回归正交试验设计优秀课件

合集下载

第七章 回归正交试验设计

第七章  回归正交试验设计
因素进行考察,并考虑交互作用x1x2、 x1x3。已知x1=300~700 ℃, x2=1800~2400℃,x3=8~10mA。试通过回归正交试验确定吸光度与三
个因素之间的函数关系。
因素水平编码表
自然变量xj 规范变量zj 1 -1 0 △j x1 700 300 500 200 x2 2400 1800 2100 300 x3 10 8 9 1
7.1.2一次回归方程的建立
设总的试验次数为N,其中原正交表所规定的二水平试验次数为 mc,零水平试验次数为m0,即有: N 建立回归方程
m
mc m0
ˆ a b j x j bkj xk x j,k 1,2,, m 1( j k ) y
j 1 k j
其系数的计算公式如下:
将被剔除变量的偏回归平方和、自由度并入到剩余平方和与自由度中,
然后再进行相关的方差分析计算。具体例子见书P126~129例8-1。
7.1 一次回归正交试验设计及结果分析
14
用石墨炉原子吸收分光光度计法测定食品中的铅,为提高吸光度,
对x1(灰化温度/℃)、x2(原子化温度/℃)和x3(灯电流/mA)三个
F0.05(1,6)=5.99 F0.01(1,6)=13.74
可见因素z2对指标影响高度显著,所建的回归方程高度显著:
y 0.50475 0.03375z2
7.1 一次回归正交试验设计及结果分析
N 1 SST Lyy ( yi y ) 2 yi2 ( yi ) 2 N i 1 i 1 i 1 N N
7.1 一次回归正交试验设计及结果分析
10
②一次项zj偏回归平方和
SS j m b ,j= 1 , 2, ,m

正交试验设计PPT课件

正交试验设计PPT课件

验设计方法提供依据。
03
扩展正交试验设计的应用领域
研究正交试验设计在其他领域的应用可能性,如社会科学、人文科学等。
谢谢
THANKS
正交表的选择与设计
根据试验目的和因素数量选择合 适的正交表。
确定水平数,即各因素的取值数 量。
确定试验次数,即正交表的行数。
试验方案的制定
根据正交表,确定每个因素的取值组合。 确定试验的顺序,以避免误差的积累。
制定详细的试验步骤和操作规程。
试验数据的收集与分析
按照试验步骤进行试验,并记 录每个试验的结果。
降低试验成本
通过优化试验次数,可以减少 人力、物力和时间的投入,从 而降低试验成本。
加速试验进程
较少的试验次数意味着更短的 时间和更快的反馈,有助于加
速产品研发和优化进程。
因素水平的优化
确定关键因素
在正交试验设计中,首先需要明确哪 些因素是关键因素,并针对这些因素 进行优化。
选择合适水平
针对每个关键因素,选择合适的水平 进行试验,以获得最佳的试验效果。
CHAPTER
人工智能与机器学习在正交试验设计中的应用
机器学习算法优化正交试验设计过程
01
通过机器学习算法,可以自动分析历史数据,预测最佳试验条
件,从而减少试验次数,提高试验效率。
数据挖掘与知识发现
02
利用机器学习技术对大量试验数据进行挖掘,发现隐藏的模式
和关系,为后续试验提供指导。
自动化与智能化
03
结合人工智能技术,实现正交试验设计的自动化和智能化,减
少人为干预,提高试验精度和可靠性。
多目标优化问题的正交试验设计研究
1 2 3
多目标决策理论的应用

回归正交试验设计PPT精品文档

回归正交试验设计PPT精品文档
第8章 回归正交试验设计
Orthogonal Regression Design
1
正交设计:优方案只能限制在已定的水平上,而不是一定 试验范围内的最优方案
回归正交设计(orthogonal regression design) : ➢ 可以在因素的试验范围内选择适当的试验点 ➢ 用较少的试验建立回归方程 ➢ 能解决试验优化问题 ➢ 不适合非数量性因素
2
8.1 一次回归正交试验设计及结果分析
建立试验指标(y)与m个试验因素x1,x2,…,xm之间的 一次回归方程
例:m=3时,一次回归方程: y=a+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3
➢ 其中x1,x2,x3表示3个因素;x1x2,x1x3,x2x3表示交互作用 ➢ 若不考虑交互作用,为三元一次线形回归方程:
8
(4)试验方案的确定 表头设计 : ➢ 可参考正交设计的表头设
计方法 ➢ 交互作用列的编码等于表
中对应两因素列编码的乘 积 零水平试验(中心试验 )
9
8.1.2 一次回归方程的建立
总试验次数为n : n=mc+m0
➢ mc:二水平试验次数 ➢ m0:零水平试验次数 一次回归方程系数的计算: ➢ 常数项:a ➢ 一次项系数:bj ➢ 交互项系数: bjk
14
例8-1: (1)因素水平编码
15
(2)正交表的选择和试验方案的确定
16
(3)回归方程的建立 ➢ m0=0,n=mc=8 ➢ 计算表 ➢ 计算各回归系数 ➢ 写出y与规范变量zj的回归方程 ➢ 根据偏回归系数绝对值大小,确定因素和交互作用主次 ➢ 根据偏回归系数正负,得到各因素对试验指标的影响方向 (4)方差分析 (5)回归方程的回代:得到试验指标y与自然变量xj的回归

《正交试验设计》PPT幻灯片PPT

《正交试验设计》PPT幻灯片PPT
或实体
➢ 在试验性研究中,感兴趣的变量是明确规定的, 因此,研究中的一个或多个因素可以被控制,使 得数据可以按照因素如何影响变量来获取
➢ 对完全随机化设计的数据采用单因素方差分析
4
完全随机化设计-例题分析
【例】一家种业开发股份公司研究出三个新的小 麦品种:品种1、品种2、品种3。为研究不同品 种对产量的影响,需要选择一些地块,在每个地 块种上不同的品种,然后获得产量数据进行分析 。这一过程就是试验设计的过程
得3个产量的数据,也就是对应于每个处理的样本 容量为1;为获得每个品种的更多数据,必须重复 基本试验步骤。假定不是抽取3个地块,而是12个 地块,然后将每个品种之一随机地指派给其中的4 个地块,这就相当于重复做了4次试验。
6
完全随机化设计-例题分析
试验数据:
7
完全随机化设计-例题分析
方差分析:
➢ 二水平正交表: L4(23) , L8(27) L16(215) ,L32(231)…
➢ 三水平正交表: L9(34) , L27(313)… ➢ 四水平正交表: L16(45), L64(421)… ➢ 五水平正交表: L25(56)…
这类正交表的一般代号:Ln(m k ),且满足:
n mk , m 2,3,4, k n1
12
11 12 13 21 22 23 31 32 33
34
11 22 33 23 31 12 32 13 21
➢ L:正交表记号
➢ 9:该表有9行,可以做九个不同条件的试验
➢ 4:该表有4列,最多只能考虑四个因子
➢ 3:这张表的主体中仅有三个不同的数字,每个因子取三个水平

一个正交表中也可以各列的水平一种设计方法,并进 一步分析对所研究对象的指标的影响程度

正交试验设计PPT课件精选全文

正交试验设计PPT课件精选全文
所谓均衡分散,是指用正交表挑选出来的 各因素水平组合在全部水平组合中的分布是均 匀的 。 由 图10-1可以看出,在立方体中 ,任 一平面内都包含 3 个“(·)”, 任一直线上都包 含1个“(·)” ,因此 ,这些点代表性强 ,能够 较好地反映全面试验的情况。
上一张 下一张 主 页 退 出
整齐可比是指每一个因素的各水平间 具有可比性。因为正交表中每一因素的任 一水平下都均衡地包含着另外因素的各个 水平 ,当比较某因素不同水平时,其它 因素的效应都彼此抵消。如在A、B、C 3个因素中,A因素的3个水平 A1、A2、 A3 条件下各有 B 、C 的 3个不同水计计 算算
Kk 值值
计 算 极 差
R
绘 制 因 素 指 标 趋


计算各列偏差平方和、 自由度
列方差分析表,
进行F 检验
优水平 优组合
因素主次顺序
结论
分析检验结果, 写出结论
实例:为提高山楂原料的利用率,研究酶法液化工艺 制造山楂原汁,拟通过正交试验来寻找酶法液化的最 佳工艺条件。
例如,要考察增稠剂用量、pH值和杀菌温度对豆奶稳 定性的影响。每个因素设置3个水平进行试验 。
A因素是增稠剂用量,设A1、A2、A3 3个水平;B因素 是pH值,设B1、B2、B3 3个水平;C因素为杀菌温度,设 C1、C2、C3 3个水平。这是一个3因素3水平的试验,各因 素的水平之间全部可能组合有27种 。
9个试验点均衡地分布于整个立方体内 ,有很强 的代表性 , 能 够比较全面地反映选优区内的基本情 况。
上一张 下一张 主 页 退 出
1.3 正交表及其基本性质
1.3.1 正交表
由于正交设计安排试验和分析试验结果都要用正 交表,因此,我们先对正交表作一介绍。

回归正交试验设计.ppt

回归正交试验设计.ppt

(3)回归正交旋转组合设计编码表 二次项中心化:按公式(8-34)
(4)数据处理 与回归正交组合设计相同
8.4 Excel在回归正交设计的应用
8.4.1 利用Excel建立回归正交设计编码表 8.4.2 Excel在回归正交设计数据处理中的应用
回归分析 最优试验方案的确定
y=a+b1x1+b2x2+b3x3
8.1.1 一次回归正交设计的基本方法
(1)确定因素的变化范围
以因素xj为例: 设xj 的变化范围为[xj1, xj2] xj1为xj的下水平 xj2为xj的上水平 xj0为xj的零水平: xj0= (xj1+ xj2)/2 因素xj的变化间距Δj:
➢ Δj=上水平- 零水平=xj2-xj0 ➢ Δj= (xj2 - xj1)/2
mc

22=4
4
23=8
6
24-1=8 8
24=16 8
24-1=16 10
25=32 10
③试验方案的实施
④回归方程的建立
常数项:a
a
1 n
n i 1
yi
y
n
z ji yi
一次项偏回归系数bj :
bj
i 1 n
z ji2
i 1
交互项偏回归系数bkj :
n
(zk z j )i yi
②自由度 dfT=n―1 各种偏回归平方和的自由度=1 回归平方和的自由度 :
dfR df一次项 df交互项
残差自由度:
dfe dfT dfR
不考虑交互作用时:dfR=m,dfe=n-m-1。
③均方 ④F检验: 回归方程显著性检验 偏回归系数显著性检验 : ➢ 判断因素或交互作用对试验的影响程度 ➢ 可直接从回归方程中剔除这些一次和交互项 ➢ 经检验不显著的因素或交互作用应归入残差,重新检验

第5章 回归正交试验设计

第5章 回归正交试验设计
第五章 回归正交试验设计
(6学时)
主要内容
第一节 一次回归正交试验设计 第二节 二次回归正交组合设计 第三节 二次回归正交旋转组合设计
第一节 一次回归正交试验设计
1 正交设计和回归分析特点 1 正交设计特点
一种实用的试验设计方法,它利用较少的试验次数获得较好的 试验结果;通过正交设计得到的优方案只是局限在确定的水平 组合中,而不是一定试验范围内的最优方案。
第一节 一次回归正交试验设计
例题8-1 用石墨炉原子吸收分光光度计法测定食品中的铅,为提 高测定灵敏度,希望吸光度y越大越好。试验中,讨论了x1(灰 化温度/℃)、x2(原子化温度/℃)和x3(灯电流/mA)三个因 素对吸光度的影响,并考虑交互作用x1x2和x1x3。已知: x1=300-700℃,x2=1800-2400℃,x3=8-10mA。试通过一次 回归正交试验确定吸光度与3个因素之间的函数关系式。
试验误差的自由度为
dfe1 m0 1
失拟平方和为
SSLf SST SSR SSe1
SSLf SSe SSe1
第一节 一次回归正交试验设计
4 回归方程及偏回归系数的方差分析 4.2.2 失拟性检验方法
失拟的自由度为
dfLf dfe dfe1
所以,有
SST SSR SSe SSR SSLf SSe1
如果FLf<F(dfLf,dfe1),说明失拟平方和基本是由误差引起的。这 时可把失拟平方和与误差平方和合并,进行下一步的F2检验。
第一节 一次回归正交试验设计
4 回归方程及偏回归系数的方差分析 4.2.2 失拟性检验方法
F2

(SSLf
SSR / dfR SSe1) /(dfLf

《正交试验设计》课件

《正交试验设计》课件

,实现经济效益和环境效益的双重提升。
展望与挑战
技术更新换代
随着科技的快速发展,正交试验设计面临着技术更新换代的挑战。如何跟上科技发展的步 伐,不断更新和完善正交试验设计的方法和工具,是未来发展的重要课题。
数据安全与隐私保护
在大数据时代,数据安全和隐私保护成为越来越重要的问题。在进行正交试验设计的过程 中,如何确保数据的安全性和隐私性,防止数据泄露和滥用,是亟待解决的问题。
科学性
正交试验设计遵循科学的试验设计原则,能够保证试验结果的准确性 和可靠性,为后续的数据分析和解释提供坚实的基础。
实用性
正交试验设计广泛应用于各种领域,如工业、农业、医学等,能够解 决实际生产和科研中的各种问题,具有很高的实用价值。
易用性
正交试验设计的操作过程相对简单,容易掌握,不需要过多的数学和 统计知识。
利用正交表合理安排多因素多水 平试验,通过统计分析找到最优
的试验条件。
通过正交表的特点,保证试验的 均衡性和代表性,提高试验效率


通过正交试验设计,可以有效地 减少试验次数,降低试验成本,
缩短试验周期。
正交试验设计的应用领域
化工、制药、农业、食品等领域
01
在这些领域中,正交试验设计被广泛应用于产品研发、工艺优
《正交试验设计》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 正交试验设计简介 • 正交试验设计的基本原理 • 正交试验设计的实例分析 • 正交试验设计的优缺点 • 正交试验设计的未来发展与展望 • 总结与思考
01
正交试验设计简介
定义与特点
缺点
假设限制
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y=a+b1x1+b2x2+b3x3
8.1.1 一次回归正交设计的基本方法
(1)确定因素的变化范围
以因素xj为例: 设xj 的变化范围为[xj1, xj2] xj1为xj的下水平 xj2为xj的上水平 xj0为xj的零水平: xj0= (xj1+ xj2)/2 因素xj的变化间距Δj:
➢ Δj=上水平- 零水平=xj2-xj0 ➢ Δj= (xj2 - xj1)/2
8.1.3.1 无零水平试验时 ①平方和:
总平方和: SSTL yyi n 1(yiy)2i n 1yi21 n(i n 1yi)2
n一次项偏回归平方和 : SS j mcb2j
n交互项偏回归平方和: SSkj mcbk2j
n回归平方和 : S S R S S 一 次 项 S S 交 互 项
(2)因素水平的编码
n 编码(coding):将因素xj的各水平进行线性变换:
zj
xj xj0 j
➢ zj:因素xj的编码 ,称为规范变量 ➢ xj:自然变量 ➢ 上水平xj2的编码 :zj2=1 ➢ 下水平xj1的编码:zj1=-1 ➢ 零水平xj0的编码:zj0=0
编码目的:
➢ 使每因素的每水平在编码空间是“平等”的,规范变量 zj的取值范围都是[-1,1]
➢ 可参考正交设计的表头设 计方法
➢ 交互作用列的编码等于表 中对应两因素列编码的乘 积
零水平试验(中心试验 )
8.1.2 一次回归方程的建立
总试验次数为n : n=mc+m0
➢ mc:二水平试验次数 ➢ m0:零水平试验次数 一次回归方程系数的计算: ➢ 常数项:a ➢ 一次项系数:bj ➢ 交互项系数: bjk
n残差平方和 : SSeSSTSSR
②自由度 dfT=n―1 各种偏回归平方和的自由度=1 回归平方和的自由度 :
d fR d f一 次 项 d f交 互 项
n残差自由度:
dfe dfT dfR
③均方 ④F检验: 回归方程显著性检验 偏回归系数显著性检验 : ➢ 判断因素或交互作用对试验的影响程度 ➢ 经检验不显著的因素或交互作用应归入残差,重新检验 ➢ 可直接从回归方程中剔除这些一次和交互项
例8-1: (1)因素水平编码
(2)正交表的选择和试验方案的确定
(3)回归方程的建立 ➢ m0=0,n=mc=8 ➢ 计算表 ➢ 计算各回归系数 ➢ 写出y与规范变量zj的回归方程 ➢ 根据偏回归系数绝对值大小,确定因素和交互作用主次 ➢ 根据偏回归系数正负,得到各因素对试验指标的影响方向 (4)方差分析 (5)回归方程的回代:得到试验指标y与自然变量xj的回归
(1)二元二次回归正交组合设计试验方案 二元二次回归方程:
y a b 1 x 1 b 2 x 2 b 1 2 x 1 x 2 b 1 1 x 1 2 b 2 2 x 2 2
n 试验方案
正交组合设计的三类试验点及次数: ➢ 二水平试验: 全实施:mc=2m 1/2实施:mc=2m-1 1/4实施:mc=2m-2 ➢ 星号试验: 与原点(中心点)的距离都为γ mγ=2m ➢ 零水平试验: 各因素水平编码都为零时的试验 试验次数m0
➢ 编码能将试验结果y与因素xj(j=1,2,…,m)之间的 回归问题,转换成试验结果y与编码值zj之间的回归问题
(3)一次回归正交设计表 将二水平的正交表中“2”用“-1”代换 ,例:
回归正交设计表的特点: ➢ 任一列编码的和为0 ➢ 任两列编码的乘积之和等于0
(4)试验方案的确定
n 表头设计 :
回归正交试验设计
正交设计:优方案只能限制在已定的水平上,而不是一定 试验范围内的最优方案
回归正交设计(orthogonal regression design) : ➢ 可以在因素的试验范围内选择适当的试验点 ➢ 用较少的试验建立回归方程 ➢ 能解决试验优化问题 ➢ 不适合非数量性因素
8.1 一次回归正交试验设计及结果分析
n重复试验误差的自由度: dfe1 m0 1
②回归方程失拟部分:
n失拟平方和 : SSLf SST SSR SSe1 SSe SSe1
n失拟平方和自由度: dfLf dfe dfe1
③失拟检验 :FLfFra bibliotekSLf SSe1
dfLf dfe1
对于给定的显著性水平α(一般取0.1)
当FLf<Fα(dfLf,dfe1)时,就认为回归方程失拟不显 著,失拟平方和SSLf是由随机误差造成的,所建立的回 归方程是拟合得很好
建立试验指标(y)与m个试验因素x1,x2,…,xm之间的 一次回归方程
例:m=3时,一次回归方程: y=a+b1x1+b2x2+b3x3+b12x1x2+b13x1x3+b23x2x3
➢ 其中x1,x2,x3表示3个因素;x1x2,x1x3,x2x3表示交互作用 ➢ 若不考虑交互作用,为三元一次线形回归方程:
方程
8.1.3.2 有零水平试验时
目的:进行回归方程的失拟性(lack of fit)检验 (要求 m0≥2 )
失拟性检验:为了检验一次回归方程在整个研究范围内的 拟合情况
失拟性检验步骤:
设m0次零水平试验结果为y01,y02,…,y0m0 ①重复试验误差:
平方和:
SSe1im 0 1(y0iy0)2im 0 1y0i2m 1 0(im 0 1y0i)2
a
1 n
n i 1
yi
y
n
z ji y i
bj
i1
mc
j=1,2,…,m
n
(zk z j )i yi
bkj i1 m c
j>k, k=1,2,…,m-1
说明:
➢ 求得的回归系数直接反映了该因素作用的大小
➢ 回归系数的符号反映了因素对试验指标影响的正负
8.1.3 回归方程及偏回归系数的方差分析
例8-2
8.2 二次回归正交组合设计
回归方程的建立: ➢ 根据最小二乘法原理得到正规方程组 ➢ 求解正规方程组,得回归系数 ➢ 要求:试验次数>回归方程的项数 回归正交组合设计:在一次回归正交试验设计的基础上
再增加一些特定的试验点,通过适当的组合形成试验方 案
8.2.1 二次回归正交组合设计表
相关文档
最新文档