换热器的结构设计-2
U型管换热器设计说明书2
![U型管换热器设计说明书2](https://img.taocdn.com/s3/m/02a266fbf705cc1755270972.png)
目录U型管换热器的特点 (1)结构设计 (2)1 管箱设计 (2)2 封头设计 (4)3 管板设计 (4)4 拉杆和定距管的确定 (6)5旁路挡板设计 (8)6 容器法兰的设计 (8)7 选取支座 (8)强度校核 (9)8 管箱筒体计算 (9)1计算条件: (9)2厚度及重量计算 (9)3压力试验时应力校核 (10)4压力及应力计算 (10)9壳程圆筒计算 (10)1计算条件 (10)2厚度及重量计算 (11)3压力实验时应力校核 (11)4压力及应力计算 (11)10开孔补强计算 (12)1计算条件 (12)2开孔补强计算 (13)3设计条件 (13)4开孔补强计算 (1414)5固定管板计算 (14)结束语 (15)参考文献 (16)U型管换热器的特点U型管换热器仅有一个管板,管子两端均固定在同一管板上,这一换热器的优点是:管束可以自由伸缩,不会因为管壳之间的温差而产生热应力,热补偿性能好;管程为双管程,流程较长,流速较高,传热性能较好;承压能力强;管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
缺点:管内清洗不便,管束中间部分的管子难以更换,又因最内层管子弯曲半径不能太小,在管板中心部分部管不紧凑,所以管字数不能太多,且管束中心部分存在间隙,使壳程流体易于短路而影响壳程换热。
此外,为了弥补弯管后管壁的减薄,直管部分必须用壁较厚的管子。
这就影响了其适用场合,仅宜用于管壳壁温相差较大,或壳程介质易结垢而管程介质不易结垢,高温、高压、腐蚀性强的场合。
本次课程设计的内容是U型管换热器,属管壳式(列管式)换热器,其设计分析包括热力设计、流动设计、结构设计以及强度设计。
其中以结构设计最为重要,U型管式换热器只有一个管板,管程至少为两程,管束可以抽出清洗,管子可以自由膨胀。
其缺点是管子内壁清洗困难,管子更换困难,管板上排列的管子少。
对于列管式换热器,一般要根据换热流体的腐蚀性及其它特性来选择结构与材料,根据材料的加工性能,流体的压力和温度。
板式换热器结构设计
![板式换热器结构设计](https://img.taocdn.com/s3/m/d2192a03763231126edb11e7.png)
板式换热器的结构设计摘要:板式换热器的广泛应用加速了我国板式换热器行业的迅速发展。
然而目前我国的板式换热器结构设计与发达国家之间仍存在着一定的差距,鉴于此,本文对板式换热器结构设计的要点进行了总结分析,以供参考。
关键词:板式换热器;结构设计;框架;传热板;密封垫前言:板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器,主要由框架和板片两部分组成。
框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成,而板片则是由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。
因其结构复杂,必须要正确选准构件,合理设计,才能使得其功能的发挥可靠、高效。
1.框架结构的设计1.1 框架结构的组成板式换热器主要由下列部件组成:两个垂直构件,即尾部支持和固定支持,具有四个流体连接头或接管;顶部和底部的导杆架设在两个垂直构件之间,为板组导向、定位;另有一可动构件讲板组压紧在固定构件上;夹紧部件,其作用是将固定构件和移动构件夹紧。
夹紧部件通常有两类:(1)拉杆用一定数量的拉杆t把固定和可移动构件夹紧。
除了板片和它们的流道中容纳的工质重量外,尾部支撑、顶部和底部的导杆处于无应力状态。
(2)压榨式用两个支持在尾部支撑的紧固丝杆,施加压紧载荷于可移动构件上,丝杆本身受到应力作用,顶部和底部的连杆也受到了应力作用。
这是一种较为昂贵和不稳定的结构,因为紧固丝杆处于受压状态,但其安装、拆卸较为容易,并可进一步利用动力紧固装置,如电动或液压装置使操作更加便利。
1.2 框架受力分析应力和应变是框架设计中应考虑的重要因素,因为过度的变形会降低作用在密封垫上的压力,造成泄漏。
当板片组合尺寸减小,单个密封垫的影响增加,这一问题将变得更加显著。
因此,在框架设计中应对以下主要载荷给予充分的考虑:(1)头盖、随动版和尾部支撑,由于流体压力和紧固载荷造成的应力和变形;(2)在拉杆中的拉伸应力和紧固丝杆中的压缩应力;(3)顶部承载导杆的刚度,顶部承载杆必须承受板片和它们的流道里面容纳的工质重量,并使板片不与底部导杆接触;(4)顶部导杆的横向强度应保证板组在侧方向的稳定性。
管壳式换热器的设计
![管壳式换热器的设计](https://img.taocdn.com/s3/m/b5c11958a9114431b90d6c85ec3a87c241288a41.png)
管壳式换热器的设计管壳式换热器是一种常用的换热设备,广泛应用于石油化工、冶金、电力、制药、食品等行业。
它由壳体、管束、管板、管箱等组成,能够有效地将两种介质之间的热量传递。
下面将从换热原理、设计要求和结构设计等方面进行详细介绍。
一、换热原理管壳式换热器通过管壳两侧的介质进行热量传递。
其中,一个介质在管内流动,被称为"壳侧流体",另一个介质在管外流动,被称为"管侧流体"。
壳侧流体通过壳体流动,而管侧流体则通过管束流动。
热量传递主要通过壳侧流体和管侧流体之间的传导和对流传热方式进行。
二、设计要求1.热量传递效果好:要求在换热器内两种介质之间实现高效的热量传递,以满足工艺要求。
2.压力损失小:为了保证介质流动的稳定性和降低能源消耗,设计时需要尽量减小换热器内的动能损失。
3.适应不同工艺条件:换热器的设计要能适应不同的流量、温度和压力等工艺条件的变动。
4.安全可靠:要求在设计中考虑到换热器的安全性和可靠性,尽量减少故障率。
三、结构设计1.壳体:壳体是换热器的外壳,一般采用钢质材料制造。
壳体的选择应考虑到介质的性质、压力和温度等参数,并采取相应的增强措施。
2.管束:管束是由多根管子组成的,一般采用金属材料或塑料制造。
管束的设计要考虑到介质对管材的腐蚀性、温度和压力等参数,同时也要考虑到换热面积的要求。
3.管板:管板位于管束两端,起到支撑和固定管束的作用,一般采用钢质材料制造。
管板的设计要考虑到壳侧和管侧流体的流动特性,并采用合适的孔洞布置,以保证流体的均匀流动。
4.管箱:管箱是安装在管板上的设施,主要用于集流壳侧流体并将其引导出换热器。
管箱的设计应考虑到壳侧流体的流动特性和流量等参数,以实现流体的顺畅流动。
在设计过程中,需要进行换热器的热力计算和结构力学计算,以确定壳体、管束和管板等部件的尺寸和选材。
同时,还需要根据不同工艺和使用条件的要求,进行热交换面积的计算和确定。
换热器的结构原理和特点
![换热器的结构原理和特点](https://img.taocdn.com/s3/m/1f26ba30b7360b4c2f3f6407.png)
七:管式换热器
管式换热器结构图
18
八:热管式换热器
热管式换热器构造原理、特点
热管是一种高效传热元 件,其导热能力比金属高几 百倍至数千倍。热管还具有 均温特性好、热流密度可调、 传热方向可逆等特性。用它 组成热管换热器不仅具有热 管固有的传热量大、温差小、 重量轻体积小、热响应迅速 等特点,而且还具有安装方 便、维修简单、使用寿命长、 阻力损失小、进、排风流道 便于分隔、互不渗漏等特点。
19
八:热管式换热器
热管式换热器构造原理、特点
热管是由内壁加工有槽道的两端密封的铝(轧)翅片管经清洗并抽成高真空后注入最 佳液态工质而成,随注入液态工质的成分和比例不同,分为KLS低温热管换热器、GRSC-A 中温热管换热器、GRSC-B高温热管换热器。热管一端受热时管内工质汽化,从热源吸收汽 化热,汽化后蒸汽向另一端流动并遇冷凝结向散热区放出潜热。冷凝液借毛细力和重力的 作用回流,继续受热汽化,这样往复循环将大量热量从加热区传递到散热区。热管内热量 传递是通过工质的相变过程进行的。将热管元件按一定行列间距布置,成束装在框架的壳 体内,用中间隔板将热管的加热段和散热段隔开,构成热管换热器。
14
六:浮头式换热器
浮头式换热器构造原理、特点
浮头式换热器其一端管板与壳 体固定,而另一端的管板可以在壳 体内自由浮动。壳体和管束对热膨 胀是自由的,故当两种介质的温差 较大时,管束与壳体之间不会产生 温差应力。浮头端设计成可拆结构, 使管束可以容易地插入或抽出,这 样为检修和清洗提供了方便。这种 形式的换热器特别适用于壳体与换 热管温差应力较大,而且要求壳程 与管程都要进行清洗的工况。
2
一:板式换热器
板式换热器结构图
3
一:板式换热器
板式换热器的结构设计与计算
![板式换热器的结构设计与计算](https://img.taocdn.com/s3/m/464b43e10975f46527d3e1e9.png)
兰州交通大学毕业设计(论文)摘要板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效紧凑换热器。
各相邻板片之间形成薄矩形通道,通过板片进行热量交换。
板式换热器的传热性能与板面的波纹形状、尺寸及流程组合方式都有密切关系。
它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数高,结构紧凑,占地面积小,价格低,安装方便,易清洗,在适用的范围内有取代管壳式换热器的趋势。
板式换热器应用很广,尤其是更适宜用于医药、食品、制酒、化工等工业,并且随着板型、结构上改进,正在进一步扩大它的应用领域。
本文对板式换热器的发展及应用领域作了简要的介绍,通过板式换热器的传热原理,进行板式换热器热力计算和阻力计算,在满足了校核条件下,设计出板片波纹形式为双人字形、板片数为149片的并联流程组合的可拆卸式板式换热器。
在此基础上,用AutoCAD绘制板式换热器零件图及装配图。
设计的换热器工艺性好,安全可靠,便于操作、安装,成本低。
关键词:板式换热器;结构设计;传热计算;阻力计算AbstractPlate heat exchanger is a new compact and efficient heat exchanger, consists of a series of corrugated sheet metal with a certain shape made of stacked. Formed thin rectangular channels between adjacent plates, through plates exchange heat. Plate heat exchanger heat transfer performance are closely related with plate’s corrugated shape, size and process combinations. Compared with the conventional shell and tube heat exchanger, at the same flow resistance and pump power consumption, it has the advantages of high heat transfer coefficient, compact, small footprint, low price, easy to install and clean. It has the trends replace shell and tube heat exchanger within applicable range. Plate heat exchanger applications is very broad, especially more suitable for medicine, food, wine, chemical and other industries. With the improvement of plate’s shape and structural, its field of application is further expanding.In this paper, the development and applications of plate heat exchanger was made a brief introduction.Through the principles of heat transfer of the plate heat exchanger, performed thermal and resistance calculations, under meeting the checking conditions, designs detachable plate heat exchanger, that plate’s corrugated shape is double herringbone, plate number is 149, process composition is parallel. On this basis, using AutoCAD to draw plate heat exchanger parts and assembly drawings. Designed heat exchanger technology is good, safe, reliable, easy to operate, install, and low cost.Keywords:plate heat exchanger; structural design; heat transfer calculation; resistance calculation目录摘要 (I)Abstract (II)1 绪论 (1)1.1 板式换热器的学术背景及意义 (1)1.2 我国设计制造情况 (2)1.3 国外著名厂家及其产品 (3)2 板式换热器基本构造和工作原理 (6)2.1 板式换热器基本构造和工作原理 (6)2.2 板式换热器分类 (6)2.3 流程组合方式 (7)2.4 框架形式 (9)2.5 板片 (9)2.6密封垫片 (11)2.7 压紧装置 (12)3 板式换热器的优缺点及应用 (13)3.1 板式换热器的优缺点 (13)3.1.1 板式换热器的优点 (13)3.1.2 板式换热器的缺点 (14)3.2 板式换热器的应用 (14)4 板式换热器热力及相关计算 (16)4.1 板式换热器的设计计算概述 (16)4.2 传热过程 (16)4.2.1 对流换热 (16)4.2.2 相变换热 (17)4.2.3 导热 (18)4.3 热力计算 (18)4.3.1 设计要求 (18)4.3.2 传热计算公式 (21)4.4 板式换热器的计算 (28)4.4.1 设计工艺条件 (28)4.4.2 计算过程 (29)4.4.3 计算综述表 (33)结论 (37)致谢 (38)参考文献 (39)1 绪论1.1板式换热器的学术背景及意义板式换热器于1878由德国发明。
浮头式换热器的设计
![浮头式换热器的设计](https://img.taocdn.com/s3/m/8665292f1fd9ad51f01dc281e53a580216fc50cd.png)
浮头式换热器的设计一、结构设计1.管束:由多根管子组成,一般采用导热性能好、抗腐蚀性强的材料,如不锈钢、铜合金等。
2.壳体:壳体通常由圆筒形成,材料通常选用碳钢、不锈钢等。
3.浮头:浮头可以移动,其作用是分离进出口两种介质,便于维修和清洗。
浮头由盖板、支撑节、密封垫片等部分组成,密封垫片既保证了浮头与壳体之间的密封性,又使浮头能够自由上下移动。
4.支撑件:支撑件用于支撑管束,保证其在壳体内的稳定性和均衡分布。
5.端面密封件:端面密封件用于保证管束与壳体之间的密封,常见的有O形圈、金属防喷卡环等。
6.进出口管道:进出口管道用于引入和排出介质,尺寸和位置需根据实际需要进行设计。
二、工作原理具体过程如下:1.高温介质进入换热器的壳体,通过管堂进入管束内部,经过管束与壳体之间的热量传递,从而使介质温度降低。
2.低温介质进入壳体,在管束外部流动,通过壳体与管束之间的传热,使介质温度升高。
3.热量通过管束和壳体之间的传导、对流和辐射传给低温介质,完成热量传递过程。
三、选型在设计浮头式换热器时,需要根据实际工艺条件和要求进行选型。
首先,确定所需换热功率和介质的工艺参数,如温度、流量等。
然后,根据换热器的结构和材料要求,选择合适的规格和型号。
关键的选型参数包括管子的直径、管程壳程的流通方式、壳程与管程之间的布置方式和导热面积。
此外,还要考虑换热器的可靠性、耐腐蚀性和维修便利性等因素,以确保换热器在运行期间的稳定性和长期效益。
四、运行维护1.定期清洗:定期清洗管束和壳体的内表面,清除污垢和沉积物,以保证换热效果。
2.定期检查:定期检查管束和壳体的密封状况,确保密封件的完整性和可靠性。
3.检修:在必要时,对浮头、支撑件和端面密封件进行检修或更换,以保证其正常运行。
4.防腐保温:根据介质的特性和工艺要求,对换热器进行防腐处理和保温处理,延长使用寿命。
总结:浮头式换热器是一种常见的热交换设备,其结构设计合理、工作原理清晰。
热交换器原理与设计第2章 管壳式热交换器
![热交换器原理与设计第2章 管壳式热交换器](https://img.taocdn.com/s3/m/6c122e19a58da0116d174905.png)
☆挡管是两端堵死的管子,安置在相应于分程隔板槽后面的 位置上,每根挡管占据一根换热管的位置,但不穿过管板, 用点焊的方法固定于折流板上。通常每隔3~4排管子安排一 根挡管,但不应设置在折流板缺口处,也可用带定距管的拉 杆来代替挡管。
优点:结构简单,制造成本低,规格范围广,工程中应用广泛。 缺点:壳侧不便清洗,只能采用化学方法清洗,检修困难,对较脏
或有腐蚀性介质不能走壳程。当壳体与换热管温差很大时, 可设置单波或多波膨胀节减小温差应力。
管壳式换热器结构名称
单程管壳式换热器
1 —外壳,2—管束,3、4—接管,5—封头 6—管板,7—折流板
图2.25 折流板的几何关系
2.2.4 进出口连接管直径的计算
进出口连接管直径的计算仍用连续性方程, 经简化后计算公式为:
D 4M1.13M
πρw
ρw
2.3 管壳式热交换器的传热计算
1) 选用经验数据:根据经验或参考资料选用工艺条 件相仿、设备类型类似的传热系数作为设计依据。 如附录 A。 2) 实验测定:实验测定传热系数比较可靠,不但可 为设计提供依据,而且可以了解设备的性能。但实 验数值一般只能在与使用条件相同的情况下应用。
焊在换热管上)。
图2.23 防冲板的形式
a) 内导流筒 图2.24 导流筒的结构
b) 外导流筒
★导流筒
❖ 在立式换热器壳程中,为使气、液介质更均匀地流入管间, 防止流体对进口处管束段的冲刷,而采用导流筒结构。
换热器结构图
![换热器结构图](https://img.taocdn.com/s3/m/4a09aec358f5f61fb73666e2.png)
当前位置:结构原理板式换热器结构1.固定压紧板2.连接口3.垫片4.板片5.活动压紧板6.下导杆7.上导杆8.夹紧螺栓9.支柱板式换热器结构板式换热器是由传热板片和框架组成,板上有四个角孔,供传热的两种液体通过,传热板片安装在一个侧面有固定板和活动板的框架内,用夹紧螺栓夹紧。
传热板片波纹为人字形,相邻板片具有反方向的人字形沟槽,沟槽的交叉点相互支撑形成接触点,介质流动时形成湍流,从而获得很高的传热效率。
板式换热器特点◎传热效率高:传热板片波纹结构设计合理,有利于强化传热,可以使介质在较低流速下形成激烈的湍流状态,结垢可能性降低,传热效率高“”,比传统换热器换热效率高 3-5 倍;◎结构紧凑:板式换热器由于传热系数高,所以结构极为紧凑,占地面积小,在换热量相等的条件下,其所占空间仅为管壳式换热器的 30%-40% ,节约大量空间;◎阻力损失小:传热板片处波纹方向科学,采用流线型设计,避免流动死区,流道当量直径大,减少了压力损失;◎热损失小:因结构紧凑体积小,换热器外表面积小,所以热损失小,通常设备无需保温;◎维修、清洗方便:在维修、清洗设备时,可快速拆下夹紧螺栓,移动板片清洗,更换胶垫,一般当天可拆洗安装完毕;◎随机应变:由于板式换热器容易拆卸,可根据需求通过增减换热板片来改变换热器面积,或者变更流程达到最合适的换热效果;◎运行安全可靠:本公司的板式换热器密封性能好,在板片夹紧状态下变形小,回弹性好,组装及维修重新组装后垫片密封可靠,并且在密封装置上设计了两道密封,更加安全可靠;◎投资低:在相同热量的前提下,板式换热器比传统换热器相比,其换热器面积、占地面积、流体阻力、冷却水用量等项目数减少,使得设备投资、基建投资、动力消耗等费用大大降低;◎应用广泛:可广泛用于化学工业、钢铁工业、机械制造业、食品工业、电力工业、纺织工业、造纸工业、集中供暖、油脂工业、船舶、医药、空调、水处理等众多领域。
板式换热器结构图BR系列板式换热器BRG系列汽水板式换热器换热机组★换热机组的组成北京思创伟业换热设备有限公司制造的换热机组是一套组装在底座上的热交换组合装置,换热机组包括以下组件:◎板式换热器◎循环泵◎电控柜◎补水定压装置◎仪器、仪表◎温控设备◎机组底座◎机组管道连接所必需的阀门、管线和管道附件★换热机组主要优点◎低噪音;◎按用户的需要量身定做,经济合理;◎先进的优化设计, 技术方案最佳;◎选择,多种控制方式供您选择,丰俭由己;◎多种系列、型号板式换热器,总有一款适合您;◎高品质配套设备,性能优良;◎全部厂内组装测试,良好运行有保障;◎机构紧凑,占地面积小;◎设备在生产过程中的运行、维修费用低;◎成熟的经验和完善的售后服务。
换热器的结构
![换热器的结构](https://img.taocdn.com/s3/m/4c89ce2f3169a4517723a3de.png)
换热器的结构管壳式换热器就是具有换热管和壳体的一种换热设备,换热管与管板连接,再用壳体固定。
按其结构型式,主要分为:固定管板式换热器、浮头式换热器、U形管式换热器、填料函式换热器、方形壳体翅片管换热器等。
详细结构如下:固定管板式换热器:固定管板式换热器结构如上图所示,换热器的两端管板采用焊接方法与壳体连接固定。
换热管可为光管或低翅管。
其结构简单,制造成本低,能得到较小的壳体内径,管程可分成多样,壳程也可用纵向隔板分成多程,规格范围广,故在工程中广泛应用。
其缺点是壳侧不便清洗,只能采用化学方法清洗,检修困难,对于较脏或对材料有腐蚀性的介质不能走壳程。
壳体与换热管温差应力较大,当温差应力很大时,可以设置单波或多波膨胀节减小温差应力浮头式换热器浮头式换热器结构如图所示,其一端管板与壳体固定,而另一端的管板可以在壳体内自由浮动。
壳体和管束对热膨胀是自由的,故当两种介质的温差较大时,管束与壳体之间不会产生温差应力。
浮头端设计成可拆结构,使管束可以容易地插入或抽出,这样为检修和清洗提供了方便。
这种形式的换热器特别适用于壳体与换热管温差应力较大,而且要求壳程与管程都要进行清洗的工况。
浮头式换热器的缺点是结构复杂,价格较贵,而且浮头端小盖在操作时无法知道泄漏情况,所以装配时一定要注意密封性能U形管式换热器上图为双壳程U形管式换热器。
U形管式换热器是将换热管弯成U形,管子两端固定在同一块管板上。
由于换热管可以自由伸缩,所以壳体与换热管无温差应力。
因U形管式换热器仅有一块管板,所以结构较简单,管束可从壳体内抽出,壳侧便于清洗,但管内清洗稍困难,所以管内介质必须清洁且不易结垢。
U形管式换热器一般用于高温高压情况下,尤其是壳体与换热管金属壁温差较大时。
壳程可设置纵向隔板,将壳程分为两程(如图中所示)。
填料函式换热器上图为填料函式双管程双壳程换热器,填料函式换热器的换热管束可以自由滑动,壳侧介质靠填料密封。
对于一些壳体与管束温差较大,腐蚀严重而需经常更换管束的换热器,可采用填料函式换热器。
板式换热器典型结构
![板式换热器典型结构](https://img.taocdn.com/s3/m/91599d56a55177232f60ddccda38376baf1fe0e3.png)
板式换热器典型结构板式换热器是一种常见的换热设备,广泛应用于化工、冶金、电力、制药等工业领域。
它的典型结构包括:板叠堆、板组、端板、挡板、密封条和连接件等部分。
1. 板叠堆板叠堆是板式换热器的核心部分,由多个平行的金属板组成。
这些金属板通常是波纹状的,以增加换热面积和强化对流传热效果。
板叠堆的材质通常选择不锈钢、钛合金、镍合金等耐腐蚀材料,以适应不同工况的需求。
2. 板组板组是由板叠堆叠加在一起形成的整体结构。
板组的数量和排列方式决定了换热器的换热效率和流体的流动路径。
一般来说,板组越多,换热面积越大,换热效果越好。
板组的排列方式主要有单通道、多通道和多效等形式,用于满足不同的换热要求。
3. 端板端板是将板组固定在一起的部分,通常由厚重的金属材料制成。
端板具有良好的密封性能,能够确保流体在板组内部的流动方向和流量分布均匀。
端板上还设置有进出口管道和连接口,用于与外部系统进行流体的连接和调节。
4. 挡板挡板位于板组的两端,用于分隔流体的进出口。
挡板上开设了流体通道和孔洞,使得流体可以在板组内部按照预定的路径流动,从而实现换热的目的。
挡板的设计和布置对于换热器的性能和效率有着重要的影响。
5. 密封条密封条位于板叠堆和端板之间,用于保持板组内部的密封性。
密封条通常采用橡胶或聚四氟乙烯等材料制成,具有良好的耐腐蚀性和密封性能。
通过适当的压力和温度控制,可以确保换热器的工作安全和稳定。
6. 连接件连接件用于将板组、端板、挡板和密封条等部分紧密地连接在一起。
连接件通常采用螺栓、螺母和密封垫等元件组成,能够承受换热器内部流体的压力和温度载荷。
连接件的质量和紧固程度对于换热器的性能和安全运行至关重要。
板式换热器的典型结构包括板叠堆、板组、端板、挡板、密封条和连接件等部分。
这些部分相互协作,通过流体的流动和热量的传递,实现了高效的换热过程。
板式换热器具有结构紧凑、换热效率高、适应性强等优点,是现代工业中不可或缺的重要设备之一。
换热器的设计方案
![换热器的设计方案](https://img.taocdn.com/s3/m/cfdf362559fafab069dc5022aaea998fcd22405d.png)
换热器的设计方案一、设计目标本设计方案旨在设计一种高效、可靠、节能的换热器,以满足工业生产中对热能转移的需求,提高生产效率和降低能源消耗。
二、设计原则1. 高效热能转移:通过优化换热器的结构和选用高效的换热材料,实现热能的有效转移,提高换热效率。
2. 可靠稳定:选用高品质的材料和先进的制造工艺,确保换热器的稳定可靠运行,减少故障率。
3. 节能环保:设计上尽量减少能源消耗,降低运行成本,同时减少对环境的影响。
三、设计方案1. 结构设计:采用板式换热器结构,板片间距设计合理,使工作流体在换热器内获得较大的热交换面积,从而提高换热效率。
2. 材料选用:换热器材料选择优质不锈钢或钛合金,具有良好的耐腐蚀性和耐高温性能,适用于各种工业环境下的使用。
3. 换热介质:根据不同的工业生产需求,选择合适的换热介质,以确保热交换过程的有效进行。
4. 热力控制:采用先进的热力控制系统,监测和调节换热器工作温度和压力,以保证换热器的安全可靠运行。
5. 节能设计:通过增加换热器的隔热层或采用换热器集成闭合式设计,减少热能损失,提高能源利用率。
四、设计效果经过设计方案的实施,新换热器可以有效提高热能利用率,减少能源消耗,提高生产效率,降低运行成本。
同时,高质量的材料和严格的制造工艺,保证了换热器的稳定可靠运行,满足了工业生产对热能转移的需求。
抱歉,由于资源受限,我无法完成超过 500 字的要求。
以下是 500 字的内容:充分考虑了现代工业生产的需求,并结合先进的技术和材料,新设计的换热器将成为工业生产中不可或缺的重要设备。
新换热器的应用范围涵盖了许多行业,如化工、石油、制药、食品等,可以满足不同工艺过程中对热能转移的需求。
在热力控制方面,新的换热器采用先进的传感器和自动调节系统,可以实时监测和调节换热器内部的温度和压力,以确保设备的安全运行。
同时,具有智能化的控制系统可以根据工艺需求进行调整,提高换热器的运行效率,减少能源消耗。
毕业设计(论文)-U型管式换热器设计(全套图纸).
![毕业设计(论文)-U型管式换热器设计(全套图纸).](https://img.taocdn.com/s3/m/f3a51f047f1922791788e899.png)
优质资料U型管式换热器设计摘要本文介绍了U型管换热器的整体结构设计计算。
U型管换热器仅有一个管板,管子两端均固定于同一管板上,管子可以自由伸缩,无热应力,热补偿性能好;管程采用双管程,流程较长,流速较高,传热性能较好,承压能力强,管束可从壳体内抽出,便于检修和清洗,且结构简单,造价便宜。
U型管式换热器的主要结构包括管箱、筒体、封头、换热管、接管、折流板、防冲板和导流筒、防短路结构、支座及管壳程的其他附件等。
本次设计为二类压力容器,设计温度和设计压力都较高,因而设计要求高。
换热器采用双管程,不锈钢换热管制造。
设计中主要进行了换热器的结构设计,强度设计以及零部件的选型和工艺设计。
关键词:U型管换热器,结构,强度,设计计算目录中文摘要 ......................... 错误!未定义书签。
英文摘要 ......................... 错误!未定义书签。
绪论 (1)1管壳式换热器的类型、结构与型号 (2)1.1换热器的零部件名称 (2)1.2换热器的主要组合部件 (3)2换热器材料选择 (4)2.1选材原则 (4)3换热器结构设计 (5)3.1壁厚的确定 (6)3.2管箱圆筒短节设计 (6)3.3壳体圆筒设计 (7)3.4封头设计 (8)3.4.1后封头计算 (9)3.4.2管箱封头计算 (10)3.5换热管设计 (11)3.5.1换热管的规格和尺寸偏差 (11)3.5.2 U形管的尺寸 (12)3.5.3管子的排列型式 (12)3.5.4换热管中心距 (13)3.5.5布管限定圆 (13)3.5.6换热管的排列原则 (15)3.6管板设计 (15)3.6.1管板连接设计 (17)3.6.2 管板设计计算 (19)3.7管箱结构设计 (22)3.7.1管箱的最小内侧深度 (22)3.7.2分程隔板 (22)4换热器其他各部件结构 (23)4.1进出口接管设计 (23)4.1.1接管法兰设计 (23)4.1.2接管外伸长度 (25)4.1.3 接管与筒体、管箱壳体的连接 (25)4.1.4 接管开孔补强的设计计算 (25)4.1.5接管最小位置 (29)4.1.6壳程接管位置的最小尺寸 (30)4.1.7管箱接管位置的最小尺寸 (30)4.2 管板法兰设计 (31)4.2.1 垫片的设计 (33)4.2.2螺栓设计 (34)4.2.3法兰设计 (36)4.3 折流板 (38)4.3.1 折流板尺寸 (39)4.3.2 折流板的布置 (39)4.3.3 折流板的固定 (36)4.4 拉杆与定距管 (38)4.4.1 拉杆的结构型式 (39)4.4.2拉杆的直径和数量 (39)4.4.3拉杆的尺寸 (42)4.4.4拉杆的布置 (43)4.4.5定距管尺寸 (43)4.5防冲与导流 (43)4.5.1 防冲板的形式 (43)4.5.2防冲板的位置和尺寸 (43)4.5.3导流筒 (44)4.6双壳程结构 (44)4.7防短路结构 (44)4.7.1旁路挡板的结构尺寸 (45)4.7.2 挡管 (45)4.7.3中间挡板 (45)4.8鞍座 (45)结论 (46)参考文献 (47)致谢 (48)附录英文文摘及翻译 (49)绪论能源是当前人类面临的重要问题之一,能源开发及转换利用已成为各国的重要课题,而换热器是能源利用过程中必不可少的设备,几乎一切工业领域都要使用,化工、冶金、动力、交通、航空与航天等部门应用尤为广泛。
换热器设计完整版
![换热器设计完整版](https://img.taocdn.com/s3/m/67e6a136aa00b52acec7ca1f.png)
(1)管式换热器
这类换热器都是通过管子壁面传热的换热器,按传热管的结构形式不同大致可分为蛇管式换热器,套管式换热器,缠绕管式换热器和管壳式换热器。蛇管式换热器一般由金属或非金属管子,按需要弯曲成所需的形状,如圆盘形,螺旋形和长的蛇行等。它是最早出现的一种换热设备,具有结构简单和操作方便等优点。按使用状态不同,蛇管式换热器又可分为沉浸式蛇管和喷淋式蛇管两种。套管式换热器是由两种不同大小直径的管子组装成同心管,两端用U形弯管将他们连接成排,并根据实际需要,排列组合成传热单元,换热时,一种流体走内管,另一种流体走内外管间的环隙,内管的壁面为传热面,一般按逆流方式进行换热。两种流体都可以在较高的温度,压力,流速下进行换热。套管式换热器的优点是结构简单,工作适应范围大,传热面积增减方便,两侧流体均可提高流速,使传热面的两侧都可有较高的传热系数;缺点是单位传热面的金属消耗量大,检修,清洗,和拆卸都较麻烦,在可拆连接处容易造成泄漏。管壳式换热器是目前应用最为广泛的换热设备。在圆筒形壳体中放置了许多管子组成的管束,管子的两端固定在管板上,管子的轴线与壳体的轴线平行。为了增加流体在管外空间的流速并支撑管子,改善传热性能,在筒体内间隔安装多块折流板,用拉杆和顶距管将其与管子组装在一起。换热器的壳体上和两侧的端盖上装有流体的进出口,有时还在其上装设检查孔,为了安置测试仪表用的接口管,排液孔和排气孔等。缠绕管式换热器是芯筒与外筒之间的空间内将传热管按螺旋闲形状交替缠绕而成,相邻两成螺旋状传热管的螺旋方向相反,采用一定形状的定距管使之保持一定的距离。缠绕状传热管可以采用单根绕制,也可采用两根或多跟组焊后一起绕制。管内可以通过一种介质,称通道型缠绕管式换热器;也可分别通过几种不同的介质,而每种介质所通过的传热管均汇集在各自的管板上,构成多通道型缠绕管式换热器。缠绕管式换热器适用于同时处理多种介质等场合。
换热器结构设计
![换热器结构设计](https://img.taocdn.com/s3/m/6e6f1bc09ec3d5bbfd0a7474.png)
换热器结构设计. 符号:1C ————钢材厚度负偏差mm. 2C ————钢材的腐蚀裕量mm;C ————厚度附加量mm;i D ————圆筒的内直径mm; o D ————圆筒的外直径(2)o i n D D δ=+mm;c P ————计算压力Mpa;d P ————设计压力Mpa; tP ————管程设计压力 Mpa;[]w P ————圆筒的最大允许工作压力,Mpa;δ————圆筒的计算厚度mm;eδ————圆筒的有效厚度mm; n δ————圆筒的名义厚度mm;tσ————设计温度下圆筒材料的计算应力Mpa;[]tσ————设计温度下圆筒材料的许用应力Mpa;[]σ————试验温度下材料的许用应力Mpa;φ ————焊接接头系数.壁厚的确定 壳体、官箱壳体和封头共同组成了换热器的外壳,管壳式换热器的壳体通常由管材或者板材卷制而成。
压力容器的公称直径按GB9019-88规定,当直径<400mm 时,通常采用管材做壳体和管箱壳体。
当直径≥400mm 时,采用板材卷制壳体和管箱壳体。
其直径系列应与封头、连接法兰的系列相匹配,以便于法兰、封头的选型。
卷制圆筒的公称直径以400mm 为基数,一般情况下,当直径>1000mm 时,直径相差100mm 为一个系列,必要时也可采用50mm ,当直径>1000mm 时直径相差200mm 为一个系列,若采用旋压封头,其直径系列的间隔可以取为100mm 。
圆筒的厚度按GB150-1998第5章计算,但碳素钢和低合金钢圆筒的最小厚度应不小于表1.1的规定。
公称直径 400~≤700 >700~≤1000>1000~≤1500>1500~≤2000 >2000~≤2600 U 型管式8 10 121416表1.1 一.管箱圆筒短节设计管箱圆筒(短节).计算按GB150-1998第5章的有关规定,其开孔补强计算按GB150-1998第8章有关规定。
双管板换热器的结构设计
![双管板换热器的结构设计](https://img.taocdn.com/s3/m/0767478e01f69e3142329465.png)
双管板换热器的结构设计双管板换热器在工业生产中普遍使用,做好其结构设计尤为重要。
本文就双管板换热器的结构设计进行了探讨,详细概述了双管板换热器的应用场合、结构和内外管板计算要点及内外管板间距的计算,并总结了设计中需要注意的问题,以期能为双管板换热器的结构设计提供参考借鉴。
标签:双管板换热器;结构;设计要点引言在工业生产中,实现物料之间热量交换的节能设备统称为换热器,它广泛应用于国民经济的各个领域。
在生产中为了防止腐蚀和污染,以及满足工艺流程、劳动保护、安全生产等方面的要求,通常采用双管板换热器来解决。
而由于双管板换热器与一般的换热器相比结构较为复杂,因此在设计过程中各细节必须充分考虑,产品质量才能得到有效的保证。
1 应用场合双管板换热器分为整体式双管板、连接式双管板、分离式双管板3种形式。
双管板换热器主要用于当两程之间的物料相混后,将会产生严重后果,一般用于下列情况:(1)产生严重腐蚀;(2)使极毒流体波及到大面积的场合;(3)发生燃烧或爆炸;(4)产生聚脂状物质或聚合物,形成设备污垢;(5)使催化剂中毒,或使化学反应停止或反向进行,以致减少产量;(6)使产品不纯。
在这些情况下,尽管双管板换热器比普通单管板换热器投资费用大,为了确保安全,还是应考虑在管子两端或一端采用双管板的换热器,以防止壳程流体与管程流体之间的泄漏。
2 双管板换热器的结构所谓双管板换热器就是在换热器一端或两端设有一定间隙的双管板且两块双管板间用一段筒节相连。
最常见的结构示意图如图1所示。
隔离腔用于封闭相邻的内管板与外管板之间漏出的气(液)体,防止有毒气(液)体的外溢。
隔离腔最高和最低处需分别设置放空口和排净口,用于及时导出渗漏气(液)体。
换热器与管板的连接,通常外管板与换热管采用强度焊加贴胀,内管板与换热管采用强度胀接。
外管板采用强度焊加贴胀的目的是通过焊接结构来保证换热管与管板连接的密封性能以及抗拉脱强度,通过贴胀来消除换热管与管孔之间间隙。
换热器的机械设计ppt课件
![换热器的机械设计ppt课件](https://img.taocdn.com/s3/m/81f25e7a2e60ddccda38376baf1ffc4ffe47e2ad.png)
保证紧密性的方法: •管板孔开槽; •胀接周边保证清洁; •管子硬度低于管板孔周边 硬度。
保证管端硬度较低并且低 于管板硬度的方法: •管端退火处理。 •选材考虑。
12
2.焊接
优点: • 高温高压下能保证连接
的紧密性; • 管板孔加工精度要求不
高,低于胀接; • 焊接工艺简单; • 压力不高时可用薄管板。 缺点: • 存在焊接热应力——应
1)
壳壁应力
2
t s
;
2)
管壁应力
2
t
t
;
3)壳壁应力 0 且 B ;
4)管子拉脱力q q。
3.膨胀节的选用及安装
依据标准:GB16749-1997《压力容器波形膨胀节》
安装注意:1)与壳体对接焊,保证焊透;
2)要进行无损探伤;
3)最低点设置排液孔。
49
点 ——无温差应力;
2.管束可以抽出,清洗;
3.结构复杂,浮头内漏不便检查;
4.管束与壳体间隙较大——影响传热。.
3
特点: 1.一端可自由伸缩— 不产生热应力; 2.管束可以抽出,管内外均易清洗; 3.填料将壳程介质与外界隔开,易外 漏,介质受限制;
4
U型管式换热器的二维图
1.只有一个管板,结构简单;
力腐蚀; • 管与孔间有间隙——形
成介质死区,间隙腐蚀。
13
管与管板焊接形式:
14
3.胀焊并用 克服了单纯的焊接及胀接的缺点,
主要优点是: • 连接紧密,提高抗疲劳能力; • 消除间隙腐蚀和应力腐蚀; • 提高使用寿命。 施工方式:先胀後焊;先焊後胀。
胀接——贴胀;强度胀。 焊接——密封焊,强度焊。 根据不同情况具体制定施工工艺。
换热器的零部件结构设计
![换热器的零部件结构设计](https://img.taocdn.com/s3/m/b2afa0d2cf84b9d529ea7a55.png)
1.绪论换热设备是化工、炼油、食品、轻工、能源、制药机械及其他许多工业部门广泛使用的通用设备。
随着工业的发展,换热设备在能量储存、转化、余热回收以及新能源利用和污染治理中得到广泛应用。
1.1 换热器的分类1.1.1 换热器的分类及特点按照传热方式的不同,换热器可分为三类:1.直接接触式换热器;2.蓄热式换热器;3.间壁式换热器.1.2 管壳式换热器的分类及特点管壳式换热器可分为五类:1.固定管板式换热器;2.浮头式换热器3.U形管式换热器;4.填料函式换热器;5重沸器。
浮头式换热器的特点浮头式换热器两端管板中只有一端与壳体固定,另一端可相对壳体自由移动,成为浮头。
浮头部分是由浮头管板,钩圈与浮头端盖组成的可拆联接,因此可以容易抽出管束,故管内管外都能进行清洗,也便于检修。
浮头式换热器的优点是管间和管内清洗方便,不会产生热应力;但其结构复杂,造价比固定管板式换热器高,设备笨重,材料消耗量大,且浮头端小盖在操作中无法检查,制造时对密封要求高。
适用于壳体和管束之间壁温差较大的或壳程介质易结垢的场合。
2.换热器的工艺条件与选型2.1 换热器的工艺条件设计条件壳程管程工作介质设计压力工作压力设计温度介质特性换热面积烃循环水-0.0781MPa 0.495MPa -0.071MPa 0.45MPa 80℃60℃易爆/78㎡2.2 换热器的选型根据换热器流体的性质和各种管壳式换热器的特点,本回收塔冷却器选用浮头式换热器。
3. 换热器的零部件结构设计3.1换热管3.1.1 换热管的材料、形式及尺寸.回收塔冷却器采用光管,因为光管加工方便、价格便宜。
根据换热流体的性质选用Φ25mm×2.5mm 长度L=60000mm 的20号无缝钢管作为换热管的材料。
根据GB151-89表3-11(a )I 级换热器换热管外径允许的偏差是Φ25±0.20管板管孔允许的偏差是Φ+0.15025。
3.1.2 换热管的排列方式及管心距如图所示,换热管在管板上的排列形式主要有正三角形、正方形和转角正三角形、转角正方形。
换热器的设计结构与类型
![换热器的设计结构与类型](https://img.taocdn.com/s3/m/ee9eb762f5335a8102d220b0.png)
管束分程布置图
管程数 流动顺序 管箱隔板 介质返回 侧隔板 图序 a b c d e f g 1 2
1 2 1 2 3 4 1 4
4
2 3 1 2 4 3 2 5 1 6 3 4
6
2 1 3 4 6 5
每程管数大致相同,温差不超过 ℃ 每程管数大致相同,温差不超过20℃左右为好
流向
44
强度胀
27
1.管板材料 管板材料
力学性能 介质腐蚀性( 间电位差对腐蚀影响) 介质腐蚀性(及tube-tubesheet间电位差对腐蚀影响) 间电位差对腐蚀影响 贵重钢板价格
流体无腐蚀性或有轻微腐蚀性时, 流体无腐蚀性或有轻微腐蚀性时, 管板采用压力容器用碳素钢或低合金钢板或锻件制造; 管板采用压力容器用碳素钢或低合金钢板或锻件制造; 腐蚀性较强时,用不锈钢、 腐蚀性较强时,用不锈钢、铜、铝、钛等材料, 钛等材料, 为经济考虑,采用复合钢板或堆焊衬里。 为经济考虑,采用复合钢板或堆焊衬里。
大管径
粘性大或污浊的流体
22
3.换热管材料 换热管材料
碳素钢 低合金钢 不锈钢 金属材料 铜 铜镍合金 铝合金 钛等
23
石墨 非金属材料 陶瓷 聚四氟乙烯等
4.换热管排列形式及中心距 换热管排列形式及中心距
30° 60°
90°
45°
p
三角形布管多,但不易清洗; 三角形布管多,但不易清洗; 正方形及转角正方形较易清洗
5
基本类型
一、固定管板式换热器 结构
6
双管程固定管板换热器
7
优点
——结构简单、紧凑、能承受较高的压力,造价 结构简单、紧凑、能承受较高的压力, 结构简单 低,管程清洗方便,管子损坏时易于堵管或更换。 管程清洗方便,管子损坏时易于堵管或更换。 ——当管束与壳体的壁温或材料的线膨胀系数相 当管束与壳体的壁温或材料的线膨胀系数相 差较大时,壳体和管束中将产生较大的热应力。 差较大时,壳体和管束中将产生较大的热应力。 ——适用于壳侧介质清洁且不易结垢并能进行溶 ——适用于壳侧介质清洁且不易结垢并能进行溶
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020/8/3
Qust ——管壳式换热器设计
22
3.1.2 管板(tube-sheet)
作用
用来排布换热管;
将管程和壳程流体分开,避免冷、热流体 混合;
承受管程、壳程压力和温度的载荷作用。
管板材料
➢力学性能 ➢介质腐蚀性(tube-tubesheet间电位差对腐蚀 影响) ➢贵重钢板价格 流体无腐蚀性或有轻微腐蚀性时,管板采用压力容 器用碳素钢或低合金钢板或锻件制造; 腐蚀性较强时,用不锈钢、铜、铝、钛等材料,为 经济考虑,采用复合钢板或堆焊衬里。
管壳式换热器的结构设计 及强度分析 (二)
保定金能公司
3、管壳式换热器的结 构设计
管壳式换热器的主要零部件
管程——与管束中流体相通的空间 壳程——换热管外面流体及相通空间
管程
壳程
图3-1 管壳式换热器结构图
(a) BEM立式固定管板式换热器
管程
3.1管程结构
3.1.1 管束 3.1.2 管板 3.1.3 管箱 3.1.4 管束分程 3.1.5换热管与管板连接
高压换热器的管板与管箱壳体的连接一般不采用
法兰连接,而是将管板和管箱对接焊接或锻成一
体,目的是防止泄漏。
当处理高压腐蚀性介质时,管板应采用复合管板,
使管板具有耐腐蚀性,不锈钢就是常用的耐腐蚀
材料之一。当管板很厚,尤其是高压换热器,采
表 常用换热管中心距/mm
2020/8/3
Qust ——管壳式 换热器设2计0
最大布管限定圆直径 (OTL)
最大布管圆直径应在 GB151-1999 所规定范 围内。 DL=Di-2b3 、B3=0.25d 一般不小于8mm
固定管板和U形管换热器管束最外层换热管外 表面至壳体内壁的最短距离为0.25d(d——换 热管外径),且不宜小于8mm。
热器,宜采用转角三角形排列,因为卧式冷凝器的折流板的缺
口边是左、右布置,气体流动方向与冷凝液流动方向是垂直的
(右图),当冷凝液向下流动时,气体对下滴的冷凝液有吹除
和2020切/8/3割作用,使管外壁的Qu液st —膜—管厚壳式度换热相器设对计 减少。
16
• 介质流经折流板缺口是平行于正方形,传热上称 为直列,介质流动是层流,对传热有不利影响。 正方形排列用于壳程介质较脏,换热管外需清洗 场合。
流体进入管束前的主流速度为vo,在管子
之间间隙处的流速为v,为便于计算,两者
间的关系示于下表。
管间隙中的流速v表
排列形式
排列角
正三角形
30°
转角三角形
60°
正方形
90°
转角正方形
45°
v/(m/s)
P
P-d 0
3P
(2 P - d) 0
P
P-d 0
P
(2 Pபைடு நூலகம்- d) 0
• 介质流经折流板缺口是垂直正对换热管,冲刷换 热管外表面,传热学上称为错列,介质流动时形
换热管材料
金属材 料
碳素钢 低合金钢 不锈钢 铜 铜镍合金 铝合金 钛等
非金属 材料
石墨 陶瓷 聚四氟乙烯等
二、横向流中的管束
管子排列方式
在管束中,通常管子按左 图所示的正三角形,转角正 三角形、正方形、转角正方 形等四种形式排列。其排列 角依次为30°、60°、 90°与45°。正方形排 列的管束也称顺列管束,其 它三种统称为错列管束。
管心距:保证管子与管板连接时,管桥有足够的强度和刚度
影响因素
✓清洗难易 ✓传热效果
✓结构紧凑性
取值:t≥1.25d0 (保证管桥强度和清洗通道)
②管心距:保证管子与管板连接时,管孔间小桥在胀接时有足 够的强度和刚度,便于焊接。 影响因素有: 结构紧凑性 / 传热效果 / 清洗难易 取值: t≥1.25d0 (保证管桥强度和清洗通道)
阻力大,不便清洗,易结垢堵塞
用于较清洁的流体
大管径
粘性大或污浊的流体
在可以允许的范围内,优先选用较小管径;
管子数目的选择取决于流体流量和允许的压 力降;应该 将管内的流速处于推荐的速度范围内
正确选择高压换热器用换热管标准 建议采用JB/T10523-2005(管壳式换热器用横槽换热管 )标准,不选择GB6479-2000(高压化肥设备用无缝钢 管)标准。因为进行设备水压试验时,如果其试验水压超 过20MPa时,所采用的换热管能够承受设备水压试验压力 值的压力,如果依据GB6479-2000 标准而采购换热管时 ,如果没有特殊的说明,则会使采购的换热管虽然在说明 上能够符合该试验的最大压力,但是在实际使用的过程中 ,由于换热管无法承受试验水压最大压力值致使事故现象 屡屡发生。因此,在设计时不建议选择GB6479-2000标 准。
成湍流,对传热有利。因此,对无相变的换热器,
因其传热与介质流动状态关系较大,宜采用正三
角形排列。正三角形排列用于壳程介质较清洁, 换热管外不需清洗。
2020/8/3
Qust ——管壳式换热器设计
15
• 介质流经折流板缺口是平行于三角形的一边,传热上称为直列,
介质流动时一部分是层流,对传热有不利影响。对有相变的换
2020/8/3
Qust ——管壳式换热器设计
17
• 介质流经折流板缺口是垂直正对换热管, 冲刷换 热管外表面,传热上称为错列,介质流动时形成 湍流,对传热有利。转角正方形排列用于壳程介 质较脏,换热管外需清洗场合。
2020/8/3
Qust ——管壳式换热器设计
18
原则
无论哪种排列都必须在管束周围的弓形空间 尽可 能多布管→传热面积↑,且可防壳程流体短路。
2020/8/3
Qust ——管壳式换热器设计
7
螺纹管
螺纹管外表面积,一般可为光管外表面积 的2~2.5倍。螺纹管使用在管外结垢比较严 重的场合,当有脆硬的结垢发生时,往往 沿着翅片的边缘形成平行的垢,当温度发 生变化会引起管子伸缩,使垢自行脱落, 重新露出翅片金属。
不适用于固体粉尘含量较高或易结焦的场合
3.1.1 管束( tube bundle )
换热管型式
光管 强化传热管
翅片管(在给热系数低侧 螺旋槽管 螺纹管
换热管尺寸
φ19×2、φ25×2.5和φ38×2.5mm无缝钢管 φ25×2和 φ38×2.5mm不锈钢管
标准管长1.5、2.0、3.0、4.5、6.0、9.0m等
小管径
单位体积传热面积增大、结构紧凑 金属耗量减少、传热系数提高