则这个数能被41整除。
若一个整数的末三位的4倍与前面的隔出数的和能被43整除,则这个数能被43整除。
若一个整数的末两位的8倍与前面的隔出数的和能被47整除,则这个数能被47整除。
若一个整数的末两位的9倍与前面的隔出数的差能被53整除,则这个数能被53整除。
末三位的三位数能被125整除,则原数是125的倍数.
======================================================================================
若一个整数的末两位的4倍与前面的隔出数的和能被19整除,则这个数能被19整除。
若一个整数的各位数字和能被3整除,则这个整数能被3整除。
若一个整数的末位是0或5,则这个数能被5整除。
若一个整数的末三位与前面的隔出数的差能被7整除,则原数能被7整除。如果差太大或心算不易看出,就需要继续上述“截尾、倍大、相减(加)、验证”的过程,直到能清楚判断为止。(以下同理)
若一个整数的末四位与前面的隔出数的差能被73整除,则这个数能被73整除。
若一个整数的末一位的8倍与前面的隔出数的和能被79整除,则这个数能被79整除。

数的整除特征

数的整除特征

数的整除性质主要有:(1)若甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)若两个数能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)几个数相乘,若其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除.(4)若一个数能被两个互质数中的每一个数整除,那么这个数也能被这两个互质数的积整除。

(5)若一个数能被两个互质数的积整除,那么这个数也能分别被这两个互质数整除。

(6)若一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(7)个位上是0、2、4、6、8的数都能被2整除.(8)个位上是0或者5的数都能被5整除.(9)若一个整数各位数字之和能被3(或9)整除,则这个整数能被3(或9)整除。

(10)若一个整数末尾两位数能被4整除,则这个数能被4整除.(11)若一个整数末尾三位数能被8整除,则这个数能被8整除。

(12)若一个整数各位数字之和能被9整除,则这个整数能被9整除.(13)一个三位以上的整数能否被7(11或13)整除,只须看这个数的末三位数字表示的三位数与末三位数字以前的数字所组成的数的差(以大减小)能否被7(11或13)整除(14)末位数字为零的整数必能被10整除(15)另外,一个整数的奇数位数字和与偶数位数字和的差如果是11的倍数,那么这个整数也是11的倍数。

(一个整数的个位、百位、万位、…称为奇数位,十位、千位、百万位……称为偶数位.)(16)至于6和12的整除特性,通过以上的原则判断即可:各位数之和能被3整除的偶数能被6整除;各位数之和能被3整除且末两位数字组成的两位数能被4整除的整数能被12整除。

(17)能被7整除的数的特征:若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果数字仍然太大不能直接观察出来,就重复此过程。

方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推.方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。

数的整除知识点总结

数的整除知识点总结

一. 数的分类第一种分法 : 树状图 韦恩图整数第二种分法 整数第三种分法: 正整数一些关于数的结论:是最小的自然数,-1是最大的负整数,1是最小的正整数2.没有最大的整数,没有最小的负整数,没有最大的正整数3.正整数、负整数、整数的个数都是无限的二.整除1.整除定义概念:整数a 除以整数b,如果除得的商是整数而余数为零,我们就说a 能被b 整除;或者说b 能整除a注意点:一定要看清楚谁被谁整除或谁整除谁,这里的a相当于被除数,b 相当于除数2.整除的条件:1.除数、被除数都是整数2.被除数除以除数,商是整数而且余数为零注意点:区分整除与除尽:整除是特殊的除尽如正方形是特殊的长方形一样,即a 能被b 整除,则a 一定能被b 除尽,反之则不一定即a 能被b 除尽,则a 不一定能被b 整除;如4÷2=2, 4既能被2除尽,也能被2整除;4÷5=, 4能被5除尽,却不能说4能被5整除三.因数与倍数1.因数与倍数的定义:整数a能被整数b整除,a 就叫做b的倍数,b就叫做a的因数约数;注意点:1.因数和倍数是相互依存的,不能简单的说某个数是因数,某个数是倍数;如:6÷3=2,不能说6是倍数,3是因数;要说6是3的倍数,3是6的因数;2.因数与倍数是建立在整除的基础上的,所以如4÷=20,一般是不说4是的倍数,是4的因数;2.因数与倍数的特点:一个整数的因数中最小的因数是1,最大的因数是它本身;一个数的倍数中最小的倍数是这个数本身,没有最大的倍数;因数的个数是有限的,都能一一列举出来,倍数的个数是无限的;3.求一个数因数的方法:利用积与因数的关系一对一对找,找出哪两个数的乘积等于这个数,那么这两个数就是这个数的因数;如16=1×16=2×8=4×4,那么16的因数就有1、2、4、8、16,计算时一定不要忘了1和这个数本身都是它的因数,注意按照一定的顺序以防遗漏;4.求一个数倍数的方法:这个数本身分别乘以1、2、3、4、5……即正整数得到的积就是这个数的倍数;若用n表示所有的正整数,则2的倍数可表示为2n, 5的倍数可表示为5n四.能被2、5、3整除的数的特点1.能被2整除的数即2的倍数个位上的数字是0、2、4、6、8,反之,个位上的数字是0、2、4、6、8的数也能被2整除2.能被5整除的数即5的倍数个位上的数字是0、5,反之,个位上的数字是0、5的数都能被5整除3.能被3整除的数即3的倍数各个位数上的数字之和是3的倍数,反之,各个位数上的数字之和是3的倍数的数都能被3整除4.能被2、5同时整除的数的个位数字都是0,个位数字为0的数也能被10整除,能被10整除的数一定能被2或5其中的一个或两个同时整除;五.奇数、偶数1.奇数与偶数的定义:能被2整除的整数叫做偶数,不能被2整除的整数叫做奇数;按照能否被2整除来划分奇数与偶数2.奇数个位数上的数的特点:1、3、5、7、9偶数个位数上的数的特点:0、2、4、6、83.在连续的正整数中除1外,与奇数相邻的两个数是偶数,与偶数相邻的两个数是奇数4.相邻的奇数或偶数数字相差2,奇数可用2n-1或2n+1表示,偶数可用2n表示;5.奇数与偶数加法和乘法的运算特点奇数+奇数=偶数偶数+偶数=偶数奇数+偶数=奇数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数利用此结论可检验一些运算是否正确,同时也要注意结论的逆向运用,如偶数奇数可拆成哪些奇数或偶数的和、积六.素数、合数1.素数与合数定义:一个正整数如果只有1和它本身两个因数,这样的数叫做素数质数,如果除了1和它本身以外还有别的因数,这样的数叫做合数;注意点:1.素数与合数的分类方法是根据它们因数的个数来分的,素数只有2个因数1和本身,合数至少有三个因数;任何一个数除1外都有1和它本身两个因数;2. 1既不是素数也不是合数;3.最小的素数是2,最小的合数是42.素数与奇数的联系和区别奇数不一定都是素数;√1既不是素数也不是合数,9、15等是奇数但是合数所有素数都是奇数; ×2是素数,但2是偶数3.合数与偶数的联系与区别合数不一定都是偶数;√9、15等都是合数,但它们是奇数偶数都是合数; ×2是偶数但2是素数注意:判断题对的要说明原因,错的要举出反例;七.素因数与分解素因数1.素因数与分解素因数的定义:每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数;把一个合数用素因数相乘的形式表示出来,叫做分解素因数;注意:1.求一个数的素因数时,先把这个数分解素因数,有几个素因数就写几个;如24=2×2×2×3,则素因数是2、2、2、3,而不是2、32.因数与素因数的区别:因数可以是素数或合数,素因数一定是素数;一个数的素因数一定是这个数的因数,因数的个数一定比素因数的个数多;2.分解素因数的方法树枝分解法:过程中注意不要漏写乘号,分解要彻底,直到没有合数出现,也不能出现1.要分解的合数写在等号左边,把它的素因数用相乘的形式写在等号右边,再把这几个素因数按从小到大的顺序排列;短除法:1.先用一个能整除这个合数的素数去除通常从最小的开始,偶数肯定先用2除,奇数一般从3开始一个个带入验算2.得出的商如果是合数,再按照上面的方法继续除下去,直到得出的商是素数为止;3.然后把各个除数和最后的商按从小到大的顺序写成连乘的形式;3.由一个数分解素因数求这个数的因数12=2×2×3,素因数是2、2、3,除1外由单个的素因数组成因数有2、3,由两个素因数组成的因数有2×2=4,2×3=6,由三个素因数组成的因数有2×2×3=12,所以12的因数有1、2、3、4、6、12.4. 由一个数分解素因数求这个数因数的个数1所有素因数都相同时,因数的个数是它素因数的个数+1,如8=2×2×2,素因数是2、2、2,则8的因数的个数是它素因数的个数+1,即4个2素因数不完全相同时,因数的个数是每个素因数个数+1后相乘的积,如12=2×2×3,素因数2的个数是2,素因数3的个数是1,则12的因数的个数是2+1×1+1=6八.公因数与最大公因数1.公因数与最大公因数定义:几个数公有的因数,叫做这几个数的公因数,其中最大的一个叫做这几个数的最大公因数.2.互素定义:如果两个整数只有公因数1,那么称这两个数互素;如8和9注意:互素是两个数之间,素数是指一个数,互素的两个数的最大公因数就是1.两个互素的数未必都是素数; √8和9互素,但8和9都是合数两个不同的素数一定互素. √若缺少“不同的”,则错,因为3和3都是素数但不互素3. 求两个数最大公因数的方法:1 一般方法:写出两个数所有的因数,再找出它们共同的最大的因数2 分解素因数的方法:把这两个数分解素因数,再找出相同的素因数,把它们所有的公有的素因数相乘,所得的积就是它们的最大公因数;3 短除法:先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最大公因数就是左侧的除数的乘积. 类比用短除法分解素因数的方法4. 两个整数中,如果某个数是另一个数的因数,那么这个数就是这两个数的最大公因数;如果这两个数互素,那么它们的最大公因数就是1.九.公倍数和最小公倍数1.公倍数与最小公倍数定义:几个整数公有的倍数叫做它们的公倍数,其中最小的一个叫做它们的最小公倍数.2.求两个数最小公倍数的方法:1一般方法:从小到大分别依次写出几个这两个数的倍数,再找出它们共同的最小的倍数2分解素因数的方法: 把这两个数分解素因数,再找出相同的素因数,再取各自剩余的素因数,将这些数连乘所得的积,就是这两个数的最小公倍数.3短除法: 先用这两个数公有的素因数去除一般从最小的素因数开始,得出的商如果是合数,再按照上面的方法继续除下去,直到两个数互素为止,这两个数的最小公倍数就是左侧的除数与底部商的乘积.注意点:1.用短除法求两个数的最大公因数和最小公倍数时,过程都相同,只是最后写结论时注意需要乘哪些数.2.求两个数的最大公因数和最小公倍数,先判断这两个数是否存在因数倍数关系或互素关系,存在因数倍数关系时,最大公因数就是较小的那个数,最小公倍数就是较大的那个数;两数互素时,最大公因数就是1,最小公倍数就是它们的乘积.3.两个整数的公倍数一定能被这两个数整除.十.求三个整数的最大公因数和最小公倍数拓展1求三个整数的最大公因数:同样也是三种方法,只需找出三个数共同的因数,最大的因数就是最大公因数.注意与三个数的最小公倍数区分2求三个整数的最小公倍数:一般方法:写出三个数的倍数,再找出最小公倍数.分解素因数法:分别分解素因数,先找出三个数共同的素因数,再找出每两个数公有的素因数,再取各自剩余的素因数,把这些素因数连乘所得的积就是这三个数的最小公倍数.短除法:先用三个数公有的素因数去除直到三个数没有公有的素因数,再用其中两个数公有的素因数去除,直到除得的三个商两两互素为止即三对互素数。

数的整除的概念和定义

数的整除的概念和定义

第一章数的整除第一节整数和整除‎教学目标:1、理解整除的‎定义和自然‎数的意义。

知道整除的‎要素,掌握整除的‎两种表述方‎法。

2、理解因数与‎倍数的意义‎,会求一个整‎数的因数和‎倍数。

3、概括出能被‎2,5整除的数‎的特征。

知识要点:1.1:整数和整除‎的意义1、零和正整数‎统称为自然‎数。

2、正整数、零、负整数,统称为整数‎。

3、整数a除以‎整数b,如果除得的‎商是整数而‎余数为零,我们就说a‎能被b整除‎;或者说b能‎整除a.注意整除的‎条件:1、除数、被除数都是‎整数;2、被除数除以‎除数,商是整数而‎且余数为零‎。

1.2:因数和倍数‎1、整数a能被‎整数b整除‎,a就叫做b‎的倍数,b就叫做a‎的因数(也称约数)。

2、一个整数的‎因数中最小‎的因数是1‎,最大的因数‎是它本身。

1.3:能被2、5整除的数‎1、个位上是0‎,2,4,6,8的整数都‎能被2整除‎。

2、能被2整除‎的整数叫做‎偶数,不能被2整‎除的整数叫‎做奇数。

3、各位上是0‎或者5的整‎数都能被5‎整除。

第二节分解素因数‎教学目标:1、理解素数、合数的意义‎。

2、能用求因素‎的方法或查‎素数表的方‎法判断一个‎正整数是否‎为素数。

3、熟记20以‎内的全部素‎数。

4、理解素因数‎和分解素因‎数的意义,掌握分解素‎因数的方法‎。

5、掌握最大公‎因数和最小‎公倍数的算‎理和方法。

知识要点:1.4:素数、合数与分解‎素因数1、一个正整数‎,如果只有1‎和它本身两‎个因素,这样的数叫‎做素数,也叫做质数‎;如果除了1‎和它的本身‎以外还有别‎的因素,这样的数叫‎做合数。

2、1既不是素‎数,也不是合数‎。

这样,正整数又可‎以分为1、素数和合数‎三类。

34、每个合数都‎可以写成几‎个素数相乘‎的形式,其中每个素‎数都是这个‎合数的因数‎,叫做这个合‎数的素因数‎。

把一个合数‎用素因素相‎乘的形式表‎示出来,叫做分解素‎因数。

5、一般我们用‎短除法分解‎素因数,步骤如下:①先用一个能‎整除这个合‎数的素数(通常从最小‎的开始)去除。

小学奥数 数论问题 第二讲 数的整除特性

小学奥数  数论问题  第二讲  数的整除特性

第二讲数的整除特性讲义(一)整除的定义:所谓“一个自然数a能被另一个自然数b整数”就是说“商a/b是一个整数”;或者换句话说:存在这第三个自然数c,使得a=b×c,这时候我们就说“b整除a”或者“a能被b整除”,其中b叫a的约数,a是b的倍数,记做“b︱a”(二)整除的性质:(传递性)若c︱b,b︱a,则c︱a(可加性)若c︱a,c︱b,则c︱(a+b)(可乘性)若c︱a,d︱b,则cd︱ab(三)常见的整除特征:尾数系:一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;数字和系:一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;分段做差系:如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.课后习题基础篇:【闯关1】493至少增加()才是3的倍数,至少减少()才有因数5,至少增加()才是2的倍数,至少增加()才是7的倍数。

【闯关2】如果六位数1992□□能被105整除,那么它的最后两位数是多少?提高篇:【闯关3】如果四位数x=6□□8能被236整除,那x除以236所得的商为________。

【闯关4】从50到100的这51个自然数的乘积的末尾有多少个连续的0?巅峰篇:【闯关5】试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.)第二讲数的整除特性课后习题:基础篇:【闯关1】493至少增加()才是3的倍数,至少减少()才有因数5,至少增加()才是2的倍数,至少增加()才是7的倍数。

解析:一个位数数字和能被3整除,这个数就能被3整除;4+9+3=16,所以至少增加2就是3的倍数。

小学四年级数学能被4、6、9整除数的特征

小学四年级数学能被4、6、9整除数的特征

能被4、6、9整除数的特征我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。

数的整除具有如下性质:性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。

例如,48能被16整除,16能被8整除,那么48一定能被8整除。

性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。

例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。

例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

利用上面关于整除的性质,我们可以解决许多与整除有关的问题。

为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。

因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。

因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。

这就证明了(4)。

类似地可以证明(5)。

(6)的正确性,我们用一个具体的数来说明一般性的证明方法。

奥数——数的整除特征

奥数——数的整除特征

数的整除特征★知识要点1、如果一个数的个位数字能被2或5整除,则这个数能被2或5整除。

2、如果一个数的末两位数字能被4或25整除,则这个数就能被4或25整除。

3、如果一个数的末三位数字能被8或125整除,则这个数就能被8或125整除。

4、如果一个数的各位数字之和能被3或9整除,则这个数就能被3或9整除。

5、如果一个自然数的奇数位上数字和与偶数位上数字和的差(大数减小数)能被11整除,那么这个数就能被11整除。

6、被7、11、13整除数的特征:如果一个自然数的末三位数字所表示的数与末三位前的数字所表示的数之差(大数减小数)能被7、11或13整除,那么这个数就能被7,11或13整除。

★典型例题例1、在□内填上适当的数,使五位数5874□能被2整除,这样的五位数有多少个?例2、在□内填上适当的数,使六位数69547□能被4或25整除。

例3、在□内填上适当的数,使五位数31□26能被3或9整除。

例4、在865后面补上3个数字,组成一个六位数,使它能被3,4,5整除,且使这个数值尽可能地大。

例5、在五位数15□8□的□内填什么数字,才能使它既能被3整除,又含有因数5?例6、根据被11整除的数的特征,判别下列数中哪几个能被11整除:3434 3443 52019 68868例7、判断2146455311能否被7,11或13整除?课堂练习1、在□内填上适当的数,使四位数139□能被5整除,这样的四位数有哪几个?2、在□内填上适当的数,使七位数7132□20能被8整除。

3、判断下列哪些数能被25整除,哪些能被125整除?能被125整除的数一定能被25整除吗?反之能被25整除的数一定能被125整除吗?750 765 2775 6325 1500 10004、根据被3和9整除的数的特征,用“去三法”或“或九法”判别下列数中哪些数能被3整除,哪些能被9整除。

请仔细观察能被9整除的数一定能被3整除吗?反之能被3整除的数一定能被9整除吗?请牢记这个规律!5646 49257 25341 87203 56142365、在358后面补上3个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能地小。

数的整除问题(含答案)——第一部分-精品

数的整除问题(含答案)——第一部分-精品

数的整除问题(含答案)——第一部分-精品2020-12-12【关键字】方法、条件、问题、矛盾、分析2014年5月20日星期二【例题1】:试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.考点:数的整除特征.分析:根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.解答:假设能够按照题目要求在圆周上排列所述的100个数,按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3的倍数.从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,导致矛盾,所以不能.答:不能.点评:此题主要考查的是在1至100的100个自然数中能被3整除的有多少.【例题2】:找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?考点:整除.分析:如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2;我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除;再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.解答:这四个自然数为2、3、4、6,因为4-3=1;7÷1=7,得出:3+4=7;答:这四个数里中间两个数的和是7.点评:此题应结合题意进行分析,进而进行验证,排除与题目不符的数字,继而得出正确结论.【例题3】:任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是()。

五年级奥数—数的整除性(一)

五年级奥数—数的整除性(一)

数的整除性(一)数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末位是0或5,则这个数能被5整除。

(5)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

(7)若一个整数的数字和能被9整除,则这个整数能被9整除。

(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(9)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(10)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

数的整除

数的整除

第四讲我们在三年级已经学习了能被2,3,5整除的数的特征,这一讲我们将讨论整除的性质,并讲解能被4,8,9整除的数的特征。

数的整除具有如下性质:性质1 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数一定能被丙数整除。

例如,48能被16整除,16能被8整除,那么48一定能被8整除。

性质2 如果两个数都能被一个自然数整除,那么这两个数的和与差也一定能被这个自然数整除。

例如,21与15都能被3整除,那么21+15及21-15都能被3整除。

性质 3 如果一个数能分别被两个互质的自然数整除,那么这个数一定能被这两个互质的自然数的乘积整除。

例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除。

利用上面关于整除的性质,我们可以解决许多与整除有关的问题。

为了进一步学习数的整除性,我们把学过的和将要学习的一些整除的数字特征列出来:(1)一个数的个位数字如果是0,2,4,6,8中的一个,那么这个数就能被2整除。

(2)一个数的个位数字如果是0或5,那么这个数就能被5整除。

(3)一个数各个数位上的数字之和如果能被3整除,那么这个数就能被3整除。

(4)一个数的末两位数如果能被4(或25)整除,那么这个数就能被4(或25)整除。

(5)一个数的末三位数如果能被8(或125)整除,那么这个数就能被8(或125)整除。

(6)一个数各个数位上的数字之和如果能被9整除,那么这个数就能被9整除。

其中(1)(2)(3)是三年级学过的内容,(4)(5)(6)是本讲要学习的内容。

因为100能被4(或25)整除,所以由整除的性质1知,整百的数都能被4(或25)整除。

因为任何自然数都能分成一个整百的数与这个数的后两位数之和,所以由整除的性质2知,只要这个数的后两位数能被4(或25)整除,这个数就能被4(或25)整除。

这就证明了(4)。

类似地可以证明(5)。

(6)的正确性,我们用一个具体的数来说明一般性的证明方法。

整除

整除

整除的特征整除的定义:整除是指整数a除以自然数b除得的商正好是整数而余数是零.我们就说a能被b整除(或说b能整除a),记作b|a,读作“b整除a”或“a能被b整除”.整除与除尽:它与除尽既有区别又有联系.除尽是指数a除以数b(b≠0)所得的商是整数或有限小数而余数是零时,我们就说a能被b除尽(或说b能除尽a).因此整除与除尽的区别是,整除只有当被除数、除数以及商都是整数,而余数是零.除尽并不局限于整数范围内,被除数、除数以及商可以是整数,也可以是有限小数,只要余数是零就可以了.它们之间的联系就是整除是除尽的特殊情况.整除性质:(1)如果a与b都能被c整除,那么a+b与a-b也能被c整除.(2)如果a能被b整除,c是任意整数,那么积ac也能被b整除.(3)如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除.反过来也成立.讨论能被2,5,3,9,4,25,8,125.11,7.13等数整除的数的特征.1.能被2或5整除的数的特征是:如果这个数的个位数能被2或5整除,那么这个数就能被2或5整除.也就是说:一个数的个位数字是0、2、4、6、8时,这个数一定能被2整除.一个数的个位数字是0、5时,这个数一定能被5整除.例如要判断18762,9685,8760这三个数能否被2或5整除,根据这三个数的个位数字的特点,很快可以判断出,2|18762,2不能整除9685,2|8760;5不能整除18762,5|9685,5|8760.2.能被3或9整除的数的特征是:如果这个数的各个数位上的数字和能被3或9整除,这个数就能被3或9整除.例如要判断47322能否被9整除,由于47322=40000+7000+300+20+2=4×(9999+1)+7×(999+1)+3×(99+1)+2×(9+1)+2=4×9999+7×999+3×99+2×9+4+7+3+2+2=9×(4×1111+7×111+3×11+2×1)+(4+7+3+2+2)9一定能整除9×(4×1111+7×111+2×11+2×1),所以要判断9能否整除47322,只要看9能否整除4+7+3+2+2=18,因为9|18,所以9|47322.可以看到4+7+3+2+2恰好是这个数的各个数位上的数字和.类似的方法我们还可以判断出3|47322.3.能被4或25整除的数的特征是:如果这个数的末两位数能被4或25整除,这个数就能被4或25整除.例如要判断63950能否被4或25整除,由于63950=639×100+50,100=4×25,所以100能被4或25整除,根据整除的性质,639×100能被4或25整除,要判断63950能否被4或25整除,只要看50能否被4或25整除,因为4不能整除50,25|50,所以4不能整除63950,25|63950.可以看出50恰好是63950的末两位数.4.能被8或125整除的数的数的特征是:如果这个数的末三位数能被8或125整除,这个数就能被8或125整除.例如要判断4986576能否被8整除,由于4986576=4986×1000+576,1000=8×125,所以8|1000,根据整除的性质,8|4986000,要判断8能否整除4986576,只要看8能否整除576,因为8|576,所以8|4986576.可以看出576恰好是4986576的末三位数.同理可以判断这个数不能被125整除.5.能被11整除的数的特征是:如果这个数的奇数位上的数字和与偶数位上的数字和的差(大减小)能被11整除,这个数就能被11整除.奇数位是指从个位起的第1、3、5…位,其余数位是偶数位.例如要判断64251能否被11整除,由于64251=6×104+4×103+2×102+5×10+1=6×(9999+1)+4×(1000+1-1)+2×(99+1)+5×(10+1-1)+1=6×(11×909+1)+4×(11×91-1)+2×(11×9+1)+5×(11-1)+1=[11×(6×909+4×91+2×9+5)]+[(6+2+1)-(4+5)]上式第一个中括号内的数能被11整除,要判断64251能否被11整除,只要(6+2+1)-(4+5)=0能被11整除,因为11|0,所以11|64251,而(6+2+1)-(4+5)恰好是64251的奇数位上的三个数减去偶数位上的两个数字.6.能被7、11、13整除的数的特征是:如果这个数的末三位数所组成的数与末三位以前的数所组成的数的差(大减小)能被7、11、13整除,这个数就能被7、11、13整除.例如要判断1096823能否被7、11、13整除,由于7×11×13=1001,所以7|1001,11|1001,13|10011096823=1096×1000+823=1096×(1001-1)+823=1096×1001-(1096-823)因为1096×1001能被7、11、13整除,要判断1096823能否被7、11、13整除,只要判断1096-823=273能否被7、11、13整除,由于7|273,13|273,11不能整除273,所以7|1096823,13|1096823,11不能整除1096823,而1096-823恰好是1096823的末三位以前的数所组成的四位数减去1096823的末三位数所组成的数.能被2、3、5整除的数典型题型解答例1.在方框里填上适当的数使它能同时被2、3整除.415□分析:这个数要能被2整除,则个位上可以填0、2、4、6、8,但是同时又要能被3整除,因此四个数位上的数字的和能被3整除,而4+1+5=10,所以个位数字只能是2或8,即方框里可以填2或8.解:4152 或者4158 .例2.如果12345□□能被234整除,问□□应为哪两个数字?分析:我们考察1234500÷234=5275……150,1234599÷234=5276……15.可见12345□□÷234=5276,因为234×5276=1234584,于是□□的两个数字应为8、4.解:由1234500÷234=5275……150,1234599÷234=5276……15,可知12345□□÷234=5276.因为234×5276=1234584.所以□□的两个数字应为8、4.答:□□内的两个数字应为8、4.例3.在1、2、3、4、5、6、7、8、9九个数字每两个数字的中间分别添上加号或减号,能不能使最后的结果等于10?如果能,请添上;如果不能请说明理由.分析:应从和的奇偶性去分析.解:不能.因为1-9九个数字的和为45,45是奇数,如果将某数前面的符号由加号改为减号,最后的结果将减少这个数的2倍(如:17+8=25,把加号变成减号,17-8=9,9比25少16,相当于少了两个8),即减少一个偶数,45减去一个偶数,仍然为奇数,而10是偶数,所以不可能.例4.在方框里填上适当的数字,使它能同时被2、3整除.513□分析:先考虑能被2整除的数,个位上可以是0、2、4、6、8,但是又要能被3整除,因此,要检验四个数位上的数字的和能否被3整除,检验的结果,方框内可以填0和6.解:5130或5136例5.从0、7、5、3四个数字中选三个数字组成一个三位数,使组成的数能同时被2、3和5整除.这样的三位数有几个?分析:根据能被2、3、5整除的数的特征,确定出所组成的三位数要能同时被2、3、5整除,这个三位数的个位数字必须是0.现在一共有四个数字,这个三位数的十位和百位上的数字只能从7、5、3三个数字选取,且每位上的数字的和要能被3整除.解:一共有两个:570或750.数的整除典型例题解析例1.下列算式中,哪些是除尽?哪些是整除?42÷7=6 3÷5=0.6 4÷0.2=205÷3=1……2 8.1÷3=2.7 2÷3=0.666666……分析:解答这一题,要根据"除尽"和"整除"的意义及条件去判断,还要用到"除尽"和"整除"的的关系.解:除尽有:42÷7=6 3÷5=0.6 4÷0.2=20 8.1÷3=2.7 整除有:42÷7=6例2.48的约数有哪几个?20以内3的倍数有哪几个?分析:要求48的全部约数,必须包括1和它本身,这是容易出错的,3的倍数有无限多个,这里要注意题目的限制条件,应该在20以内去找,此时3的倍数的个数是有限的.解:48的约数有:1、2、3、4、6、8、12、16、24、48,共10个20以内3的倍数有:3、6、9、12、15、18,共6个.例3.如果a、b、c是不同的自然数,A=a×b×c,那么A至少有多少个约数?分析:A有约数1和A,要使A的约数最少,A还有a、b、c中不为1的另外两个数为约数,所以A最少有4个约数.解:A至少有4个约数.例4.a、b、c都是自然数,如果a×b=c,那么a、b是c的()数,c是a、b的()数.分析:根据约数和倍数的概念可以判断.解:a、b是c的约数,c是a、b的倍数.提升题例1在□内填上适当的数字,使(1)34□□能同时被2、3、4、5、9整除;(2)7□36□能被24整除;(3)□1996□□能同时被8、9、25整除.分析:(1)题目要求34□□能同时被2、3、4、5、9整除,因为能被4整除的数一定能被2整除,能被9整除的数一定能被3整除,所以34□□只要能被4、9、5整除,就一定能被2、3、4、5、9整除.先考虑能被5整除的条件.个位是0或5,再考虑能被4整除的条件,由于4不能整除34□5,所以个位必须是0,最后考虑能被9整除的条件,34□0的各个数位上的数字和是9的倍数,3+4+□+0=7+□,这时十位数字只能是2,问题得以解决.(2)题目要求7□36□能被24整除,24=3×8,而3与8互质,根据整除的性质,考虑被24整除,只要分别考虑被3、8整除就行了.先考虑被8整除的条件,7□36□的末三位数所组成的数36□能被8整除,所以个位数字只能是0或8,当个位数字为0时,由于要求7□360能被3整除,所以7+□+3+6+0=16+□能被3整除,这样千位数字只能是2或5或8;当个位数字为8时,由于要求7□368能被3整除,所以7+□+3+6+8=24+□能被3整除,这样千位数字只能是0或3或6或9.(3)题目要求□1996□□能同时被8、9、25整除,首先考虑能被25整除的条件,□1996□□的末两位数能被25整除,末两位数只能是00,25,50,75.其次考虑能被8整除的条件,□1996□□的末三位数字组成的数能被8整除,但600,625,650,675这四个数中,只有600这个数能被8整除.最后□199600这个数能被9整除,其各个数位上的数字和□+1+9+9+9+6+0=25+□能被9整除,所以第七位数字是2.解:(1)因为34□□能同时被2、3、4、5、9整除,因此只要34□□能同时被4、5、9整除.由于34□□能被5整除,所以个位数字只能是0或5,又因为4不能整除34□5,所以个位必须是0,又34□0能被9整除,3+4+□+0=7+□能被9整除,所以十位数字只能是2.3420能同时被2、3、4、5、9整除.(2)因为24=3×8,3与8互质,7□36□被8整除的条件是,7□36□的末三位数所组成的数36□能被8整除,所以个位数字只能是0或8;当个位数字是0时,7□360能被3整除,7+□+3+6+0=16+□能被3整除,所以千位数字只能是2或5或8;当个位数字是8时,7□368能被3整除,7+□+3+6+8=24+□能被3整除,所以千位数字只能是0或3或6或9.所以所求的数为72360,75360,78360,70368,73368,76368,79368.(3)因为□1996□□能被25整除,□1996□□的末两位数能被25整除,这样末两位数只能是00,25,50,75;又因为□1996□□能被8整除,但□1996□□的末三位数600,625,650,675这四个数中,只有600能被8整除;而□199600又能被9整除,□+1+9+9+6+0+0=25+□能被9整除,所在第七位数字只能是2.所以2199600能同时被8、9、25整除.例2把915连续写多少次,所组成的数就能被9整除,并且这个数最小.分析:要求这个数能被9整除,而9+1+5=15显然不能被9整除,但3×15能被9整除,因此只要把915连续写3次,所组成的数就能被9整除,并且这个数最小.解:因为9+1+5=15,15不能被9整除,而3×15能被9整除,所以只要把915连续写3次,即915915915必能被9整除,且这个数最小.例3希希买了九支铅笔,两支圆珠笔,三个练习本和五块橡皮.她看到圆珠笔每支3角9分,橡皮每块6分,其余她没注意.售货员要她付3元8角,希希马上说:“阿姨你算错了.”请问售货员的帐算错了没有?为什么?分析:根据圆珠笔与橡皮的单价,可以算出圆珠笔、橡皮共需39×2+6×5=108(分),而3元8角即380分减去108分等于272分,这272分是买九支铅笔、三个练习本的价格,这9与3正好是3的倍数,也就是说九支铅笔与三个练习本的总价钱应是3的倍数(无论它们各自的单价是多少),而272不是3的倍数,显然是售货员把账算错了.解:两支圆珠笔和五块橡皮的总钱数39×2+6×5=108(分)3元8角即380分,380-108=272(分)应是九支铅笔与三个练习本付的总价钱,因为九支铅笔与三个练习本的总价钱必是3的倍数,而272不是3的倍数,所以售货员把账给算错了.例4三个数分别是346,734,983,请再写一个比996大的三位数,使这四个数的平均数是一个整数.分析:要使这四个数的平均数是一个整数,说明这四个数的和必是4的倍数.因为346+734+983=2063,被4除余3,比996大的三位数只有997被4除余1,这时2063+997=3060必能被4整除.解:因为346+734+983=2063,被4除余3,比996大的三位数只有997被4除余1,且2063+997必能被4整除,所以第四个数为997.《数的整除》练习题基础题一、填空。

数的整除

数的整除

练习:
29 ÷ 3 = 9 ······2 48 ÷ 6 = 8
15 ÷ 7 = 2 ······1 36 ÷ 12 = 3
16 ÷ 5 = 3.2
2.4 ÷ 0.4 = 6
回答:
1、哪几个算式是第一个数能被
第二个数整除? 2、哪几个算式是第一个数能被 第二个数 除除尽尽 ?
如果 整数a 能被 整数b 整除, a就叫做b的倍数,b就叫做a 的约数。
判断正误。
① 1.5÷0.3= 5,1.5能被
0.3整除。
()
② 88除以11的商是整数而
且没有余数,所以88是11的
倍数,11是88的因数。 ( )
③ 因为26÷4=6.5,所以26
是4的倍数,4是26的因数。
; / 天天小说网 ;
罩了进去! 这一刻,所有人都失明了,刚才の那道轰鸣声,更是让所有人の失聪了.这一刻就连灵魂都被冻结了一样,所有人都感觉自己似乎在这一刻死去了,灵魂开始悠悠の往上飞! 雷震の雷神庇佑,在这一刻也悄然爆裂,魂帝岛外无数の龙舟,在刚才那阵威压之下,全部化成齑粉.无数潜 伏の练家子,被迫显露身形.飞在半空,正对着雷神庇佑攻击の几十名尊者,身子直接被压下了海面!所有の练家子,身子都被压到了海面. 整个魂帝岛这这一刻颤动了一下,魂帝阁散发出一阵耀眼の光芒,禁制护罩自动开启,抵抗天威余波! 片刻之后,所有人の眼睛恢复了过来,望着四周の 龙舟残骸,和东倒西歪の无数星辰军,面面相觑! "不对!白重炙那?" 犁斐迷糊の眨了眨眼睛,四处扫了一下,而后惊呼起来.眼睛死死盯着魂帝岛の空中,哪里空落落の什么都没有!白重炙消失了… "唰唰唰!" 无数の目光同时锁定了魂帝岛上方,同时神识四处扫射,却在还是没有发现白 重炙の声音.无数人脑海同时浮现出一些怀疑…难道白

二、数的整除(“数”指自然数)

二、数的整除(“数”指自然数)

二、数的整除(“数”指自然数)(一)整除的意义自然数a除以自然数b,如果除得的商是自然数而没有余数,我们就说a能被b整除,或b能整除a。

a是b的倍数,或b是a的因数(约数)。

(二)能被2、5;4、25;8、125;3、9;11;13整除的数的特征。

1、一个数个位上的数能被2(或5)整除,这个数就能被2(或5)整除。

2、一个数末两位的数能被4(或25)整除,这个数就能被4(或25)整除。

3、一个数末三位的数能被8(或125)整除,这个数就能被8(或125)整除。

4、如果一个数的“奇数位数字和”与“偶数位数字和”的差(以大减小)能被11整除,这个数就能被11整除。

5、如果一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大减小)能被7(或13)整除,这个数就能被7(或13)整除。

6、如果一个数的各位数字的和能被3(或9)整除,这个数就能被3(或9)整除。

(三)一个数的约数。

1、A=a x.b y A的约数的个数有:(x+1)(y+1);A的全部约数的和为:(1+a1+a2+……+a x)(1+b1+b2+……+b y)2、甲数×乙数=最大公约数×最小公倍数3、把一个自然数分成两个自然数的和,当所分成的两个自然数的值相等或最接近时,它们的积最大;当其中有一个自然数是1时,它们的乘积最小。

4、把一个自然数拆成几个数的积,应尽量多拆成“3”(但要避免“1”的出现)。

三、应用题(一)平均数应用题。

平均数=总数量÷总份数;总数量=平均数×总份数;总份数=总数量÷平均数(解答时应注意“总份数的单位”)(二)盈亏问题。

(盈+亏)÷份数的差(或每份的差)=每份量(或份数)(盈-盈)÷份数的差(或每份的差)=每份量(或份数)(亏-亏)÷份数的差(或每份的差)=每份量(或份数)(三)植树问题。

1、非封闭线的两端都有“点”时:点数= 段数+ 12、非封闭线只有一端有“点”时:点数= 段数3、非封闭线的两端都没有“点”时:点数= 段数-14、封闭线上的“点数”:点数= 段数注意:爬楼梯时,楼梯为“段”;楼层为“点”(四)和倍问题:小数=和÷(倍数+1);大数=和÷(倍数-1)差倍问题:小数=差÷(倍数-1)和差问题:大数=(和+差)÷2;小数=(和-差)÷2(五)行程问题。

数的整除

数的整除
这么多陷阱,这么多圈套和天罗地网
整除的意义:
整数 a 除以 整数 b (b = 0),除得的商正好 是整数而没有余数,我们 就说 a 能被 b 整除。
b 能整除a
练一练:下面哪个算式的被 除数能被除数整除?
17 ÷ 5 = 3.4 72 ÷ 8 = 9 47 ÷ 4=
练习:
29 ÷ 3 = 9 ······2 48 ÷ 6 = 8
整除。
()
5、18能被3除尽,18也能
被3整除。
()
选一选,说一说。
从36、4、12、3、1、 和0.2中,选出具有整除关 系的几组数,看你能选出 几组数?
游戏:
( 8 )能被( 4 )整除,
( 8 )是 4 的倍数。 ( 2 )是 60 的约数。
判断正误。
① 1.5÷0.3= 5,1.5能被
说一说:
下面每一组数中,哪一个数 是另一个数的倍数,哪一个数 是另一个数的约数。
4和28 3和2 0÷10
卡片
判断:
1、0能被任何自然数整除。 ()
2、因为36÷9=4,所以36是 倍数,9是约数。 ( )
3、27是3的倍数,3是27的
约数。
()
判断:
4、2.8 ÷0.4 商是7,没有余
数,所以可以说2.பைடு நூலகம்能被0.4
0.3整除。
15 ÷ 7 = 2 ······1 36 ÷ 12 = 3
16 ÷ 5 = 3.2
2.4 ÷ 0.4 = 6
回答:
1、哪几个算式是第一个数能被
第二个数整除? 2、哪几个算式是第一个数能被 第二个数 除除尽尽 ?
如果 整数a 能被 整数b 整除, a就叫做b的倍数,b就叫做a 的约数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、倍和倍内,教学因数和倍数只在 整数范围内讨论,学生可以说“18是3和6的倍数”,但是 不能说“18是4的倍数”。这是受小学生知识水平的限制, 在教学时将讨论的范围缩小了。 但是实际上,倍和倍数的概念,是可以推广到有理数 和实数范围内的。例如18÷4=4.5 ,我们可以说18是4的 4.5倍。为避免概念混淆,我们在说到“倍数”时,指的 是二者间有倍数关系,而不提多少倍。 例如,我们可以说18是4的倍数,也可以说 “18是4的4.5倍”, 但是不会说“18是4的4.5倍数”。
整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
数的奇偶 一、定义
自然数分类可以分为奇数和偶数两类 1、偶数的定义:偶数指能被2整除的数,如0,2,4,6,···。
记作2n(n为整数)。
2、奇数的定义:奇数指不能被2整除的数(即余数为1), 如1,3,5,7,···。记作2n+1(n为整数)。 每个整数不是偶数,就是奇数,二者必居其一。
整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
质数的判断
一、查表法(希腊学者埃拉斯托尼)
二、试除法
例如:判断197是否是质数。 可以用2、3、5、7、11等小于(197)
½ 的质数去试除。
最大素数(长达17,425,170 位):
257885161-1
如果你一秒钟写一个数字,每 天写12小时,那么只要403天 就可以写完这个质数了。

自然 整


整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
整除、倍数和因数 一、定义
1、整除的定义:对于整数a和整数b,如果存在一个整数k, 使得a=b·k,那么就说a能被b整除,记作b|a。它的意义是a恰
好能被b除尽,且商是整数。 2、倍数和因数的定义:如果整数a能被自然数b整除,商为k, 那么称a是b的倍数,也称为b的k倍;b叫做a的因数(有时也 叫做a的约数)。 例如,15能被3整除,15是3的倍数,3是15的因数。 18能被3整除,而不能被4整除。
哥德巴赫猜想:
公元1742年6月7日哥德巴赫写信给 当时的大数学家欧拉,提出了以下的猜 想: (a) 任何一个>=6之偶数,都可以表 示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以 表示成三个奇质数之和。 (与现今表达有出入,原因是哥德巴赫认 为1也是素数,参见书信复印件的图示)。 欧拉在6月30日给他的回信中说, 他相信这个猜想是正确的,但他不能证 明。
分解质因数的方法
(1)先根据数的特征,求出这个数的最小质因数; (2)以这个质因数为除数用短除法求商; (3)商如果仍然是合数,就继续除下去,直到商是质 数为止; (4)把各个除数以及最后的商写成连乘的形式。
例如,把2310分解质因数。 解:2310=2×3×5×7×11
分解质因数的关键是对质数的判断,对于不大的合数进行分解 质因数时,可以随时查阅质数表。 如果容易看出要分解的数是某些数的乘积,那么可以先把它写 成某些数的乘积的形式。再把乘积中的数分别进行分解,最后把所 得的全部质因数连乘起来。
整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
质数、合数 一、定义
自然数分类可以分为质数和合数两类 1、质数的定义:在大于1的自然数中,如果只有两个因数—— 即1和该数本身,这样的自然数叫做质数(或素数) 。 如:2,3,5,7,11,17 2、合数的定义:如果有两个以上的因数——即1和该 数本身外,还有其他因数,这样的自然数叫做合数。 如:4,6,8,9,10,15
如:3是18的质因数,而6虽然是18的因数但不是18的质因数;但18可以分解成质因数 乘积2×3×3。 作为特例,一个质数的质因数分解就是这个质数本身。所以“只有合数才能分解成质 因数”的说法是错误的。
二、定理
1、定理5:任何一个大于1的整数都可以分解质因数。 2、定理6(算术基本定理):一个大于1的整数, 如果不管质因数的次序, 那么,分解质因数的 结果是唯一的。
例如,把21600分解质因数。 解:21600=216×100 =9×24×100 =9×3×8×4×25 =3²×3×2³×2²×5² = 25×3³×5²
质因数分解和密码 质因数的应用:
据2006年9月2日新华网报道(记者 钱铮) 目前在安装通用芯片的计算机上对200位左 右的数字进行质因数分解是不可能的。但是, 对于采用300位以上的数字的标准的公开密 钥,解开这种密码需要上亿台新型专用并行 计算机,因而实际上还不可能。不过,世界 上许多数学家都在加入设置密码和破译密码 的竞赛。
二、整除与除尽
整数域
余数为零且商为整 数,所以这个式子 整除与除尽一样。 18÷3=6 是整除的,同时也 是除尽了的。
实数域
因为商不是整数,所以不能说 18÷4=4.5 是整除,但因为在这个除法里, 整除与除尽却不一样。 它的余数也为零,所以这个式 子里的除法也是除尽了的
考虑到学生的接受能力,在我们的小学数学教材里
数学史研究表明:
数的最早分类就是奇偶。 我国三千多年前的一块甲骨文(编号
6422)上,就有两列奇偶数。
奇数和偶数是数学专业名词。普通名词称为“单 数”和“双数”,意思是一样的。习惯上只在正数时
使用单数和双数的说法。因此,单(双)数一定是奇
(偶)数,反之则不然,如不能把 ﹣2称为双数。
当然也能被 2 整除,因而符合偶数的定义。从自然 数列: 0 、 1 、 2 、 3 、 4 、 5 、 6 、……中奇数、偶数 的排列关系来看,“ 0 ”的位置恰好是第一个偶数。 数的奇偶性它关注的重点并不是奇数与偶数值得 大小、多少,而是他们本身具有的特性。也正因为数 的奇偶性只是自然数内部的一种数学属性,教学时不 必刻意地将其“生活化”或“情境化”。纯粹数学地 阐述,小学生能够理解掌握。所有偶数都可以由2 生成(2n),而所有的奇数都由2n+1生成。
是整数)。
(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1) 所以, 12|[(2n-1)2+(2n+1)2+(2n+3)2+1]。 又 n2+n+1=n(n+1)+1, 而 n,n+1是相邻的两个整数,必定一奇一偶,
所以n(n+1)是偶数,从而n2+n+1是奇数,
故24不能整除[(2n-1)2+(2n+1)2+(2n+3)2+1]。
整除、倍数和因数 带余除法 数的奇偶 质数、合数 质数的判断
分解质因数
带余除法 一、定义
1、定义:整数a除以整数b,如果除尽,即余数为0,那么称 为整除。如果除不尽,余数不为0,就称为带余除法。一般地
记为:
a ÷ b=q(余数r<b)。 2、定理1 整除的传递性:a | b, b | c 则 a | c.
面没有出现“整除”和“除尽”两个概念,但是学生必
须学会判断一个除法算式是否整除。在教学中我们这样 对学生进行说明:在小学范围内,整除只在整数范围内 考虑,要求除法算式的被除数、除数、商都是整数,这 样的除法算式才是整除。
整除时,我们说余数是0.口头上有时把“余数是0”
说成“没有余数”,那是不准确的说法,因为“0”是 数,当然也可以是余数。
“ 0 ”是偶数。 由于 0 能被一切自然数整除,
哥德巴赫
克里斯蒂安·哥德巴赫 ChristianGoldbach (1690-1764)
又译歌德巴赫,普鲁士数学家,他在数学 上的研究以数论为主。哥德巴赫并不是职业数 学家,而是一个喜欢研究数学的富家子弟。他 生于德国哥尼斯堡,曾在英国牛津大学学习, 原学法学。他喜欢到处旅游,结交数学家,然 后跟他们通讯,如:莱布尼茨、莱昂哈德·欧 拉和尼古拉斯·伯努利等人。在欧洲各国访问 期间结识了伯努利家族,对数学研究产生了兴 趣。1725年到俄国,同年被选为彼得堡科学 院院士;1725年~1740年担任彼得堡科学院 会议秘书;1728年起担任俄国沙皇彼得二世 的中学 教师;1742年移居莫斯科,并在俄国外交部 任职, 他在给好友欧拉的一封信里陈述了他著名的猜 想——哥德巴赫猜想。
“1”、“0”既不是质数,也不是合数
(1)“1”:后面讨论质因数分解时,1不作为质数,就 可以保证一个合数分解质因数是唯一的。 (2)“0”:因为0=0 ×1 ×2 ×….. ×n,有无限多个因数, 不便于讨论。
总结:自然数可以按其因数有1个、2个、有限 多个和无数个,划分为1、质数、合数和0四类。
3、定理2 有余数除法的两个整除性质: (1)a ÷ b=q(余r)。d | a, d | b 则 d | r. (2)a ÷ b=q(余r)。d | a, d | r 则 d | b.
例:
求证:三个连续奇数的平方和加1,能被12整除,但 不能被24整除。
证:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n
30
1957年 1962年
1962年 1965年 1966年
中国 中国、苏联
中国 苏联、意大 利 中国
王元 中国的潘承洞和苏联的巴尔巴恩
王元 苏联的布赫 夕太勃和小维诺格 拉多夫,及 意大利的朋比利 陈景润
"3 + 3 "和 "2 + 3 " "1 + 5 "
"1 + 4 " "1 + 3 " "1 + 2 "
年份 1920年 1924年 1932年 1937年 1938年 1940年 1948年 1956年
相关文档
最新文档