初中数学 人教版九年级上册 22.1.2 二次函数的图像和性质 课件(共21张PPT)

合集下载

22.1.2 二次函数图象和性质ppt课件

22.1.2 二次函数图象和性质ppt课件

当x=1时,y=1 当x=2时,y=4
7
做一做
在学中做—在做中学
(1)二次先想一想,然后作出它的图象. (3)它与二次函数y=x2的图象有什么关系?
x
… -3 -2 -1
0
1
2
3

y=-x2 … -9 -4 -1
0
-1 -4 -9 …
你能根据表格中的数据作出猜想吗?
一般地,二次函数 y = ax2 + bx + c(a≠0) 的图象叫做抛物线y = ax2 + bx + c
这条抛物线是轴对称 二次函数y = x 2 的图象是轴图对形称吗图?形如,果是,
对称轴是什么? 对称轴是y轴
y 10
9 8
y x2
7
6
5
4
3
2
1
-5 -4 -3 -2 -1 o 1 2 3 4 5 x
当x=1时,y= -1 当x= 2时,y= -4
10
画一画 在同一坐标系中画出函数y=3x2和y=-3x2的图象
11
y ax2
二次函数y=ax2的性质
1.抛物线y=ax2的顶点是原点,对称轴是y轴.
y ax2
2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸 展;
8
做一做 描点,连线
y 2
0
-4
-3 -2
-1
-1
1
2
3
4x
-2
-4
-6
? -8 y=-x2 -10
9
y
y x2
当x<0 (在对称轴的 左侧)时,y随着x的增大而 增大.

人教版初中数学九年级上册精品教学课件 第22章 二次函数 二次函数y=ax2的图象和性质

人教版初中数学九年级上册精品教学课件 第22章 二次函数 二次函数y=ax2的图象和性质

1
2
3
4
5
6
7
6.已知A(-1,y1),B(-2,y2),C(3,y3)三点都在二次函数y=-
1 2
x2的图象上,
则y1,y2,y3的大小关系是
.
y3<y2<y1
关闭
答案
快乐预习感知
1
2
3
4
5
6
7
7.已知函数y=ax2(a≠0)的图象与函数y=2x-3的图象交于点(1,b). (1)试求a和b的值; (2)求函数y=ax2的解析式,并求其图象的顶点坐标和对称轴; (3)x取何值时,二次函数y=ax2中的y值随x值的增大而增大? (4)求抛物线与过点(0,-2)且与x轴平行的直线的两个交点与顶点构 成的三角形的面积.
C
关闭
答案
快乐预习感知
1
2
3
4
5
6
7
2.若点M(m,n)(mn≠0)在二次函数y=ax2(a≠0)的图象上,则下列坐标 表示的点也在该抛物线上的是( ) A.(-m,n) B.(n,m) C.(m2,n2) D.(m,-n)
关闭
A
答案
快乐预习感知
1
2
3
4
5
6
7
3.已知物体从空中自由下落过程中,下落高度h关于时间t的函数解
互动课堂理解
2.二次函数y=ax2(a≠0)的性质 【例2】 已知函数y=ax2(a>0)的图象上有A(2,y1),B(3,y2),C(-1,y3) 三个点,试比较y1,y2,y3的大小. 分析:要比较y1,y2,y3的大小,可直接求出y1,y2,y3的值进行比较,也可 以先判断各点是否在对称轴的同一侧,再利用二次函数的性质进行 比较. 解法一由题意知,y1=4a,y2=9a,y3=a. 又a>0,故y2>y1>y3. 解法二因为抛物线y=ax2(a>0)的对称轴是y轴,点C(-1,y3)在函数 y=ax2(a>0)的图象上,所以点(1,y3)也在该抛物线上.因为a>0,所以当 x>0时,y随x的增大而增大.又因为3>2>1,所以y2>y1>y3.

2二次函数的图像和性质~22.PPT课件(人教版)

2二次函数的图像和性质~22.PPT课件(人教版)

A.50 m
B.100 m
C.160 m
D.200 m
C
).
22.1 二次函数的图像和性质
分析
建立如图22-1-9所示的平面直角坐标 系, 根据所建平面直角
坐标系的特点可设函数解析 式为y=ax2+c(a≠0). 由题意, 得B(0, 0.5),
C(1, 0), 分别将B, C两点的坐标代入y=ax2+c(a≠0), 得 a=-0.5, c=0.5, ∴函
向下(k<0)平移 |k|个单位长度, 得到的抛物线的函数解析式是
y=a(x-h)2+k.
22.1 二次函数的图像和性质
题型五 二次函数值的大小比较
例题5 已知二次函数y=2(x-1)2+k的图像上 有A(
C(2- , y3)三点, 则y1, y2, y3 的大小关系是(
A.y1>y2>y3
B.y2>y1>y3
数解析式为y=-0.5x2+0.5(-1≤x≤1). 当x=0.2时, y=0.48;当x=0.6时,
y=0.32. ∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)= 1.6(m), ∴所需不锈钢
支柱的总长度至少为1.6×100= 160(m).
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1.1 二次函数
2
22.1.2 二次函数y=ax 的图像和性质
2
22.1.3 二次函数y=a(x-h) +k的图像
和性质
考场对接
22.1 二次函数的图像和性质

《二次函数的图像和性质》PPT课件 人教版九年级数学

《二次函数的图像和性质》PPT课件 人教版九年级数学
2
y=20x2+40x+20③
d=
学生以小组形式讨论,并由每组代表总结.
探究新知
【分析】认真观察以上出现的三个函数解析式,
分别说出哪些是常数、自变量和函数.
函数解析式
y=6x2
自变量
函数
x
y
n
d
x
y
这些函数自变量的最高次项都是二次的!
这些函数有什
么共同点?
探究新知
二次函数的定义
一般地,形如y=ax²+bx+c(a,b,c是常数,a≠ 0)的
总结二次
函数概念
二次函数y=ax²+bx+c
(a,b,c为常数,a≠0)
确定二次函数解
析式及自变量的
取值范围
二次函数的判别:
①含未知数的代数式为整式;
②未知数最高次数为2;
③二次项系数不为0.
人教版 数学 九年级 上册
22.1 二次函数的图象和性质
22.1.2
二次函数y=ax2的
图象和性质
导入新知
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的
步骤:
(1)将函数解析式右边整理为含自变量的代
数式,左边是函数(因变量)的形式;
(2)判断右边含自变量的代数式是否是整式;
(3)判断自变量的最高次数是否是2;
(4)判断二次项系数是否不等于0.
巩固练习
下列函数中,哪些是二次函数?
(1) y=3(x-1)²+1(是)
(1) 你们喜欢打篮球吗?
(2)你们知道投篮时,篮球运动的路线是什么
曲线?怎样计算篮球达到最高点时的高度?
素养目标

22-1-2二次函数y=ax2的图象和性质课件人教版九年级上册数学

22-1-2二次函数y=ax2的图象和性质课件人教版九年级上册数学
叫做抛物线 y = x2 .
观察y = x2的图象
9
(1)你能描述图象的形状吗? 抛物线y = xy2= x2 6
(2)图象是轴对称图形吗? 关于y轴对称
如果是,它的对称轴是什么? 3
(3)y的值有最值(最小或最 原点取得最小 大)吗? 在哪点取得最值? -3值,该点叫3 做
(4)函数y的值随x的变化 而如何变化?
观察y = x2的图象
9
(1)你能描述图象的形状吗?
6
y = x2
(2)图二象次是函轴数对y称=图x形2的吗?
3
如图果象是,是它一的条对曲称线轴是,什它么?
(3的)形y的状值类有似最于值投(最篮小球或 -3
3
最大时)球吗在?在空哪中点所取经得过最的值
(路4)线函,数只y的是值这随条x的曲变线化 而开如口何变向化上?,这条曲线
我们先研究它的图象。
③通常怎样画一个函数的图象? 列表、描点、连线
活动1 画函数 y =x2 的图象
解:(1) 列表 x … -3 -2 -1 0 1 2 3 …
(2) 描点 y … 9 4 1 0 1 4 9 …
(3) 连线
y
10
8
y = x2
6
4
2 从哪些角度观察、 1 概括图象特征
-4 -3 -2 -1 O 1 2 3 4 x
x ··· -4 -3 -2 -1 0 1 2 3 4 ··· ··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···
x
··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···

人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质

人教版九年级上册数学课件 第二十二章 二次函数 二次函数的图象和性质 二次函数y=ax2的图象和性质
2
一般地,当a<0时,抛物线y=ax2的开口向下,对称轴是y轴,顶 点是原点,顶点是抛物线的最高点,a越小,抛物线的开口越小.
顶点都是原点(0,0), 顶点是抛物线的最 高点;
增减性相同: 当 x<0时,y随x增大 而增大;当x>0时, y随x增大而减小.
y O -3
3x
开口都向下; 对称轴都是y轴;
y = ax2(a<0)
(0,0) y轴
在x轴的下方(除顶点外) 向下
当x<0时,y随着x的增大而增大. 当x>0时,y随着x的增大而减小.
当x = 0时,最大值为0.
Thank you!
A.y1<y2<y3 C.y3<y2<y1
B.y1<y3<y2 D.y2<y1<y3
综合应用
3.已知y=(m+1)xm2+m是关于x的二次函数,且当x>0时,y随x 的增大而减小. (1)求m的值; (2)画出该函数的图象.
解:(1)∵y=(m+1)xm2+m是关于x的二次函数,∴m2+m=2且m +1≠0.则m=-2或m=1.又∵x>0时,y随x的增大而减小,∴m+ 1<0,m<-1,故m=-2 (2)画图略
单调性
当x<0 (在对称轴 的左侧)时,y随
着x的增大而减小.
y 9 6 3
-3 O 3 x
当x>0 (在对
称轴的右侧) 时,y随着x的
猎豹图书
增大而增大.
例1 在同一直角坐标系中,画出函数 y 1 x2 ,y =2x2的图象.
2
解:分别列表,再画出它们的图象,如图.
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
函数 y=1 x2,y=2x2 的图象与函数y=x2 的图象相比,有什么共同点

人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文

人教版九年级初中数学上册第二十二章二次函数-二次函数的图像和性质PPT课件全文
你还记得如何画出一次函数的图像吗?
描点法画函数图像的一般步骤如下:
描点法
第一步,列表—表中给出一些自变量的值及其对应的函数值;
第二步,描点—在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,
描出表格中数值对应的各点;
第三步,连线—按照横坐标由小到大顺序,把所描出的各点用平滑的曲线连接起来。
抛物线y=ax2的图象性质:
(1)抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是抛物线的最高点.
(3)|a|越大,抛物线的开口越小.
课堂练习
1.填表:
抛物线
y = ax2(a>0)
y = ax2(a<0)
顶点坐标
你能通过这种方法画出二次函数的图像吗?
新知探究
二次函数=^2 的图像
通过描点法画出 = 的图像?
【列表】
在 = 中,自变量可以取任意实数,列表取几组对应值:

-2
-1
0
1
2


4
1
0
1
2

新知探究
二次函数=^2 的图像
y
通过描点法画出 = 的图像?
9
【描点】
事实上,二次函数的图象都是抛物线,它们的开口或者
3
向上或者向下.一般地,二次函数 y =ax2+bx +c(a≠0)
的图象叫做抛物线y=ax2+bx+c.
-3
O
3
x
新知探究
二次函数=^2 的性质
观察 = 2 的图像,它有对称轴在哪里?图像与y轴的交点在哪里?

人教九年级数学上册《二次函数图像与性质》课件(共14张PPT)

人教九年级数学上册《二次函数图像与性质》课件(共14张PPT)

(3) 二次函数的图象是什么 形 状呢?
结合图象讨论
性质是数形结合
的研究函数的重要 方法.我们得从最 简单的二次函数开 始逐步深入地讨论 一般二次函数的图 象和性质.
画最简单的二次函数 y = x2 的图象
1. 列表:在y = x2 中自变量x可以是任意实数,列表表示几组对应值:
x ··· -3 -2 -1 0
2 0.5
0 0.5 2 4.5
···
8
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
·
y 2x2 ·· 8 4.5 2 0.5 0 0.5 2 4.5 8 ···
·
y x2
y 2x2
8
6
4
y 1 x2
2
2
-4 -2
24
函数 y 1 x2 , y 2x2 的图象与函数 y=x2 的图象相比 ,有什么共同2 点和不同点?
相同点:开口:向上, 顶点:原点(0,0)——最低点 对称轴: y 轴
增减性:y 轴左侧,y随x增大而减小
y 轴右侧,y随x增大而增大
y x2
8 6
y 2x2
不同点:a 值越大,抛物线的开 口越小.
4 2 -4 -2
y 1 x2 2
24
探究
画出函数 yx2,y1x2,y2x2 的图象,并考虑这些抛物 2
1
2
3 ···
y = x2 ··· 9 4 1 0 1 4 9 ···
2. 根据表中x,y的数值在坐标平面中描点(x,y)
3.连线 如图,再用平滑曲线顺次
9
连接各点,就得到y = x2 的图象

6
y = x2

人教版九年级上册22.二次函数的图像与性质课件(共129张)

人教版九年级上册22.二次函数的图像与性质课件(共129张)
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像

课件_人教版数学九年级二次函数y=ax的图像和性质PPT课件_优秀版

课件_人教版数学九年级二次函数y=ax的图像和性质PPT课件_优秀版
y -4 -2 0 2 4 x
-3 -6 -9
探究新知 知识点 2 二次函数y=ax2的图象性质
根据你以往学习函数图象性质的经验,说说二次函 数y=x2的图象有哪些性质,并与同伴交流.
1.y=x2的图象是一条抛物线; 2.图象开口向上; 3.图象关于y轴对称; 4.顶点( 0 ,0 ); 5.图象有最低点.
···
-8
-4.5 -2
-0.5 0 -0.5 -2 -4.5 -8
···
x ··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ··· y 2x2 ··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···
探究新知
【思考】二次函数 y 1 x2 , y x2 , y 2x2
y 9 6 3
-4 -2 o 2 4 x
探究新知
当取更多个点时,函数y=x2的图象如下:
解②得:m1=-2, m2=1
(1) 你们喜欢打篮球吗?
y
利用函数y=ax2的图像性质确定字母的值
顶点( 0 ,0 );
9
连线:如图,再用平滑曲线顺次连接各点,就得到y = x2 的图象.
在已对知称 :轴如的图左,侧直线, yy随=x3的x增+大4与而抛物线y=, x2交于A、B两点,求出A6、B两点的坐标,并对求称出两轴交与点与抛原物点所线围的成的交三角形的面积.
(3)根据图象,求出当S=1cm2时,正方形的周长;
(4)根据图象,求出C取何值时,S ≥4cm2.
探究新知
解:(1)∵正方形的周长为Ccm,
∴正方形的边长为 C cm,
4
∴S与C之间的关系式为S
=
C2

16

初中数学人教版九年级上册《22.1.2二次函数的图象和性质》课件

初中数学人教版九年级上册《22.1.2二次函数的图象和性质》课件
22.1.2
二次函数y=ax2的 图象和性质
人教版 九年级数学上
知识要点
1.二次函数y=ax2的图象 2.二次函数y=ax2的性质
看一看:观察下列运动,试着发现它们的规律。
二次函数y=ax2的图象
问题1.1:根据所学知识,试着画出二次函数y=x2的图像。
在y = x2 中自变量x可以是任意实数,列表表示几组 对应值:
x … -3 -2 -1
0
1
2
3…
y=-x2 … -9 -4 -1 0 -1 -4 -9 …
二次函数y=ax2的性质 y
顶点
-5 -4 -3 -2 -1 O 1 2 3 4 5 x
-3
对称轴
-6
根据表中x,y的数值在坐 标平面中描点(x,y)
用平滑曲线顺次连接 各点,就得到y = -x2 的图象 图象开口向下,有最高点
A.-9<y≤-1 B.-9≤y<-1 C.-9≤y≤0 D.-9<y≤0
4.如图,在同一坐标系中,作出①y=3x2,②y= 1 x2, 2
③y=x2的图象,则图象中从里到外的三条抛物线对应的
函数依次是___①__③_②______.(填序号)
5.二次函数y=ax2的图象如图所示. (1)求这个二次函数解析式; (2)若另一函数图象与该函数图象关于x轴对称,试求另一个 函数的解析式.
-9
y
y
9
-5 -4 -3 -2 -1 O 1 2 3 4 5 x
6
y = x2
-3 y =- x2
-6 3
-9 -3 -2 -1 O1 2 3 x
二次函数y=ax2的图象
练一练:如图,函数y=2x2的图象大致为( C )

二次函数y=ax2 的图像和性质 课件

二次函数y=ax2    的图像和性质  课件

合作探究
探究一:二次函数y=ax2(a > 0)的图象和性质 画二次函数y=x2的图象
①列表: x … -3 -2 -1 0 y… 9 4 1 0
12 14
②描点:
轴对称 图形
对称轴是 ③连线: y轴
10 y 89
y=x2
567
4
23
1
-5 -4 -3-2 -1 o 1 2 3 4 5 x
3… 9…
这是一条 抛物线
这是抛物 线的顶点
合作探究
议一议: 1、请同学们观察y=x2的图象的性质,然后分组探讨。
1.y=x2是一条抛物线;
y
2.图象开口向上; 3.图象关于y轴对称;
4.顶点( 0 ,0 ); 5.图象有最低点.
O
y=x2 x
合作探究
议一议: 2、观察二次函数y=x2的图象,y随x的如何变化?
2
3
4 ···
y
1 x2 2
···
8
4.5 2 0.5 0 0.5 2 4.5 8
···
x
··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 ··· 8
4.5
2
0.5 0 0.5 2 4.5 8 ···
典例精析
描点、连线,如图所示:
y 2x2
8
6
4
y 1 x2
2
2
-8
y
x2
y 2x2
合作探究
相同点:开口都向下,顶点是原点而且是抛物线的最高点,对 称轴是 y 轴;当x<0时,y随x的增大而增大;当x>0时,y随 x的增大而减小. 不同点:a 要越小,抛物线的开口越小。 要点归纳: 对于抛物线 y = ax2 (a < 0)

人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT)

人教版九年级数学上册第22章第1节二次函数的图像和性质(共46张PPT)

1.y=x2 8x 7
2.y=-2x2 9x 17
3.y=mx2 kx-4k2
x
⑶a,b决定抛物线对称轴的位置: 对称轴是直线x =
b 2a
① a,b同号<=> 对称轴在y轴左侧;
② b=0 <=> 对称轴是y轴;
③ a,b异号<=> 对称轴在y轴右侧
y
左同右异
o
x
练习:
1.若抛物线yax2 bxc的图象如图,说出a,b,
c的符号。
2.若抛物线yax2 bxc经过原点和第一二三
象限,则a,b,c的取值范围分别是
3.若抛物线yax2 bxc的图象
如图所示,则一次函数y=ax+bc
的图象不经过
。y
。 y ox
o 图1
x 图2
y abc 0 ( 4 ) 与 直 线 x1 交 点 y a b c 0
y a b c 0
方法归纳
1
配方法
2
公式法
二次函数y=ax2+bx+c(a≠0)的图象和性质
1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表:
抛物线 顶点坐标
对称轴 位置
y=ax2+bx+c(a>0)
b 2a
,
4acb2 4a
直线x b
2a
由a,b和c的符号确定
y=ax2+bx+c(a<0)
小结 拓展 回味无穷 驶向胜利 的彼岸
二次函数y=ax2+bx+c(a≠0)与=ax²的关系
2.不同点:
(1)位置不同(2)顶点不同:分别是
b 2a
,
4acb2 4a
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4) y=-3x²-2x+4
(1)一次函数的图象是一条__直__线_,
(2) 通常怎样画一个函数的图象? 列表、描点、连线
从最简单的二次函 数y=ax2
开始!
(3) 二次函数的图象是什么形 状呢?
5
定向导航
2.体会数形结合的思想,提高观察分析概括能力,感受 数学之美。
1.会用描点法画出二次函数y=ax²的图象,概括出图象 的特点,知道抛物线y=ax²的开口方向与a的符号有关.
y x2
y 2x2
8
6
4
y 1 x2
2
2
-4 -2
24
当a>0时,a越大,开口越小.
12
练一练
在同一直角坐标系中,画出函数 y 1 x2, y 2x2的图象.
2 x ··· -4 -3 -2 -1 0 1 2 3 4 ···
y 1 x2 2
···
-8
-4.5 -2
-0.5 0 -0.5 -2 -4.5 -8
y 1 x2 2
···
8
4.5
2 0.5
0 0.5 2 4.5
8
···
x ··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ··· y 2x2 ··· 8 4.5 2 0.5 0 0.5 2 4.5 8 ···
11
从二次函数 么关系?
y 1 x2, y x2 , 2
y 2x2 开口大小与a的大小有什
当x=0时,y最小值=0
当x=0时,y最大值=0
增减性
在对称轴左侧递减 在对称轴右侧递增
在对称轴左侧递增 在对称轴右侧递减
15
对称轴、顶点、最低点、最高点
y x2
这条抛物线关于 y轴对称,y轴就 是它的对称轴.
对称轴与抛物
线的交点叫做
抛物线的顶点.
16
y x2
抛物线 y=x2在x轴上方
在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大.
7
6
5
坐标平面中描点(x,y),
4
再用平滑曲线顺次连
3 2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1
2
3
4
5
x
图像. 8
请画函数y=-x2的图像 解:(1) 列表 x … -3 -2 -1 0 1 2 3 …
(2) 描点 y=-x2 … -9 -4 -1 0 -1 -4 -9 …
18
探究
例3.在同一直角坐标系中画出函数y=-x2、y=-2x2、 y=- x2的图象,有什么共同点和不同点?
相同点
相同点:开口都向下,顶 点是原点而且是抛物线的 最高点,对称轴是 y 轴.
不同点
不同点:|a|越大,抛物 线的开口越小.
-4 -2
2
4
-2
-4
-6
y 1 x2 2
-8
y x2
y 2x2
19
1、函数y=2x2的图象的开向口上 ,对称y轴轴 ,顶点(0是,0) ; 2、函数y=-3x2的图象的开口向下 ,对称轴y轴 ,顶点(是0,0) ;
3、已知抛物线y=ax2经过点A(-2,-8).
(1) 求此抛物线的函数解析式 (2)写出这个二次函数图象的对称轴,顶点坐标及开口方向;
(3解)(判1断)点把((-1,-2-4,)-是8)否代在入此抛y=物a线x2上,得; -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
都是轴对称图形,y轴是它们的对称轴.
抛物线与对称轴的交点(0,0)叫做抛物线的顶点.
抛物线y=x2的顶点(0,0)是它的最低点.
抛物线y=-x2的顶点(0,0)是它的最高点.
10
例2:在同一直角坐标系中,画出函数 y 1 x2, y 2x2
2
的图象. 解:分别填表,再画出它们的图象,如图
x ··· -4 -3 -2 -1 0 1 2 3 4 ···
-4 -2 -2
24
-4
-6
y 1 x2 2
-8
y x2
y 2x2
对于抛物线 y = ax 2 ,|a|越大,抛物线的开口越小.
14
y=ax2 图象 位置开
a>0 y
O x
开口向上,在x轴上方
a<0 yx
O
开口向下,在x轴下方
口方向
a的绝对值越大,开口越小
对称性 顶点最值
关于y轴对称,对称轴是直线x=0 顶点坐标是原点(0,0)
ቤተ መጻሕፍቲ ባይዱ
(3) 连线
y 1
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
-2
根据表中x,y的数值在
-3 -4
坐标平面中描点(x,y), 再用平滑曲线顺次连接
-5
-6
y=-x2
-7
各点,就得到y=-x2的图
-8 -9
像.
-10
9
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
···
x ··· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ··· y 2x2 ··· -8 -4.5 -2 -0.5 0 -0.5 -2 -4.5 -8 ···
13
思考
从二次函数 y 1 x2 , y x2 , y 2x2
2
有什么关系?
开口大小与a的大小
当a<0时,a越小 (即a的绝对值越 大),开口越小.
6
22.1.2二次函数y=ax2的图象和性质
y x2
y 2x2
8
6
4
y 1 x2
2
2
-4 -2
24
7
画函数y=x2的图像
解: (1) 列表 x … -3 -2 -1 0 1 2 3 …
(2) 描点y=x2 … 9 4 1 0 1 4 9 …
(3) 连线
y
10
9
根据表中x,y的数值在
8
y=x2
二次函数的图像和性质
1
2
3
4
二次函数:
一般地,形如 y=ax2+bx+c(a、b、c为常数,a≠0)的函 数,叫做二次函数.其中,x是自变量,a,b,c分别是函数表
达式的二次项系数、一次项系数和常数项.
下列哪些函数是二次函数?哪些是一次函数?
(1) y=3x-l
(2) y=2x²
(3) y=x²+6
(除顶点外),顶点是它的最 低点,开口向上,并且向上
无限伸展;
当x=0时,函数 y的值最小,
最小值是0.
17
抛物线 y= -x2在x轴下方(除顶点外),顶点 是它的最高点,开口向下,并且向下无限伸展,
当x=0时,函数y的值最大,最大值是0.
y
y x2
在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小.
空中所经过的路线y .
这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y=x2
y
o
x
y=-x2的图像叫做抛物线y=-x2.
实际上,二次函数的图像 o
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c
的图像叫做抛物线y=ax2+bx+c. 还可以看出,二次函数y=x2和y=-x2的图像
相关文档
最新文档