CIE色谱图解析

合集下载

CIE色度图

CIE色度图

CIE色度图CIE-RGB系统标准三原色匹配任意颜色的光谱三刺激值曲线。

曲线中的一部分500μm附近的r 三刺激值是负数,这当然不能否定将红、绿、蓝三色混合可以得到其他颜色,但它确实表明一些颜色不能够仅仅通过将三原色混合来得到而在普通的CRT上显示。

图例:CIE-XYZ系统由于实际上不存在负的光强,1931年CIE规定了3种假想的标准原色X(红)、Y(绿)、Z(蓝)构造了CIE-XYZ系统,以便使能够得到的颜色匹配函数的三刺激值都是正值:C=xX+yY+zZ图例:三刺激空间和色度图所有颜色向量组成了x>0、y>0和z>0的三维空间第一象限锥体取一个截面x+y+z=1该截面与三个坐标平面的交线构成一个等边三角形,每一个颜色向量与该平面都有一个交点,每一个点代表一个颜色,它的空间坐标(x,y,z)表示为该颜色在标准原色下的三刺激值,称为色度值图例:CIE色度图CIE色度图的翼形轮廓线代表所有可见光波长的轨迹,即可见光谱曲线。

沿线的数字表示该位置的可见光的主波长。

中央的C对应于近似太阳光的标准白光,C点接近于但不等于x=y=z=1/3的点。

红色区域位于图的右下角,绿色区域在图的顶端,蓝色区域在图的左下角,连接光谱轨迹两端点的直线称为紫色线。

用途得到光谱色的互补色,只要从该颜色点过C点作一条直线,求其与对侧光谱曲线的交点,即可得到补色的波长。

D的补色为E。

确定所选颜色的主波长和纯度。

颜色A的主波长,从标准白光点C过A作直线与光谱曲线相交于B(A与B在C的同侧),这样颜色A可以表示为纯色光B和白光C的混合,B就定义了颜色A的主波长。

定义一个颜色域。

通过调整混合比例,任意两种颜色:I和J加在一起能够产生它们连线上的颜色再加入第三种颜色K,就产生三者(I、J和K)构成的三角形区域的颜色。

应用限制色度图的形状表明,没有一个3个顶点均在可见光翼形区的三角形可以完全覆盖该区域。

因此,可见的红、绿、蓝三种颜色不能通过加法混合来匹配所有的颜色。

第三章CIE色度学体系课件

第三章CIE色度学体系课件

CIE标准色度系统
(CIE standard colorimetric system)
在综合了一些颜色科学家的研究和实 验基础上,国际照明委员会(CIE)规定了一 套标准色度系统,称为CIE标准色度系统 这一系统是近代色度学的基本组成部分, 是色度计算的基础,也是彩色复制的理论 基础之一。
CIE标准色度学系统特点:




Z10
k10

z10
S(λ)一般采用CIE规定的标准照明体,具体采用哪种 照明体由被测物体的具体情况而定,例如物体是在日光 下观察时可用D65或B、C照明体,而在灯光下观察时可 用A照明体。(见第四章)
Yxy立体图
3.2.3CIE1964补充标准色度系统
(CIE 1964 supplementary standard colorimetric system)
在大面积视物观察条件下(>4°),由于杆体 细胞的参与以及没有了中央凹黄色素的影响, 颜色视觉会发生一定的变化。主要表现为饱和 度的降低及颜色视场出现不均匀的现象。实验 表明:人眼用小视场观察颜色时,颜色差异辨 别力较低。当观察视场从2°增大到10°时, 颜色匹配的精度也随之提高。但视场再进一步 增大,颜色匹配精度的提高就不大了。
1.是一种混色系统,以颜色匹配实验 为出发点建立起来的。
2.用组成每种颜色的三原色数量来定 量表达颜色。
3.不是用颜色的三个色貌特征明度、 色调、彩度(饱和度)的大小为度 量来表示颜色。
3.1颜色匹配(colour matching) 3.1.1 颜色匹配实验
把两种颜色调节到视觉上相同或相等 的过程叫作颜色匹配。
S(λ)
z(λ) x(λ)
y(λ)

CIE_1931_色度图

CIE_1931_色度图

CIE 1931 色度图 (2维标准观测)目的这个工程的目的就是证明如何显示一个1931 CIE(Commission International de l'Eclairage 国际照明协会)的色度图,同样还包括1960和1976介绍中对其的改革。

额外地,这个图可以使用1931的2维标准观测来显示,也可以用1964年的10维标准观测来显示,我们还试着解释它们之间的不同。

背景标准观测(Standard Observer)。

CIE标准观测是基于协会和建造者的表格的二维区域。

CIE 1964标准观测是10维的。

引导到1931标准观测的实验只使用了视网膜中的一个小凹槽,覆盖了视野的2维。

1964年附加的标准观测是基于视网膜10维区域的色彩比配实验。

观测忽略了中央的2维点。

当视觉感受被期望为4维时,1964的标准观测就被推荐出来了。

CIE标准观测通常都基于许多实验,这些实验是用少数拥有普通视力的人做出的。

没有真正的观测是也CIE标准观测一样的。

请参考[Judd75, pp. 153-157] or [Billmeyer81, pp.42-45]。

关于新闻组的投递,Danny提出“1964观测有50个观测者左右,而1931只有一打。

1964的工作包括一些外国的已经获得博士学位的同事,但是早期的工作只有包括伦敦附近的一些英国人”。

根据[Foley96, p. 580], 1964的表格并不是普遍为计算机使用的,因为它强调很大的一个颜色区域,这个区域里的大多数颜色并不是图象中能够找到的。

下面的图能够被“标准”表格色度程序显示,当程序被校准了以后尺寸也就正确了。

CIE 1931 2-Degree Field of ViewCIE 1964 10-Degree Field of View要得到附加的CIE1931和1964观测信息,请看[Judd75, p. 155] or [Billmeyer81, p. 42]。

CIE_1931_色度图解析

CIE_1931_色度图解析

颜色的度量─CIE色度图--1931明度、色调和饱和度称为颜色视觉三特性。

明度——就是明亮的程度;色调——是由波长决定的色别,如700nm光的色调是红色,579nm光的色调是黄色,510nm光的色调是绿色等等;饱和度——就是纯度,没有混入白色的窄带单色,在视觉上就是高饱和度的颜色。

光谱所有的光都是最纯的颜色光,加入白色越多,混合后的颜色就越不纯,看起来也就越不饱和。

国际照明委员会(CIE)1931年制定了一个色度图,用组成某一颜色的三基色比例来规定这一颜色,即用三种基色相加的比例来表示某一颜色,并可写成方程式:(Color)=R(R)+G(G)+B(B)式中,(C)代表某一种颜色,(R)、(G)、(B)是红、绿、蓝三基色,R、G、B是每种颜色的比例系数,它们的和等于1,即R+G+B=1,“C”是指匹配即在视觉上颜色相同,如某一蓝绿色可以表达为:(C)=0.06(R)+0.31(G)+0.63(B)如果是二基色混合,则在三个系数中有一个为零;如匹配白色,则R、G、B应相等。

任何颜色都用匹配该颜色的三基色的比例加以规定,因此每一颜色都在色度图中占有确定的位置。

色度图中:X轴色度坐标相当于红基色的比例;Y轴色度坐标相当于绿基色的比例。

图中没有Z 轴色度坐标(即蓝基色所占的比例),因为比例系数X+Y+Z=1,Z的坐标值可以推算出来,即1一(X+Y)=Z。

国际照委会制定的CIE1931色度图如附图31。

色度图中的弧形曲线上的各点是光谱上的各种颜色即光谱轨迹,是光谱各种颜色的色度坐标。

红色波段在图的右下部,绿色波段在左上角,蓝紫色波段在图的左下部。

图下方的直线部分,即连接400nm和700nm的直线,是光谱上所没有的、由紫到红的系列。

靠近图中心的C是白色,相当于中午阳光的光色,其色度坐标为X=0.3101,Y=0.3162,Z=0.3737。

设色度图上有一颜色S,由C通过S画一直线至光谱轨迹O点(590nm),S颜色的主波长即为590nm,此处光谱的颜色即S的色调(橙色)。

CIE标准

CIE标准

CIE标准色度学系统一、CIE1931RGB 真实三原色表色系统(一)、颜色匹配实验把两个颜色调整到视觉相同的方法叫颜色匹配,颜色匹配实验是利用色光加色来实现的。

图5-24中左方是一块白色屏幕,上方为红R、绿G、蓝B三原色光,下方为待配色光C,三原色光照射白屏幕的上半部,待配色光照射白屏幕的下半部,白屏幕上下两部分用一黑挡屏隔开,由白屏幕反射出来的光通过小孔抵达右方观察者的眼内。

人眼看到的视场如图右下方所示,视场范围在2°左右,被分成两部分。

图右上方还有一束光,照射在小孔周围的背景白版上,使视场周围有一圈色光做为背景。

在此实验装置上可以进行一系列的颜色匹配实验。

待配色光可以通过调节上方三原色的强度来混合形成,当视场中的两部分色光相同时,视场中的分界线消失,两部分合为同一视场,此时认为待配色光的光色与三原色光的混合光色达到色匹配。

不同的待配色光达到匹配时三原色光亮度不同,可用颜色方程表示:C=R(R)+G(G)+B(B)(5-1)式中C 表示待配色光;(R)、(G)、(B)代表产生混合色的红、绿、蓝三原色的单位量;R、G、B分别为匹配待配色所需要的红、绿、蓝三原色的数量,称为三刺激值;“o”表示视觉上相等,即颜色匹配。

图5-24 颜色匹配实验(二)、三原色的单位量国际照明委员会(CIE)规定红、绿、蓝三原色的波长分别为700nm、546.1nm、435.8nm,在颜色匹配实验中,当这三原色光的相对亮度比例为1.0000:4.5907:0.0601时就能匹配出等能白光,所以CIE选取这一比例作为红、绿、蓝三原色的单位量,即(R):(G):(B)=1:1:1。

尽管这时三原色的亮度值并不等,但CIE却把每一原色的亮度值作为一个单位看待,所以色光加色法中红、绿、蓝三原色光等比例混合结果为白光,即(R)+(G)+(B)=(W)。

(三)、CIE-RGB光谱三刺激值CIE-RGB光谱三刺激值是317位正常视觉者,用CIE规定的红、绿、蓝三原色光,对等能光谱色从380nm到780nm 所进行的专门性颜色混合匹配实验得到的。

CIE 及Lab 颜色体系的概念及理解

CIE 及Lab 颜色体系的概念及理解

蓅哖、似誰2012二.CIE1931标准RGB系统以上这个图叫做:CIE1931‐RGB系统标准色度观察者光谱三刺激值,代表人眼在2度视场的平均颜色视觉特性。

CIE RGB标准规定三原色红绿蓝的波长分别为436nm546nm700nm,为上图r,g,b其中2个分量为0的时候,与纵坐标的交点。

这三种原色可以混色成波长546到700中的任意颜色,但是436到546之间混不出来,因为436到546的r值为负值。

这个图由实验获得的,负光强究竟怎么实验出来,难以理解。

CIE1931又推出了一个新的标准XYZ系统:用假想的XYZ作为3原色,但其实这三种原色是不存在的。

可以用X(偏红)Z(偏蓝紫)Y(偏绿)混出我们的色域空间。

必须先找到XZ且Y=0的曲线,即无亮度曲线。

X和Z是RGB 的混色。

Y的值虽然也是偏绿的混色,但它的大小恰好是亮度大小,CIE规定,Y值对波长的曲线符合人眼光谱光视效率的值,人眼正好也是对偏绿色的光谱最敏感。

Y其实就是我们平时测的亮度,cd/m2以上这个图怎么来的?可能也是通过实验得出来的,通过以上的RGB‐>XYZ公式得来的。

而那个公式的系数暂时无法求得。

X,Z的大小对亮度没有贡献,仅代表颜色。

得到光谱色的互补色,只要从该颜色点过C点作一条直线,求其与对侧光谱曲线的交点,即可得到补色的波长。

D的补色为E。

o确定所选颜色的主波长和纯度。

颜色A的主波长,从标准白光点C过A作直线与光谱曲线相交于B(A与B在C的同侧),这样颜色A可以表示为纯色光B和白光C的混合,B就定义了颜色A的主波长。

定义一个颜色域。

通过调整混合比例,任意两种颜色:o I和J加在一起能够产生它们连线上的颜色再加入第三种颜色K,就产生三者(I、J和K)构成的三角形区域的颜色。

这个图叫做人眼明视觉和暗视觉的光谱光视效率曲线,代表人眼对不同波长的光的敏感度是不同的,依据这个曲线的,可以看出人眼对绿色的光视效率最高,最明亮。

03第二章CIE标准色度系统

03第二章CIE标准色度系统
印刷业色评价标准中规定,观察环境四周的颜色应该是浅灰 色或白色,不应带有彩色;观察样品的背景色应该是灰色 或浅灰色,避免彩色对样品颜色的干扰。
第五节 CIE色度计算方法
一、三刺激值与色品坐标的计算(略)。 二、颜色相加的计算。 (一)、计算法。 1、当两种或两种以上已知三刺激值的颜色光相加混合,
B、 光谱色均在马蹄形的光谱轨迹上,光谱色的 色相由曲线上各色点的波长来表示。谱外色则均 在中性点与紫红轨迹之间的三角形区域内。位于 光谱轨迹之内各点的颜色色相一般可以用其主波 长来表示(主要是用作图法和计算方法求得)。
任一色点与中性点的连线称为等色相线,这条线上 各点的颜色色相相同,即均由同一主波长来表示, 但彩度有所不同。
C、谱外色的色相可由某色点的补色波长 λc表示。
D、在色度图中,很容易确定一对光谱色 的补色波长。
2.2彩度的表示。 2.3明度的表示。
第三节 CIE1964补充标准色度系统
为了适应大视场颜色测量的需要,所以1964 年,CIE又补充制定了一种10°视场的色 度系统,称为CIE1964补充标准色度系统, 又称10°视场X10Y10Z10色度系统,简称为 X10Y10Z10色度系统。
观察反射样品时应使用D65光源,接近日常照 明条件,一般显色指数在90以上;
观察透射样品应使用D50光源,一般显色指数 在90以上。
(二)、照明条件。
1、反射样品照明条件:
用于观察的光源应在观察面上产生均匀的漫射光 照明,观察反射样品时在观察面上形成照度范围 为500~1500lx,视被观察印刷品的明度而定。观 察面各点的照度不应突变,差别小于20%,照度 的均匀度不得小于80%。日光灯在使用5000小时 后色温会发生变化,应更换,观色以前最好预热 15分钟(才稳定)。

颜色空间之CIE、CMYK、HSI色度模型

颜色空间之CIE、CMYK、HSI色度模型

颜色空间之CIE、CMYK、HSI色度模型分类: 图像处理国际照明委员会(CIE,Commission Internationale de L'Eclairage / International)的色度模型是最早使用的模型之一。

它是三维模型,其中,x和y两维定义颜色,第3维定义亮度。

CIE在1976年规定了两种颜色空间。

一种是用于自照明的颜色空间,叫做CIE LUV,如下图:CIE 1976年 LUV色度图另 一种用于非自照明的颜色空间,叫做CIE 1976 L*a*b,或者叫做CIE LAB。

CIE LAB 系统使用的坐标叫做对色坐标(opponent color coordinate),如下图所示。

CIE LAB使用b*,a*和L*坐标轴定义CIE颜色空间。

其中,L*值代表光亮度,其值从0(黑色)到100(白色)。

b*和a*代表色度坐标,其中a*代 表红-绿轴,b*代表黄-蓝轴,它们的值从0到10。

a*=b*=0表示无色,因此L*就代表从黑到白的比例系数。

使用对色坐标(opponet color coordinate)的想法来自这样的概念:颜色不能同时是红和绿,或者同时是黄和蓝,但颜色可以被认为是红和黄、红和蓝、绿和黄以及绿和蓝的组合。

CIE LAB颜色空间CIE xyY色度图是从XYZ直接导出的一个颜色空间,它使用亮度Y 参数和颜色坐标x, y来描述颜色。

xyY中的Y值与XYZ中的Y刺激值一致,表示颜色的亮度或者光亮度,颜色坐标x, y用来在二维图上指定颜色,这种色度图叫做CIE 1931色度图(CIE 1931 Chromaticity Diagram),如下图(a)所示,图(b)为轮廓图。

例如图(a)的A点在色度图上的坐标是x=0.4832,y=0.3045,那么它的颜色与红苹 果的颜色相匹配。

CIE 1931色度图是用标称值表示的CIE色度图,x表示红色分量,y表示绿色分量。

色品图

色品图

色品图色品图chromaticity diagram以不同位置的点表示各种色品的平面图。

1931年由国际照明委员会(CIE)制定,故称CIE色品图。

描述颜色品质的综合指标称为色品,色品用如下3个属性来描述:①色调。

色光中占优势的光的波长称主波长,由主波长的光决定的主观色觉称色调。

②亮度。

由色光的能量所决定的主观明亮程度。

③饱和度。

描述某颜色的组分中纯光谱色所占的比例,即颜色的纯度。

由单色光引起的光谱色认为是很纯的颜色,在视觉上称为高饱和度颜色。

单色光中混有白光时纯度降低,相应地饱和度减小。

例如波长为650纳米的色光是很纯的红色,把一定量白光加入后,混合结果产生粉红色,加入的白光越多,混合色就越不纯,视觉上的饱和度就越小。

附图为CIE色品图,图中x坐标是红原色的比例,y坐标是绿原色的比例,代表蓝原色的坐标z可由x+y+z=1推出。

图中弧线上的各点代表纯光谱色,此弧线称为光谱轨迹。

从400纳米(紫)到700纳米(红)的直线是光谱上没有的紫-红颜色系列(非光谱色)。

中心点C代表白色,相当于中午太阳光的颜色,其色品坐标为x=0.3101,y=0.3162。

色品图上任给一点S,就可立刻得到S点所代表的颜色的色调和饱和度。

连结CS,其延长线交光谱轨迹于O点,O点处的波长即颜色S的主波长,决定了颜色S的色调。

从C到S点和O点的距离之比CS/CO为该颜色的饱和度。

从光谱轨迹上任一点通过C点引一直线到达对侧光谱轨迹上的另一点,则该直线两端的颜色互为补色。

从代表非光谱色系列的直线上任一点P通过C点引一直线,交光谱轨迹于Q点,Q点的颜色是P点非光谱色的补色。

非光谱色的表示方法是在它的补色波长后加一字母c,例如528c代表波长为528纳米的绿色的补色,即紫红色。

任何两种颜色混合时,混合色的颜色点一定在前两颜色点的连线上。

从色品图可看出,红、绿、蓝三原色可合成任何颜色。

CIE色品图有很大实用价值,任何颜色,不论是光源色还是表面色,都可在色品图中标定出来,这使颜色的描述既简便又准确,各色光的合成途径也一目了然。

CIE_1931_色度图解析

CIE_1931_色度图解析

颜色的度量─CIE色度图--1931明度、色调和饱和度称为颜色视觉三特性。

明度——就是明亮的程度;色调——是由波长决定的色别,如700nm光的色调是红色,579nm光的色调是黄色,510nm光的色调是绿色等等;饱和度——就是纯度,没有混入白色的窄带单色,在视觉上就是高饱和度的颜色。

光谱所有的光都是最纯的颜色光,加入白色越多,混合后的颜色就越不纯,看起来也就越不饱和。

国际照明委员会(CIE)1931年制定了一个色度图,用组成某一颜色的三基色比例来规定这一颜色,即用三种基色相加的比例来表示某一颜色,并可写成方程式:(Color)=R(R)+G(G)+B(B)式中,(C)代表某一种颜色,(R)、(G)、(B)是红、绿、蓝三基色,R、G、B是每种颜色的比例系数,它们的和等于1,即R+G+B=1,“C”是指匹配即在视觉上颜色相同,如某一蓝绿色可以表达为:(C)=0.06(R)+0.31(G)+0.63(B)如果是二基色混合,则在三个系数中有一个为零;如匹配白色,则R、G、B应相等。

任何颜色都用匹配该颜色的三基色的比例加以规定,因此每一颜色都在色度图中占有确定的位置。

色度图中:X轴色度坐标相当于红基色的比例;Y轴色度坐标相当于绿基色的比例。

图中没有Z 轴色度坐标(即蓝基色所占的比例),因为比例系数X+Y+Z=1,Z的坐标值可以推算出来,即1一(X+Y)=Z。

国际照委会制定的CIE1931色度图如附图31。

色度图中的弧形曲线上的各点是光谱上的各种颜色即光谱轨迹,是光谱各种颜色的色度坐标。

红色波段在图的右下部,绿色波段在左上角,蓝紫色波段在图的左下部。

图下方的直线部分,即连接400nm和700nm的直线,是光谱上所没有的、由紫到红的系列。

靠近图中心的C是白色,相当于中午阳光的光色,其色度坐标为X=0.3101,Y=0.3162,Z=0.3737。

设色度图上有一颜色S,由C通过S画一直线至光谱轨迹O点(590nm),S颜色的主波长即为590nm,此处光谱的颜色即S的色调(橙色)。

CIE色度图

CIE色度图

CIE色度图颜色视觉是视觉系统分辨光的不同波长特性的能力,与我们的日常生活、工作息息相关。

1931年国际照明委员会(CIE)根据2°视场匹配光谱色的实验结果,制订了1931CIE-RGB色度图。

由于用来标定光谱色的原色有时出现负值,计算不方便又不易理解,后来推荐用新的国际通用标定系统——1931CIE-XYZ系统。

CIE 色度图是根据颜色匹配原理,而不仅仅根据颜色的表观现象来说明颜色混合现象。

它用匹配某一颜色的三原色的比例来规定一种颜色。

一、CIE-XYZ色度图的基本结构各种色调根据其波长沿着马蹄形的色度图周边排列,形成光谱轨迹曲线。

连接400nm和700nm的直线是光谱上没有的,由紫到红的颜色,由多种波长的混合而成。

R(红),G(绿),B(蓝)三原色经过数学转换后,变成了虚拟的X、Y、Z心理三原色。

根据X、Y、Z心理三原色在颜色匹配中的比例,表示为x、y、z。

色度图的横坐标为x,x=X/(X+Y+Z);纵坐标为y,y=Y/(X+Y+Z);图中不能表示z的色度坐标,z=Z /(X+Y+Z);因为x+y+z=1,所以z=1-x-y。

因此,只要知道两种颜色的比例,便可得到z的值。

中央区C是等能白光,由三原色各1/3产生,坐标为x,y,z=(0.3333,0.3333,0.3333),其相当于中午阳光的色温6774K。

马蹄形的色度图内包括了所有物理上能实现的颜色,三原色点(红原色点:x=1,y=z=0;绿原色点:y=1,x=z=0;蓝原色点:z=1,x=y=0)均位于这一区域之外。

因此,原色点的色度是假想的,在物理上是不可能实现的。

同理,马蹄形色度图以外的颜色,也是不可能由真实光混合产生的。

二、CIE色度图的视觉特点在图上,任何颜色都占有一确定的位置。

假设A、B两种颜色,A的x=0.16,y=0.55,B的x=0.5,y=0.38。

由中央C过A作一直线与光谱轨迹相交,交叉点的波长即为A颜色的主波长,相当于绿色调。

颜色基础知识-CIE标准色度系统

颜色基础知识-CIE标准色度系统

CIE 标准色度系统吴逸萍 杭州彩谱科技有限公司几乎所有的颜色都可以用三原色按某个特定的比例混合而成。

这三种单色光中的任何一种都不能由其余两种混合产生。

1931年,CIE (国际标准照明委员会)建立了一系列表示可见光谱的颜色空间标准,定义了CIE-RGB 基色系统。

规定了RGB 系统的三原色光波长分别为700nm ,546.1nm ,435.8nm 的红光(R )、绿光(G )、蓝光(B )。

通过混色实验可以得到图1的一组曲线,它们表示在380nm-780nm 范围内当各个光谱能量一样时,某一波长的光谱色与()r λ、()g λ、()b λ混色结果一样,并称这三条曲线为光谱三刺激值曲线。

图1 CIE1931 RGB 系统光谱三刺激值曲线但这一系统存在一个明显的缺点,计算颜色三刺激值时会出现负值,给大量的计算带来不便。

由于任何一种基色系统都可以从一种系统转换到另一种系统,因此人们可以选择任何一种想要的基色系统,以避免出现负值,并且使用方便。

基于此CIE 又推荐了CIE-XYZ 系统,这个系统采用想象的X ,Y 和Z 三种基色,它们代表红、绿、蓝三种原色。

图2是基于2°视场的等能光谱的XYZ 色度系统的三刺激值曲线()x λ、()y λ、()z λ。

所以也称为2°视场XYZ 色度系统,将具有这样的三刺激值曲线的假想的观察者称为CIE1931标准色度观察者。

图2 CIE1931 XYZ 系统光谱三刺激值曲线任何一种颜色都可以表示为:()()()C X x Y y Z z =++,其中称X 、Y 、Z 为该颜色的三刺激值。

根据CIE 的规定,三刺激值可由下面的公式计算得到。

780380780380780380()()()()()()X k P x d Y k P y d Z k P z d λλλλλλλλλ===⎰⎰⎰ (1) 其中()P λ是光源辐射的相对光谱功率分布,()x λ、()y λ、()z λ是CIE1931标准色度观察者的光谱三刺激值,即图2中的曲线值。

颜色基础知识——CIE 1931色度坐标图

颜色基础知识——CIE 1931色度坐标图

CIE 1931色度坐标介绍1. 意义图中的颜色,包括了自然所能得到的颜色。

这是个二维平面空间图,由x-y直角标系统构成的平面。

为了适应人们习惯于在平面坐标系中讨论变量关系,而设计出来的。

在设计出该图的过程中,经过许多数学上的变换和演算。

此图的意义和作用,可以总结成两句话:(1)表示颜色视觉的基本规律。

(2)表示颜色混合与分解的一般规律。

2. 坐标系——x ,y直角坐标系。

x——表示与红色有关的相对量值。

y——表示与绿色有关的相对量值。

z——表示与蓝色有关的相对量值。

并且z=1-(x+y)3. 形状与外形轮廓线形状——舌形,有时候也称“舌形曲线”图。

由舌形外围曲线和底部直线包围起来的闭合区域。

舌形外围曲线——是全部可见光单色光颜色轨迹线,每一点代表某个波长单色光的颜色,波长从390nm到760nm。

在曲线的旁边。

标注了一些特征颜色点的对应波长。

例如图中510nm——520nm——530nm等。

底部直线——连接390nm点到760nm点构成的直线,此线称为紫红线。

4. 色彩这是一个彩色图,区域内的色彩,包括了一切物理上能实现的颜色。

很遗憾的是,很难得真正标准的这种资料,经常由于转印而失真。

5. 应用价值——颜色的定量表示。

用(x,y)的坐标值来表示颜色。

白色应该包含在“颜色”这个概念范围内。

6. 若干个特征点的意义(1)E点—等能白光点的坐标点E点是以三种基色光,以相同的刺激光能量混合而成的。

但三者的光通量并不相等。

E点的CCT=5400K。

(2)A点—CIE规定一种标准白光光源的色度坐标点这是一种纯钨丝灯,色温值CCT=2856。

(3)B点—CIE规定的一种标准光源坐标点B点的CCT=4874K,代表直射日光。

(4)C点—CIE确认的一种标准日光光源坐标点(昼光)C点的CCT=6774K。

(5)D点—有时候也标为D光源称为典型日光,或重组日光;CCT=6500K。

7. 三条特殊线(1)黑体色温轨迹线:在舌形曲线的中部,跨过白色区,有一条向下弯的曲线,这就是黑体色温轨迹线。

CIE色谱图解析

CIE色谱图解析

CIECIE(国际发光照明委员会):原文为Commission Internationale de L'Eclairag e(法)或International Commission on Illumination(英)。

这个委员会创建的目的是要建立一套界定和测量色彩的技术标准。

可回溯到1930年,CIE标准一直沿用到数字视频时代,其中包括白光标准(D65)和阴极射线管(CRT)内表面红、绿、蓝三种磷光理论上的理想颜色。

CIE的总部位于奥地利维也纳。

CIE颜色系统颜色是一门很复杂的学科,它涉及到物理学、生物学、心理学和材料学等多种学科。

颜色是人的大脑对物体的一种主观感觉,用数学方法来描述这种感觉是一件很困难的事。

现在已经有很多有关颜色的理论、测量技术和颜色标准,但是到目前为止,似乎还没有一种人类感知颜色的理论被普遍接受。

RGB模型采用物理三基色,其物理意义很清楚,但它是一种与设备相关的颜色模型。

每一种设备(包括人眼和现在使用的扫描仪、监视器和打印机等)使用RGB模型时都有不太相同的定义,尽管各自都工作很圆满,而且很直观,但不能相互通用。

1)简介为了从基色出发定义一种与设备无关的颜色模型,1931年9月国际照明委员会在英国的剑桥市召开了具有历史意义的大会。

CIE的颜色科学家们企图在RGB模型基础上,用数学的方法从真实的基色推导出理论的三基色,创建一个新的颜色系统,使颜料、染料和印刷等工业能够明确指定产品的颜色。

会议所取得的主要成果包含:定义了标准观察者(Standard Observer)标准:普通人眼对颜色的响应。

该标准采用想象的X,λY和Z三种基色,用颜色匹配函数(color-matching function)表示。

颜色匹配实验使用2°的视野(field of view);定义了标准光源(Standard Illuminants):用于比较颜色的光源规范;λ定义了CIE XYZ基色系统:与RGB相关的想象的基色系统,但更适用于颜色的计算;λ定义了CIE xyY颜色空间:一个由XYZ导出的颜色空间,它把与颜色属性相关的x和y从与λ明度属性相关的亮度Y中分离开;定义了CIE色度图(CIE chromaticityλdiagram):容易看到颜色之间关系的一种图。

(11)1931CIE颜色系统《颜色-不是你想象的那样》

(11)1931CIE颜色系统《颜色-不是你想象的那样》

(11)1931CIE颜色系统《颜色-不是你想象的那样》1931 CIE 颜色系统(CIE 1931 color space):1931 CIE-RGB颜色系统1931 CIE-XYZ颜色系统我们对物体产生某种颜色感觉,一方面决定于外界物体对人眼的物理刺激的特性,另一方面又决定于人眼处理刺激的视觉特性。

但是最终对颜色的标定必须符合人眼的视觉规律,因此,进行色度学计算的基本数据都是根据许多观察者的颜色视觉实验得出来的结果。

1931 CIE-RGB颜色系统根据三原色原理,理论上光谱上的各种颜色都可以有红色R、绿色G、蓝色B三种原色匹配产生。

从而得到1931 CIE-RGB颜色系统,用来表示一个颜色C的方程式就是:C=r(R ) g(G ) b(B )1r、g、br、g、b表示每种原色的比例系数:r g b=1正因为r g b=1,所以只要其中两个变量确定,第三个变量也随之确定,例如r、g确定,b=1- r- g2(R)、(G)、(B)是三原色单位国际照明委员会(CIE )规定红R、绿G、蓝B三原色光的波长分别为700nm、546.1nm、435.8nm。

在颜色匹配实验中,当这三原色光的相对亮度比例为1.0000: 4.5907 : 0.0601时就能匹等能白光,所以CIE选取这一比例作为红、绿、蓝三原色的单位量,即(R)、(G)、(B)= 1:1:1尽管这时三原色光的亮度值并不相等,但CIE却把每一原色的亮度值作为一单位看待,所以色光加色法中红、绿、蓝三原色光等比例混合(r=g=b=0.333)结果为白光。

31931 CIE-RGB系统光谱三刺激值CIE以317位正常视觉者,用CIE规定的红、绿、蓝三原色光,对等能光谱色从380~780nm所进行的专门性颜色混合匹配实验得到的。

颜色混合匹配实验(来源见水印)实验时,与光谱每一波长为λ的等能光谱色对应的红、绿、蓝三原色数量,称为光谱三刺激值r(λ) 、g (λ) 、b (λ) 。

CIE色谱图解析

CIE色谱图解析

CIECIE(国际发光照明委员会):原文为Commission Internationale de L'Eclairag e(法)或International Commission on Illumination(英)。

这个委员会创建的目的是要建立一套界定和测量色彩的技术标准。

可回溯到1930年,CIE标准一直沿用到数字视频时代,其中包括白光标准(D65)和阴极射线管(CRT)内表面红、绿、蓝三种磷光理论上的理想颜色。

CIE的总部位于奥地利维也纳。

CIE颜色系统颜色是一门很复杂的学科,它涉及到物理学、生物学、心理学和材料学等多种学科。

颜色是人的大脑对物体的一种主观感觉,用数学方法来描述这种感觉是一件很困难的事。

现在已经有很多有关颜色的理论、测量技术和颜色标准,但是到目前为止,似乎还没有一种人类感知颜色的理论被普遍接受。

RGB模型采用物理三基色,其物理意义很清楚,但它是一种与设备相关的颜色模型。

每一种设备(包括人眼和现在使用的扫描仪、监视器和打印机等)使用RGB模型时都有不太相同的定义,尽管各自都工作很圆满,而且很直观,但不能相互通用。

1)简介为了从基色出发定义一种与设备无关的颜色模型,1931年9月国际照明委员会在英国的剑桥市召开了具有历史意义的大会。

CIE的颜色科学家们企图在RGB模型基础上,用数学的方法从真实的基色推导出理论的三基色,创建一个新的颜色系统,使颜料、染料和印刷等工业能够明确指定产品的颜色。

会议所取得的主要成果包含:定义了标准观察者(Standard Observer)标准:普通人眼对颜色的响应。

该标准采用想象的X,λY和Z三种基色,用颜色匹配函数(color-matching function)表示。

颜色匹配实验使用2°的视野(field of view);定义了标准光源(Standard Illuminants):用于比较颜色的光源规范;λ定义了CIE XYZ基色系统:与RGB相关的想象的基色系统,但更适用于颜色的计算;λ定义了CIE xyY颜色空间:一个由XYZ导出的颜色空间,它把与颜色属性相关的x和y从与λ明度属性相关的亮度Y中分离开;定义了CIE色度图(CIE chromaticityλdiagram):容易看到颜色之间关系的一种图。

色度图(CIE)

色度图(CIE)

∙CIE-RGB系统o标准三原色匹配任意颜色的光谱三刺激值曲线。

曲线中的一部分500μm附近的r三刺激值是负数,这当然不能否定将红、绿、蓝三色混合可以得到其他颜色,但它确实表明一些颜色不能够仅仅通过将三原色混合来得到而在普通的CRT上显示。

∙CIE-XYZ系统o由于实际上不存在负的光强,1931年CIE规定了3种假想的标准原色X(红)、Y(绿)、Z(蓝)构造了CIE-XYZ系统,以便使能够得到o的颜色匹配函数的三刺激值都是正值:o C=xX+yY+zZ∙三刺激空间和色度图o所有颜色向量组成了x>0、y>0和z>0的三维空间第一象限锥体取一个截面 x+y+z=1该截面与三个坐标平面的交线构成一个等边三角形,每一个颜色向量与该平面都有一个交点,每一个点代表一个颜色,它的空间坐标(x,y,z)表示为该颜色在标准原色下的三刺激值,称为色度值▪▪∙CIE色度图∙CIE色度图的翼形轮廓线代表所有可见光波长的轨迹,即可见光谱曲线沿∙线的数字表示该位置的可见光的主波长。

∙中央的C对应于近似太阳光的标准白光,C点接近于但不等于x=y=z=1/3的点。

红色区域位于图的右下角,绿色区域在图的顶端,蓝色区域在图的左下角,连接光谱轨迹两端点的直线称为紫色线。

∙用途∙得到光谱色的互补色,只要从该颜色点过C点作一条直线,求其与对侧谱∙曲线的交点,即可得到补色的波长。

D的补色为E。

确定所选颜色的主波长和纯度。

颜色A的主波长,从标准白光点C过A作直线与光谱曲线相交于B(A与B在C的同侧),这样颜色A可以表示为纯色光B和白光C的混合,B就定义了颜色A的主波长。

∙定义一个颜色域。

通过调整混合比例,任意两种颜色:I和J加在一起能够产生它们连线上的颜色再加入第三种颜色K,就产生三者(I、J和K)构成的三角形区域的颜色。

应用限制色度图的形状表明,没有一个3个顶点均在可见光翼形区的三角形可以完全覆盖该区域。

因此,可见的红、绿、蓝三种颜色不能通过加法混合来匹配所有的颜色。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CIECIE(国际发光照明委员会):原文为Commission Internationale de L'Eclairag e(法)或International Commission on Illumination(英)。

这个委员会创建的目的是要建立一套界定和测量色彩的技术标准。

可回溯到1930年,CIE标准一直沿用到数字视频时代,其中包括白光标准(D65)和阴极射线管(CRT)内表面红、绿、蓝三种磷光理论上的理想颜色。

CIE的总部位于奥地利维也纳。

CIE颜色系统颜色是一门很复杂的学科,它涉及到物理学、生物学、心理学和材料学等多种学科。

颜色是人的大脑对物体的一种主观感觉,用数学方法来描述这种感觉是一件很困难的事。

现在已经有很多有关颜色的理论、测量技术和颜色标准,但是到目前为止,似乎还没有一种人类感知颜色的理论被普遍接受。

RGB模型采用物理三基色,其物理意义很清楚,但它是一种与设备相关的颜色模型。

每一种设备(包括人眼和现在使用的扫描仪、监视器和打印机等)使用RGB模型时都有不太相同的定义,尽管各自都工作很圆满,而且很直观,但不能相互通用。

1)简介为了从基色出发定义一种与设备无关的颜色模型,1931年9月国际照明委员会在英国的剑桥市召开了具有历史意义的大会。

CIE的颜色科学家们企图在RGB模型基础上,用数学的方法从真实的基色推导出理论的三基色,创建一个新的颜色系统,使颜料、染料和印刷等工业能够明确指定产品的颜色。

会议所取得的主要成果包含:定义了标准观察者(Standard Observer)标准:普通人眼对颜色的响应。

该标准采用想象的X,λY和Z三种基色,用颜色匹配函数(color-matching function)表示。

颜色匹配实验使用2°的视野(field of view);定义了标准光源(Standard Illuminants):用于比较颜色的光源规范;λ定义了CIE XYZ基色系统:与RGB相关的想象的基色系统,但更适用于颜色的计算;λ定义了CIE xyY颜色空间:一个由XYZ导出的颜色空间,它把与颜色属性相关的x和y从与λ明度属性相关的亮度Y中分离开;定义了CIE色度图(CIE chromaticityλdiagram):容易看到颜色之间关系的一种图。

其后,国际照明委员会的专家们对该系统做了许多改进,包括1964年根据10°视野的实验数据,添加了补充标准观察者(Supplementary Standard Observer)的定义。

1976年国际照明委员会又召开了一次具有历史意义的会议,试图解决1931的CI E系统中所存在两个问题:1.该规范使用明度和色度不容易解释物理刺激和颜色感知响应之间的关系;2.XYZ系统和在它的色度图上表示的两种颜色之间的距离与颜色观察者感知的变化不一致,这个问题叫做感知均匀性(perceptual uniformity)问题,也就是颜色之间数字上的差别与视觉感知不一致。

为了解决颜色空间的感知一致性问题,专家们对CIE1931XYZ系统进行了非线性变换,制定了CIE1976L*a*b*颜色空间的规范。

事实上,1976年CIE规定了两种颜色空间,一种是用于自照明的颜色空间,叫做CIELUV,另一种是用于非自照明的颜色空间,叫做CIE1976L*a*b*,或者叫CIELAB。

这两个颜色空间与颜色的感知更均匀,并且给了人们评估两种颜色近似程度的一种方法,允许使用数字量ΔE表示两种颜色之差。

CIE XYZ是国际照明委员会在1931年开发并在1964修订的CIE颜色系统(CIE Color System),该系统是其他颜色系统的基础。

它使用相应于红、绿和蓝三种颜色作为三种基色,而所有其他颜色都从这三种颜色中导出。

通过相加混色或者相减混色,任何色调都可以使用不同量的基色产生。

虽然大多数人可能一辈子都不直接使用这个系统,只有颜色科学家或者某些计算机程序中使用,但了解它对开发新的颜色系统、编写或者使用与颜色相关的应用程序都是有用的。

2)CIE1931RGB按照三基色原理,颜色实际上也是物理量,人们对物理量就可以进行计算和度量。

根据这个原理就产生了用红、绿和蓝单光谱基色匹配所有可见颜色的想法,并且做了许多实验。

1931年国际照明委员会综合了不同实验者的实验结果,得到了RGB颜色匹配函数(color matching functions),其横坐标表示光谱波长,纵坐标表示用以匹配光谱各色所需要三基色刺激值,这些值是以等能量白光为标准的系数,是观察者实验结果的平均值。

为了匹配在438.1nm和546.1nm之间的光谱色,出现了负值,这就意味匹配这段里的光谱色时,混合颜色需要使用补色才能匹配。

虽然使用正值提供的色域还是比较宽的,但像用RGB相加混色原理的CRT虽然可以显示大多数颜色,但不能显示所有的颜色。

3)CIE1931XYZCIE1931RGB使用红、绿和蓝三基色系统匹配某些可见光谱颜色时,需要使用基色的负值,而且使用也不方便。

由于任何一种基色系统都可以从一种系统转换到另一种系统,因此人们可以选择想要的任何一种基色系统,以避免出现负值,而且使用也方便。

1931年国际照明委员会采用了一种新的颜色系统,叫做CIE XYZ系统。

这个系统采用想象的X,Y和Z三种基色,它们与可见颜色不相应。

CIE选择的X,Y和Z基色具有如下性质:所有的X,Y和Z值都是正的,匹配光谱颜色时不需要一种负值的基色;λ用Y值表示人眼对亮度(luminance)的响应;λ如同RGB模型,X,Y和Z是相加基色。

因此,每一种颜色都可以表示成X,Y和Z 的混合。

λ根据视觉的数学模型和颜色匹配实验结果,国际照明委员会制定了一个称为“193 1CIE标准观察者”的规范,实际上是用三条曲线表示的一套颜色匹配函数,因此许多文献中也称为“CIE1931标准匹配函数”。

在颜色匹配实验中,规定观察者的视野角度为2度,因此也称标准观察者的三基色刺激值(tristimulus values)曲线。

CIE1931标准匹配函数中的横坐标表示可见光谱的波长,纵坐标表示基色X,Y 和Z的相对值。

三条曲线表示X,Y和Z三基色刺激值如何组合以产生可见光谱中的所有颜色。

例如,要匹配波长为450nm的颜色(蓝/紫),需要0.33单位的X基色,0.04单位的Y基色和1.77单位的Z基色。

计算得到的数值(X,Y,Z)可以用三维图表示。

图中只表示了从400nm(紫色)到700nm(红色)之间的三基色刺激值,而且所有数值都落在正XYZ象限的锥体内。

可以看到:所有的坐标轴都不在这个实心锥体内;λ相应于没有光照的黑色位于坐标的原点;λ曲线的边界代表纯光谱色的三基色刺激值,这个边界叫做光谱轨迹(spectral locus);λ光谱轨迹上的波长是单一的,因此其数值表示可能达到的最大饱和度;λ所有的可见光都在锥体上。

λ4)CIE1931xyYCIE XYZ的三基色刺激值X,Y和Z对定义颜色很有用,其缺点是使用比较复杂,而且不直观。

因此,1931年国际照明委员会为克服这个不足而定义了一个叫做CIE xy Y的颜色空间。

定义CIE xyY颜色空间的根据是,对于一种给定的颜色,如果增加它的明度,每一种基色的光通量也要按比例增加,这样才能匹配这种颜色。

因此,当颜色点离开原点(X=0,Y=0,Z=0)时,X:Y:Z的比值保持不变。

此外,由于色度值仅与波长(色调)和纯度有关,而与总的辐射能量无关,因此在计算颜色的色度时,把X,Y和Z值相对于总的辐射能量=(X+Y+Z)进行规格化,并只需考虑它们的相对比例,因此,x,y,z称为三基色相对系数,于是配色方程可规格化为x+y+z=1。

由于三个相对系数x,y,z之和恒为1,这就相当于把XYZ颜色锥体投影到X+Y+Z=1的平面上。

由于z可以从x+y+z=1导出,因此通常不考虑z,而用另外两个系数x和y表示颜色,并绘制以x和y为坐标的二维图形。

这就相当于把X+Y+Z=1平面投射到(X,Y)平面,也就是Z=0的平面,这就是CIE xyY色度图。

在CIE xyY系统中,根据颜色坐标(x,y)可确定z,但不能仅从x和y导出三种基色刺激值X,Y和Z,还需要使用携带亮度信息的Y,其值与XYZ中的Y刺激值一致。

因5)CIE1931色度图CIE xyY色度图是从XYZ直接导出的一个颜色空间,它使用亮度Y参数和颜色坐标x,y来描述颜色。

xyY中的Y值与XYZ中的Y刺激值一致,表示颜色的亮度或者光亮度,颜色坐标x,y用来在二维图上指定颜色,这种色度图叫做CIE1931色度图(CI E1931Chromaticity Diagram)。

例如一个点在色度图上的坐标是x=0.4832,y=0.3 045,那么它的颜色与红苹果的颜色相匹配。

CIE1931色度图是用标称值表示的CIE色度图,x表示红色分量,y表示绿色分量。

E点代表白光,它的坐标为(0.33,0.33);环绕在颜色空间边沿的颜色是光谱色,边界代表光谱色的最大饱和度,边界上的数字表示光谱色的波长,其轮廓包含所有的感知色调。

所有单色光都位于舌形曲线上,这条曲线就是单色轨迹,曲线旁标注的数字是单色(或称光谱色)光的波长值;自然界中各种实际颜色都位于这条闭合曲线内;RGB系统中选用的物理三基色在色度图的舌形曲线上。

CIE剑桥大学国际考试委员会CIE(Cambridge International Examinations剑桥大学国际考试委员会)是世界上最主要的国际资质认证和考核机构之一。

根据国际教育与文化的需求,我们颁发的资格证书范围广泛,并力图使这些资质证书具有趣味性和实用性。

同时我们努力确保CIE(剑桥大学国际考试委员会)的资质证书得到世界上各大学、教育机构和企的广泛认可。

背景CIE(剑桥大学国际考试委员会)是UCLES(剑桥大学考试委员会)的组成部分,该委员与剑桥大学一道享誉全球。

UCLES(剑桥大学考试委员会)还包括OCR(OCR 考试部)和ESOL(剑桥大学英语考试部)。

OCR考试部在英国国内开展考试与评估工作;ESOL(剑桥大学英语考试部)为英语作为外国语的学生提供一系列的考试。

UCLES(剑桥大学考试委员会)在全球发展和推广资质认证已近150年,它很清楚对国际认可的资质认证的需求将持续增长。

CIE(剑桥大学国际考试委员会)于199 8年正式成立,旨在提供高水准的资质认证服务,以满足了全世界企业和教育机构的需要。

现状和未来作为剑桥大学的一部分,CIE(剑桥大学国际考试委员会)不断研究创新,在已有资质认证的基础上不断地开发新兴,领域的资质评定。

同时我们与全球的CIE(剑桥大学国际考试委员会)的注册中心紧密合作,采用最先进的技术来传输信息,开展资质评定和管理工作。

相关文档
最新文档