2019-2020年八年级数学期末试卷(含答案)
2019-2020年十堰市丹江口市八年级上册期末数学试题(有答案)-精选
湖北省十堰市丹江口市八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)下列图形是四种运动品牌的商标,其中是轴对称图形的是()A.B.C.D.2.(3分)如果分式的值为0,则的值是()A.1 B.0 C.﹣1 D.±13.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.4.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.m(﹣y)=m﹣my B.2+2+1=(+2)+1C.a2+1=a(a+) D.152﹣3=3(5﹣1)5.(3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a66.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°7.(3分)下列分式与分式相等的是()A.B.C.D.﹣8.(3分)如图,平行四边形ABCD中,BE平分∠ABC交AD于E点,已知AB=5,AD=6,则DE长为()A.1 B.1.5 C.2 D.2.59.(3分)关于的分式方程+3=无解,m的值为()A.7 B.﹣7 C.1 D.﹣110.(3分)如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC 于D,OH⊥BC于H,若∠BAC=60°,OH=3cm,OA长为()cm.A.6 B.5 C.4 D.3二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为.12.(3分)计算:﹣= .13.(3分)若2+(m﹣3)+16是完全平方式,则m= .14.(3分)如图,△ACD与△BCE中,AC=BC,AD=BE,CD=CE,若∠ACE=80°,∠BCD=160°,AD与BE相交于P点,则∠ACB的度数为,∠APB的度数为.15.(3分)如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为.16.(3分)如图,两个正方形的边长分别为a 和b ,如果a ﹣b=﹣,ab=2,那么阴影部分的面积是 .三、解答题:共9小题,共72分.17.(8分)(1)计算:(﹣)﹣(+);(2)因式分解:2﹣3﹣18.18.(7分)先化简,再求值:(﹣)÷,其中=2. 19.(7分)如图,AD ∥BC ,AD=CB ,AE=CF ,求证:BE ∥DF .20.(6分)如图,已知A (﹣2,4),B (4,2),C (2,﹣1)(1)作△ABC 关于轴的对称图形△A 1B 1C 1,写出点C 关于轴的对称点C 1的坐标;(2)P 为轴上一点,请在图中画出使△PAB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).21.(7分)观察下列各式:①=2,②=3;③=4,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.22.(8分)(1)已知a﹣b=3,b+c=﹣5,求代数式ac﹣bc+a2﹣ab的值;(2)若a=(2+),b=(2﹣),求a2b+ab2的值.23.(8分)如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE ⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.24.(9分)为改善农村交通条件,促进农业发展,某镇决定对一段公路进行改造,经调查得知,单独完成这项工程乙工程队比甲工程队多一半时间;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求两工程队单独完成这项工程分别需多少天?(2)甲工程队施工一天,需付工程款1.8万元,乙工程队施工一天需付工程款1万元,若该工程计划在50天内完成,在不超过计划天数的前提下,怎样施工最省钱?25.(12分)如图①,已知A(,0)在负半轴上,B(0,y)在y正半轴上,且、y满足+y2﹣2my+m2=0,m>0.(1)判断△AOB的形状;(2)如图②过OA上一点作CD⊥AB于C点,E是BD的中点,连接CE、OE,试判断CE 与OE的数量关系与位置关系,并说明理由;(提示:可延长OE至F,使OE=EF,连接CF、DF、OC)(3)将(2)中的△ACD绕A旋转至D落在AB上(如图③),其它条件不变,(2)中结论是否成立?请证明你的结论.湖北省十堰市丹江口市八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)下列图形是四种运动品牌的商标,其中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误;故选:C.2.(3分)如果分式的值为0,则的值是()A.1 B.0 C.﹣1 D.±1【解答】解:由分式的值为0,得||﹣1=0且2+2≠0.解得=1,故选:A.3.(3分)下列二次根式中是最简二次根式的是()A.B.C.D.【解答】解:A、被开方数含开得尽的因数,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含分母,故D错误;故选:C.4.(3分)下列各式由左边到右边的变形中,是分解因式的是()A.m(﹣y)=m﹣my B.2+2+1=(+2)+1C.a2+1=a(a+) D.152﹣3=3(5﹣1)【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式乘积的形式,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.5.(3分)下列运算正确的是()A.2a2+a=3a3B.(﹣a)2÷a=a C.(﹣a)3•a2=﹣a6D.(2a2)3=6a6【解答】解:A、原式不能合并,故A错误;B、原式=a2÷a=a,故B正确;C、原式=﹣a3•a2=﹣a5,故C错误;D、原式=8a6,故D错误.故选:B.6.(3分)已知图中的两个三角形全等,则∠1等于()A.72°B.60°C.50°D.58°【解答】解:如图,由三角形内角和定理得到:∠2=180°﹣50°﹣72°=58°.∵图中的两个三角形全等,∴∠1=∠2=58°.故选:D.7.(3分)下列分式与分式相等的是()A.B.C.D.﹣【解答】解:(A)已是最简分式,故A与不相等;(B)原式=,故B与相等;(C)已是最简分式,故C与不相等;(D)原式=﹣,故D与不相等;故选(B)8.(3分)如图,平行四边形ABCD中,BE平分∠ABC交AD于E点,已知AB=5,AD=6,则DE长为()A.1 B.1.5 C.2 D.2.5【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=5,∴DE=AD﹣AE=6﹣5=1;故选:A.9.(3分)关于的分式方程+3=无解,m的值为()A.7 B.﹣7 C.1 D.﹣1【解答】解:两边都乘以(﹣1),得7+3(﹣1)=m,m=3+4,分式方程的增根是=1,将=1代入,得m=3×1+4=7.故选:A.10.(3分)如图,已知△ABC,∠ABC,∠ACB的角平分线交于点O,连接AO并延长交BC 于D,OH⊥BC于H,若∠BAC=60°,OH=3cm,OA长为()cm.A.6 B.5 C.4 D.3【解答】解:作OE⊥AB交AB于E,∵OB平分∠ABC,OH⊥BC,∴OE=OH=3cm,∵∠ABC,∠ACB的角平分线交于点O,∴AO平分∠BAC,∵∠BAC=60°,∴∠BAO=30°,∴AO=2OE=6cm,故选A.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)石墨烯目前是世界上最薄、最坚硬的纳米材料,其理论厚度仅0.00000000034米,这个数用科学记数法表示为 3.4×10﹣10.【解答】解:0.00 000 000 034=3.4×10﹣10,故答案为:3.4×10﹣10.12.(3分)计算:﹣= 3 .【解答】解:原式===3,故答案为:3;13.(3分)若2+(m﹣3)+16是完全平方式,则m= 11或﹣5 .【解答】解:∵2+(m﹣3)+16是完全平方式,∴m﹣3=±8,解得:m=11或m=﹣5,故答案为:11或﹣514.(3分)如图,△ACD与△BCE中,AC=BC,AD=BE,CD=CE,若∠ACE=80°,∠BCD=160°,AD与BE相交于P点,则∠ACB的度数为40°,∠APB的度数为40°.【解答】解:(1)在△ACD和△BCE中∴△ACD≌△BCE(SSS),∴∠ACD=∠BCE,∠A=∠B,∴∠BCA+∠ACE=∠ACE+∠ECD,∴∠ACB=∠ECD=(∠BCD﹣∠ACE)=×(160°﹣80°)=40°;(2)∵∠B+∠ACB=∠A+∠APB,∴∠APB=∠ACB=40°,∴∠BPD=180°﹣40°=140°,∴∠APB=180°﹣140°=40°,故答案为:40°,40°.15.(3分)如图,在平面直角坐标系中,已知点A(0,3),点B(9,0),且∠ACB=90°,CA=CB,则点C的坐标为(6,6).【解答】解:如图,过点C作CE⊥OA,CF⊥OB,∵∠AOB=90°,∴四边形OECF是矩形,∴∠ECF=90°,∵∠ACB=90°,∴∠ACE=∠BCE在△ACE和△BCF中,,∴△ACE≌△BCF,∴CE=CF,∵四边形OECF是矩形,∴矩形OECF是正方形,∴OE=OF,∵AE=OE﹣OA=OE﹣3,BF=OB﹣OF=9﹣OF,∴OE=OF=6,∴C(6,6),故答案为:(6,6);16.(3分)如图,两个正方形的边长分别为a和b,如果a﹣b=﹣,ab=2,那么阴影部分的面积是4﹣.【解答】解:∵a+b=17,ab=60,∴S阴影=S正方形ABCD+S正方形EFGC﹣S△ABD﹣S△BGF=a2+b2﹣a2﹣(a+b)•b=a2+b2﹣a2﹣ab﹣b2=a2+b2﹣ab=(a2+b2﹣ab)=[(a﹣b)2+ab]=×[(﹣)2+2]=×[6﹣4+2+2]=4﹣.故答案为:4﹣.三、解答题:共9小题,共72分.17.(8分)(1)计算:(﹣)﹣(+);(2)因式分解:2﹣3﹣18.【解答】解:(1)原式=2﹣﹣2﹣=﹣3;(2)原式=(+3)(﹣6).18.(7分)先化简,再求值:(﹣)÷,其中=2.【解答】解:原式=•=当=2时,原式=.19.(7分)如图,AD∥BC,AD=CB,AE=CF,求证:BE∥DF.【解答】19.证明:∵AD∥BC,∴∠A=∠C,∵AE=CF,∴AF=AE+EF=CF+EF=CE,在△ADF 和△CBE 中,∴△ADF ≌△CBE ,∴∠AFD=∠CEB ,∴BE ∥DF .20.(6分)如图,已知A (﹣2,4),B (4,2),C (2,﹣1)(1)作△ABC 关于轴的对称图形△A 1B 1C 1,写出点C 关于轴的对称点C 1的坐标;(2)P 为轴上一点,请在图中画出使△PAB 的周长最小时的点P 并直接写出此时点P 的坐标(保留作图痕迹).【解答】解:(1)如图1所示:∵点C 与点C 1关于轴对称,∴C 1(2,1).(2)如图2所示:根据图形可知点P 的坐标为(2,0).21.(7分)观察下列各式:①=2,②=3;③=4,…(1)请观察规律,并写出第④个等式: =5 ;(2)请用含n (n ≥1)的式子写出你猜想的规律:=(n+1) ; (3)请证明(2)中的结论.【解答】解:(1)=5;(2)=(n+1);(3)====(n+1).故答案为:(1)=5;(2))=(n+1).22.(8分)(1)已知a﹣b=3,b+c=﹣5,求代数式ac﹣bc+a2﹣ab的值;(2)若a=(2+),b=(2﹣),求a2b+ab2的值.【解答】解:(1)由a﹣b=3,b+c=﹣5,得a+c=﹣2,ac﹣bc+a2﹣ab=c(a﹣b)+a(a﹣b),=(a﹣b)(c+a)=3×(﹣2)=﹣6;(2)由a=2+,b=2﹣得,ab=(2+)×(2﹣)=6,a+b=4a 2b+ab2=ab(a+b)=6×4=24.23.(8分)如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE ⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.【解答】(1)证明:∵BE⊥AD,∴∠AFE=∠AFB=90°,又∵AD平分∠BAC,∴∠EAF=∠BAF,又∵在△AEF和△ABF中∠AFE+∠EAF+∠AEF=180°,∠AFB+∠BAF+∠ABF=180°∴∠AEF=∠ABF,∴AE=AB,∴△ABE为等腰三角形;(2)解:连接DE,∵AE=AB,AD平分∠BAC,∴AD垂直平分BE,∴BD=ED,∴∠DEF=∠DBF,∵∠AEF=∠ABF,∴∠AED=∠ABD,又∵∠ABC=2∠C,∴∠AED=2∠C,又∵△CED中,∠AED=∠C+∠EDC,∴∠C=∠EDC,∴EC=ED,∴CE=BD.∴BD=CE=AC﹣AE=AC﹣AB=11﹣6=5.24.(9分)为改善农村交通条件,促进农业发展,某镇决定对一段公路进行改造,经调查得知,单独完成这项工程乙工程队比甲工程队多一半时间;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成.(1)求两工程队单独完成这项工程分别需多少天?(2)甲工程队施工一天,需付工程款1.8万元,乙工程队施工一天需付工程款1万元,若该工程计划在50天内完成,在不超过计划天数的前提下,怎样施工最省钱?【解答】解:(1)设甲、乙工程队单独完成这项工程分别需要天,1.5天,根据题意得:+20(+)=1,解得:=40,经检验,=40是原方程的解,乙工程队单独完成这项工程需要1.5=1.5×40=60(天).答:甲、乙两工程队单独完成这项工程分别需要40天和60天;(2)设两工程队合做完成这项工程所需的天数为y 天,根据题意得:(+)y=1, 解得:y=24.①甲单独完成需付工程款为40×1.8=72(万元).②乙单独完成超过计划天数,不符合题意,③甲、乙合作,甲做天,乙做50天,需付工程款1.8×+50×1=62(万元).答:在不超过计划天数的前提下,由甲、乙合作,甲做天,乙做50天最省钱.25.(12分)如图①,已知A (,0)在负半轴上,B (0,y )在y 正半轴上,且、y 满足+y 2﹣2my+m 2=0,m >0.(1)判断△AOB 的形状; (2)如图②过OA 上一点作CD ⊥AB 于C 点,E 是BD 的中点,连接CE 、OE ,试判断CE 与OE 的数量关系与位置关系,并说明理由;(提示:可延长OE 至F ,使OE=EF ,连接CF 、DF 、OC )(3)将(2)中的△ACD 绕A 旋转至D 落在AB 上(如图③),其它条件不变,(2)中结论是否成立?请证明你的结论.【解答】解:(1)△AOB是等腰直角三角形,理由如下:∵A(,0)在负半轴上,B(0,y)在y正半轴上,且、y满足+y2﹣2my+m2=0,m>0,∴+(y﹣m)2=0,<0,y>0,又∵+m≥0,y﹣m≥0,∴+m=0,y﹣m=0,∴=﹣m,y=m,∴OA=OB,又∵∠AOB=90°,∴△AOB是等腰直角三角形;(2)CE=OE,CE⊥OE.理由如下:延长OE至F,使OE=EF,连接CF、DF、OC,如图②所示:∵E是BD的中点,∴DE=BE,在△FDE和△OBE中,,∴△DEF≌△BEO(SAS),∴BO=DF,∠FDB=∠OBD,∴FD∥OB,∴FD⊥AO,∵∠BAO=45°,CD⊥AB∴∠CDA=45°=∠CAO=∠CDF,∴CA=CD,∵OA=OB,∴OA=FD,在△OCA和△FCD中,∴△OCA≌△FCD(SAS),∴OC=OF,∠OCA=∠FCD∴∠OCF=∠DCA=90°,∴∠COF=45°,又∵OE=EF,∴∠OCE=∠OCF=45°,∴∠COE=∠ECO=45°,∠CEO=90°,∴CE=OE,CE⊥OE;(3)(2)中的结论仍然成立.理由如下:延长OE至F,使OE=EF,连接CF、DF、OC,如图③所示:同(1)得:△DEF≌△BEO,∴BO=DF,∠FDB=∠OBD∴OA=FD,FD∥OB,∴FD⊥AO,∵∠BAO=45°,CD⊥AC,∠CDA=45°=∠CAD,∴∠CAO=∠DCA=90°=∠FDC,CA=CD,在△OCA和△FCD中,,∴△OCA≌△FCD(SAS),∴OC=OF,∠OCA=∠FCD,∴∠OCF=∠DCA=90°,∴∠COF=45°,又∵OE=EF,∴∠OCE=∠OCF=45°∴∠COE=∠ECO=45°,∠CEO=90°,∴CE=OE,CE⊥OE;。
宁波市镇海区2019-2020学年八年级上期末数学试卷(含答案)
浙江省宁波市八年级(上)期末测试数学试卷一、仔细选一选(本题有12个小题,每小题4分,共48分) 1.下列四组线段中,能组成三角形的是( )A .2cm ,3cm ,4cmB .3cm ,4cm ,7cmC .4cm ,6cm ,2cmD .7cm ,10cm ,2cm 2.下列图案是轴对称图形的是( )A .B .C .D .3.下列各式计算正确的是( ) A .B .C .D .4.若x >y ,则下列式子中错误的是( )A .x ﹣3>y ﹣3B .>C .x+3>y+3D .﹣3x >﹣3y5.在平面直角坐标系中,已知点A (2,3),则点A 关于x 轴的对称点的坐标为( ) A .(3,2) B .(2,﹣3) C .(﹣2,3) D .(﹣2,﹣3)6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是( ) A .∠1=50°,∠2=40°B .∠1=50°,∠2=50°C .∠1=∠2=45°D .∠1=40°,∠2=40°7.已知点M (1,a )和点N (2,b )是一次函数y=﹣2x+n 图象上的两点,则a 与b 的大小关系是( ) A .a ≤bB .a <bC .a ≥bD .a >b8.直角三角形的两条边长分别是5和12,则斜边上的中线长是( ) A .6B .6.5C .6或 6.5D .6或 2.59.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A.x<﹣1 B.x<3 C.x>﹣1 D.x>310.关于x的不等式组有四个整数解,则a的取值范围是()A.﹣<a≤﹣B.﹣≤a<﹣C.﹣≤a≤﹣D.﹣<a<﹣11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为.14.命题“等腰三角形的两个底角相等”的逆命题是.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB的距离为 .16.如图,在边长为2的等边△ABC 中,D 为BC 的中点,E 是AC 边上一点,则BE+DE 的最小值为 .17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 个.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016= .三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t的函数关系如图1所示.方成思考后发现了如图1的部分正确信息:乙先出发1h;甲出发0.5小时与乙相遇.请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y<30时,求t的取值范围;(3)分别求出甲,乙行驶的路程S甲,S乙与时间t的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N地沿同一公路匀速前往M地,若丙经过h与乙相遇,问丙出发后多少时间与甲相遇?26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.浙江省宁波市八年级(上)期末数学试卷参考答案与试题解析一、仔细选一选(本题有12个小题,每小题4分,共48分)1.下列四组线段中,能组成三角形的是()A.2cm,3cm,4cm B.3cm,4cm,7cm C.4cm,6cm,2cm D.7cm,10cm,2cm【考点】三角形三边关系.【分析】根据三角形的三边关系定理:如果a、b、c是三角形的三边,且同时满足a+b>c,b+c >a,a+c>b,则以a、b、c为边能组成三角形,根据判断即可.【解答】解:A、∵3+2>4,∴2,3,4能组成三角形,故本选项正确;C、∵4+3=7,∴3,4,7不能组成三角形,故本选项错误;D、∵2+4=6,∴2,4,6不能组成三角形,故本选项错误;B、∵7+2<10,∴1,2,3不能组成三角形,故本选项错误;故选A.2.下列图案是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:D图形是轴对称图形,故选:D.3.下列各式计算正确的是()A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式的加减运算对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、原式=6,所以A选项的计算错误;B、5与5不能合并,所以B选项的计算错误;C、原式=8=8,所以C选项的计算正确;D、原式=2,所以D选项的计算错误.故选C.4.若x>y,则下列式子中错误的是()A.x﹣3>y﹣3 B.>C.x+3>y+3 D.﹣3x>﹣3y【考点】不等式的性质.【分析】根据不等式的基本性质,进行判断即可.【解答】解:A、根据不等式的性质1,可得x﹣3>y﹣3,故A选项正确;B、根据不等式的性质2,可得>,故B选项正确;C、根据不等式的性质1,可得x+3>y+3,故C选项正确;D、根据不等式的性质3,可得﹣3x<﹣3y,故D选项错误;故选:D.5.在平面直角坐标系中,已知点A(2,3),则点A关于x轴的对称点的坐标为()A.(3,2) B.(2,﹣3)C.(﹣2,3)D.(﹣2,﹣3)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵点A(2,3),∴点A关于x轴的对称点的坐标为:(2,﹣3).故选:B.6.对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,能说明它是假命题的反例是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=∠2=45°D.∠1=40°,∠2=40°【考点】命题与定理.【分析】能说明是假命题的反例就是能满足已知条件,但不满足结论的例子.【解答】解:A、满足条件∠1+∠2=90°,也满足结论∠1≠∠2,故A选项错误;B、不满足条件,故B选项错误;C、满足条件,不满足结论,故C选项正确;D、不满足条件,也不满足结论,故D选项错误.故选:C.7.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,则a与b的大小关系是()A.a≤b B.a<b C.a≥b D.a>b【考点】一次函数图象上点的坐标特征.【分析】把点M和点N的坐标代入一次函数的解析式,求出a、b的值,比较即可.【解答】解:∵点M(1,a)和点N(2,b)是一次函数y=﹣2x+n图象上的两点,∴a=﹣2+n,b=﹣4+n,∴a﹣b=(﹣2+n)﹣(﹣4+n)=2>0,∴a>b,故选:D.8.直角三角形的两条边长分别是5和12,则斜边上的中线长是()A.6 B.6.5 C.6或6.5 D.6或2.5【考点】勾股定理;直角三角形斜边上的中线.【分析】分①12是直角边时,利用勾股定理列式求出斜边,根据直角三角形斜边上的中线等于斜边的一半解答,②12是斜边,根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:①12是直角边时,斜边==13,第三边上的中线长=×13=6.5,②12是斜边时,第三边上的中线长=12=6,故选:C .9.直线l 1:y=k 1x+b 与直线l 2:y=k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 2x >k 1x+b 的解集为( )A .x <﹣1B .x <3C .x >﹣1D .x >3【考点】一次函数与一元一次不等式.【分析】观察函数图象,写出直线l 1在直线l 2上方所对应的自变量的范围即可. 【解答】解:不等式k 2x >k 1x+b 的解集为x <﹣1. 故选A .10.关于x 的不等式组有四个整数解,则a 的取值范围是( )A .﹣<a ≤﹣ B .﹣≤a <﹣ C .﹣≤a ≤﹣ D .﹣<a <﹣【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a 的取值范围即可.【解答】解:由(1)得x >8; 由(2)得x <2﹣4a ; 其解集为8<x <2﹣4a ,因不等式组有四个整数解,为9,10,11,12,则,解得﹣≤a <﹣.故选B.11.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连结PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.一定成立的结论有()A.①②③B.①②③⑤C.②③④D.③④⑤【考点】全等三角形的判定与性质;等边三角形的性质.【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;②由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;③同②得:△ACP≌△BCQ,即可得出结论;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【解答】解:①∵△ABC和△CDE为等边三角形,∴AC=BC,CD=CE,∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∠ADC=∠BEC,①正确;②∠DCP=180°﹣2×60°=60°=∠ECQ,在△CDP和△CEQ中,,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴∠QPC=∠BCA,∴PQ∥AE,②正确;③同②得:△ACP≌△BCQ,∴AP=BQ,③正确;④∵DE>QE,且DP=QE,∴DE>DP,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵△DCE是等边三角形,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,∴⑤正确;故选:B.12.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线一点,当PA=CQ时,连结PQ交AC于D,则DE的长为()A.B.C.D.【考点】等边三角形的性质.【分析】过P作PF∥BC交AC于F,得出等边三角形APF,推出AP=PF=QC,根据等腰三角形性质求出EF=AE,证△PFD≌△QCD,推出FD=CD,推出DE=AC即可.【解答】解:过P作PF∥BC交AC于F.如图所示:∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.∵在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=1,∴DE=.故选:A.二、认真填一填(本题有6个小题,每小题4分,共24分)13.若代数式有意义,则a的取值范围为a≥2016 .【考点】二次根式有意义的条件.【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得a﹣2016≥0,解得a≥2016,故答案为:a≥2016.14.命题“等腰三角形的两个底角相等”的逆命题是两个角相等三角形是等腰三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为原命题的题设是:“一个三角形是等腰三角形”,结论是“这个三角形两底角相等”,所以命题“等腰三角形的两个底角相等”的逆命题是“两个角相等三角形是等腰三角形”.15.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,则点D到AB 的距离为 4 .【考点】角平分线的性质.【分析】直接根据角平分线的性质可得出结论.【解答】解:∵Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,CD=4,∴点D到AB的距离为4.故答案为:4.16.如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE的最小值为.【考点】轴对称﹣最短路线问题;等边三角形的性质.【分析】作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,故E 即为所求的点.【解答】解:作B关于AC的对称点B′,连接BB′、B′D,交AC于E,此时BE+ED=B′E+ED=B′D,根据两点之间线段最短可知B′D就是BE+ED的最小值,∵B、B′关于AC的对称,∴AC、BB′互相垂直平分,∴四边形ABCB′是平行四边形,∵三角形ABC是边长为2,∵D为BC的中点,∴AD⊥BC,∴AD=,BD=CD=1,BB′=2AD=2,作B′G⊥BC的延长线于G,∴B′G=AD=,在Rt△B′BG中,BG===3,∴DG=BG﹣BD=3﹣1=2,在Rt △B′DG 中,B′D===.故BE+ED 的最小值为.故答案为:.17.阅读理解:我们把对非负实数x“四舍五入”到个位的值记为《x 》,即当n 为非负整数时,若n ﹣≤x <n+,则《x 》=n .例如:《0.67》=1,《2.49》=2,….给出下列关于《x 》的问题:①《》=2;②《2x 》=2《x 》;③当m 为非负整数时,《m+2x 》=m+《2x 》;④若《2x﹣1》=5,则实数x 的取值范围是≤x <;⑤满足《x 》=x 的非负实数x 有三个.其中正确结论的个数是 2 个.【考点】一元一次不等式组的应用.【分析】根据题意可以判断题目中各个结论是否正确,从而可以解答本题. 【解答】解:由题意可得, 《》=1,故①错误;当x=1.4时,《2x 》=《2×1.8》=3,2《x 》=2《1.4》=2,则《2x 》≠2《x 》,故②错误; 当m 为非负整数时,《m+2x 》=m+《2x 》,故③正确;若《2x ﹣1》=5,则4.5≤2x ﹣1<5.5,解得≤x <,故④正确;满足《x 》=x 的非负实数x 的值是x=0,故⑤错误; 由上可得,题目中正确的结论有2个, 故答案为:2.18.如图,已知A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,连接A 1B 2、B 1A 2、B 2A 3、…、A n B n+1、B n A n+1,依次相交于点P 1、P 2、P 3、…、P n .△A 1B 1P 1、△A 2B 2P 2、△A n B n P n 的面积依次记为S 1、S 2、S 3、…、S n ,则S 2016=.【考点】一次函数图象上点的坐标特征.【分析】根据图象上点的坐标性质得出点B 1、B 2、B 3、…、B n 、B n+1各点坐标,进而利用相似三角形的判定与性质得出S 1、S 2、S 3、…、S n ,进而得出答案.【解答】解:∵A 1、A 2、A 3、…、A n 、A n+1是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n A n+1=1,分别过点A 1、A 2、A 3、…、A n 、A n+1作x 轴的垂线交直线y=2x 于点B 1、B 2、B 3、…、B n 、B n+1,∴B 1的横坐标为:1,纵坐标为:2, ∴B 1(1,2),同理可得:B 2的横坐标为:2,纵坐标为:4, 则B 2(2,4), B 3(3,6)… ∵A 1B 1∥A 2B 2,∴△A 1B 1P 1∽△A 2B 2P 1,∴=,∴△A 1B 1C 1与△A 2B 2C 2对应高的比为1:2,∴A 1B 1边上的高为:,∴S △A1B1P1=××2=,同理可得出:S △A2B2P2=,S △A3B3P3=,∴S n =,==,∴S2016故答案为:.三、解答题(本题有8个小题,共78分,解答需写出必要的文字说明、验算步骤或证明过程)19.计算或化简:(1)(2﹣3)2+(2+)(2﹣)(2)﹣+(﹣2)0+.【考点】二次根式的混合运算;零指数幂.【分析】(1)利用完全平方公式和平方差公式计算;(2)先把各二次根式化简为最简二次根式,再利用二次根式的性质和零指数幂的意义化简,然后合并即可.【解答】解:(1)原式=12﹣12+18+4﹣3=31﹣12;(2)原式=2﹣+1+﹣1=.20.解不等式组.把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.【考点】解一元一次不等式组;在数轴上表示不等式的解集;一元一次不等式组的整数解.【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.【解答】解:,由①得:x≥﹣1,由②得:x<3,不等式组的解集为:﹣1≤x<3.在数轴上表示为:.不等式组的非负整数解为2,1,0.21.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【考点】作图—应用与设计作图;三角形三边关系.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB,且取AB=4;②以点A为圆心,3为半径画弧;以点B为圆心,2为半径画弧,两弧交于点C;③连接AC、BC.则△ABC即为满足条件的三角形.【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).(2)由(1)可知,只有(2,3,4),即a=2,b=3,c=4时满足a<b<c.如答图的△ABC即为满足条件的三角形.22.如图,△ABC中,AB=AC,AD⊥BC垂足为点D,CE⊥AB垂足为点E,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.【考点】全等三角形的判定与性质.【分析】(1)根据等腰三角形三线合一的性质和已知条件易证△AEF≌△CEB;(2)由(1)可知AF=BC,BC=2CD,所以AF=2CD,问题得证.【解答】解:(1)证明:∵AD⊥BC,∴∠B+∠BAD=90°.∵CE⊥AB,∴∠B+∠BCE=90°.∴∠EAF=∠ECB,在△AEF和△CEB中,,∴△AEF≌△CEB;(2)∵△AEF≌△CEB.∴AF=BC.∵AB=AC,AD⊥BC.∴CD=BD,BC=2CD∴AF=2CD.23.2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”.为了响应节能减排的号召,某品牌汽车4S店准备购进A型(电动汽车)和B型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求.市场营销人员经过市场调查得到如下信息:600万元,则有哪几种进车方案?(2)在(1)的前提下,如果你是经营者,并且所进的汽车能全部售出,你会选择哪种进车方案才能使获得的利润最大?最大利润是多少?(3)假设每台电动汽车每公里的用电费用为0.65元,且两种汽车最大行驶里程均为30万公里,那么从节约资金的角度,你做为一名购车者,将会选购哪一种型号的汽车?并说明理由.【考点】一次函数的应用.【分析】(1)根据已知信息和若经营者的购买资金不少于576万元且不多于600万元,列出不等式组,求解得出进车方案.(2)根据已知列出利润函数式,求最值,选择方案.(3)根据已知通过计算分析得出答案.【解答】解:(1)设A型汽车购进x辆,则B型汽车购进(16﹣x)辆.根据题意得:,解得:6≤x≤8.∵x为整数,∴x取6、7、8.∴有三种购进方案:根据题意得:W=(32﹣30)x+(45﹣42)(16﹣x)W=﹣x+48.∵k=﹣1<0,∴w随x的增大而减小,=﹣6+48=42(万元)∴当x=6时,w有最大值,W最大∴当购进A型车6辆,B型车10辆时,可获得最大利润,最大利润是42万元.(3)设电动汽车行驶的里程为a万公里.当32+0.65a=45时,解得:a=20<30.∴选购太阳能汽车比较合算.24.在平面直角坐标系中,已知点A(﹣2,0),B(2,0),若在坐标轴上存在点C,使得AC+BC=m,则称点C为点A,B的“m和点”.如C坐标为(0,0)时,AC+BC=4,则称C(0,0)为点A,B的“4和点”.(1)若点C为点A,B的“m和点”,且△ABC为等边三角形,求m的值;(2)A,B的“5和点”有几个,请分别求出坐标;(3)直接指出点A,B的“m和点”的个数情况和相应的m取值条件.【考点】勾股定理;坐标与图形性质.【分析】(1)先由A、B两点的坐标求出AB=4,再根据等边三角形的定义得到AC=BC=AB=4,然后根据“m和点”的定义即可求出m=8;(2)设点C为点A,B的“5和点”.根据“m和点”的定义可知点C在坐标轴上,再分两种情况进行讨论:①如果点C在x轴上,设C点坐标为(x,0),根据AC+BC=5列出方程|x+2|+|x ﹣2|=5,解方程求出x的值,即可得到C点坐标;②如果点C在y轴上,设C点坐标为(0,y),根据AC+BC=5列出方程+=5,解方程求出y的值,即可得到C点坐标;(3)由AB=4,可知点A,B的“m和点”的个数情况分三种情况进行讨论:①当m<4时,根据两点之间线段最短可知A,B的“m和点”没有;②当m=4时,x轴上﹣2与2之间的任意一个数所对应的点都是A,B的“m和点”,所以有无数个;③当m>4时,A,B的“m和点”x轴上有2个,y轴上也有2个,一共有4个.【解答】解:(1)∵A(﹣2,0),B(2,0),∴AB=2﹣(﹣2)=4.∵△ABC为等边三角形,∴AC=BC=AB=4,∴AC+BC=4+4=8,即m=8;(2)设点C为点A,B的“5和点”.分两种情况:①如果点C在x轴上,设C点坐标为(x,0).∵AC+BC=5,∴|x+2|+|x﹣2|=5,当x≤﹣2时,﹣(x+2)﹣(x﹣2)=5,解得x=﹣2.5,所以C点坐标为(﹣2.5,0);当﹣2<x≤2时,(x+2)﹣(x﹣2)=5,x无解;当x>2时,(x+2)+(x﹣2)=5,解得x=2.5,所以C点坐标为(2.5,0);②如果点C在y轴上,设C点坐标为(0,y).∵AC+BC=5,∴+=5,∴=2.5,两边平方,得4+y2=6.25,解得y=±1.5.经经验,y=±1.5都是原方程的根,所以C点坐标为(0,1.5),(0,﹣1.5);综上所述,A,B的“5和点”有4个,坐标为(﹣2.5,0),(2.5,0),(0,1.5),(0,﹣1.5);(3)∵AB=4,∴点A,B的“m和点”的个数情况分三种情况:①当m<4时,A,B的“m和点”没有;②当m=4时,A ,B 的“m 和点”有无数个; ③当m >4时,A ,B 的“m 和点”有4个.25.方成同学看到一则材料:甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地.设乙行驶的时间为t (h ),甲乙两人之间的距离为y (km ),y 与t 的函数关系如图1所示. 方成思考后发现了如图1的部分正确信息:乙先出发1h ;甲出发0.5小时与乙相遇. 请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程S 甲,S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一公路匀速前往M 地,若丙经过h 与乙相遇,问丙出发后多少时间与甲相遇?【考点】一次函数的应用.【分析】(1)利用待定系数法求函数解析式,即可解答;(2)先求出甲、乙的速度、所以OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20,根据当20<y <30时,得到20<40t ﹣60<30,或20<﹣20t+80<30,解不等式组即可;(3)得到S 甲=60t ﹣60(),S 乙=20t (0≤t ≤4),画出函数图象即可;(4)确定丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2),根据S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇. 【解答】解:(1)直线BC 的函数解析式为y=kt+b ,把(1.5,0),()代入得:解得:,∴直线BC 的解析式为:y=40t ﹣60; 设直线CD 的函数解析式为y 1=k 1t+b 1,把(),(4,0)代入得:,解得:,∴直线CD 的函数解析式为:y=﹣20t+80.(2)设甲的速度为akm/h ,乙的速度为bkm/h ,根据题意得;,解得:,∴甲的速度为60km/h ,乙的速度为20km/h ,∴OA 的函数解析式为:y=20t (0≤t ≤1),所以点A 的纵坐标为20, 当20<y <30时,即20<40t ﹣60<30,或20<﹣20t+80<30,解得:或.(3)根据题意得:S 甲=60t ﹣60()S 乙=20t (0≤t ≤4), 所画图象如图2所示:(4)当t=时,,丙距M 地的路程S 丙与时间t 的函数表达式为:S 丙=﹣40t+80(0≤t ≤2), 如图3,S 丙=﹣40t+80与S 甲=60t ﹣60的图象交点的横坐标为,所以丙出发h 与甲相遇.26.如图,直线l 1:y 1=﹣x+2与x 轴,y 轴分别交于A ,B 两点,点P (m ,3)为直线l 1上一点,另一直线l 2:y 2=x+b 过点P . (1)求点P 坐标和b 的值;(2)若点C 是直线l 2与x 轴的交点,动点Q 从点C 开始以每秒1个单位的速度向x 轴正方向移动.设点Q 的运动时间为t 秒.①请写出当点Q 在运动过程中,△APQ 的面积S 与t 的函数关系式; ②求出t 为多少时,△APQ 的面积小于3;③是否存在t 的值,使△APQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明理由.【考点】一次函数综合题.【分析】(1)把P (m ,3)的坐标代入直线l 1上的解析式即可求得P 的坐标,然后根据待定系数法即可求得b ;(2)根据直线l 2的解析式得出C 的坐标,①根据题意得出AQ=9﹣t ,然后根据S=AQ•|y P |即可求得△APQ 的面积S 与t 的函数关系式;②通过解不等式﹣t+<3,即可求得t >7时,△APQ 的面积小于3;③分三种情况:当PQ=PA 时,则(t ﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2,当AQ=PA 时,则(t ﹣7﹣2)2=(2+1)2+(0﹣3)2,当PQ=AQ 时,则(t ﹣7+1)2+(0﹣3)2=(t ﹣7﹣2)2,即可求得.【解答】解;(1)∵点P (m ,3)为直线l 1上一点, ∴3=﹣m+2,解得m=﹣1, ∴点P 的坐标为(﹣1,3),把点P 的坐标代入y 2=x+b 得,3=×(﹣1)+b , 解得b=;(2)∵b=,∴直线l 2的解析式为y=x+, ∴C 点的坐标为(﹣7,0),①由直线l 1:y 1=﹣x+2可知A (2,0), ∴当Q 在A 、C 之间时,AQ=2+7﹣t=9﹣t ,∴S=AQ•|y P |=×(9﹣t )×3=﹣t ;当Q 在A 的右边时,AQ=t ﹣9,|=×(t﹣9)×3=t﹣;∴S=AQ•|yP即△APQ的面积S与t的函数关系式为S=﹣t+或S=t﹣;②∵S<3,∴﹣t+<3或t﹣<3解得7<t<9或9<t<11.③存在;设Q(t﹣7,0),当PQ=PA时,则(t﹣7+1)2+(0﹣3)2=(2+1)2+(0﹣3)2∴(t﹣6)2=32,解得t=3或t=9(舍去),当AQ=PA时,则(t﹣7﹣2)2=(2+1)2+(0﹣3)2∴(t﹣9)2=18,解得t=9+3或t=9﹣3;当PQ=AQ时,则(t﹣7+1)2+(0﹣3)2=(t﹣7﹣2)2,∴(t﹣6)2+9=(t﹣9)2,解得t=6.故当t的值为3或9+3或9﹣3或6时,△APQ为等腰三角形.。
2019-2020学年山西省临汾市襄汾县八年级下学期期末考试数学试题(含部分答案)
2019-2020学年山西省临汾市襄汾县八年级第二学期期末数学试卷一、选择题(共10小题).1.若分式的值为零,则x的值为()A.0B.1C.﹣1D.±1m,用科学记数法表示为()×10﹣6m×10﹣7m C.125×10﹣8m D.125×10﹣9m 3.如图,平行四边形ABCD的对角线AC与BD相交于点O,添加一个条件不能使平行四边形ABCD变为矩形的是()A.OA=OC B.AC=BD C.DA⊥AB D.∠OAB=∠OBA 4.在参加一次舞蹈比赛中,某校10名学生参赛成绩统计如图所示,对于这10位学生的参赛成绩,下列说法错误的是()A.众数是90B.中位数是90C.平均数是90D.方差是195.如图,在平行四边形ABCD中,对角线AC的垂直平分线分别交CD、AB于点E、F,连接CF.若△BCF的周长为3,则平行四边形ABCD的周长为()A.15B.12C.9D.66.化简的结果为()A.x﹣y B.x+y C.D.7.如图,直线l⊥x轴于点P,且与反比例函数y1=(x>0)及y2=(x>0)的图象分别交于点A、B,连接OA、OB,若△OAB的面积为3,则k1﹣k2的值为()A.B.3C.6D.98.若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(3k+2)x+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.如图,在平行四边形ABCD中,E为BC边上一点(不与端点重合),若AB=AE,且AE平分∠DAB,则下列结论:①∠B=60°,②AC=BC,③∠AED=∠ACD,④△ABC≌△EAD.其中正确的个数是()A.1个B.2个C.3个D.4个10.如图,在正方形ABCD中,点P从点A出发,沿着正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x之间形成的函数关系图象大致是()A.B.C.D.二、填空题(每小题3分,共15分)11.为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图,则该班学生这天用于体育锻炼的平均时间为______小时.12.某工程队修建一条长1200m的道路;采用新的施工方式,工效提升了50%,结果提前4天完成任务,设这个工程队原计划每天修建道路xm,则列出的方程为.13.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①、②、③、④、…,则三角形⑩的直角顶点的坐标为.14.已知三点P1(x1,y1)、P2(x2,y2)、P3(x3,y3)都在反比例函数y=﹣的图象上,且x1<0<x2<x3,则y1、y2、y3的大小关系是.15.如图,矩形ABCD中,AB=4,BC=6,E是边AD的中点,将△ABE沿BE折叠后得到△A'BE延长BA'交CD于点F,则DF的长为.三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(1)计算:()﹣2﹣(﹣π)0+﹣14;(2)解方程:﹣1=.17.先化简再求值:(1﹣)÷,其中x=﹣3.18.某班实行小组量化考核制.为了了解同学们的学习情况,王老师对甲、乙两个小组连续六周的综合评价得分进行了统计,并将得到的数据制成如下的统计表:综合评价得分统计表(单位:分)周次一二三四五六组别甲组121516141413乙组91410171618平均数中位数方差甲组14乙组14(2)根据综合评价得分统计表中的数据,请在如图中画出乙组综合评价得分的折线统计图.(3)根据折线统计图中的信息,请你分别对甲、乙两个小组连续六周的学习情况作出简要评价.19.今年新冠肺炎疫情在全球肆虐,为降低病亡率,某工厂平均每天比原计划多生产5台呼吸机,现在生产60台呼吸机的时间与原计划生产45台呼吸机所需时间相同.求该工厂原来平均每天生产多少台呼吸机?20.如图,在平行四边形ABCD中,对角线AC与BD相交于点0,点E、F分别为OB、OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF.(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.21.有这样一个问题:探究函数y=的图象与性质.小慧根据学习函数的经验对函数y=的图象与性质进行了探究.下面是小慧的探究过程,请补充完成:(1)函数y=的自变量x的取值范围是.(2)如下表所示,列出y与x的几组对应值.请直接写出m的值,m=;x…﹣3﹣201m4567y…346﹣201…(3)请在平面直角坐标系xOy中,描出上表中以各对应值为坐标的点,并画出该函数的图象;(4)结合函数的图象,写出该函数的两条性质.22.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.(1)求反比例函数与一次函数的表达式;(2)连接OC、OD,求S△OCD;(3)直接写出不等式kx+b>的解集.23.阅读下列材料:如图①,在四边形ABCD中,若AB=AD,BC=CD,则把这样的四边形称为筝形.(1)写出筝形的两个性质(定义除外):①;②.(2)如图②,在平行四边形ABCD中,点E、F分别在BC、CD上,且AE=AF,∠AEC=∠AFC.求证:四边形AECF是筝形.(3)如图③,在筝形ABCD中,AB=AD=15,BC=DC=13,AC=14,求筝形ABCD 的面积.参考答案一、选择题1.AC;2.AB;3.A;4.AC;5.AD;6.AB;7.AC;8.A;9.AC;10.AC;二、填空题(每小题3分,共15分)11.;12.;13.;14.;15.;三、解答题(本大题共8个小题,共75分,解答应写出文字说明、证明过程或演算步骤)16.;17.;18.;;;19.;20.;21.;;22.;23.;;。
八年级数学东城区2019-2020学年度第一学期期末教学统一检测 (含答案)
东城区2019-2020学年度第一学期期末教学统一检测初二数学 2020.1一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.在国庆70周年的庆典活动中,使用了大量的电子显示屏,0.0009m 微间距显示屏就是其中之一.数字0.0009用科学记数法表示应为A.4910-⨯B. 3910-⨯C. 30.910-⨯D. 40.910-⨯ 2. 下列等式中,从左到右的变形是因式分解的是A .()m a b ma mb +=+B .23313(1)1x x x x -+=-+ C .()()23212x x x x ++=++ D .22(2)+4+4a a a +=3.如图是3×3的正方形网格,其中已有2个小方格涂成了黑色.现在要从编号为①‒④的小方格中选出1个也涂成黑色,使黑色部分依然是轴对称图形,不能选择的是A.①B.②C.③D.④4. 下列各式计算正确的是 A.2133a aa -⋅= B.236()ab ab = C.22(2)4x x -=- D.824623x x x ÷=5. 对于任意的实数x ,总有意义的分式是A.152--x x B.231x x -+ C.x x 812+ D.21x -6.如图,△ABC 中,∠A =40°,AB 的垂直平分线分别交AB ,AC 于点D ,E ,连接BE ,则∠BEC 的大小为A.40°B.50°C.80°D.100°7.若分式2213x x -+的值为正数,则x 需满足的条件是 A. x 为任意实数 B. 12x < C. 12x >D. 12x >- 8. 已知△ABC ,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB ,AC 上,且这组对应边所对的顶点重合于点M ,点M 一定在A.∠A 的平分线上B.AC 边的高上C.BC 边的垂直平分线上D.AB 边的中线上9.如图,已知∠MON 及其边上一点A .以点A 为圆心,AO 长为半径画弧,分别交OM ,ON于点B 和C .再以点C 为圆心,AC 长为半径画弧,恰好经过点B .错误的结论是 A. AOC ABC S S =△△ B. ∠OCB =90° C. ∠MON =30° D. OC =2BC10. 已知OP 平分∠AOB ,点Q 在OP 上,点M 在OA 上,且点Q ,M 均不与点O 重合.在OB 上确定点N ,使QN =QM ,则满足条件的点N 的个数为A.1 个B.2个C.1或2个D.无数个二、填空题(本题共16分,每小题2分) 11. 因式分解:39a a -= _ . 12. 已知 -2是关于x 的分式方程23x kx x -=+的根,则实数k 的值为________ . 13. 如图,BE 与CD 交于点A ,且∠C =∠D .添加一个条件: ,使得△ABC ≌△AED .BA CM第8题图 第9题图14. 如图,将长方形纸片ABCD 折叠,使顶点A ,C 重合,折痕为EF .若∠BAE =28°,则∠AEF 的大小为 °.15. 如图,等边△ABC 中,AD 是BC 边上的中线,且AD =4,E ,P 分别是AC ,AD 上的动点,则C P +EP 的最小值等于 .16. 我国古代数学曾有许多重要的成就,其中“杨辉三角” (如图)就是一例. 这个三角形给出了()na b +(n =1,2,3,4,5,6)的展开式(按a 的次数由大到小顺序排列)的系数规律.例如,第三行的三个数1,2,1,恰好对应()2222a b a ab b +=++展开式中各项的系数;第五行的五个数1,4,6,4,1,恰好对应着()4432234464a b a a b a b ab b +=++++展开式中各项的系数.(1)()5a b +展开式中4a b 的系数为 ;(2)()7a b +展开式中各项系数的和为 .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)解答应写出文字说明、演算步骤或证明过程.17. 计算:3+23x x x +-. 18.下面是小明设计的“已知两线段及一角作三角形”的尺规作图过程. 已知:线段m ,n 及∠O .求作:△ABC ,使得线段m ,n 及∠O 分别是它的两边和一角. 作法:如图,① 以点O 为圆心,m 长为半径画弧,分别交∠O 的两边于点M ,N ; ② 画一条射线AP ,以点A 为圆心,m 长为半径画弧,交AP 于点B ; ③ 以点B 为圆心,MN 长为半径画弧,与第②步中所画的弧相交于点D ; ④ 画射线AD ;⑤ 以点A 为圆心,n 长为半径画弧,交AD 于点C ; ⑥ 连接BC ,则△ABC 即为所求作的三角形. 请回答:(1)步骤③得到两条线段相等,即 = ; (2)∠A =∠O 的作图依据是 ; (3)小红说小明的作图不全面,原因是 .19.计算:()201π533-⎛⎫- ⎪⎝⎭.20.如图,在△ABC 和△ADE 中,∠BAC =∠DAE ,AD =AE .连接BD ,CE,∠ABD =∠ACE . 求证:AB =AC .21. 计算:2()()()4()2m n m n m n m m n m ⎡⎤+-+---÷⎣⎦.B22. 解方程:2151=24xx x +--- . 23.在三角形纸片ABC 中,∠B =90°,∠A =30°,AC =4,点E 在AC 上,AE =3.将三角形纸片按图1方式折叠,使点A 的对应点A '落在AB 的延长线上,折痕为ED ,A E '交BC 于点F .(1)求∠CFE 的度数;(2)如图2,,继续将纸片沿BF 折叠,点A '的对应点为A '',A F ''交DE 于点G .求线段DG 的长.图1 图224. 如图,△ABC .(1)尺规作图:过点C 作AB 的垂线交AB 于点O .不写作法,保留作图痕迹;(2)分别以直线AB ,OC 为x 轴,y 轴建立平面直角坐标系,使点B ,C 均在正半轴上.若AB=7.5,OC =4.5,∠A =45°,写出点B 关于y 轴的对称点D 的坐标; (3)在(2)的条件下,求△ACD 的面积.25. 先化简,再求值:22214()2442a a a a a a a a ----÷++++,其中a 是满足|3|3a a -=-的最大整数.26. 列方程,解应用题:第二届中国国际进口博览会于2019年11月5日至10日在上海国家会展中心举行.与首届相比,第二届进博会的展览面积更大,企业展设置科技生活、汽车、装备等七个展区,展览面积由的270 000平方米增加到330 000平方米.参展企业比首届多了约300家,参展企业平均展览面积增加了12.8%,求首届进博会企业平均展览面积. (1) 在解应用题时,我们常借助表格、线段图等分析题目中的数量关系.A'F E C A GA'F E C设首届进博会企业平均展览面积为x 平方米,把下表补充完整: 届别总面积(平方米)企业平均展览面积(平方米)首 届 270 000x第二届 330 000(2)根据以上分析,列出方程(不解..方程).27. 在ABC 中,AB >BC ,直线l 垂直平分AC .(1)如图1,作∠ABC 的平分线交直线l 于点D ,连接AD ,CD . ①补全图形;②判断∠BAD 和∠BCD 的数量关系,并证明.(2) 如图2,直线l 与ABC 的外角∠ABE 的平分线交于点D ,连接AD ,CD . 求证:∠BAD =∠BCD .28.对于△ABC 及其边上的点P ,给出如下定义:如果点1M ,2M ,3M ,……,n M 都在 △ABC 的边上,且 123n PM PM PM PM ====L L ,那么称点1M ,2M ,3M ,……,n M 为△ABC 关于点P 的等距点,线段1PM ,2PM ,3PM ,……,n PM 为△ABC 关于点P 的等距线段.(1)如图1,△ABC 中,∠A <90°,AB =AC ,点P 是BC 的中点.①点B ,C △ABC 关于点P 的等距点,线段P A ,PB △ABC 关于点P 的等距线段;(填“是”或“不是”)②△ABC 关于点P 的两个等距点1M ,2M 分别在边AB ,AC 上,当相应的等距线段最短时,在图1中画出线段1PM ,2PM ;(2)△ABC 是边长为4的等边三角形,点P 在BC 上,点C ,D 是△ABC 关于点P 的等距lE D A C B lA B 图1 图2点,且PC =1,求线段DC 的长;(3)如图2,在Rt △ABC 中,∠C =90°,∠B =30°.点P 在BC 上,△ABC 关于点P 的等距点恰好有四个,且其中一个是点C . 若BC a =,直接写出PC 长的取值范围.(用含a 的式子表示)图1 图2东城区2019-2020学年度第一学期期末教学统一检测初二数学参考答案及评分标准 2020.1一、选择题(本题共20分,每小题2分)题号 1 2 3 4 5 6 7 8 9 10 答案ACDABCCADC二、填空题(本题共16分,每小题2分)11.()()33a a a +- 12. 2 13.答案不唯一,但必须是一组对应边,如:AC =AD 14. 59 15. 4 16. 5 ;128三.解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17. 解: 原式()()()()332=223x x x x x -+++-L L L L 分()()2336423x x x x x -++=+-L L L L 分 ()()26523x x x +=+-L L L L 分 18.(1)BD ,MN ;……………………1分(2)三边对应相等的两个三角形全等;全等三角形的对应角相等;……………………3分 (3)小明没有对已知中的边和角的位置关系分类讨论. ……………………5分19.解:()-201π53⎛⎫- ⎪⎝⎭94=-+……………………4分=……………………5分20.证明:∵∠BAC =∠DAE,∴∠BAC -∠CAD =∠DAE -∠CAD.即∠BAD =∠CAE. ……………………2分 在△BAD 和△CAE 中,,BAD CAE ABD ACE AD AE ∠∠∠∠⎧⎪⎨⎪⎩=,=,=∴△BAD ≌△CAE (AAS ). …………………… 4分 ∴ AB =AC. …………………… 5分2222222()()()4()2(243454)2m (22)2m n m n m n m m n mm n m mn n m mn m mn m m n ⎡⎤+-+---÷⎣⎦=-+-+-+÷=-+⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯÷=-+⋯⋯⋯⋯⋯⋯⋯21.解:分分分B()()()222124532453112343x x x x x x x x ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯++--=++-+==-=-⋯⋯⋯⋯⋯⋯⋯⋯⋯22.解:分分分经检验:13x =-是原方程的解. ∴13x =-.……………………5分23.解:(1)∵∠A =30°,∴∠A '=30°. ……………………1分 ∵∠A BF '=90°, ∴∠A FB '=60°. ……………………2分∵∠CFE =∠A FB ',∴∠CFE =60°. ……………………3分(2)∵点A 与点A '关于直线DE 对称,∴DE ⊥AA '.∵∠A =30°,AE =3, ∴1322DE AE == . ……………………4分 由(1)知,∠CFE =60°,∠C =60°,∴△CFE 是等边三角形.∴EF =CE =AC -AE =1. ……………………5分 同理,△EFG 也是等边三角形, ∴12DG DE EG =-=DG =DE -EG =.……………………6分 24.解:(1)……………………………………………………………………………………2分GA''DA'FECAB图2A'FECA图1(2)D (-3,0); ……………………4分 (3)13927==2228ACD S ⨯⨯△.……………………6分22222221225.[](2)(2)44(1)2[](2)(2)442(2124)4231a a a a a a a a a a a a a a a a a a a a a a a--+=-⋅++---+=-⋅++--+=⋅+-⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=+解:原式分分分分∵a 是满足|3|3a a -=-的最大整数, ∴30a -≥. ∴3a ≤.∴=3a . ……………………5分 ∴1=15原式.……………………6分……………………………………………………………………………………4分(2)270 000330000+300=(1+12.8%)x x.……………………6分 27. 解:(1)①补全图形;……………………1分② 结论:∠BAD +∠BCD =180°. ……………………2分证明:过点D 作DE ⊥AB 于E ,作DF ⊥BC 交BC 的延长线于F , 则∠AED =∠CFD =90°.∵BD 平分∠ABC ,∴DE =DF . ∵直线l 垂直平分AC ,∴DA =DC. ……………………3分在Rt ADE 和Rt CDF 中, DA DC DE DF =⎧⎨=⎩,,∴Rt ADE ≌Rt CDF . ∴∠BAD =∠FCD.∵∠FCD +∠BCD =180°,∴Rt ADN ≌Rt CDM.∴∠BAD =∠BCD. ……………………7分28.解:(1)①是,不是;……………………2分②……………………3分(2)如图,DC =2,或DC =1; ……………………5分B(3)32a a PC <<.……………………7分。
2019-2020学年梧州市岑溪市八年级(下)期末数学试卷(含答案解析)
2019-2020学年梧州市岑溪市八年级(下)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.若等式√(x−1)(x+2)=√x−1⋅√x+2成立,则字母x应满足条件()A. x≥0B. x≥−2C. −2≤x≤1D. x≥12.一元二次方程x2+2x−3=0的两个根中,较小一个根为()A. 3B. −3C. −2D. −13.给出长度分别为7cm,15cm,20cm,24cm,25cm的五根木棒,分别取其中的三根首尾连接最多可以搭成的直角三角形的个数为()A. 1个B. 2个C. 3个D. 4个4.下列二次根式中,属于最简二次根式的是()B. √0.3C. √8D. √7A. √125.在▱ABCD中,下列结论一定正确的是()A. AC⊥BDB. ∠A+∠B=180°C. AB=ADD. ∠A≠∠C6.一组数据5,7,8,10,12,12,44的众数和中位数分别是()A. 44和10B. 12和10C. 10和12D. 12和117.用配方法解方程x2−6x−3=0,此方程可变形为()A. (x2−3)2=12B. (x+3)2=6C. (x−3)2=12D. (x+3)2=98.数名射击运动员第一轮比赛成绩如下表所示;则他们本轮比赛的平均成绩是()A. 7.8环B. 7.9环C. 8.1环D. 8.2环9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A. 25海里B. 30海里C. 40海里D. 50海里10.如图,▱ABCD的顶点A在反比例函数图象上,边CD落在x轴上,点B在y轴上,AD交y轴于点E,OE:EB=1:2,四边形BCDE的面积为6,则这个反比例函数的解析式是()A. y=−7xB. y=−8xC. y=−9xD. y=−10x(x>0)经过矩形ABOC11.如图,在平面直角坐标系中,反比例函数y=kx的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A. 2B. 4C. 6D. 812.如图,△ABC中,AD为BC边上的中线,若AB=5,AC=13,AD=6,那么BC的值为()A. 18B. √61C. 2√61D. 12二、填空题(本大题共6小题,共18.0分)13.七边形的内角和为______度,外角和为______度.14.若二次根式7√5x−3与2√4x+1是同类二次根式,则x=______.15.已知五个正数a,b,c,d,e,平均数是m,则3a+1,3b+1,3c+1,3d+1,3e+1这五个数的平均数是______.16.已知m是方程x2−x−3=0的一个根,则m2−m+9的值等于______.17.已知抛物线y=x2−k的顶点为P,与x轴交于点A,B,且△ABP是等腰直角三角形,则k的值是______.18.如图,F是菱形ABCD的边AD的中点,AC与BF相交于E,EG⊥AB于G,已知∠1=∠2,则下列结论:①AE=BE;②BF⊥AD;③AC=2BF;④CE=BF+BG.其中正确的结论是______.三、解答题(本大题共8小题,共66.0分)19.计算:(3−2√3)(3+2√3)−√48+√1×√6.220.阅读第(1)题的解题过程,再解答第(2)题:(1)例:解方程x2−|x|−2=0.解:当x≥0时,原方程可化为x2−x−2=0.解得:x1=2,x2=−1(不合题意.舍去)当x<0时,原方程可化为x2+x−2=0.解得:x1=−2,x2=1(不合题意.舍去)∴原方程的解是x1=2,x1=−2.(2)请参照上例例题的解法,解方程x2−x|x−1|−1=0.21.如图,C是AB的中点,AD=CE,CD=BE,求证:∠D=∠E.22.如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于点E,CG是⊙F的切线,CG交AD于点G.(1)求证:CG⊥AD.(2)填空:①若△BDA的面积为56,则△BCF的面积为______;②当∠GCD的度数为______时,四边形EFCD是菱形.23.如图,小颖在数学综合实践活动中,利用所学的数学知识对某小区居民楼AB的高度进行测量,测得居民楼AB与CD之间的距离AC为35m,在点N处测得居民楼CD的顶端D的仰角为45°,居民楼AB的顶端B的仰角为55°.已知居民楼CD的高度为16.6m,小颖的观测点N距地面1.6m.求居民楼AB的高度.(结果精确到1m)【参考数据:sin55°≈0.82,cos55°≈0.57,tan55°≈1.43】24.2019年1月,旨在加强生活垃圾分类管理,提高生活垃圾减量化、资源化、无害化处理水平及推进生态文明建设的《重庆市生活垃圾分类管理办法》开始施行.为了了解居民对生活垃圾分类相关知识的了解程度,某社区随机抽取了部分本社区居民进行调查,并绘制了如下河幅统计图(不完整)(1)接受调査的总人数为______人,并请补全条形统计图;(2)在扇形统计图中,“了解一点”部分扇形的圆心角是______°;(3)若该社区总共有8000名居民,请你估计其中对生活垃圾分类相关知识“了解一点”和“完全不了解”的总人数.25.为满足市场需求,某超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价为4元时,每天可售出500个,并且售价每上涨1元,其每天的销售量就减少100个.若物价部门规定该品牌粽子的售价不能超过进价的200%,则该超市将每个粽子的售价定为多少元时,才能使每天的利润为800元?26.问题:将菱形的面积五等分.小红发现只要将菱形周长五等分,再将各分点与菱形的对角线交点连接即可解决问题.如图,点O是菱形ABCD的对角线交点,AB=5,下面是小红将菱形ABCD面积五等分的操作与证明思路,请补充完整.(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF= ______,连接OF;(3)在CD边上取点G,使CG= ______,连接OG;(4)在DA边上取点H,使DH= ______,连接OH.由于AE=____+____=_____+____=_____+____=_____.可证S△AOE=S四边形EOFB=S四边形FOGC= S△HOA.【答案与解析】1.答案:D解析:试题分析:根据二次根式的意义可以得知x−1≥0,x+2≥0构成不等式组就可以求出其x 的取值范围.∵√(x−1)(x+2)=√x−1⋅√x+2,∴{x−1≥0x+2≥0,解得x≥1,∴D答案正确.故选D.2.答案:B解析:解:∵(x−1)(x+3)=0,∴x−1=0或x+3=0,解得:x=1或x=−3,则两个根中,较小一个根为−3,故选:B.因式分解法求解可得.本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.答案:B解析:解:∵72=49,152=225,202=400,242=576,252=625,∴225+400=625,49+576=625即152+202=252,72+242=252,故选B.分别求出5个数字的平方,看哪两个的平方和等于第三个数的平方,从而可判断能构成直角三角形.本题考查了勾股定理的逆定理,解题的关键熟知勾股定理逆定理的内容.4.答案:D解析:本题考查最简二次根式,属于基础题型.根据最简二次根式的定义即可判定.,故A不是最简二次根式;解:A.原式=√22B.原式=√30,故B不是最简二次根式;10C.原式=2√2,故C不是最简二次根式;D选项是最简二次根式.故选:D.5.答案:B解析:由四边形ABCD是平行四边形,可得AD//BC,即可证得∠A+∠B=180°.此题考查了平行四边形的性质.此题比较简单,注意掌握数形结合思想的应用.解:∵四边形ABCD是平行四边形,∴AD//BC,∴∠A+∠B=180°.故选:B.6.答案:B解析:本题考查了众数和中位数,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.解:在所列7个数据中12出现次数最多,所以众数为12,中位数为10,故选B.7.答案:C解析:解:∵x2−6x=3,∴x2−6x+9=3+9,即(x−3)2=12,故选:C.移项后两边配上一次项系数一半的平方即可得.本题主要考查解一元二次方程的解法,熟练掌握完全平方公式是配方法解方程的关键.8.答案:C解析:试题分析:计算出命中的环数的比例及对应的圆心角,根据平均数的概念求平均环数.由题意可知:该运动员的平均成绩为4×7+2×8+3×9+1×1010=8.1环.故选C.9.答案:C解析:首先根据路程=速度×时间可得AC、AB的长,然后连接BC,再利用勾股定理计算出BC长即可.此题主要考查了勾股定理的应用,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.解:连接BC,由题意得:AC=16×2=32(海里),AB=12×2=24(海里),∠BAC=90°,CB=√AC2+AB2=40(海里),故选C.10.答案:C解析:解:∵DE//BC,∴△EOD∽△BOC,∵OE:EB=1:2,∴EOBO =13,∴S△EODS△BOC =19,∴S△EODS△EOD+6=19,解得:S△EOD=34,∵AB//DO,∴△ABE∽△DOE,∵OEBE =12,∴S△ABES△EOD=4,∴S△ABE=4×34=3,∴四边形ABCD的面积为6+3=9,如图,过A作AF⊥x轴于F,则S矩形ABOF=S平行四边形ABCD=9,即|k|=9,又∵函数图象在二、四象限,∴k=−9,即函数解析式为:y=−9x.故选:C.直接利用平行四边形的性质结合相似三角形的判定与性质得出△ABE和△EOD的面积,进而得出四边形ABCD的面积,即可得出反比例函数的解析式.此题主要考查了平行四边形的性质以及相似三角形的判定与性质、反比例函数的性质等知识,正确得出四边形ABCD的面积是解题关键.11.答案:B解析:解:设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a⋅12b=14ab=14×16=4,故选:B.设A(a,b),由矩形的面积求得ab,再根据中点定义求得M点坐标,进而用待定系数法求得k.本题主要考查了矩形的性质,反比例函数的图象与性质,待定系数法,关键是通过A点坐标与已知矩形面积和未知k联系起来.12.答案:C解析:证明:延长AD到点E,使DE=AD=6,连接CE,∵AD 是BC 边上的中线,∴BD =CD ,在△ABD 和△ECD 中,{BD =CD ∠ADB =∠CDE AD =DE, ∴△ABD≌△ECD(SAS),∴CE =AB =5,∠BAD =∠E ,∵AE =2AD =12,CE =5,AC =13,∴CE 2+AE 2=AC 2,∴∠CED =90°,∴∠BAD =90°,∴BD 2=AB 2+AD 2,∴BD =√52+62=√61,∴BC =2BD =2√61,故选C .延长AD 到点E ,使DE =AD =6,连接CE ,可证明△ABD≌△ECD ,所以CE =AB ,再利用勾股定理的逆定理证明△CDE 是直角三角形,即:△ABD 为直角三角形,利用勾股定理的求出BD 的长,进而求出BC 的长.本题考查了全等三角形的判定和性质、勾股定理,勾股定理的逆定理的运用,解题的关键是添加辅助线,构造全等三角形,题目的设计很新颖,是一道不错的中考题.13.答案:900 360解析:解:(7−2)⋅180=900度,外角和为360度.n 边形的内角和是(n −2)⋅180°,把多边形的边数代入公式,就得到多边形的内角和.任何多边形的外角和是360度.已知多边形的内角和求边数,可以转化为方程的问题来解决.外角和是一个定植,不随着边数的变化而变化.解析:解:∵7√5x−3与2√4x+1是同类二次根式,∴5x−3=4x+1,x=4.故应填:4.根据同类二次根式的定义中被开方数相同进行解答.此题主要考查了同类二次根式的定义.二次根式化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.15.答案:3m+1解析:解:因为五个正数a,b,c,d,e,平均数是m,所以3a+1,3b+1,3c+1,3d+1,3e+1这五个数的平均数是3m+1;故答案为:3m+1求平均数只要求出数据之和再除以总个数即可.本题考查平均数的知识,属于基础题,注意掌握求平均数只要求出数据之和再除以总个数解答.16.答案:12解析:解:把x=m代入方程x2−x−3=0得m2−m−3=0,所以m2−m=3,所以m2−m+9=3+9=12.故答案为:12.利用一元二次方程的解的定义得到m2−m=3,然后利用整体代入的方法计算m2−m+9的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.17.答案:1解析:本题考查了抛物线与x轴的交点.此题利用“等腰直角三角形斜边上的中线等于斜边的一半”列出的等式.观察抛物线的解析式,它的开口向上,由于与x轴交于点A,B,得k>0,△ABP是等腰直角三角形,必须满足顶点坐标的纵坐标的绝对值与点A横坐标的绝对值相等,以此作为等量关系来列方程解出的值.解:∵抛物线解析式为y=x2−k,∴该抛物线的顶点(0,−k),∵抛物线和x轴有两个交点,∴k>0,令y=0,得x=±√k,又∵抛物线y=x2−k与x轴的两个交点以及顶点围成的三角形是等腰直角三角形,∴√k=k.解得k=1,故答案为1.18.答案:①②③解析:解:连接DB交AC于O,∵四边形ABCD为菱形,∴AD//CB,AD=AB,AC⊥BD,AO=CO,∠DAC=∠CAB,∴∠1=∠DAC,∠1=∠2,∴∠CAB=∠2,∴AE=BE,故①正确;∵AE=BE,EG⊥AB,∴AG=GB=12AB,∵F是AD中点,∴AF=12AD,∴AF=AG,在△AEF与△AEG中,{AF=AG∠FAE=∠GAE AE=AE,∴△AEF≌△AEG(SAS),∴∠AFE=∠AEG=90°,∴BF⊥AD,故②正确;在△AFB与△ABO中,{∠AFB=∠AOB ∠2=∠CABAB=AB,∴△AFB≌△ABO(AAS),∴BF=AO=12AC,∴AC=2BF,故③正确;∵∠2+∠CAB+∠CAD=90°,∠2=∠CAB=∠CAD,∴∠2=∠CAB=∠CAD=30°,∴BO=12AB=BG,在Rt△EGB与Rt△EOB中,{EB=EBBO=BG,∴Rt△EGB≌Rt△EOB(HL),∴EG=EO,∴CE=CO+EO=BF+EG,故④错误.故答案为:①②③.连接DB交AC于O,由菱形性质可得∠DAC=∠CAB=∠1,可得∠1=∠2,可得AE=BE,且EG⊥AB,可得AG=12AB,SAS可证△AEF≌△AEG,可判断①②;由△ABO≌△ABF可判断③;由∠DAC=∠CAB=∠2,可得∠DAC=∠CAB=∠2=30°,可得BO=BG,可证△BEO≌△BEG,可得EG=EO,则CE=CO+EO=BF+EG可判断④.本题考查了菱形的性质,全等三角形的判定和性质,关键是灵活运用菱形的性质解决问题.19.答案:解:原式=9−12−4√3+√12×6=−3−4√3+√3=−3−3√3.解析:先利用平方差公式和二次根式的乘法法则运算,然后化简后合并即可.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.答案:解:当x−1≥0,即x≥1时,原方程可化为x2−x(x−1)−1=0即x−1=0,解得x=1(12分)当x−1<0,即x<1时,原方程可化为x2−x(1−x)−1=0即2x2−x−1=0,解得x1=−0.5,x2=1(不合题意.舍去)(3分)∴原方程的解为x1=−0.5,x2=1(1分)解析:解方程x2−|x−1|−1=0.方程中|x−1|的值有两个,所以就要分情况讨论,然后去掉绝对值.一种是当x−1≥0时,求解;另一种情况是当x−1<0时,求解.本题易出错的地方是要分情况而解,所以学生容易出现漏解的现象.21.答案:证明:∵C是AB中点,∴AC=BC,在△ACD和△CBE中,{AC=CB AD=CE CD=BE,∴△ACD≌△CBE(SSS),∴∠D=∠E.(全等三角形对应角相等)解析:本题考查全等三角形的判定和性质,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.首先根据SSS证明△ACD≌△CBE,利用全等三角形的性质即可证明.22.答案:(1)证明:∵GC是⊙F的切线,∴CG⊥CF,∵AB=AD,FB=FC,∴∠B=∠D,∠B=∠BCF,∴∠D=∠BCF,∴CF//AD,∴CG⊥AD;(2)①14;②30°.解析:(1)证明:∵GC是⊙F的切线,∴CG⊥CF,∵AB=AD,FB=FC,∴∠B=∠D,∠B=∠BCF,∴∠D=∠BCF,∴CF//AD,∴CG⊥AD;(2)①∵CF//AD,∴△BCF∽△BDA,∴BFBA =12,△BCF的面积:△BDA的面积=1:4,∴△BCF的面积=14△BDA的面积=14×56=14;故答案为:14;②当∠GCD的度数为30°时,四边形EFCD是菱形.理由如下:∵CG⊥CF,∠GCD=30°,∴∠FCB=60°,∵FB=FC,∴△BCF是等边三角形,∴∠B=60°,CF=BF=12AB,∵AB=AD,∴△ABD是等边三角形,CF=12AD,∴∠A=60°,∵AF=EF,∴△AEF是等边三角形,∴AE=AF=12AB=12AD,∴CF=DE,又∵CF//AD,∴四边形EFCD是平行四边形,∵CF=EF,∴四边形EFCD是菱形;故答案为:30°.(1)由等腰三角形的性质得出∠D=∠BCF,证出CF//AD,由已知条件得出CG⊥CF,即可得出结论;(2)①根据平行线的性质得出△BCF∽△BDA,得出BFBA =12,△BCF的面积:△BDA的面积=1:4,即可得出结果;②证出△BCF是等边三角形,得出∠B=60°,CF=BF=12AB,证出△ABD是等边三角形,CF=12AD,证出△AEF是等边三角形,得出AE=AF=12AB=12AD,因此CF=DE,证出四边形EFCD是平行四边形,即可得出结论.本题是圆的综合题目,考查了切线的判定、圆的半径相等、等腰三角形的性质、等边三角形的判定与性质、相似三角形的判定与性质、平行四边形的判定、菱形的判定等知识;熟练掌握切线的判定方法,证明CF//AD是解决问题(1)的关键.23.答案:解:如图,过点N作EF//AC交AB于点E,交CD于点F,则AE=CF=MN=1.6,EF=AC=35,EN=AM,NF=MC,∠BEN=∠DFN=90°.∴DF=CD−CF=16.6−1.6=15.在Rt△DFN中,∵∠DNF=45°,∴NF=DF=15.∴EN=EF−NF=35−15=20.在Rt△BEN中,∵tan∠BNE=BEEN,∴BE=EN⋅tan∠BNE=20×tan55°≈20×1.43=28.6.∴AB=BE+AE=28.6+1.6=30.2≈30(米).答:居民楼AB的高度约为30 米.解析:过点N作EF//AC交AB于点E,交CD于点F,根据锐角三角函数求出BE的长,进而可得AB.本题考查了解直角三角形的应用−仰角俯角问题,解决本题的关键是掌握仰角俯角定义.24.答案:600 108解析:解:(1)调查的总人数是:(90+180+60)÷(1−45%)=600(人).比较了解的人数是:600×45%=270(人);补全条形统计图如图所示;故答案为:600;=108°;(2)“了解一点”部分扇形的圆心角是360°×180600故答案为:108;=3200人.(3)对生活垃圾分类相关知识“了解一点”和“完全不了解”的总人数=8000×180+60600(1)根据非常了解的人数是20人,所占的百分比是40%,据此即可求得调查的总人数,进而求得比较了解的人数,补全条形统计图即可;(2)根据“了解一点”所占的百分比×360°即可得到“了解一点”部分扇形的圆心角的度数;(3)根据利用样本估计总体的思想解决问题即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.答案:解:设每个粽子的定价为x元时,每天的利润为800元.根据题意,得(x−3)[500−100×(x−4)]=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.答:每个粽子的定价为5元时,每天的利润为800元.解析:设每个粽子的定价为x元,由于每天的利润为800元,根据利润=(定价−进价)×销售量,列出方程求解即可.考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.答案:解:(2)3(3)2(4)1EB BF FC CG GD DH HA解析:此题考查菱形的性质,熟练掌握菱形的四条边相等,对角线互相垂直是解题的关键.利用菱形四条边相等,分别在四边上进行截取和连接,得出AE=EB+BF=FC+CG+GD+DH=HA,进一步求得S△AOE=S四边形EOFB=S四边形FOGC=S四边形GOHD=S△HOA即可.解:(1)在AB边上取点E,使AE=4,连接OA,OE;(2)在BC边上取点F,使BF= 3,连接OF;(3)在CD边上取点G,使CG=2,连接OG;(4)在DA边上取点H,使DH=1,连接OH.∴AE=EB+BF=FC+CG+GD+DH=HA,∴S△AOE=S四边形EOFB =S四边形FOGC=S四边形GOHD=S△HOA.故答案为(2)3,(3)2,(4)1,EB,BF,FC,CG,GD,DH,HA.。
2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷含答案
2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)分式有意义的条件是()A.x≠1B.x=1C.x≠0D.x=02.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.3.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体,石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001科学记数法表示是()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×1064.(3分)式子+有意义的条件是()A.x≥0B.x≤0C.x≠﹣2D.x≤0且x≠﹣2 5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=6.(3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13B.17C.22D.17或227.(3分)下列运算正确的是()A.(x2)4=x6B.(﹣2x)2÷x=4xC.(x+y)2=x2+y2D.+=18.(3分)如图,△ABC中,点D,E分别在边AB,AC上,将∠A沿着DE所在直线折叠,A与A′重合,若∠1+∠2=140°,则∠A的度数是()A.70°B.75°C.80°D.85°9.(3分)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE 沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…请你猜想(a+b)9的展开式中所有系数的和是()A.2018B.512C.128D.64二、填空题:本大题共5小题,每小题3分,共15分11.(3分)因式分解:x2﹣3x=.12.(3分)求点P(x,y)关于x轴对称的点的坐标时,一位学生看成了求关于y轴对称的点的坐标,求得结果是(2,3),那么正确的结果应该是.13.(3分)若关于x的二次三项式x2+kx+64是一个完全平方式,则k=.14.(3分)(a+6)2+=0,则2b2﹣4b﹣a的值是.15.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,Q点从B向D运动,每分钟走2m,P点从B向A运动,P,Q两点同时出发,P点每分钟走m时△CAP与△PQB全等.三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程16.(8分)(1)(x+y)2﹣(2y﹣x)(2y+x);(2)(x+2﹣)÷.17.(4分)解分式方程:﹣=.18.(7分)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离相等,到两条高速公路m和n的距离也必须相等.发射塔修建在什么位置?在图上标出它的位置.要求:(1)尺规作图,保留作图痕迹,不写作法;(2)写出作图的理由.19.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?20.(8分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F,D是BC边上的中点,连结AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.21.(9分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展应用】(2)利用(1)中的等式计算:已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.22.(11分)将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE =DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.(1)填空:AB与EF的位置关系是;(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC 的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.2019-2020学年山东省济宁市金乡县八年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求1.(3分)分式有意义的条件是()A.x≠1B.x=1C.x≠0D.x=0【解答】解:分式有意义的条件是:x≠0.故选:C.2.(3分)第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.3.(3分)石墨烯是从石墨材料中剥离出来,由碳原子组成的只有一层原子厚度的二维晶体,石墨烯(Graphene)是人类已知强度最高的物质,据科学家们测算,要施加55牛顿的压力才能使0.000001米长的石墨烯断裂.其中0.000001科学记数法表示是()A.1×10﹣6B.10×10﹣7C.0.1×10﹣5D.1×106【解答】解:0.000001=1×10﹣6,故选:A.4.(3分)式子+有意义的条件是()A.x≥0B.x≤0C.x≠﹣2D.x≤0且x≠﹣2【解答】解:根据题意得﹣x≥0且x+2≠0,解得x≤0且x≠﹣2.故选:D.5.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.=B.=C.=D.=【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.6.(3分)一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是()A.13B.17C.22D.17或22【解答】解:①若4为腰长,9为底边长,由于4+4<9,则三角形不存在;②9为腰长,则符合三角形的两边之和大于第三边.所以这个三角形的周长为9+9+4=22.故选:C.7.(3分)下列运算正确的是()A.(x2)4=x6B.(﹣2x)2÷x=4xC.(x+y)2=x2+y2D.+=1【解答】解:A.(x2)4=x8,此选项计算错误;B.(﹣2x)2÷x=4x,此选项计算正确;C.(x+y)2=x2+2xy+y2,此选项计算错误;D.+==﹣1,此选项计算错误;故选:B.8.(3分)如图,△ABC中,点D,E分别在边AB,AC上,将∠A沿着DE所在直线折叠,A与A′重合,若∠1+∠2=140°,则∠A的度数是()A.70°B.75°C.80°D.85°【解答】解:连接AA',如图所示:∵∠1是△AA'E的外角,∴∠1=∠EAA'+∠EA'A,同理可得,∠2=∠DAA'+∠DA'A,由折叠可得,∠EAD=∠EA'D,∴∠1+∠2=∠EAA'+∠EA'A+∠DAA'+∠DA'A=2∠EAD=140°,∴∠EAD=70°;故选:A.9.(3分)如图,AD是△ABC的高线,BD=CD,点E是AD上一点,BE=BC,将△ABE 沿BE所在直线折叠,点A落在点A′位置上,连接AA',BA′,EA′与AC相交于点H,BA′与AC相交于点F.小夏依据上述条件,写出下列四个结论:①∠EBC=60°;②∠BFC=60°;③∠EA′A=60°;④∠A′HA=60°以上结论中,正确的是()A.①B.③④C.①②③D.①②④【解答】解:连接EC,∵BD=CD,AD⊥BC,∴AD垂直平分BC,∴BE=EC,且BE=BC,∴BE=EC=BC,∴△BEC是等边三角形,且ED⊥BC,∴∠EBC=∠BEC=∠BCE=60°,∠BED=∠CED=30°,故①符合题意,∴∠AEB=150°,∵将△ABE沿BE所在直线折叠,点A落在点A′位置上,∴∠AEB=∠BEA'=150°,AE=A'E,∠BAD=∠BA'E,∴∠AEA'=60°,∴△AEA'是等边三角形,∴∠EA'A=60°,故③符合题意,∵AB=AC,BE=EC,AE=AE,∴△ABE≌△ACE(SSS)∴∠BAD=∠DAC=∠BA'E,∵∠AEA'=∠EOA'+∠EA'O=60°,∴∠EOA'+∠CAD=∠BFC=60°,故②符合题意,∵∠A'HA=∠AF A'+∠BA'E>60°,∴故④不符合题意,故选:C.10.(3分)我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如图),此图揭示了(a+b)n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3(a+b)4=a4+4a3b+6a2b2+4ab3+b4…请你猜想(a+b)9的展开式中所有系数的和是()A.2018B.512C.128D.64【解答】解:展开式共有n+1项,系数和为2n.∴(a+b)9的展开式中所有系数的和是:29=512故选:B.二、填空题:本大题共5小题,每小题3分,共15分11.(3分)因式分解:x2﹣3x=x(x﹣3).【解答】解:x2﹣3x=x(x﹣3).故答案为:x(x﹣3)12.(3分)求点P(x,y)关于x轴对称的点的坐标时,一位学生看成了求关于y轴对称的点的坐标,求得结果是(2,3),那么正确的结果应该是(﹣2,﹣3).【解答】解:∵点P(x,y)关于y轴对称的点的坐标为:(2,3),∴点P(﹣2,3),∴点P(x,y)关于x轴对称的点的坐标为:(﹣2,﹣3).故答案为:(﹣2,﹣3).13.(3分)若关于x的二次三项式x2+kx+64是一个完全平方式,则k=±16.【解答】解:∵x2+kx+64是一个完全平方式,∴k=±(8×2),解得k=±16.故答案为:±1614.(3分)(a+6)2+=0,则2b2﹣4b﹣a的值是0.【解答】解:由题意得,a+6=0,b2﹣2b+3=0,解得a=﹣6,b2﹣2b=﹣3,所以,2b2﹣4b﹣a=2(b2﹣2b)﹣a=2×(﹣3)﹣(﹣6)=﹣6+6=0.故答案为:0.15.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,Q点从B向D运动,每分钟走2m,P点从B向A运动,P,Q两点同时出发,P点每分钟走1或3m 时△CAP与△PQB全等.【解答】解:设P点每分钟走xm.①若BP=AC=4,此时AP=BQ=8,△CAP≌△PBQ,∴t==4,∴x==1.②若BP=AP=6,AC=BQ=4,△ACP≌△BQP,∴t==2,∴x==3,故答案为1或3.三、解答题:本大题共7题,满分55分.解答应写出文字说明、证明过程或推演过程16.(8分)(1)(x+y)2﹣(2y﹣x)(2y+x);(2)(x+2﹣)÷.【解答】解:(1)原式=x2+2xy+y2﹣4y2+x2=2x2+2xy﹣3y2;(2)原式=•=•=3x(x+3)=3x2+9x.17.(4分)解分式方程:﹣=.【解答】解:去分母得:9x﹣3﹣2=﹣5,解得:x=0,经检验x=0是分式方程的解.18.(7分)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B的距离相等,到两条高速公路m和n的距离也必须相等.发射塔修建在什么位置?在图上标出它的位置.要求:(1)尺规作图,保留作图痕迹,不写作法;(2)写出作图的理由.【解答】解:(1)如图所示:点P即为发射塔修建的位置.(2)作线段AB的垂直平分线,因为线段垂直平分线上的点到线段的两个端点距离相等所以P A=PB,因为角平分线上的点到角的两边距离相等,所以点P到两条公路m和n的距离相等,所以发射塔修建在点P的位置.19.(8分)张家界市为了治理城市污水,需要铺设一段全长为300米的污水排放管道,铺设120米后,为了尽可能减少施工对城市交通所造成的影响,后来每天的工作量比原计划增加20%,结果共用了27天完成了这一任务,求原计划每天铺设管道多少米?【解答】解:设原计划每天铺设管道x米,依题意得:,解得x=10,经检验,x=10是原方程的解,且符合题意.答:原计划每天铺设管道10米.20.(8分)如图,在△ABC中,AB=AC,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F,D是BC边上的中点,连结AD.(1)若∠BAD=55°,求∠C的度数;(2)猜想FB与FE的数量关系,并证明你的猜想.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∵∠BAD=55°,∴∠C=∠ABC=90°﹣55°=35°.(2)FB=FE,证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.21.(9分)【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙的解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展应用】(2)利用(1)中的等式计算:已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣a)(a﹣2019)=2020,求(2021﹣a)2+(a﹣2019)2的值.【解答】解:(1)由题意得:x2+y2=(x+y)2﹣2xy(2)①由题意得:ab=把a2+b2=10,a+b=6代入上式得,ab==13答:ab的值是13.②由题意得:(2021﹣a)2+(a﹣2019)2=(2021﹣a+a﹣2019)2﹣2(2021﹣a)(a﹣2019)=22﹣2×2020=﹣403622.(11分)将等腰直角三角形ABC(AB=AC,∠BAC=90°)和等腰直角三角形DEF(DE =DF,∠EDF=90°)按图1摆放,点D在BC边的中点上,点A在DE上.(1)填空:AB与EF的位置关系是平行;(2)△DEF绕点D按顺时针方向转动至图2所示位置时,DF,DE分别交AB,AC于点P,Q,求证:∠BPD+∠DQC=180°;(3)如图2,在△DEF绕点D按顺时针方向转动过程中,始终点P不到达A点,△ABC 的面积记为S1,四边形APDQ的面积记为S2,那么S1与S2之间是否存在不变的数量关系?若存在,请写出它们之间的数量关系并证明;若不存在,请说明理由.【解答】解:(1)AB与EF的位置关系是平行,∵AB=AC,∠BAC=90°,DE=DF,∠EDF=90°,∴∠F=∠ABD=90°,∴AB∥EF;故答案为:平行;(2)∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵∠EDF=90°,∴∠BDP+∠CDQ=90°,∴∠BPD+∠DQC=360°﹣∠B﹣∠C﹣∠BDP﹣∠CDQ=180°;(3)S1=2S2,理由:连接AD,∵AB=AC,AD⊥BC,∴BD=CD=AD=BC,∠B=∠CAD=45°,∵∠BDP+∠ADP=∠ADP+∠ADQ=90°,∴∠BDP=∠ADQ,∴△BDP≌△ADQ(ASA),∵S△ABD=S2,∵S△ADB=S1,∴S1=2S2.。
2019-2020学年重庆市沙坪坝区八年级(上)期末数学试卷 (解析版)
2019-2020学年重庆市沙坪坝区八年级(上)期末数学试卷一、选择题1.9的平方根是()A.±3B.3C.﹣3D.±2.计算(x3)2的结果是()A.x5B.x6C.x8D.x93.在实数,,,π中,无理数是()A.B.C.D.π4.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为(3ab+2b)平方米,宽为b米,则这块空地的长为()A.(3a+2)米B.(3ab+b)米C.(3ab+3b)米D.(3ab2+2b2)米5.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4B.4和5C.5和6D.6和76.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.5,6,77.下列命题中,真命题是()A.对顶角不一定相等B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等D.等腰三角形是轴对称图形8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b29.如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.310.甲乙两地铁路线第约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为x千米/时,根据题意,可得方程()A.B.C.D.11.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC 的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm12.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣4二、填空题(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上)13.实数﹣的相反数是.14.有一种球状细菌,直径约为0.0000015cm,那么0.0000015用科学记数法表示为.15.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=°.16.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=4,DC=5,则△ABD 的面积为.17.若x+y=5,且(x+3)(y+3)=26,则x2+3xy+y2=.18.如图,△ABC中,∠ACB=90°,AC∥BD,BC=BD,在AB上截取BE,使BE=BD,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,BC=7,BG=4,则AB=.三、解答题:(本大题2个小题,每小题8分,共16分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)(﹣1)0+3﹣2+(2)×﹣÷20.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.四、解答题:(本大题5个小题,每小题10分,共50分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)22.我市教育行政部门为了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中的信息,回答下列问题:(1)该校初二学生总人数为,扇形统计图中的a的值为,扇形统计图中“活动时间为4天”的扇形所对圆心角度数为;(2)请把条形统计图补充完整.23.先化简:(+x﹣1)÷,然后在﹣3,﹣1,1,3中选择一个合适的数,作为x的值代入求值.24.如图,小区有一块四边形空地ABCD,其中AB⊥AC.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A作了垂直于BC的小路AE.经测量,AB=CD=4m,BC=9m,AD=7m.(1)求这块空地ABCD的面积;(2)求小路AE的长.(答案可含根号)25.对任意一个三位数P,将它任意两个数位上的数字对调后得到一个首位不为0的新的三位数q(q可以与P相同),记q=,在所有可能的情况中,当|a﹣2b+c|最小时,我们称此时的q是p“幸福快乐数”,并规定:K(p)=a2﹣2b2+c2.例如:318按上述方法可得新数有381、813、138,因为|3﹣2×8+1|=12,|8﹣2×1+3|=9,|1﹣2×3+8|=3,而3<9<12,所以138是318的“幸福快乐数”,此时K(318)=12﹣2×32+82=47.(1)计算:K(168),K(243):(2)若m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n,若m+n是13的倍数时,求K(n)的最大值.五、解答题:(本大题1个小题,共12分.解答应写出文字说明、证明过程或演算步骤). 26.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E在AC 边上.(1)如图1,连接BE,若AE=2,,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转α0(0<α<1800),旋转过程中,直线EF分别与直线AC、BC交于点M、N,当△CMN是等腰三角形时,直接写出α的值;(3)如图3,将△CEF绕点C顺时针旋转,使得点B、E、F在同一条直线上,点P为BF的中点,连接AE.猜想AE、CF和BP之间的数量关系并证明.参考答案一、选择题:本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.9的平方根是()A.±3B.3C.﹣3D.±【分析】根据平方与开平方互为逆运算,可得一个正数的平方根.解:±,故选:A.2.计算(x3)2的结果是()A.x5B.x6C.x8D.x9【分析】根据幂的乘方的法则进行计算.解:根据幂的乘方法则,得:(x3)2=x3×2=x6.故选:B.3.在实数,,,π中,无理数是()A.B.C.D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.解:在实数,,,π中,无理数是π.故选:D.4.重庆市“旧城改造”中,计划在市内一块长方形空地上种植某种草皮,以美化环境.已知长方形空地的面积为(3ab+2b)平方米,宽为b米,则这块空地的长为()A.(3a+2)米B.(3ab+b)米C.(3ab+3b)米D.(3ab2+2b2)米【分析】直接利用整式的除法运算法则计算得出答案.解:由题意可得,这块空地的长为:(3ab+2b)÷b故选:A.5.实数在数轴上位于两个连续整数之间,这两个连续整数为()A.3和4B.4和5C.5和6D.6和7【分析】根据最接近整数,进而得出其范围.解:∵<<,∴的值在两个连续整数之间,这两个连续整数是:4和5.故选:B.6.三角形边长分别为下列各数,其中能围成直角三角形的是()A.2,3,4B.3,4,5C.4,5,6D.5,6,7【分析】根据勾股定理的逆定理逐个判断即可.解:A、22+32≠42,即以2、3、4为边不能组成直角三角形,故本选项不符合题意;B、32+42=52,即以3、4、5为边能组成直角三角形,故本选项符合题意;C、42+52≠62,即以4、5、6为边不能组成直角三角形,故本选项不符合题意;D、52+62≠72,即以5、6、7为边不能组成直角三角形,故本选项不符合题意;故选:B.7.下列命题中,真命题是()A.对顶角不一定相等B.等腰三角形的三个角都相等C.两直线平行,同旁内角相等D.等腰三角形是轴对称图形【分析】根据对顶角相等、等腰三角形的性质、平行线的性质判断即可.解:A、对顶角相等,本选项说法是假命题;B、等腰三角形的两个底角相等,本选项说法是假命题;C、两直线平行,同旁内角互补,本选项说法是假命题;D、等腰三角形是轴对称图形,本选项说法是真命题;8.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a﹣b)2=a2﹣2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.(a+2b)(a﹣b)=a2+ab﹣2b2【分析】第一个图形中阴影部分的面积计算方法是边长是a的正方形的面积减去边长是b的小正方形的面积,等于a2﹣b2;第二个图形阴影部分是一个长是(a+b),宽是(a ﹣b)的长方形,面积是(a+b)(a﹣b);这两个图形的阴影部分的面积相等.解:∵图甲中阴影部分的面积=a2﹣b2,图乙中阴影部分的面积=(a+b)(a﹣b),而两个图形中阴影部分的面积相等,∴阴影部分的面积=a2﹣b2=(a+b)(a﹣b).故选:C.9.如图是我市某景点6月份内1~10日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26℃出现的频率是()A.3B.0.5C.0.4D.0.3【分析】用气温26℃出现的天数除以总天数10即可得.解:由折线统计图知,气温26℃出现的天数为3天,∴气温26℃出现的频率是3÷10=0.3,10.甲乙两地铁路线第约500千米,后来高铁提速,平均速度是原来火车速度的1.8倍,这样由甲到乙的行驶时间缩短了1.5小时;设原来火车的平均速度为x千米/时,根据题意,可得方程()A.B.C.D.【分析】设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,根据题意可得:由北海到南宁的行驶时间动车比原来的火车少用1.5小时,列方程即可.解:设原来火车的平均速度为x千米/时,则动车运行后的平均速度为1.8x,由题意得,﹣1.5=.故选:C.11.如图,△ABC的周长为26cm,分别以A、B为圆心,以大于的长为半径画圆弧,两弧交于点D、E,直线DE与AB边交于点F,与AC边交于点G,连接BG,△GBC 的周长为14cm,则BF的长为()A.6cm B.7cm C.8cm D.12cm【分析】根据线段垂直平分线的性质即可求解.解:由画图可知:DE是AB的垂直平分线,∴AF=BF,AG=BG,∵△GBC的周长为14cm,即BC+BG+CG=14cm,∴BC+AC=14cm,∵△ABC的周长为26cm,即AB+BC+AC=26cm,∴AB=12cm,∴BF=6cm.故选:A.12.若二次根式有意义,且关于x的分式方程有正数解,则符合条件的整数m的和是()A.﹣7B.﹣6C.﹣5D.﹣4【分析】根据二次根式有意义,可得m≤2,解出关于x的分式方程的解为x=,解为正数解,进而确定m的取值范围,注意增根时m的值除外,再根据m为整数,确定m的所有可能的整数值,求和即可.解:去分母得,﹣m+2(x﹣1)=3,解得,x=,∵关于x的分式方程有正数解,∴>0,∴m>﹣5,又∵x=1是增根,当x=1时,=1,即m=﹣3∴m≠﹣3,∵有意义,∴2﹣m≥0,∴m≤2,因此﹣5<m≤2且m≠﹣3,∵m为整数,∴m可以为﹣4,﹣2,﹣1,0,1,2,其和为﹣4,故选:D.二、填空题(本大题6个小题,每小题4分,满分24分,将答案填在答题纸上)13.实数﹣的相反数是.【分析】根据只有符号不同的两个数互为相反数,可得答案.解:﹣的相反数是.故答案为:.14.有一种球状细菌,直径约为0.0000015cm,那么0.0000015用科学记数法表示为 1.5×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.0000015用科学记数法表示为1.5×10﹣6.故答案为:1.5×10﹣6.15.如图,△ABC≌△DEF,∠B=120°,∠F=20°,则∠D=40°.【分析】根据全等三角形的性质求出∠E,根据三角形内角和定理计算,得到答案.解:∵△ABC≌△DEF,∴∠E=∠B=120°,∴∠D=180°﹣∠E﹣∠F=40°,故答案为:40.16.如图,四边形ABCD中,∠BCD=90°,∠ABD=∠DBC,AB=4,DC=5,则△ABD 的面积为10.【分析】过点D作DE⊥AB交BA延长线于点E,利用角平分线的性质得出DE=DC,进而利用三角形的面积公式解答即可.解:过点D作DE⊥AB交BA延长线于点E,∵∠ABD=∠DBC,DC⊥BC,DE⊥AB,∴CD=DE=5,∴△ABD的面积=,故答案为:10.17.若x+y=5,且(x+3)(y+3)=26,则x2+3xy+y2=27.【分析】先根据多项式乘以多项式法则展开,再把x+y=5代入,根据完全平方公式可得x2+3xy+y2=(x+y)2+xy,即可求出答案.解:∵x+y=5,(x+3)(y+3)=xy+3(x+y)+9=26,∴xy+3×5+9=26,∴xy=2,∴x2+3xy+y2=(x+y)2+xy=25+2=27.故答案为:27.18.如图,△ABC中,∠ACB=90°,AC∥BD,BC=BD,在AB上截取BE,使BE=BD,过点B作AB的垂线,交CD于点F,连接DE,交BC于点H,交BF于点G,BC=7,BG=4,则AB=.【分析】根据∠BEH=∠BDG,又∠DBC=∠ABF=90°,可得:∠EBH=∠DBG,再根据AAS即可证明△EBH≌△DBG,根据全等三角形的性质BH=BG=4,∠EBH=∠BDG,然后再证明△ABC≌△HDB得到得到AC=BH,在直角△ABD中,利用勾股定理即可求解.解:∵∠ACB=90°,AC∥BD,∴∠CBD=∠ACB=90°,∵BF⊥AB,∠DBC=90°,∴∠DBC=∠ABF=90°,∴∠DBC﹣∠CBF=∠ABF﹣∠CBF∴∠EBH=∠DBG,∵BE=BD,∴∠BEH=∠BDG,∴△EBH≌△DBG(ASA),∴BH=BG=4,∠EBH=∠BDG,∵∠ACB=∠DBC=90°,BD=BC,∴△ABC≌△HDB(AAS),∴AC=BH=4,∴AB===,故答案为:.三、解答题:(本大题2个小题,每小题8分,共16分.解答应写出文字说明、证明过程或演算步骤.19.计算:(1)(﹣1)0+3﹣2+(2)×﹣÷【分析】(1)直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)直接利用二次根式的性质化简得出答案.解:(1)原式=1+﹣2=﹣;(2)原式=3﹣=2.20.如图,点F、C在BD上,AB∥DE,∠A=∠E,BF=DC.求证:△ABC≌△EDF.【分析】求出BC=DF,根据平行线的性质得出∠B=∠D,根据全等三角形的判定定理AAS推出即可.【解答】证明:∵BF=DC,∴BF﹣FC=DC﹣FC,即BC=DF,∵AB∥DE,∴∠B=∠D,在△ABC和△EDF中∴△ABC≌△EDF(AAS).四、解答题:(本大题5个小题,每小题10分,共50分.解答应写出文字说明、证明过程或演算步骤.21.计算:(1)(a﹣2)2﹣2a3+a(2)(x+2y)(x﹣3y)+(x+y)(x﹣y)【分析】(1)首先利用完全平方公式进行计算,再合并同类项即可;(2)首先计算多项式乘法,再合并同类项即可.解:(1)原式=a2﹣4a+4﹣2a3+a,=﹣2a3+a2﹣3a+4;(2)原式=x2﹣3xy+2xy﹣6y2+x2﹣y2,=2x2﹣xy﹣7y2.22.我市教育行政部门为了解初二学生每学期参加综合实践活动的情况,随机抽样调查了某校初二学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)请你根据图中的信息,回答下列问题:(1)该校初二学生总人数为200,扇形统计图中的a的值为20,扇形统计图中“活动时间为4天”的扇形所对圆心角度数为108°;(2)请把条形统计图补充完整.【分析】(1)从两个统计图可得,“4天”的有60人,占调查人数的30%,可求出调查人数;计算出“6天”的40人所占200人的百分比即可求出a的值,样本中“4天”占30%,因此圆心角占360°的30%,可求出度数;(2)求出“3天”“5天”的人数,即可补全条形统计图.解:(1)60÷30%=200人,40÷200=20%,360°×30%=108°,故答案为:200,20,108°;(2)200×15%=30人,200×25%=50人,补全条形统计图如图所示:23.先化简:(+x﹣1)÷,然后在﹣3,﹣1,1,3中选择一个合适的数,作为x的值代入求值.【分析】原式通分并利用同分母分式的加法法则计算得到最简结果,再将x的值代入计算即可求出值.解:原式=÷=•=,由题意得:x≠﹣3,x≠﹣1,x≠3,当x=1时,原式==﹣2.24.如图,小区有一块四边形空地ABCD,其中AB⊥AC.为响应沙区创文,美化小区的号召,小区计划将这块四边形空地进行规划整理.过点A作了垂直于BC的小路AE.经测量,AB=CD=4m,BC=9m,AD=7m.(1)求这块空地ABCD的面积;(2)求小路AE的长.(答案可含根号)【分析】(1)作辅助线,构建高线DG,利用勾股定理计算DG的长和AC的长,根据面积和可得结论;(2)利用三角形的面积公式求解即可.解:(1)过D作DG⊥AC于G,∵AB⊥AC,∴∠BAC=90°,∵BC=9,AB=4,∴AC===,设CG=x,则AG=﹣x,由勾股定理得:DG2=AD2﹣AG2=CD2﹣CG2,∴=42﹣x2,x=,∴CG==,∴DG===,∴这块空地ABCD的面积=S△ABC+S△ACD==+=2+14答:这块空地ABCD的面积是(2+14)m2;(2)S△ABC=,4×=9×AE,∴AE=m.25.对任意一个三位数P,将它任意两个数位上的数字对调后得到一个首位不为0的新的三位数q(q可以与P相同),记q=,在所有可能的情况中,当|a﹣2b+c|最小时,我们称此时的q是p“幸福快乐数”,并规定:K(p)=a2﹣2b2+c2.例如:318按上述方法可得新数有381、813、138,因为|3﹣2×8+1|=12,|8﹣2×1+3|=9,|1﹣2×3+8|=3,而3<9<12,所以138是318的“幸福快乐数”,此时K(318)=12﹣2×32+82=47.(1)计算:K(168),K(243):(2)若m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n,若m+n是13的倍数时,求K(n)的最大值.【分析】(1)根据题意,写任意两个数位上的数字对调后得到的所有新数,然后计算每个数中|a﹣2b+c|的值,确定最小为“幸福快乐数”,再由K(p)=a2﹣2b2+c2公式进行计算便可;(2)根据题意找出s、s′,根据“1≤x≤y≤9”即可得出x、y的可能值,进而可找出s的“幸福快乐数”和K(s)的值,取其最大值即可.解:(1)168任意两个数位上的数字对调后得到的新三位数是618,186,861,,∵3<6<12∴168的“幸福快乐数”为861∴K(168)=82﹣2×62+12=﹣7243任意两个数位上的数字对调后得到的新三位数为423,234,342.,,.∵0<3=3∴243的“幸福快乐数”为234.∴K(243)=2;(2)∵m=100x+10y+8(1≤x≤y≤9,x、y都是正整数),交换其十位与百位上的数字得到新数n∴n=100y+10x+8,m+n=100x+10y+8+100y+10x+8=100(x+y)+10(x+y+1)+6=110(x+y)+16=105(x+y)+13+5(x+y)+3∵m+n是13的倍数,又105(x+y)+13是13的倍数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果是13的倍数,则原数能被13整除.∴=整数;符合条件的整数只有7∴x+y=6∵1≤x≤y≤9,x、y都是正整数,∴n有可能是:608、518、428、338、248、158∵|6﹣2×0+8|=14,|5﹣2×1+8|=11,|4﹣2×2+8|=3,五、解答题:(本大题1个小题,共12分.解答应写出文字说明、证明过程或演算步骤). 26.如图,△ABC和△CEF中,∠BAC=∠CEF=90°,AB=AC,EC=EF,点E在AC 边上.(1)如图1,连接BE,若AE=2,,求FC的长度;(2)如图2,将△CEF绕点C逆时针旋转α0(0<α<1800),旋转过程中,直线EF分别与直线AC、BC交于点M、N,当△CMN是等腰三角形时,直接写出α的值;(3)如图3,将△CEF绕点C顺时针旋转,使得点B、E、F在同一条直线上,点P为BF的中点,连接AE.猜想AE、CF和BP之间的数量关系并证明.【分析】(1)利用勾股定理求出AB=AC=5,求出EC=EF=3即可解决问题.(2)分三种情形分别画出图形,利用等腰三角形的性质求解即可.(3)结论:CF+AE=BP.如图3中,在BE上取一点D,使得AD=AE.利用全等三角形的性质以及等腰直角三角形的性质求解即可.解:(1)如图1中,在Rt△ABE中,AB===5,∴AC=AB=5,∴EF=EC=AC﹣AE=3,∵∠CEF=90°,EC=EF=3,∴CF===3.(2)①如图2﹣1中,当CM=CN时,α=∠MCE=∠ECN=∠ACB=22.5°.如图2﹣2中,当NM=NC时,α=∠MCN=45°.如图2﹣3中,当CN=CM时,∠NCE=∠BCM=67.5°,α=∠ACE=45°+67.5°=112.5°.综上所述,满足条件的α的值为22.5°或45°或112.5°.(3)结论:CF+AE=BP.理由:如图3中,在BE上取一点D,使得AD=AE.∵∠BAC=∠BEC=90°,∴A,B,C,E四点共圆,∴∠AEB=∠ACB=45°,∵AD=AE,∴∠ADE=∠AED=45°,∴∠DAE=90°,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵AB=AC,AD=AE.∴△BAD≌△CAE(SAS),∴BD=EC=EF,∵BP=BF=(2EF+DE),CF=EF,DE=AE,∴BP=(CF+AE),∴CF+AE=BP.。
洛阳市2019-2020学年八年级上期末数学试卷含答案解析.doc
洛阳市 2019-2020 学年八年级上期末数学试卷含答案解析一、选择题(共8 小题,每小题 3 分,满分24 分)1.计算( a2)3的结果是 ( )A . a 5B. a6C. a8D. 3a22.把 x 3﹣ 2x2y+xy2分解因式,结果正确的是( )A . x(x+y )( x﹣ y) B. x( x 2﹣ 2xy+y2)C. x( x+y)2D. x( x﹣ y)23.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x﹣ 1)B. 2﹣ x+2=3 ( x﹣ 1) C. 2﹣( x+2) =3(1﹣ x)D. 2﹣( x+2 )=3( x﹣ 1)4.如图,△ ABC 和△DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明△ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A . 85°B . 80°C. 75°D. 70°6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSSxy x﹣2y的值为 ( )7.若 3 =4 ,9 =7,则 3A .B.C.﹣ 3 D .8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个二、填空题(共 7 小题,每小题 3 分,满分 21 分) 9.计算:+ =__________ .10.若 ab=2,a ﹣ b=﹣1,则代数式a 2b ﹣ ab 2的值等于 __________ .11.如图,点 D 在 △ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则 ∠ACE 的大小是 __________度.12.已知一个等腰三角形的一边长 4,一边长 5,则这个三角形的周长为 __________ .13.如图: △ ABC 中, DE 是 AC 的垂直平分线, AE=3cm , △ ABD 的周长为 13cm ,则 △ABC 的周长为 __________.14.如图,∠ AOE= ∠ BOE=15 °,EF ∥OB ,EC ⊥ OB ,若 EC=2 ,则 EF=__________ .15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 __________cm 2.三、解答题(共8 小题,满分75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.(1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式 __________ ;(2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.2 017.先化简,再求值:( x+y )( x﹣ y) +( x﹣ y) +2xy ,其中 x= ( 3﹣π). y=2.18.先化简:÷(﹣),再从﹣2<x<3的范围内选取一个你最喜欢的值代入,求值.19.如图, AD , AE 分别是△ ABC 的高和角平分线.(1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;(2)设∠ B= α,∠ C=β(α<β).请直接写出用α、β表示∠ DAE的关系式__________.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是__________;(2)添加了条件后,证明△ABC≌△ EFD.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为1220km .高铁平均时速是普快平均时速的 2.5 倍.(1 )求高铁列车的平均时速;(2 )某日王先生要从甲市去距离大约780km 的丙市参加14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?23.如图,等腰 Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1 )如图①,若点 C 的横坐标为 5,直接写出点 B 的坐标 __________ ;(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2 )如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求 PB 的取值范围.-学年八年级(上)期末数学试卷一、选择题(共 8 小题,每小题 3 分,满分 24 分)231.计算( a ) 的结果是 ( )【考点】 幂的乘方与积的乘方.【分析】 根据幂的乘方,底数不变,指数相乘,计算后直接选取答案.236故选: B .【点评】 本题考查了幂的乘方的性质,熟练掌握性质是解题的关键.2.把 x 3﹣ 2x 2y+xy 2分解因式,结果正确的是 ()2 222C . x ( x+y ) A . x (x+y )( x ﹣ y ) B . x ( x ﹣ 2xy+y )D . x ( x ﹣ y ) 【考点】 提公因式法与公式法的综合运用. 【分析】 此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有 3 项,可采用完全平方公式继续分解.【解答】 解: x 3﹣ 2x 2 y+xy 2,22=x ( x ﹣ 2xy+y ),故选 D .【点评】 本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.3.解分式方程+ =3 时,去分母后变形为 ( )A . 2+( x+2) =3( x ﹣ 1)B . 2﹣ x+2=3 ( x ﹣ 1)C . 2﹣( x+2) =3(1﹣ x )D . 2﹣( x+2 )=3( x ﹣ 1)【考点】 解分式方程.【分析】 本题考查对一个分式确定最简公分母,去分母得能力.观察式子 x ﹣ 1 和 1﹣ x 互 为相反数,可得 1﹣x= ﹣( x ﹣ 1),所以可得最简公分母为 x ﹣ 1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母. 【解答】 解:方程两边都乘以 x ﹣ 1, 得: 2﹣( x+2) =3 ( x ﹣ 1). 故选 D .【点评】 考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘, 这正是本题考查点所在.切忌避免出现去分母后: 2﹣( x+2) =3 形式的出现. 4.如图, △ ABC 和 △DEF 中, AC=DE ,∠ B= ∠ DEF ,添加下列哪一个条件无法证明 △ABC ≌△ DEF( )A . AC ∥DF B.∠ A= ∠ D C. AB=DE D.∠ ACB= ∠ F 【考点】全等三角形的判定.【分析】根据全等三角形的判定定理,即可得出结论.【解答】解:∵ AC=DF ,∠ B= ∠DEF ,∴添加 AC ∥DF,得出∠ ACB= ∠ F,即可证明△ ABC ≌△ DEF,故 A 、 D 都正确;当添加∠ A= ∠ D 时,根据 AAS ,也可证明△ ABC ≌△ DEF ,故 B 正确;但添加 AB=DE 时,没有 SSA 定理,不能证明△ ABC ≌△ DEF,故 C 不正确;故选: C.【点评】本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS, SAS,ASA , AAS ,还有直角三角形全等的HL 定理.5.如图,在△ ABC 中,∠ A=50 °,∠ ABC=70 °, BD 平分∠ ABC ,则∠ BDC 的度数是 ( )A. 85°B . 80°C. 75°D. 70°【考点】三角形内角和定理.【分析】先根据∠ A=50 °,∠ ABC=70 °得出∠ C 的度数,再由 BD 平分∠ ABC 求出∠ ABD的度数,再根据三角形的外角等于和它不相邻的内角的和解答.【解答】解:∵∠ ABC=70 °, BD 平分∠ ABC ,∴∠ ABD=70 °× =35°,∴∠ BDC=50 °+35 °=85 °,故选: A .【点评】本题考查的是三角形的外角和内角的关系,熟知三角形的外角等于和它不相邻的内角的和是解题的关键.6.如图,小敏做了一个角平分仪ABCD ,其中 AB=AD , BC=DC .将仪器上的点 A 与∠PRQ 的顶点 R 重合,调整AB 和 AD ,使它们分别落在角的两边上,过点 A ,C 画一条射线 AE , AE 就是∠ PRQ 的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ ADC ,这样就有∠ QAE= ∠ PAE.则说明这两个三角形全等的依据是( )A . SAS B. ASA C. AAS D. SSS【考点】全等三角形的应用.【分析】在△ ADC 和△ ABC 中,由于 AC 为公共边, AB=AD , BC=DC ,利用 SSS定理可判定△ ADC ≌△ ABC ,进而得到∠ DAC= ∠BAC ,即∠ QAE= ∠ PAE.【解答】解:在△ ADC 和△ ABC 中,,∴△ ADC ≌△ ABC ( SSS ), ∴∠ DAC= ∠ BAC , 即∠ QAE= ∠ PAE . 故选: D .【点评】 本题考查了全等三角形的应用;这种设计,用 SSS 判断全等,再运用性质,是全等三角形判定及性质的综合运用,做题时要认真读题,充分理解题意.x y x ﹣2y的值为 ()7.若 3 =4 ,9 =7,则 3A .B .C .﹣ 3D .【考点】 同底数幂的除法;幂的乘方与积的乘方.【分析】 由 3 x yx ﹣2yx 2y x 2 y,代入即可求得答案.=4 , 9 =7 与3=3÷3 =3 ÷( 3 )【解答】 解:∵3x =4, 9y =7,∴3 x ﹣ 2yx 2yx2 y.=3 ÷3 =3 ÷( 3 ) =4÷7=故选 A .3x ﹣2y 变【点评】 此题考查了同底数幂的除法与幂的乘方的应用.此题难度适中,注意将形为 3x ÷( 32) y是解此题的关键.8.如图,在方格纸中,以 AB 为一边作 △ABP ,使之与 △ ABC 全等,从 P 1, P 2,P 3, P 4 四个点中找出符合条件的点 P ,则点 P 有( )A . 1 个B . 2 个C . 3 个D . 4 个 【考点】 全等三角形的判定.【分析】 根据全等三角形的判定得出点P 的位置即可.【解答】 解:要使 △ABP 与 △ ABC 全等,点 P 到 AB 的距离应该等于点 C 到 AB 的距离,即 3 个单位长度,故点 P 的位置可以是 P 1, P 3, P 4 三个,故选 C【点评】 此题考查全等三角形的判定,关键是利用全等三角形的判定进行判定点 P 的位置.二、填空题(共 7 小题,每小题 3 分,满分 21 分)9.计算:+ =2 .【考点】 分式的加减法. 【专题】 计算题.【分析】原式利用同分母分式的加法法则计算,约分即可得到结果.【解答】解:原式 == =2,故答案为: 2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.2 210.若 ab=2,a﹣ b=﹣1,则代数式 a b﹣ ab 的值等于﹣ 2.【专题】因式分解.【分析】首先提取公因式ab,进而将已知代入求出即可.【解答】解:∵ ab=2,a﹣ b= ﹣ 1,∴a 2b﹣ ab2=ab(a﹣ b) =2×(﹣ 1) =﹣ 2.故答案为:﹣ 2.【点评】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.11.如图,点 D 在△ ABC 边 BC 的延长线上, CE 平分∠ ACD ,∠ A=80 °,∠ B=40 °,则∠ACE 的大小是60 度.【考点】三角形的外角性质.【分析】由∠ A=80 °,∠ B=40 °,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ ACD= ∠ B+∠ A ,然后利用角平分线的定义计算即可.【解答】解:∵∠ ACD= ∠ B+∠ A ,而∠ A=80 °,∠ B=40 °,∴∠ ACD=80 °+40 °=120 °.∵CE 平分∠ ACD ,∴∠ ACE=60 °,故答案为60【点评】本题考查了三角形的外角定理,关键是根据三角形任意一个外角等于与之不相邻的两内角的和.12.已知一个等腰三角形的一边长4,一边长5,则这个三角形的周长为13 或 14.【考点】等腰三角形的性质;三角形三边关系.【分析】分 4 是腰长和底边两种情况讨论,再利用三角形的任意两边之和大于第三边判断是否能组成三角形解答.【解答】解:①若4 是腰长,则三角形的三边分别为4、 4、 5,能组成三角形,周长 =4+4+5=13 ,②若 4 是底边,则三角形的三边分别为4、5、 5,能组成三角形,周长 =4+5+5=14 ,综上所述,这个三角形周长为13 或 14.故答案为: 13 或 14 .【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.13.如图:△ ABC 中, DE 是 AC 的垂直平分线,AE=3cm ,△ ABD 的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD , AC=2AE ,结合周长,进行线段的等量代换可得答案.【解答】解:∵ DE 是 AC 的垂直平分线,∴AD=CD , AC=2AE=6cm ,又∵△ ABD 的周长 =AB+BD+AD=13cm,∴A B+BD+CD=13cm ,即 AB+BC=13cm ,∴△ ABC 的周长 =AB+BC+AC=13+6=19cm .故答案为 19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.14.如图,∠ AOE= ∠ BOE=15 °,EF∥OB ,EC⊥ OB,若 EC=2 ,则 EF=4 .【考点】含 30 度角的直角三角形;角平分线的性质.【分析】作 EG⊥ OA 于 F,根据角平分线的性质得到EG 的长度,再根据平行线的性质得到∠ OEF=∠ COE=15 °,然后利用三角形的外角和内角的关系求出∠ EFG=30 °,利用 30°角所对的直角边是斜边的一半解题.【解答】解:作 EG⊥ OA 于 G,如图所示:∵EF ∥OB,∠ AOE= ∠ BOE=15 °∴∠ OEF=∠ COE=15 °, EG=CE=2 ,∵∠ AOE=15 °,∴∠ EFG=15 °+15°=30 °,∴∴EF=2EG=4 .故答案为: 4.【点评】本题考查了角平分线的性质、平行线的性质、含 30°角的直角三角形的性质;熟练掌握角平分线的性质,证出∠ EFG=30 °是解决问题的关键.15.将一张宽为 6cm 的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是 18cm 2.【考点】 翻折变换(折叠问题).【分析】 当 AC ⊥ AB 时,重叠三角形面积最小,此时 △ABC 是等腰直角三角形,利用三角形面积公式即可求解.【解答】 解:如图,当 AC ⊥ AB 时,三角形面积最小, ∵∠ BAC=90 °∠ ACB=45 ° ∴ A B=AC=4cm ,∴S △ABC = ×6×6=18cm 2. 故答案是: 18.【点评】 本题考查了折叠的性质,发现当 AC ⊥ AB 时,重叠三角形的面积最小是解决问题的关键.三、解答题(共 8 小题,满分 75 分)16.利用图形面积可以证明乘法公式,也可以解释代数中恒等式的正确性.( 1)首先请同学们观察用硬纸片拼成的图形(如图 1),根据图形的面积,写出它能说明的乘法公式( a+b ) 2=a 2+2ab+b 2;( 2)请同学们观察用硬纸片拼成的图形(如图 2),根据图形的面积关系,写出一个代数恒等式.【考点】 完全平方公式的几何背景.a+b ,大正方形的面积就为( a+b ) 2,2 【分析】 (1)图中可以得出,大正方形的边长为个矩形的边长相同,且长为 a ,宽为 b ,则 2 个矩形的面积为 2ab ,空白的是两个正方形,较大的正方形的边长为a ,面积等于 a 2,小的正方形边长为b ,面积等于 b 2,大正方形面 积减去 2 个阴影矩形的面积就等于空白部分的面积.(2)图中可以得出,大正方形的边长为a+b ,大正方形的面积就为( a+b ) 2,4 个矩形的 边长相同,且长为 a ,宽为 b ,则 4 个矩形的面积为 4ab ,中间空心的正方形的边长为a ﹣b ,面积等于( a ﹣ b )2,大正方形面积减去 4 个阴影矩形的面积就等于中间空白部分的面 积. 【解答】 解:( 1)∵阴影部分都是全等的矩形,且长为 a ,宽为 b ,∴ 2 个矩形的面积为 2ab ,∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴空白正方形的面积为a 2 和b 2,∴( a+b ) 2=a 2 +2ab+b 2.222.故答案为( a+b ) =a +2ab+b (2)∵四周阴影部分都是全等的矩形,且长为 a ,宽为 b , ∴四个矩形的面积为 4ab , ∵大正方形的边长为 a+b ,∴大正方形面积为( a+b ) 2,∴中间小正方形的面积为( a+b )2﹣ 4ab ,∵中间小正方形的面积也可表示为:(a ﹣ b ) 2,∴( a ﹣ b )2=( a+b ) 2﹣4ab . 【点评】 本题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关 键.17.先化简,再求值:( x+y )( x ﹣ y ) +( x ﹣ y ) 2+2xy ,其中 x= ( 3﹣ π) 0. y=2. 【考点】 整式的混合运算 —化简求值;零指数幂. 【专题】 计算题;整式.【分析】 原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,把x 与 y 的值代入计算即可求出值.【解答】 解:原式 =x 2﹣ y 2+x 2﹣ 2xy+y 2+2xy=2x 2,当 x= ( 3﹣π) 0=1 时,原式 =2. 【点评】 此题考查了整式的混合运算﹣化简求值,以及零指数幂,熟练掌握运算法则是解本题的关键.18.先化简: ÷( ﹣ ),再从﹣ 2< x < 3 的范围内选取一个你最喜欢的值代入,求值.【考点】 分式的化简求值. 【专题】 计算题.【分析】 原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把 x 的值代入计算即可求出值.【解答】 解:原式 =÷ = ? = ,当 x=2 时,原式 =4 .【点评】 此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键. 19.如图, AD , AE 分别是 △ ABC 的高和角平分线.( 1)已知∠ B=40 °,∠ C=60°,求∠ DAE 的度数;( 2)设∠ B= α,∠ C=β( α< β).请直接写出用 α、 β表示∠ DAE 的关系式 ( β﹣ α).【考点】三角形内角和定理.【分析】(1)根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAE ,根据直角三角形两锐角互余求出∠BAD ,然后求解即可.(2)同( 1)即可得出结果.【解答】解:( 1)∵∠ B=40 °,∠ C=60°,∴∠ BAC=180 °﹣∠ B﹣∠ C=180°﹣ 40°﹣ 60°=80 °,∵AE 是角平分线,∴∠ BAE=∠ BAC=×80°=40°,∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣ 40°=50 °,∴∠ DAE= ∠ BAD ﹣∠ BAE=50 °﹣ 40°=10°;(2)∵∠ B= α,∠ C=β(α<β),∴∠ BAC=180 °﹣(α+β),∵AE 是角平分线,∴∠ BAE=∠ BAC=90°﹣(α+β),∵AD 是高,∴∠ BAD=90 °﹣∠ B=90 °﹣α,∴∠ DAE= ∠ BAD ﹣∠ BAE=90 °﹣α﹣ [90°﹣(α+β)]=(β﹣α);故答案为:(β﹣α).【点评】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.20.如图,点 B 、D 、C、 F 在一条直线上,且BC=FD ,AB=EF .(1)请你只添加一个条件(不再加辅助线),使△ ABC≌△ EFD,你添加的条件是∠B= ∠ F 或 AB ∥ EF 或 AC=ED ;(2)添加了条件后,证明△ABC≌△ EFD.【考点】全等三角形的判定.【专题】证明题;开放型.【分析】(1)本题要判定△ABC ≌△ EFD ,已知 BC=DF , AB=EF ,具备了两组边对应相等,故添加∠ B= ∠ F 或 AB ∥EF 或 AC=ED 后可分别根据 SAS、 AAS 、 SSS 来判定其全等;(2)因为 AB=EF ,∠ B=∠ F,BC=FD ,可根据 SAS 判定△ ABC ≌△ EFD .【解答】解:( 1)∠ B= ∠F 或 AB ∥ EF 或 AC=ED ;(2)证明:当∠ B=∠ F 时在△ ABC 和△ EFD 中∴△ ABC ≌△ EFD ( SAS).【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.21.如图,在等边△ABC 中,点 D ,E 分别在边 BC, AC 上,且 DE∥ AB ,过点 E 作EF⊥ DE,交 BC 的延长线于点 F,(1)求∠ F 的度数;(2)若 CD=3,求 DF 的长.【考点】等边三角形的判定与性质.【分析】(1)根据平行线的性质可得∠ EDC= ∠B=60 °,根据三角形内角和定理即可求解;(2)易证△ EDC 是等边三角形,再根据直角三角形的性质即可求解.【解答】解:( 1)∵△ ABC 是等边三角形,∴∠ B=60 °,∵DE ∥ AB ,∴∠ EDC= ∠B=60 °,∵EF ⊥DE,∴∠ DEF=90 °,∴∠ F=90°﹣∠ EDC=30 °;(2)∵∠ ACB=60 °,∠ EDC=60 °,∴△ EDC 是等边三角形.∴ED=DC=3 ,∵∠ DEF=90 °,∠ F=30 °,∴DF=2DE=6 .【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30 度的锐角所对的直角边等于斜边的一半.22.随着城际铁路的正式开通,从甲市经丙市到乙市的高铁里程比普快里程缩短了90km ,运行时间减少了 8h,已知甲市到乙市的普快列车里程为 1220km .高铁平均时速是普快平均时速的 2.5 倍.(1)求高铁列车的平均时速;(2)某日王先生要从甲市去距离大约780km 的丙市参加 14: 00 召开的会议,如果他买到当日 9: 20 从甲市到丙市的高铁票,而且从丙市火车站到会议地点最多需要 1 小时.试问在高铁列车准点到达的情况下,它能否在开会之前20 分钟赶到会议地点?【考点】分式方程的应用.【分析】(1)设普快的平均时速为x 千米 / 小时,高铁列车的平均时速为 2.5x 千米 /小时,根据题意可得,高铁走(1220﹣ 90)千米比普快走1220 千米时间减少了8 小时,据此列方程求解;(2)求出王先生所用的时间,然后进行判断.【解答】解:( 1)设普快的平均时速为x 千米 /小时,高铁列车的平均时速为 2.5x 千米 /小时,由题意得,﹣=8 ,解得: x=96,经检验, x=96 是原分式方程的解,且符合题意,则2.5x=240 ,答:高铁列车的平均时速为240 千米 /小时;(2) 780÷240=3.25 ,则坐车共需要 3.25+1=4.25 (小时),从 9: 20 到下午 1: 40,共计 4小时>4.25小时,故王先生能在开会之前到达.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.如图,等腰Rt△ABC 中,∠ ABC=90 °, AB=BC ,点 A 、 B 分别在坐标轴上.(1)如图①,若点 C 的横坐标为5,直接写出点 B 的坐标( 0, 2);(提示:过 C 作CD⊥ y 轴于点 D,利用全等三角形求出OB 即可)(2)如图②,若点 A 的坐标为(﹣6, 0),点 B 在 y 轴的正半轴上运动时,分别以OB、 AB 为边在第一、第二象限作等腰Rt△ OBF,等腰 Rt△ ABE ,连接 EF 交 y 轴于点P,当点 B 在 y 轴的正半轴上移动时,PB 的长度是否发生改变?若不变,求出PB 的值.若变化,求PB 的取值范围.【考点】全等三角形的判定与性质;坐标与图形性质;等腰直角三角形.【分析】(1)作 CD ⊥BO ,易证△ABO ≌△ BCD ,根据全等三角形对应边相等的性质即可解题;(2)作 EG⊥y 轴,易证△ BAO ≌△ EBG 和△EGP≌△ FBP,可得 BG=AO 和 PB=PG ,即可求得 PB=AO ,即可解题.【解答】解:( 1)如图 1,作 CD⊥ BO 于 D,∵∠ CBD+ ∠ ABO=90 °,∠ ABO+ ∠ BAO=90 °,∴∠ CBD= ∠ BAO ,在△ ABO 和△ BCD 中,,∴△ ABO ≌△ BCD ( AAS ),∴C D=BO=2 ,∴B 点坐标( O, 2);故答案为:( 0, 2);(2)如图 3,作 EG⊥ y 轴于 G,∵∠ BAO+ ∠ OBA=90 °,∠ OBA+ ∠ EBG=90 °,∴∠ BAO= ∠ EBG,在△ BAO 和△ EBG 中,,∴△ BAO ≌△ EBG ( AAS ),∴BG=AO , EG=OB ,∵O B=BF ,∴BF=EG ,在△ EGP 和△ FBP 中,,∴△ EGP≌△ FBP( AAS ),∴PB=PG ,∴PB= BG= AO=3 .【点评】本题考查了勾股定理、角平分线的性质、相似三角形的判定与性质,熟练掌握三角形全等的证明是解本题的关键.。
上海市静安区2019-2020学年八年级(下)期末数学试卷(解析版)
2019-2020学年上海市静安区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a2.下列方程中,是无理方程的为()A.B.C.D.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+44.下列关于向量的运算,正确的是()A.B.C.D.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是.8.方程x3+1=0的根是.9.方程的根是.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.11.已知函数,那么=.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.13.如果一个n边形的内角和是1440°,那么n=.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=.17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为.18.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.21.解方程:.22.解方程组:.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.27.已知:如图,在矩形ABCD中,AB=3,点E在AB的延长线上,且AE=AC,联结CE,取CE的中点F,联结BF、DF.(1)求证:DF⊥BF;(2)设AC=x,DF=y,求y与x之间的函数关系式,并写出定义域;(3)当DF=2BF时,求BC的长.2019-2020学年上海市静安区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)【每题只有一个正确选项,在答题纸相应位置填涂】1.当a<0时,|a﹣1|等于()A.a+1 B.﹣a﹣1 C.a﹣1 D.1﹣a【考点】绝对值.【分析】根据负有理数的绝对值是它相反数得结论做出正确判断.【解答】解:当a<0时,即a<1,则|a﹣1|=1﹣a;故选D.2.下列方程中,是无理方程的为()A.B.C.D.【考点】无理方程.【分析】可以判断各选项中的方程是什么方程,从而可以得到哪个选项是正确的.【解答】解:是一元二次方程,是无理方程,=0是分式方程,是一元一次方程,故选B.3.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4【考点】一次函数的应用.【分析】根据图象信息一一判断即可解决问题.【解答】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.4.下列关于向量的运算,正确的是()A.B.C.D.【考点】*平面向量.【分析】由三角形法则直接求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、+=,故本选项正确;B、﹣=,故本选项错误;C、﹣=,故本选项错误;D、﹣=,故本选项错误.故选:A.5.有一个不透明的袋子中装有3个红球、1个白球、1个绿球,这些球只是颜色不同.下列事件中属于确定事件的是()A.从袋子中摸出1个球,球的颜色是红色B.从袋子中摸出2个球,它们的颜色相同C.从袋子中摸出3个球,有颜色相同的球D.从袋子中摸出4个球,有颜色相同的球【考点】随机事件.【分析】根据袋子中装有3个红球、1个白球、1个绿球以及必然事件、不可能事件、随机事件的概念解答即可.【解答】解:从袋子中摸出1个球,球的颜色是红色是随机事件;从袋子中摸出2个球,它们的颜色相同是随机事件;从袋子中摸出3个球,有颜色相同的球是随机事件;从袋子中摸出4个球,有颜色相同的球是不可能事件,故选:D.6.已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CD C.OB=OC,AB=CD D.OB=OC,OA=OD【考点】等腰梯形的判定.【分析】根据等腰梯形的判定推出即可.【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;C、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;D、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选D二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上】7.如果一次函数y=(k﹣2)x+1的图象经过一、二、三象限,那么常数k的取值范围是k >2.【考点】一次函数图象与系数的关系.【分析】根据一次函数图象所经过的象限确定k的符号.【解答】解:∵一次函数y=(k﹣2)x+1(k为常数,k≠0)的图象经过第一、二、三象限,∴k﹣2>0.解得:k>2,故填:k>2;8.方程x3+1=0的根是﹣1.【考点】立方根.【分析】先求出x3,再根据立方根的定义解答.【解答】解:由x3+1=0得,x3=﹣1,∵(﹣1)3=﹣1,∴x=﹣1.故答案为:﹣1.9.方程的根是x=0.【考点】分式方程的解.【分析】先去分母,再解整式方程,最后检验即可.【解答】解:去分母得,x2+3x=0,解得x=0或﹣3,检验:把x=0代入x+3=3≠0,∴x=0是原方程的解;把x=﹣3代入x+3=﹣3+3=0,∴x=﹣3不是原方程的解,舍去;∴原方程的解为x=0,故答案为x=0.10.用换元法解方程组时,如果设,,那么原方程组可化为关于u、v的二元一次方程组是.【考点】换元法解分式方程.【分析】设,,则=3u,=2v,从而得出关于u、v的二元一次方程组.【解答】解:设,,原方程组变为,故答案为.11.已知函数,那么=.【考点】函数值.【分析】把自变量x=﹣代入函数解析式进行计算即可得解.【解答】解:∵,∴=;故答案为.12.从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数是素数的概率是.【考点】概率公式.【分析】列表列举出所有情况,看两位数是素数的情况数占总情况数的多少即可解答.【解答】解:列表如下:2 3 42 (2,2)(2,3)(2,4)3 (3,2)(3,3)(3,4)4 (4,2)(4,3)(4,4)共有9种等可能的结果,其中是素数的有3种,概率为;故答案为:13.如果一个n边形的内角和是1440°,那么n=10.【考点】多边形内角与外角.【分析】根据多边形的内角和公式:(n﹣2)×180°,列出方程,即可求出n的值.【解答】解:∵n边形的内角和是1440°,∴(n﹣2)×180°=1440°,解得:n=10.故答案为:10.14.如果菱形的边长为5,相邻两内角之比为1:2,那么该菱形较短的对角线长为5.【考点】菱形的性质.【分析】根据已知可得较小的内角为60°,从而得到较短的对角线与菱形的一组邻边组成一个等边三角形,从而可求得较短对角线的长度.【解答】解:如图所示:∵菱形的边长为5,∴AB=BC=CD=DA=5,∠B+∠BAD=180°,∵菱形相邻两内角的度数比为1:2,即∠B:∠BAD=1:2,∴∠B=60°,∴△ABC是等边三角形,∴AC=AB=5;故答案为:5.15.在Rt△ABC中,∠C=90°,AC=6,BC=8,点D、E分别是AC、AB边的中点,那么△CDE的周长为12.【考点】三角形中位线定理.【分析】利用勾股定理求得边AB的长度,然后结合三角形中位线定理得到DE=AB,则易求△CDE的周长.【解答】解:∵在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB===10.又∵点D、E分别是AC、AB边的中点,∴CE=BC=4,CD=AC=3,ED是△ABC的中位线,∴DE=AB=5,∴△CDE的周长=CE+CD+ED=4+3+5=12.故答案是:12.16.如图,已知正方形ABCD的边长为1,点E在边DC上,AE平分∠DAC,EF⊥AC,点F为垂足,那么FC=﹣1.【考点】正方形的性质;角平分线的性质.【分析】根据正方形的性质和已知条件可求得AF,AC的长,从而不难得到FC的长.【解答】解:∵四边形ABCD是正方形,∴AB=BC=AD=CD=1,∠D=∠B=90°,∴AC==,∵AE平分∠DAC,EF⊥AC交于F,∴AF=AD=1,∴FC=AC﹣AF=﹣1,故答案为:;17.一次函数y=x+2的图象经过点A(a,b),B(c,d),那么ac﹣ad﹣bc+bd的值为4.【考点】一次函数图象上点的坐标特征.【分析】先根据点A、B的坐标代入解析式,再代入代数式计算即可求解.【解答】解:把点A、B的坐标代入解析式,可得:a+2=b,c+2=d,所以ac﹣ad﹣bc+bd=ac﹣a(c+2)﹣(a+2)c+(a+2)(c+2)=4;故答案为:418.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,∠BCD=60°,CD=5.将梯形ABCD 绕点A旋转后得到梯形AB1C1D1,其中B、C、D的对应点分别是B1、C1、D1,当点B1落在边CD上时,点D1恰好落在CD的延长线上,那么DD1的长为.【考点】旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;直角梯形.【分析】先根据旋转的性质得出△DAB≌△D1AB1,再根据全等三角形的性质以及等腰三角形的性质,得出∠2=∠3,然后根据平行线的性质,得出∠2=∠4,若设∠1=∠2=∠3=∠4=α,则根据∠2+∠3+∠5=180°,可以求得α的度数为60°,最后根据△ADD1、△BCD都是等边三角形,求得DD1=AD=.【解答】解:如图,将梯形ABCD绕点A旋转后得到梯形AB1C1D1,连接BD,由旋转得:AD=AD1,AB=AB1,∠DAD1=∠BAB1,∴∠DAB=∠D1AB1,且∠1=∠3,在△DAB和△D1AB1中,,∴△DAB≌△D1AB1(SAS),∴∠1=∠2,∴∠2=∠3,∵AD∥BC,∴∠2=∠4,设∠1=∠2=∠3=∠4=α,则∠5=180°﹣∠4﹣∠C=120°﹣α,∵∠2+∠3+∠5=180°,∴α+α+120°﹣α=180°,解得α=60°,∴∠1=∠2=∠3=∠4=60°,∴△ADD1、△BCD都是等边三角形,∴BD=CD=5,∠ABD=30°,∴Rt△ABD中,AD=BD=,∴DD1=AD=.故答案为:附加题(本题最高得3分,当整卷总分不满120分时,计入总分,整卷总分不超过120分)19.如果关于x的方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,那么m=﹣1.【考点】根与系数的关系.【分析】先根据根与系数的关系得到=1,解得m=﹣1或m=1,然后根据判别式的意义确定满足条件的m的值.【解答】解:∵方程m2x2﹣(m﹣2)x+1=0的两个实数根互为倒数,∴=1,解得m=1或m=﹣1,当m=1时,方程变形为x2+x+1=0,△=1﹣4×1×1=﹣3<0,方程没有实数解,所以m的值为﹣1.故答案为:﹣1.三、解答题(本大题共8题,满分66分)[将下列各题的解答过程,做在答题纸上] 20.先化简,再求值:,其中x=.【考点】分式的化简求值.【分析】要熟悉混合运算的顺序,分式的除法转化为分式的乘法运算,最后算减法,注意化简后,将x=代入化间后的式子求出即可.【解答】解:原式=÷+,=×+,=+,=,当x=+1,原式=21.解方程:.【考点】无理方程.【分析】分析:将方程中左边的一项移项得:,两边平方得,,两边再平方得x﹣3=1,解得x=4,最后验根,可求解.【解答】解:,,,x﹣3=1,x=4.经检验:x=4是原方程的根,所以原方程的根是x=4.22.解方程组:.【考点】高次方程.【分析】先把第二个方程因式分解,把二元二次方程组转化为二元一次方程组,求解即可.【解答】解:由②得x﹣4y=0或x+3y=0,原方程组可化为(Ⅰ)(Ⅱ),解方程组(Ⅰ)得,方程组(Ⅱ)无解,所以原方程组的解是.23.如图,在梯形ABCD中,AD∥BC,BC=2AD,过点A作AE∥DC交BC于点E.(1)写出图中所有与互为相反向量的向量:,,;(2)求作:、.(保留作图痕迹,写出结果,不要求写作法)【考点】*平面向量;梯形.【分析】(1)根据平行四边形的性质即可解决问题.(2)根据向量和差定义即可解决.【解答】解:(1)∵AD∥EC,AE∥DC,∴四边形AECD是平行四边形,∴AD=EC,∵BC=2AD,∴BE=EC,∴所有与互为相反向量的向量有、、.(2)如图﹣=, +=+=,图中.就是所求的向量.24.已知:如图,在▱ABCD中,AE⊥BC,CF⊥AD,垂足分别为E、F,AE、CF分别与BD相交于点G、H,联结AH、CG.求证:四边形AGCH是平行四边形.【考点】平行四边形的判定与性质.【分析】法1:由平行四边形对边平行,且CF与AD垂直,得到CF与BC垂直,根据AE 与BC垂直,得到AE与CF平行,得到一对内错角相等,利用等角的补角相等得到∠AGB=∠DHC,根据AB与CD平行,得到一对内错角相等,再由AB=CD,利用AAS得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到AG=CH,利用一组对边平行且相等的四边形为平行四边形即可得证;法2:连接AC,与BD交于点O,利用平行四边形的对角线互相平分得到OA=OC,OB=OD,再由AB与CD平行,得到一对内错角相等,根据CF与AD垂直,AE与BC垂直,得一对直角相等,利用ASA得到三角形ABG与三角形CDH全等,利用全等三角形对应边相等得到BG=DH,根据等式的性质得到OG=OH,利用对角线互相平分的四边形为平行四边形即可得证.【解答】证明:法1:在□ABCD中,AD∥BC,AB∥CD,∵CF⊥AD,∴CF⊥BC,∵AE⊥BC,∴AE∥CF,即AG∥CH,∴∠AGH=∠CHG,∵∠AGB=180°﹣∠AGH,∠DHC=180°﹣∠CHG,∴∠AGB=∠DHC,∵AB∥CD,∴∠ABG=∠CDH,∴△ABG≌CDH,∴AG=CH,∴四边形AGCH是平行四边形;法2:连接AC,与BD相交于点O,在□ABCD中,AO=CO,BO=DO,∠ABE=∠CDF,AB∥CD,∴∠ABG=∠CDH,∵CF⊥AD,AE⊥BC,∴∠AEB=∠CFD=90°,∴∠BAG=∠DCH,∴△ABG≌CDH,∴BG=DH,∴BO﹣BG=DO﹣DH,∴OG=OH,∴四边形AGCH是平行四边形.25.某公司生产的新产品需要精加工后才能投放市场,为此王师傅承担了加工300个新产品的任务.在加工了80个新产品后,王师傅接到通知,要求加快新产品加工的进程,王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务.问接到通知后,王师傅平均每天加工多少个新产品?【考点】分式方程的应用.【分析】根据关键句子“王师傅在保证加工零件质量的前提下,平均每天加工新产品的个数比原来多15个,这样一共用6天完成了任务”找到等量关系列出方程求解即可.【解答】解:设接到通知后,王师傅平均每天加工x个新产品.根据题意,得.x2﹣65x+550=0,x1=55,x2=10.经检验:x1=55,x2=10都是原方程的解,但x2=10不符合题意,舍去.答:接到通知后,王师傅平均每天加工55个新产品.26.在平面直角坐标系xOy中,一次函数y=x+b的图象与x轴交于点A、与反比例函数(k是常数,k≠0)的图象交于点B(a,3),且这个反比例函数的图象经过点C(6,1).(1)求出点A的坐标;(2)设点D为x轴上的一点,当四边形ABCD是梯形时,求出点D的坐标和四边形ABCD 的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先利用C点坐标计算出反比例函数中的k的值,进而可得反比例函数解析式,再利用反比例函数解析式计算出B的坐标,把B点坐标代入y=x+b可得B的值,进而可得一次函数解析式,然后可得一次函数y=x+b的图象与x轴交点A的坐标;(2)点D为x轴上的一点,因此不可能出现AD∥BC的情形,只有可能AB∥CD,设直线CD的解析式为y=x+m,把C点坐标代入可得m的值,然后可得D点坐标,分别过点B、C 作BE⊥x轴、CF⊥x轴,垂足分别为E、F,然后利用图形中的面积关系计算出四边形ABCD 的面积即可.【解答】解:(1)方法一:∵反比例函数经过点C(6,1),∴,∴k=6,∴反比例函数解析式为.∵B(a,3)在该反比例的图象上,∴,∴a=2,即B(2,3),∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).方法二:∵点C(6,1)与点B(a,3)都在反比例函数的图象上,∴6×1=a×3=k,∴a=2,∴B(2,3).∵y=x+b经过点B(2,3),∴y=x+1,令y=x+1=0,得x=﹣1,∴A(﹣1,0).(2)∵四边形ABCD是梯形,且点D为x轴上的一点,∴不可能出现AD∥BC的情形,只有可能AB∥CD,∵直线AB 的解析式为y=x +1,∴可设直线CD 的解析式为y=x +m ,∵y=x +m 经过点C (6,1),∴y=x ﹣5,令y=x ﹣5=0,得x=5,∴D (5,0),分别过点B 、C 作BE ⊥x 轴、CF ⊥x 轴,垂足分别为E 、F ,则S 梯形ABCD =S △ABE +S 梯形BEFC ﹣S △DCF ,===12.27.已知:如图,在矩形ABCD 中,AB=3,点E 在AB 的延长线上,且AE=AC ,联结CE ,取CE 的中点F ,联结BF 、DF .(1)求证:DF ⊥BF ;(2)设AC=x ,DF=y ,求y 与x 之间的函数关系式,并写出定义域;(3)当DF=2BF 时,求BC 的长.【考点】四边形综合题.【分析】(1)方法一:如图1中,连接AF,只要证明△ABF≌DCF即可.方法二:如图2中,连接BD,与AC相交于点O,联结OF,只要证明OB=OF=OD即可.(2)由y=DF=即可解决问题.(3)首先证明CE=DF=AF,列出方程即可解决.【解答】(1)证明:方法一:如图1中,连接AF,∵AE=AC,点F为CE的中点,∴AF⊥CE,即∠AFC=90°,∵在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,∴∠CBE=180°﹣∠ABC=90°,∴EF=BF=CF=,∴∠FBC=∠FCB,即∠ABC+∠FBC=∠DCB+∠FCB,∴∠ABF=∠DCF,在△ABF和△DCF中,,∴△ABF≌DCF,∴∠AFB=∠DFC,∴∠BFD=∠AFB+∠AFD=∠AFD+∠DFC=∠AFC=90°,即DF⊥BF;方法二:如图2中,连接BD,与AC相交于点O,联结OF,∵在矩形ABCD中,AC=BD,OA=OC,OB=OD,∴OA=OC=OB=OD=AC=BD,∵点F是CE的中点,∴OF=AE,∵AE=AC,∴OF=AC=BD,∴OF=OB=OD,∴∠OBF=∠OFB,∠OFD=∠ODF,∵∠OBF+∠OFB+∠OFD+∠ODF=180°,∴2∠OFB+2∠OFD=180°,∴∠OFB+∠OFD=90°,即∠BFD=90°,∴DF⊥BF;(2)解:在Rt△ABC中,BC2=AC2﹣AB2=x2﹣9,∵AE=AC=x,∴BE=x﹣3,∴EC===,∴BF==,∴y=DF===,∴y=(x>3).(3)∵△ABF≌DCF,∴AF=DF,∵在Rt△ABC中,CE=2BF,又∵DF=2BF,∴CE=DF=AF,∴=,∴x1=0,x2=5.经检验,x1=0,x2=5都是方程的根,但x=0不符合题意.∴BC===4.。
2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷 解析版
2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列几组数中,能作为直角三角形三边长度的是()A.2,3,4B.4,4,5C.5,6,7D.5,12,13 2.(4分)剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.3.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.134.(4分)顺次连接矩形的各边中点,所得的四边形一定是()A.正方形B.菱形C.矩形D.梯形5.(4分)在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)6.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)、(5,0)、(2,3),则点C的坐标是()A.(8,2)B.(5,3)C.(7,3)D.(3,7)7.(4分)小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是68.(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.AD=BD B.∠A=30°C.∠ACB=90°D.AC2+BC2=AB29.(4分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.10.(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是.12.(4分)五边形从某一个顶点出发可以引条对角线.13.(4分)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.14.(4分)将点P(﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是.15.(4分)在函数y=中,自变量x的取值范围是.16.(4分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.17.(4分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如表:x﹣2﹣1012y9630﹣3那么,一元一次方程kx+b=0的解为.18.(4分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.三、解答题:本题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.20.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于F、F.求证:四边形AFCE是菱形.21.(8分)在平面直角坐标系xOy中,已知直线l:y=kx+b(k≠0经过点A(﹣4,0),与y轴交于点B,如果△AOB的面积为4,求直线l的表达式.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.23.(10分)某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量频数频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)求出上面的频数分布表中的m、n的值,并把频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过10t的家庭大约有多少户?24.(10分)阅读与探究我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:(1)在我们所学过的特殊四边形中,是勾股四边形的是;(写出一种即可)(2)下面图1,图2均为6×6的正方形网格,点A,B,C均在格点上,请在图中标出格点D,并连接AD,CD,使得四边形ABCD符合下列要求:图1中的四边形ABCD是勾股四边形,并且是中心对称图形;图2中的四边形ABCD是勾股四边形且对角线相等,但不是中心对称图形.25.(12分)如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF 相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.26.(12分)如表是某摩托车厂2019年前3个月摩托车各月产量:x(月)123y(辆)550600650(1)根据表格中的数据,求y(辆)与x(月)之间的函数表达式;(2)按照此趋势,你能预测该摩托车厂2019年4月摩托车月产量吗?(3)能够利用(1)中所建立函数模型预测2019年12月摩托车月产量吗?为什么?2019-2020学年湖南省益阳市赫山区八年级(下)期末数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)下列几组数中,能作为直角三角形三边长度的是()A.2,3,4B.4,4,5C.5,6,7D.5,12,13【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、∵22+32≠42,∴不能构成直角三角形;B、∵42+42≠52,∴不能构成直角三角形;C、∵52+62≠72,∴不能构成直角三角形;D、∵52+122=132,∴能构成直角三角形.故选:D.2.(4分)剪纸是我国的非物质文化遗产之一,下列剪纸作品中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选:A.3.(4分)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.13【分析】根据多边形的内角和定理:180°•(n﹣2)求解即可.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.4.(4分)顺次连接矩形的各边中点,所得的四边形一定是()A.正方形B.菱形C.矩形D.梯形【分析】根据菱形的定义:只需证明四边相等即可.【解答】解:顺次连接矩形的各边中点,根据矩形的对角线相等和中位线定理可知所得的四边形四边相等,所以是菱形.故选:B.5.(4分)在平面直角坐标系中,点P(﹣3,4)关于x轴的对称点的坐标是()A.(﹣4,﹣3)B.(﹣3,﹣4)C.(3,4)D.(3,﹣4)【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【解答】解:点A(﹣3,4)关于x轴的对称点的坐标是(﹣3,﹣4),故选:B.6.(4分)如图,在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0)、(5,0)、(2,3),则点C的坐标是()A.(8,2)B.(5,3)C.(7,3)D.(3,7)【分析】平行四边形的对边相等且互相平行,所以AB=CD,AB=5,D的横坐标为2,加上5为7,所以C的横坐标为7,因为CD∥AB,D的纵坐标和C的纵坐标相同为3.【解答】解:在平行四边形ABCD中,∵AB∥CDAB=5,∴CD=5,∵D点的横坐标为2,∴C点的横坐标为2+5=7,∵AB∥CD,∴D点和C点的纵坐标相等为3,∴C点的坐标为(7,3).故选:C.7.(4分)小红把一枚硬币抛掷10次,结果有4次正面朝上,那么()A.正面朝上的频数是0.4B.反面朝上的频数是6C.正面朝上的频率是4D.反面朝上的频率是6【分析】根据实验结果得出结论即可.【解答】解:小红做抛硬币的实验,共抛了10次,4次正面朝上,6次反面朝上,则正面朝上的频数是4,反面朝上的频数是6,故选:B.8.(4分)如图,CD是△ABC的边AB上的中线,且CD=AB,则下列结论错误的是()A.AD=BD B.∠A=30°C.∠ACB=90°D.AC2+BC2=AB2【分析】根据CD是△ABC的边AB上的中线,且CD=AB,可以得到AD、BD和CD 的关系,从而可以判断A是否正确,再根据等腰三角形的性质和三角形内角和,可以得到∠ACB的度数,从而可以得到∠ACB的度数,即可判断C是否正确,最后根据勾股定理,可以判断D是否正确;对于∠A,由题目中的条件,无法判断角的度数,从而可以判断B是否正确.【解答】解:∵CD是△ABC的边AB上的中线,且CD=AB,∴AD=BD=CD,故选项A正确,∴∠1=∠2,∠3=∠4,∵∠1+∠2+∠3+∠4=180°,∴∠2+∠3=90°,即∠ACB=90°,故选项C正确;∴AC2+BC2=AB2,故选项D正确;无法判断∠A的度数,故选项B错误;故选:B.9.(4分)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k 的图象大致是()A.B.C.D.【分析】根据正比例函数的性质得到k<0,然后根据一次函数的性质得到一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.【解答】解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.10.(4分)如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b<2x的解集为()A.x>0B.0<x<1C.1<x<2D.x>2【分析】先利用正比例函数解析式确定A点坐标,然后观察函数图象得到,当1<x<2时,直线y=2x都在直线y=kx+b的上方,于是可得到不等式0<kx+b<2x的解集.【解答】解:把A(x,2)代入y=2x得2x=2,解得x=1,则A点坐标为(1,2),所以当x>1时,2x>kx+b,∵函数y=kx+b(k≠0)的图象经过点B(2,0),即不等式0<kx+b<2x的解集为1<x<2.故选:C.二、填空题:本题共8小题,每小题4分,把答案填在答题卡中对应题号后的横线上. 11.(4分)如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6,BD=4,则点D到AB的距离是2.【分析】首先根据已知易求CD=2,利用角平分线的性质可得点D到AB的距离是2.【解答】解:∵BC=6,BD=4∴CD=2∵∠C=90°,AD平分∠CAB∴点D到AB的距离=CD=2.故填2.12.(4分)五边形从某一个顶点出发可以引2条对角线.【分析】从n边形的一个顶点出发有(n﹣3)条对角线,代入求出即可.【解答】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为:2.13.(4分)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.14.(4分)将点P(﹣3,4)先向下平移3个单位,再向右平移2个单位后得到点Q,则点Q的坐标是(﹣1,1).【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:根据题意,知点Q的坐标是(﹣3+2,4﹣3),即(﹣1,1),故答案为:(﹣1,1).15.(4分)在函数y=中,自变量x的取值范围是x>1.5.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得2x﹣3>0,解得x>1.5.故答案为:x>1.5.16.(4分)今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间.设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示.则下列说法中,正确的序号为①②④.①小明中途休息用了20分钟.②小明休息前爬山的平均速度为每分钟70米.③小明在上述过程中所走的路程为6600米.④小明休息前爬山的平均速度大于休息后爬山的平均速度.【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800﹣2800)米,爬山的总路程为3800米,根据路程、速度、时间的关系进行解答即可.【解答】解:①、根据图象可知,在40~60分钟,路程没有发生变化,所以小明中途休息的时间为:60﹣40=20分钟,故正确;②、根据图象可知,当t=40时,s=2800,所以小明休息前爬山的平均速度为:2800÷40=70(米/分钟),故B正确;③、根据图象可知,小明在上述过程中所走的路程为3800米,故错误;④、小明休息后的爬山的平均速度为:(3800﹣2800)÷(100﹣60)=25(米/分),小明休息前爬山的平均速度为:2800÷40=70(米/分钟),70>25,所以小明休息前爬山的平均速度大于休息后爬山的平均速度,故正确;综上所述,正确的有①②④.故答案为:①②④17.(4分)一次函数y=kx+b(k≠0)中,x与y的部分对应值如表:x﹣2﹣1012y9630﹣3那么,一元一次方程kx+b=0的解为x=1.【分析】利用函数值为0时对应的自变量的值为方程kx+b=0(k≠0)的解得到答案.【解答】解:∵x=1时,y=0,∴一元一次方程kx+b=0的解为x=1.故答案为x=1.18.(4分)如图Rt△ABC中,∠BAC=90°,AB=3,AC=4,点P为BC上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ的最小值为.【分析】以PA,PC为邻边作平行四边形PAQC,由平行四边形的性质可知O是AC中点,PQ最短也就是PO最短,所以应该过O作BC的垂线P′O,然后根据△P′OC和△ABC相似,利用相似三角形的性质即可求出PQ的最小值.【解答】解:∵∠BAC=90°,AB=3,AC=4,∴BC==5,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,故答案为:.三、解答题:本题共8小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(8分)如图,在△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5cm,求AB的长.【分析】根据角平分线的定义、直角三角形的性质计算.【解答】解:在Rt△ABC中,∠C=90°,∠A=∠30°,∴∠ABC=60°.∵BD是∠ABC的平分线,∴∠ABD=∠CBD=30°.∴∠ABD=∠BAD,∴AD=DB,在Rt△CBD中,CD=5cm,∠CBD=30°,∴BD=10cm.由勾股定理得,BC=5,∴AB=2BC=10cm.20.(8分)已知:如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别交于F、F.求证:四边形AFCE是菱形.【分析】根据EF是对角线AC的垂直平分线,可以求证△AOE≌△COF,证明四边形的对角线互相平分,垂直,就可以证出.【解答】解:∵EF是对角线AC的垂直平分线,∴OA=OC,AC⊥EF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵∠AOE=∠COF,∴在△AOE和△COF中,∴△AOE≌△COF(ASA).∴OE=OF.∴四边形AFCE是平行四边形,又∵AC⊥EF,∴四边形是AFCE菱形.21.(8分)在平面直角坐标系xOy中,已知直线l:y=kx+b(k≠0经过点A(﹣4,0),与y轴交于点B,如果△AOB的面积为4,求直线l的表达式.【分析】先把A点坐标代入y=kx+b得到b=4k,则y=kx+4k,所以B(0,4k),利用三角形面积公式得到×4×|4k|=4,解得k=或﹣,从而得到直线l的表达式.【解答】解:把A(﹣4,0)代入y=kx+b得﹣4k+b=0,解得b=4k,∴y=kx+4k,当x=0时,y=kx+4k+4k,则B(0,4k),∵△AOB的面积为4,∴×4×|4k|=4,解得k=或﹣,∴直线l的表达式为y=x+2或y=﹣x﹣2.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.【分析】(1)根据网格结构找出点A、B、C平移后的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可;(3)找出点A关于x轴的对称点A′,连接A′B与x轴相交于一点,根据轴对称确定最短路线问题,交点即为所求的点P的位置,然后连接AP、BP并根据图象写出点P的坐标即可.【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,P(2,0).23.(10分)某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.月均用水量频数频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请解答以下问题:(1)求出上面的频数分布表中的m、n的值,并把频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过10t的家庭大约有多少户?【分析】(1)根据0<x≤5中频数为6,频率为0.12,则调查总户数为6÷0.12=50,进而得出在5<x≤10范围内的频数以及在20<x≤25范围内的频率;(2)根据(1)中所求即可得出不超过15t的家庭总数即可求出,不超过15t的家庭占被调查家庭总数的百分比;(3)根据样本数据中超过10t的家庭数,即可得出1000户家庭超过10t的家庭数.【解答】解:(1)∵被调查的总户数为6÷0.12=50(户),∴m=50×0.24=12,n=4÷50=0.08,补全频数分布直方图如下:(2)该小区用水量不超过15t的家庭占被调查家庭总数的百分比为0.12+0.24+0.32=0.68=68%;(3)该小区月均用水量超过10t的家庭大约有1000×(1﹣0.12﹣0.24)=640(户).24.(10分)阅读与探究我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.请结合上述阅读材料,解决下列问题:(1)在我们所学过的特殊四边形中,是勾股四边形的是矩形;(写出一种即可)(2)下面图1,图2均为6×6的正方形网格,点A,B,C均在格点上,请在图中标出格点D,并连接AD,CD,使得四边形ABCD符合下列要求:图1中的四边形ABCD是勾股四边形,并且是中心对称图形;图2中的四边形ABCD是勾股四边形且对角线相等,但不是中心对称图形.【分析】(1)根据勾股四边形的定义判断即可.(2)根据要求结合数形结合的思想画出图形即可.【解答】解:(1)矩形是勾股四边形.故答案为:矩形.(2)如图1中,四边形ABCD即为所求.如图2中,四边形ABCD即为所求.25.(12分)如图,已知四边形ABCD是正方形,点E、F分别在AD、DC上,BE与AF 相交于点G,且BE=AF.(1)求证:△ABE≌△DAF;(2)求证:BE⊥AF;(3)如果正方形ABCD的边长为5,AE=2,点H为BF的中点,连接GH.求GH的长.【分析】(1)根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE =∠D=90°,然后利用“斜边直角边”证明Rt△ABE≌Rt△DAF;(2)结合(1)得∠ABE=∠DAF,进一步得∠AGE=∠BGF=90°即可;(3)根据直角三角形斜边上的中线等于斜边的一半得GH=BF,利用勾股定理求出BF 的长即可得出答案.【解答】解:(1)证明:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在Rt△ABE和Rt△DAF中,,∴Rt△ABE≌Rt△DAF(HL);(2)证明:∵Rt△ABE≌Rt△DAF,∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,知识像烛光,能照亮一个人,也能照亮无数的人。
2019-2020学年辽宁省沈阳市皇姑区八年级(上)期末数学试卷(北师大版 含答案)
2019-2020学年辽宁省沈阳市皇姑区八年级(上)期末数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)下列实数是无理数的是()A.﹣2B.πC.D.2.(2分)下列属于最简二次根式的是()A.B.C.D.3.(2分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2分)下列计算正确的是()A.B.C.D.5.(2分)下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.6.(2分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差7.(2分)如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE 等于()时,BC∥DE.A.40°B.50°C.70°D.130°8.(2分)若x=﹣4,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<69.(2分)下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动小C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根10.(2分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.二、填空题(每小题3分,共18分)11.(3分)64的算术平方根是.12.(3分)﹣1的绝对值是.13.(3分)如图,两只福娃发现所处的位置分别为M(﹣2,2)、N(1,﹣1),则A、B、C三个点中为坐标原点的是.14.(3分)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=度.15.(3分)观察下列各等式:第一个等式:=1,第二个等式:=2,第三个等式:=3…根据上述等式反映出的规律直接写出第四个等式为;猜想第n个等式(用含n的代数式表示)为.16.(3分)如图,在平面直角坐标系中,一次函数y=﹣2x﹣2交x轴于点A,交y轴于点B,若直线BC交x轴于点C,且∠ABC=45°,则点C的横坐标为.三.(每题6分.共18分)17.(6分)计算:.18.(6分)解二元一次方程组:19.(6分)如图,在12×10的正方形网格中,△ABC是格点三角形,点B的坐标为(﹣5,1),点C的坐标为(﹣4,5).(1)请在方格纸中画出x轴、y轴,并标出原点O;(2)画出△ABC关于直线l对称的△A1B1C1;(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是.四、(每题6分,共12分)20.(6分)为了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展有奖问卷调查活动,并用得到的数据绘制了如下条形统计图.请根据图中信息,解答下列问题.(1)求本次调查获取的样本数据的平均数;(2)如果对该小区的800名居民全面开展这项有奖问卷活动,得10分者设为一等奖,请你根据调查结果,估计需准备多少份一等奖奖品?21.(6分)(列二元一次方程组解应用题)为了保护环境,某公交公司决定购买A、B两种型号的全新混合动力公交车共10辆,其中每辆A型车每年节省油量2.4万升;每辆B型车每年节省油量2.2万升;若购买这批混合动力公交车每年能节省22.6万升汽油,求购买A、B两种型号公交车各多少辆?五、(本题7分)22.(7分)如图①,某商场有可上行和下行的两条自动扶梯,扶梯上行和下行的长度相等,运行速度相同且保持不变,甲、乙两人同时站上了上行和下行端,甲站上上行扶梯的同时又以0.8米/秒的速度往上走,乙站上下行扶梯后则站立不动随扶梯下行,甲到达扶梯顶端后立即乘坐下行扶梯(换乘时间忽略不计)同时以0.8米/秒的速度往下走,乙到达底端后则在原点等候甲,图②中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y(米)与所用时间x(秒)的部分函数图象,结合图象解答下列问题:(1)每条扶梯的长度为米(直接填空);(2)求点B的坐标;(3)乙到达扶梯底端后,还需等待秒,甲才到达扶梯底端(直接填空).六、(本题7分)23.(7分)已知AB∥CD,AM平分∠BAP,CM平分∠PCD.(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.七、(本题8分)24.(8分)对于平面直角坐标系xOy中的点P(a,b),若点P1的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P1为点P的“k属派生点”.例如,P(1,4)的“2属派生点”为P1(1+2×4,2×1+4),即P1(9,6).(1)点(﹣2,3)的“3属派生点”P1的坐标为(直接填空)(2)若点P的“5属派生点”P1的坐标为(3,﹣9),则点P坐标为(直接填空);(3)若x轴正半轴上一点P(a,0)的“k属派生点”为P1,且线段PP1的长度为线段OP长度的2倍,则k=(直接填空);(4)在(3)的条件下,若点M在y轴上,连接MP、MP1,使MP1平分∠PMO,请直接写出点M的纵坐标(用含a的代数式表示).八、(本题10分)25.(10分)在平面直角坐标系中,直线y=x+b与x轴交于点A,与y轴交于点B,点P 坐标为(3,0),过点P作PC⊥x轴于P,且△ABC为等腰直角三角形.(1)如图,当∠BAC=90°,AB=AC时,求证△ABO≌△CAP;(2)当AB为直角边时,请直接写出所有可能的b值.2019-2020学年辽宁省沈阳市皇姑区八年级(上)期末数学试卷参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题2分,共20分)1.(2分)下列实数是无理数的是()A.﹣2B.πC.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.﹣2是整数,属于有理数;B.π是无理数;C.是分数,属于有理数;D.=4,是整数,属于有理数;故选:B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)下列属于最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A.=2,不符合题意;B.是最简二次根式;C.=2,不符合题意;D.=,不符合题意;故选:B.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.3.(2分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(2分)下列计算正确的是()A.B.C.D.【分析】分别根据二次根式的加减乘除运算法则逐一判断即可.【解答】解:A.3与不能合并,故本选项不合题意;B.与不是同类二次根式,不能合并,故本选项不合题意;C.,故本选项符合题意;D.,故本选项不合题意.故选:C.【点评】本题主要考查了二次根式的加减乘除运算,熟记二次根式的运算法则是解答本题的关键.5.(2分)下列各组数值是二元一次方程x﹣3y=4的解的是()A.B.C.D.【分析】将四个选项中的x与y的值代入已知方程检验,即可得到正确的选项.【解答】解:A、将x=1,y=﹣1代入方程左边得:x﹣3y=1+3=4,右边为4,本选项正确;B、将x=2,y=1代入方程左边得:x﹣3y=2﹣3=﹣1,右边为4,本选项错误;C、将x=﹣1,y=﹣2代入方程左边得:x﹣3y=﹣1+6=5,右边为4,本选项错误;D、将x=4,y=﹣1代入方程左边得:x﹣3y=4+3=7,右边为4,本选项错误.故选:A.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.(2分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数B.中位数C.众数D.方差【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D、原来数据的方差S2==,添加数字2后的方差S2==,故方差发生了变化.故选:D.【点评】本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.7.(2分)如图所示是一条街道的路线图,若AB∥CD,且∠ABC=130°,那么当∠CDE 等于()时,BC∥DE.A.40°B.50°C.70°D.130°【分析】首先利用平行线的性质定理得到∠BCD=130°,然后利用同旁内角互补两直线平行得到∠CDE的度数即可.【解答】解:∵AB∥CD,且∠ABC=130°,∴∠BCD=∠ABC=130°,∵当∠BCD+∠CDE=180°时BC∥DE,∴∠CDE=180°﹣∠BCD=180°﹣130°=50°,故选:B.【点评】本题考查了平行线的判定与性质,注意平行线的性质与判定方法的区别与联系.8.(2分)若x=﹣4,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<6【分析】由于36<37<49,则有6<<7,即可得到x的取值范围.【解答】解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.【点评】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.9.(2分)下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动小C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根【分析】直接利用方差的意义以及众数的定义和中位数的意义分别分析得出答案.【解答】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动大;故错误;C、一组数据的众数可以不唯一,故正确;D、一组数据的标准差就是这组数据的方差的算术平方根,故错误;故选:C.【点评】此题主要考查了中位数的意义以及众数和方差,正确把握相关定义是解题关键.10.(2分)已知直线y=2x与y=﹣x+b的交点的坐标为(1,a),则方程组的解是()A.B.C.D.【分析】方程组的解是一次函数的交点坐标即可.【解答】解:∵直线y=2x经过(1,a)∴a=2,∴交点坐标为(1,2),∵方程组的解就是两个一次函数的交点坐标,∴方程组的解,故选:A.【点评】本题考查一次函数与方程组的关系,解题的关键是理解方程组的解就是厉害一次函数的交点坐标.二、填空题(每小题3分,共18分)11.(3分)64的算术平方根是8.【分析】直接根据算术平方根的定义即可求出结果.【解答】解:∵82=64∴=8.故答案为:8.【点评】此题主要考查了算术平方根的定义,解题的关键是算术平方根必须是正数,注意平方根和算术平方根的区别.12.(3分)﹣1的绝对值是﹣1.【分析】由于﹣1>0,根据绝对值的意义即可得到﹣1的绝对值.【解答】解:|﹣1|=﹣1,故答案为:﹣1.【点评】本题考查了绝对值的意义:若a>0,则|a|=a;若a=0,则|a|=0,若a<0,则|a|=﹣a.13.(3分)如图,两只福娃发现所处的位置分别为M(﹣2,2)、N(1,﹣1),则A、B、C三个点中为坐标原点的是A.【分析】运用平移规律确定原点的位置.【解答】解:从M(﹣2,2)向右平移2个单位长度,向下平移2个单位长度,可知点A是原点.【点评】考查类比点的坐标解决实际问题的能力和阅读理解能力,知道一个点的坐标求原点,可逆向推理即可.14.(3分)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.【分析】根据平行线的性质求出∠C,根据三角形外角性质求出即可.【解答】解:∵AB∥CD,∠1=45°,∴∠C=∠1=45°,∵∠2=35°,∴∠3=∠2+∠C=35°+45°=80°,故答案为:80.【点评】本题考查了平行线的性质,三角形的外角性质的应用,解此题的关键是求出∠C 的度数和得出∠3=∠2+∠C.15.(3分)观察下列各等式:第一个等式:=1,第二个等式:=2,第三个等式:=3…根据上述等式反映出的规律直接写出第四个等式为;猜想第n个等式(用含n的代数式表示)为=n.【分析】比较每个对应项找到变化规律即可.【解答】解:观察规律第四个等式为:根据规律,每个等式左侧分母恒为2,分子前两项分别是n+1,n则第n个等式为:=n故答案为:,=n【点评】本题为规律探究题,考查了整式的计算知识.16.(3分)如图,在平面直角坐标系中,一次函数y=﹣2x﹣2交x轴于点A,交y轴于点B,若直线BC交x轴于点C,且∠ABC=45°,则点C的横坐标为或﹣6.【分析】分两种情况讨论,利用全等三角形的性质可求得D点的坐标,然后根据待定系数法求得直线BC的解析式,根据与x轴的交点的坐标特征即可求得C的横坐标.【解答】解:∵一次函数y=﹣2x﹣2交x轴于点A,交y轴于点B,∴A(﹣1,0),B(0,﹣2),设直线BC的解析式为y=kx+b,若点C在直线AB右侧,如图1,过点A作AD⊥AB,交BC于点D,过点D作DE⊥AC于E,∵∠ABC=45°,AD⊥AB∴∠ADB=∠ABC=45°∴AD=AB,∵∠BAO+∠DAC=90°,且∠BAO+∠ABO=90°∴∠ABO=∠DAC,∵∠AOB=∠AED=90∴△ABO≌△DAE(AAS)∴AO=DE=1,BO=AE=2,∴OE=1∴点D(1,1)∵直线y=kx+b过点D(1,1),B(0,﹣2).∴,解得,∴直线BC为y=3x﹣2,令y=0,则x=,若点C在直线AB的左侧时,如图2同理可得D(﹣3,﹣1),∵直线y=kx+b过点D(﹣3,﹣1),B(0,﹣2).∴,解得∴直线BC为y=﹣x﹣2,令y=0,则x=﹣6,综上所述:点C的横坐标为或﹣6,故答案为或﹣6.【点评】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.三.(每题6分.共18分)17.(6分)计算:.【分析】先化简各二次根式,再计算加减可得.【解答】解:原式=2+3﹣2=3.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的混合运算顺序和运算法则.18.(6分)解二元一次方程组:【分析】应用加减消元法,求出方程组的解是多少即可.【解答】解:由②,可得:x﹣2y=﹣3③①+②×2,可得5x=5,解得x=1,把x=1代入①,解得y=2,∴原方程组的解是.【点评】此题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.19.(6分)如图,在12×10的正方形网格中,△ABC是格点三角形,点B的坐标为(﹣5,1),点C的坐标为(﹣4,5).(1)请在方格纸中画出x轴、y轴,并标出原点O;(2)画出△ABC关于直线l对称的△A1B1C1;(3)若点P(a,b)在△ABC内,其关于直线l的对称点是P1,则P1的坐标是(﹣a ﹣4,b).【分析】(1)利用A、C点的坐标画出直角坐标系;(2)利用网格点和对称的性质画出A、B、C关于直线l的对称点A1、B1、C1即可;(3)先把P点向右平移2个单位(a+2,b)(相当于把直线l右平移2个单位),点(a+2,b)关于y轴的对称点为(﹣a﹣2,b),然后把(﹣a﹣2,b)向左平移2个单位,相当于把直线l向左平移2个单位回到原来位置,于是得到P1的坐标为(﹣a﹣2﹣2,b).【解答】解:(1)如图,(2)如图,△A1B1C1为所作;(3)P1的坐标是(﹣a﹣4,b).【点评】本题考查了作图﹣轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,四、(每题6分,共12分)20.(6分)为了解居民的环保意识,社区工作人员在某小区随机抽取了若干名居民开展有奖问卷调查活动,并用得到的数据绘制了如下条形统计图.请根据图中信息,解答下列问题.(1)求本次调查获取的样本数据的平均数;(2)如果对该小区的800名居民全面开展这项有奖问卷活动,得10分者设为一等奖,请你根据调查结果,估计需准备多少份一等奖奖品?【分析】(1)将条形统计图中各个分数段的人数相加,即可得出总人数,再根据加权平均数的计算方法计算即可;(2)求出10分占调查人数的百分比,即可预测出一等奖的人数即可.【解答】解:(1)==8.26分,答:本次调查获取的样本数据的平均数为8.26分;(2)800×=160份,答:估计需准备160份一等奖奖品.【点评】考查条形统计图、加权平均数的意义和计算方法,理解加权平均数的意义和计算方法是正确解答的关键.21.(6分)(列二元一次方程组解应用题)为了保护环境,某公交公司决定购买A、B两种型号的全新混合动力公交车共10辆,其中每辆A型车每年节省油量2.4万升;每辆B型车每年节省油量2.2万升;若购买这批混合动力公交车每年能节省22.6万升汽油,求购买A、B两种型号公交车各多少辆?【分析】设购买A型公交车x辆,B型公交车y辆,根据“购买A、B两种型号的全新混合动力公交车共10辆;购买这批混合动力公交车每年能节省22.6万升汽油”列方程组求解可得.【解答】解:设购买A型公交车x辆,B型公交车y辆,根据题意,得:,解得:,答:购买A型公交车3辆,B型公交车7辆.【点评】本题考查了二元一次方程组的应用,解题的关键是根据总节油量=2.4×A型车购买的数量+2.2×B型车购买的数量、A型车数量+B型车数量=10列出关于x、y的二元一次方程组.五、(本题7分)22.(7分)如图①,某商场有可上行和下行的两条自动扶梯,扶梯上行和下行的长度相等,运行速度相同且保持不变,甲、乙两人同时站上了上行和下行端,甲站上上行扶梯的同时又以0.8米/秒的速度往上走,乙站上下行扶梯后则站立不动随扶梯下行,甲到达扶梯顶端后立即乘坐下行扶梯(换乘时间忽略不计)同时以0.8米/秒的速度往下走,乙到达底端后则在原点等候甲,图②中线段OB、AB分别表示甲、乙两人在乘坐扶梯过程中,离扶梯底端的路程y(米)与所用时间x(秒)的部分函数图象,结合图象解答下列问题:(1)每条扶梯的长度为30米(直接填空);(2)求点B的坐标;(3)乙到达扶梯底端后,还需等待 6.25秒,甲才到达扶梯底端(直接填空).【分析】(1)根据题意结合图象即可得出结果;(2)可设扶梯上行和下行的速度为xm/s,根据相遇时路程和为30,可列方程7.5(2x+0.8)=30,求得扶梯上行和下行的速度,从而求解;(3)分别求得甲、乙两人所花的时间,相减即可求解.【解答】解:(1)由图象可知,每条扶梯的长度为30米(直接填空);故答案为:30(2)设扶梯上行和下行的速度为xm/s,则7.5(2x+0.8)=30,解得x=1.6,7.5(x+0.8)=7.5×(1.6+0.8)=7.5×2.4=18.则点B的坐标是(7.5,18).∴B(7.5,18);(3)由题意,得30×2÷(1.6+0.8)﹣30÷1.6=60÷2.4﹣18.75=25﹣18.75=6.25(s).故乙到达扶梯底端后,还需等待6.25s,甲才到达扶梯底端.故答案为:6.25【点评】考查了一次函数的应用,知识点有:待定系数法求一次函数,路程、速度、时间之间的关系问题,渗透数形结合的思想.六、(本题7分)23.(7分)已知AB∥CD,AM平分∠BAP,CM平分∠PCD.(1)如图①,当点P、M在直线AC同侧,∠AMC=60°时,求∠APC的度数;(2)如图②,当点P、M在直线AC异侧时,直接写出∠APC与∠AMC的数量关系.【分析】(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,可得到∠APC和∠AMC的关系,从而求解;(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,则AB∥PQ∥MN∥CD,根据平行线的性质得到∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,根据角平分线的定义得到∠BAP=2∠BAM,∠DCP=2∠DCM,等量代换即可得到结论.【解答】解:(1)如图1,延长AP交CD于点Q,则可得到∠BAP=∠AQC,则∠APC=∠BAP+∠DCP=2(∠MAP+∠MCP),连接MP并延长到点R,则可得∠APR=∠MAP+∠AMP,∠CPR=∠MCP+∠CMP,所以∠APC=∠AMC+∠MAP+∠MCP,所以∠APC=∠AMC+∠APC,所以∠APC=2∠AMC=120°.(2)如图2,过P作PQ∥AB于Q,MN∥AB于N,则AB∥PQ∥MN∥CD,∴∠APQ=180°﹣∠BAP,∠CPQ=180°﹣∠DCP,∠AMN=∠BAM,∠CMN=∠DCM,∵AM平分∠BAP,CM平分∠PCD,∴∠BAP=2∠BAM,∠DCP=2∠DCM,∴∠APC=∠APQ+∠CPQ=180°﹣∠BAP+180°﹣∠DCP=360°﹣2(∠BAM+∠DCM)=360°﹣2(∠BAM+∠DCM)=360°﹣2∠AMC,即∠APC=360°﹣2∠AMC.【点评】本题主要考查外角的性质及角平分线的定义、平行线的性质,解题的关键是利用三角形的外角的性质找到∠APC和∠AMC之间的关系.七、(本题8分)24.(8分)对于平面直角坐标系xOy中的点P(a,b),若点P1的坐标为(a+kb,ka+b)(其中k为常数,且k≠0),则称点P1为点P的“k属派生点”.例如,P(1,4)的“2属派生点”为P1(1+2×4,2×1+4),即P1(9,6).(1)点(﹣2,3)的“3属派生点”P1的坐标为(7,﹣3)(直接填空)(2)若点P的“5属派生点”P1的坐标为(3,﹣9),则点P坐标为(﹣2,1)(直接填空);(3)若x轴正半轴上一点P(a,0)的“k属派生点”为P1,且线段PP1的长度为线段OP长度的2倍,则k=±2(直接填空);(4)在(3)的条件下,若点M在y轴上,连接MP、MP1,使MP1平分∠PMO,请直接写出点M的纵坐标(用含a的代数式表示).【分析】(1)P1(﹣2+3×3,﹣2×3+3),),即P1(7,﹣3);(2)3=a+5b,﹣9=5a+b,求得P(﹣2,1);(3)P(a,0)的“k属派生点”为P1(a,ka),由题意可得:|ka|=2a,即可求k的值;(4)由(3)可知P1(a,±2a),当P1(a,2a)时,过点P1作P1B⊥MP,过点M作MC⊥P1P,可证明△MCP≌△P1PB(AAS),所以MP=P1P=2a,可求PC=a.【解答】解:(1)P1(﹣2+3×3,﹣2×3+3),),即P1(7,﹣3);故答案为(7,﹣3);(2)3=a+5b,﹣9=5a+b,∴a=﹣2,b=1,∴P(﹣2,1),故答案为(﹣2,1);(3)P(a,0)的“k属派生点”为P1(a,ka),∴PP1的长度为|ka|,OP长度为a,∵线段PP1的长度为线段OP长度的2倍,∴|ka|=2a,∴k=±2,故答案为±2;(4)∵k=±2,∴P1(a,±2a),当P1(a,2a)时,过点P1作P1B⊥MP,过点M作MC⊥P1P,∵MP1平分∠PMO,∴AP1=P1B=a,∵MC=a,∴△MCP≌△P1PB(AAS),∴MP=P1P=2a,∴PC=a,∴点M的纵坐标为﹣a,当P2(a,﹣2a)时,同理可求点M的纵坐标为a.∴点M的纵坐标为±a.【点评】本题考查坐标与图形;理解定义,将所求问题转化为一元一次方程求解,三角形全等问题解题是关键.八、(本题10分)25.(10分)在平面直角坐标系中,直线y=x+b与x轴交于点A,与y轴交于点B,点P 坐标为(3,0),过点P作PC⊥x轴于P,且△ABC为等腰直角三角形.(1)如图,当∠BAC=90°,AB=AC时,求证△ABO≌△CAP;(2)当AB为直角边时,请直接写出所有可能的b值.【分析】(1)证出∠OAB=∠PCA,∠AOB=∠CP A,由AB=CA,即可得出△ABO≌△CAP(AAS);(2)分三种情况①由(1)得△ABO≌△CAP(AAS),得出OB=AP=﹣b,OP=OA﹣AP=﹣b=3,则b=﹣3;②作CM⊥y轴于M,则CM=OP=3,同①得△ABO≌△BCM(AAS),得出OB=CM=3,则b=3;③同①得△ABO≌△CAP(AAS),得出OB=AP=﹣b,由OA=﹣2b,OA+AP=3,得出b=﹣1.【解答】(1)证明:∵∠BAC=90°,∴∠OAB+∠CAP=90°,∵PC⊥x轴,∴∠CP A=90°,∴∠PCA+∠CAP=90°,∴∠OAB=∠PCA,∵∠AOB=90°,∴∠AOB=∠CP A,在△ABO和△CAP中,,∴△ABO≌△CAP(AAS);(2)解:分三种情况:①如图1所示:∵直线y=x+b与x轴交于点A,与y轴交于点B,∴A(﹣2b,0),B(0,b),∴OA=﹣2b,OB=﹣b,∵点P坐标为(3,0),∴OP=3,由(1)得:△ABO≌△CAP(AAS),∴OB=AP=﹣b,∴OP=OA﹣AP=﹣b=3,∴b=﹣3;②如图2所示:作CM⊥y轴于M,则CM=OP=3,同①得:△ABO≌△BCM(AAS),∴OB=CM=3,∴b=3;③如图3所示:同①得:△ABO≌△CAP(AAS),∴OB=AP=﹣b,∵OA=﹣2b,OA+AP=3,∴﹣2b﹣b=3,∴b=﹣1;综上所述,当AB为直角边时,所有可能的b值为﹣3或3或﹣1.【点评】本题考查了全等三角形的判定与性质、等腰直角三角形的性质、坐标与图象的性质、分类讨论等知识;熟练掌握全等三角形的判定与性质是解题的关键.。
2019-2020学年河南省洛阳市八年级(下)期末数学试卷 (解析版)
2019-2020学年河南省洛阳市八年级(下)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤12.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.43.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.56.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>09.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.810.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是.13.(3分)方程组的解为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是,BC、CF、CD 三条线段之间的数量关系为;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为,点C的坐标为;(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.2019-2020学年河南省洛阳市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)式子在实数范围内有意义,则x的取值范围是()A.x>0B.x≥﹣1C.x≥1D.x≤1【分析】根据被开方数是非负数,可得答案.【解答】解:由题意,得x﹣1≥0,解得x≥1,故选:C.2.(3分)下列计算:①+=;②()2=2;③5﹣=5;④(+)(﹣)=﹣1.其中正确的有()个A.1B.2C.3D.4【分析】根据合并同类二次根式法则、二次根式的性质和平方差公式依此计算可得.【解答】解:①与不是同类二次根式,不能合并,此式计算错误;②()2=2,此式计算正确;③5﹣=4,此式计算错误;④(+)(﹣)=2﹣3=﹣1,此式计算正确;故选:B.3.(3分)某特警部队为了选拔“神枪手”,举行了射击比赛,最后由甲、乙两名战士进入决赛,在相同条件下,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99环,甲的方差是0.28,乙的方差是0.21,则下列说法中,正确的是()A.甲的成绩比乙的成绩稳定B.甲、乙两人成绩的稳定性相同C.乙的成绩比甲的成绩稳定D.无法确定谁的成绩更稳定【分析】根据方差的定义,方差越小数据越稳定即可判断.【解答】解:∵甲的方差是0.28,乙的方差是0.21,∴S甲2>S乙2,∴乙的成绩比甲的成绩稳定;故选:C.4.(3分)如图,正方形ABCD中,延长AB至E,使AE=AC,连接CE,则∠BCE=()A.10°B.20°C.30°D.22.5°【分析】根据正方形的性质,可以得到∠ACB和∠CAB的度数,再根据AC=AE,可以得到∠ACE和∠AEC的度数,然后即可得到∠BCE的度数.【解答】解:∵AC是正方形ABCD的对角线,∴∠CAB=∠ACB=45°,∵AC=AE,∴∠ACE=∠AEC,∵∠ACE+∠AEC+∠CAE=180°,∴∠ACE=∠AEC=67.5°,∴∠BCE=∠ACE﹣∠ACB=67.5°﹣45°=22.5°,故选:D.5.(3分)为了解某小区家庭垃圾袋的使用情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用数量,结果如下(单位:个):7,9,11,8,7,14,10,8,9,7,则这组数据的众数和平均数分别是()A.8和9B.7和9C.9和7D.7和8.5【分析】根据众数和算术平均数的定义列式计算可得.【解答】解:将这组数据重新排列为7,7,7,8,8,9,9,10,11,14,所以这组数据的众数为7,平均数为=9,故选:B.6.(3分)面试时,某人的基本知识、表达能力、工作态度的得分分别是90分、80分、85分,若依次按20%、40%、40%的比例确定成绩,则这个人的面试成绩是()A.82分B.86分C.85分D.84分【分析】根据加权平均数的计算公式进行计算,即可得出答案.【解答】解:根据题意得:90×20%+80×40%+85×40%=84(分);答:这个人的面试成绩是84分.故选:D.7.(3分)如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为()A.5 cm B.6 cm C.10 cm D.不能确定【分析】根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=AC,即可求解.【解答】解:∵D、E分别是△ABC各边的中点,∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=AC=6cm.故选:B.8.(3分)已知一次函数y=(2m﹣1)x+1上两点A(x1,y1)、B(x2,y2),当x1<x2时,有y1<y2,则m的取值范围是()A.m<B.m>C.m<2D.m>0【分析】先根据x1<x2时,y1<y2,得到y随x的增大而增大,所以x的比例系数大于0,那么2m﹣1>0,解不等式即可求解.【解答】解:∵当x1<x2时,有y1<y2∴y随x的增大而增大∴2m﹣1>0,∴m>.故选:B.9.(3分)四边形ABCD是菱形,对角线AC,BD相交于点O,且∠ACD=30°,BD=2,则菱形ABCD的面积为()A.2B.4C.4D.8【分析】由菱形的性质得出OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD 中,由含30°角的直角三角形的性质求出CD=2OD=2,由勾股定理求出OC,得出AC,由菱形的面积公式即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC=AC,OB=OD=BD=1,AC⊥BD,在Rt△OCD中,∵∠ACD=30°,∴CD=2OD=2,∴OC===,∴AC=2OC=2,∴菱形ABCD的面积=AC•BD=×2×2=2.故选:A.10.(3分)如图,正方形ABCD的边长为16,点M在边DC上,且DM=4,点N是对角线AC上一动点,则线段DN+MN的最小值为()A.16B.16C.20D.4【分析】连接MB交AC于N,此时DN+MN最小,先证明这个最小值就是线段BM的长,利用勾股定理就是即可解决问题.【解答】解:如图,连接MB交AC于N,此时DN+MN最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴DN=BN,∴DN+MN=BN+NM=BM,在Rt△BMC中,∵∠BCM=90°,BC=16,CM=CD﹣DM=16﹣4=12,∴BM=.故选:C.二、填空题(每小题3分,共15分)11.(3分)若实数a、b满足,则=.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式=﹣.故答案是:﹣.12.(3分)在开展“爱心捐助武汉疫区”的活动中,某团支部8名团员捐款分别为(单位:元)6,5,3,5,6,10,5,6,则这组数据的中位数是 5.5元.【分析】将数据重新排列,再根据中位数的定义求解可得.【解答】解:将这组数据重新排列为:3,5,5,5,6,6,6,10,所以这组数据的中位数为=5.5(元),故答案为:5.5元.13.(3分)方程组的解为.【分析】由图象可知,一次函数x+y=3与y=2x的交点坐标为(1,2),所以方程组的解为.【解答】解:∵一次函数x+y=3与y=2x的交点坐标为(1,2),∴方程组的解为.故答案为.14.(3分)如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,BF=6,AB=5,则AE的长为8.【分析】连接EF,AE交BF于O点,如图,由作法得AB=AF,AE平分∠BAD,先证明四边形ABEF为菱形得到AE⊥BF,OA=OE,BO=OF=3,然后利用勾股定理计算出OA,从而得到AE的长.【解答】解:连接EF,AE交BF于O点,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠F AE=∠BEA,由作法得AB=AF,AE平分∠BAD,∴∠BAE=∠F AE,∴∠BAE=∠BEA,∴BA=BE,∴AF=BE,而AF∥BE,∴四边形ABEF为平行四边形,而AB=AF,∴四边形ABEF为菱形,∴AE⊥BF,OA=OE,BO=OF=3,在Rt△AOB中,OA===4,∴AE=2OA=8.故答案为8.15.(3分)如图,在矩形ABCD中,AD=5,AB=8,点E为DC边上的一个动点,把△ADE 沿AE折叠,当点D的对应点D′刚好落在矩形ABCD的对称轴上时,则DE的长为或.【分析】过点D′作MN⊥AB于点N,MN交CD于点M,由矩形有两条对称轴可知要分两种情况考虑,根据对称轴的性质以及折叠的特性可找出各边的关系,在直角△EMD′与△AND′中,利用勾股定理可得出关于DM长度的一元二次方程,解方程即可得出结论.【解答】解:过点D′作MN⊥AB于点N,MN交CD于点M,如图1所示.设DE=a,则D′E=a.∵矩形ABCD有两条对称轴,∴分两种情况考虑:①当DM=CM时,AN=DM=CD=AB=4,AD=AD′=5,由勾股定理可知:ND′==3,∴MD′=MN﹣ND′=AD﹣ND′=2,EM=DM﹣DE=4﹣a,∵ED′2=EM2+MD′2,即a2=(4﹣a)2+4,解得:a=;②当MD′=ND′时,MD′=ND′=MN=AD=,由勾股定理可知:AN==,∴EM=DM﹣DE=AN﹣DE=﹣a,∵ED′2=EM2+MD′2,即,解得:a=.综上知:DE=或.故答案为:或.三、解答题(共75分)16.(8分)计算:(1)3﹣+﹣;(2)÷﹣×+.【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先计算二次根式的乘除运算、化简二次根式,再计算加减运算可得.【解答】解:(1)原式=3﹣2+﹣3=﹣;(2)原式=﹣+2=4+.17.(9分)如图,某学校(A点)到公路(直线l)的距离为30m,到公交站(D点)的距离为50m,现在公路边上建一个商店(C点),使商店到学校A及公交站D的距离相等,求商店C与公交站D之间的距离.(结果保留整数)【分析】作出A点到公路的距离,构造出直角三角形,利用勾股定理易得BD长,那么根据直角三角形BCD的各边利用勾股定理即可求得商店与车站之间的距离.【解答】解:作AB⊥L于B,则AB=30m,AD=50m.∴BD=40m.设CD=x,则CB=40﹣x,x2=(40﹣x)2+302,x2=1600+x2﹣80x+302,80x=2500,x≈31,答:商店C与公交站D之间的距离约为31米.18.(9分)某校为迎接中华人民共和国建国70周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动.校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调査,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图;填出本次所抽取学生四月份“读书量”的中位数为3本;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有600名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数.【分析】(1)先由读1本书的人数及其所占百分比可得总人数,再用总人数乘以读4本书的百分比可得其人数,用读3本书人数除以总人数可得其百分比,据此可补全统计图,最后根据中位数的定义可得答案;(2)根据加权平均数的定义求解可得;(3)用总人数乘以样本中四月份“读书量”为5本的学生人数所占比例可得答案.【解答】解:(1)∵被调查的总人数为3÷5%=60(人),∴读书4本的人数为60×20%=12(人),读3本书的人数所占百分比为×100%=35%,∵共有60个数据,其中位数为第30、31个数据的平均数,而第30、31个数据均为3本,∴中位数为=3(本),故答案为:3本.(2)本次所抽取学生四月份“读书量”的平均数为=3.6(本);(3)估计该校七年级学生中,四月份“读书量”为5本的学生人数为600×=60(人).19.(9分)如图,已知一次函数y1=ax+2与y2=x﹣1的图象交于点A(2,1).(1)求a的值;(2)若点C是直线y2=x﹣1上的点且AC=2,求点C的坐标;(3)直接写出y2>y1>0时,x的取值范围.【分析】(1)把A点坐标代入y1=ax+2可求出a的值;(2)设C(t,t﹣1),利用两点间的距离公式得到(t﹣2)2+(t﹣1﹣1)2=(2)2,然后解方程可得到点C的坐标;(3)先确定一次函数y1=﹣x+2与x轴的交点坐标为(4,0),然后结合函数图象,写出x轴上且直线y=x﹣1在直线y=﹣x+2上方所对应的自变量的范围即可.【解答】解:(1)把A(2,1)代入y1=ax+2得2a+2=1,解得a=﹣;(2)设C(t,t﹣1),∵A(2,1),AC=2,∴(t﹣2)2+(t﹣1﹣1)2=(2)2,解得t1=0,t2=4,∴点C的坐标为(0,﹣1)或(4,3);(3)当y=0时,﹣x+2=0,解得x=4,∴一次函数y1=﹣x+2与x轴的交点坐标为(4,0),∴当2<x<4时,y2>y1>0.20.(9分)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.(1)求证:四边形BCEF是平行四边形;(2)若∠DEF=90°,DE=8,EF=6,当AF为时,四边形BCEF是菱形.【分析】(1)由AB=DE,∠A=∠D,AF=DC,易证得△ABC≌DEF(SAS),即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形;(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,由三角形DEF的面积求出EG的长,根据勾股定理求出FG的长,则可求出答案.【解答】(1)证明:∵AF=DC,∴AC=DF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)解:如图,连接BE,交CF于点G,∵四边形BCEF是平行四边形,∴当BE⊥CF时,四边形BCEF是菱形,∵∠DEF=90°,DE=8,EF=6,∴DF===10,∴S△DEF=EF×DE,∴EG==,∴FG=CG===,∴AF=CD=DF﹣2FG=10﹣=.故答案为:.21.(10分)某营业厅销售3部A型号手机和2部B型号手机的营业额为10800元,销售4部A型号手机和1部B型号手机的营业额为10400元.(1)求每部A型号手机和B型号手机的售价;(2)该营业厅计划一次性购进两种型号手机共50部,其中B型号手机的进货数量不超过A型号手机数量的3倍.已知A型手机和B型手机的进货价格分别为1500元/部和1800元/部,设购进A型号手机a部,这50部手机的销售总利润为W元.①求W关于a的函数关系式;②该营业厅购进A型号和B型号手机各多少部时,才能使销售总利润最大,最大利润为多少元?【分析】(1)根据3部A型号手机和2部B型号手机营业额10800元,4部A型号手机和1部B型号手机营业额10400元,构造二元一次方程组求解即可;(2)①根据:每类手机利润=单部手机利润×部数,总利润=A型手机利润+B型手机利润,得函数关系式.注意a的取值范围.②根据①的关系式,利用一元函数的性质得出结论.【解答】解:(1)设每部A型号手机的售价为x元,每部B型号手机的售价为y元.由题意,得解得(2)①由题意,得w=(2000﹣1500)a+(2400﹣1800)(50﹣a),即w=30000﹣100a,又∵50﹣a≤3a∴a≥∴w关于a的函数关系式为w=30000﹣100a(a≥);②w关于a的函数关系式为w=30000﹣100a,∵k=﹣100<0,∴w随a的增大而减小,又∵a只能取正整数,∴当a=13时,总利润w最大,最大利润w=30000﹣100×13=2870050﹣a=37答:该营业厅购进A型号手机13部,B型号手机37部时,销售总利润最大,最大利润为28700元22.(10分)已知,在△ABC中,∠BAC=90°,∠ABC=45°,D为直线BC上一动点(不与点B,C重合),以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BC与CF的位置关系是BC⊥CF,BC、CF、CD三条线段之间的数量关系为CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请猜想BC与CF的位置关系BC,CD,CF三条线段之间的数量关系并证明;(3)如图3,当点D在线段BC的反向延长线上时,点A,F分别在直线BC的两侧,其他条件不变.若正方形ADEF的对角线AE,DF相交于点O,OC=,DB=5,则△ABC的面积为.(直接写出答案)【分析】(1)△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF=BD,据此即可证得;(2)同(1)相同,利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF﹣CD=BC;(3)先证明△BAD≌△CAF,进而得出△FCD是直角三角形,根据直角三角形斜边上中线的性质即可得到DF的长,再求出CD,BC即可解决问题.【解答】解:(1)如图1中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∵BD+CD=BC,∴CF+CD=BC;故答案为:CF⊥BC,CF+CD=BC.(2)结论:CF⊥BC,CF﹣CD=BC.理由:如图2中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠DAC,∠CAF=90°﹣∠DAC,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS)∴BD=CF,∠ABD=∠ACF=45°,∴∠FCB=∠ACF+∠ACB=90°,即CF⊥BC,∴BC+CD=CF,∴CF﹣CD=BC;(3)如图3中,∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=90°﹣∠BAF,∠CAF=90°﹣∠BAF,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD,BD=CF=5,∵∠ABC=45°,∴∠ABD=135°,∴∠ACF=∠ABD=135°,∴∠FCD=135°﹣45°=90°,∴△FCD是直角三角形.∵OD=OF,∴DF=2OC=13,∴Rt△CDF中,CD===12,∴BC=DC﹣BD=12﹣5=7,∴AB=AC=,∴S△ABC=××=.23.(11分)如图,一次函数y1=x+n与x轴交于点B,一次函数y2=﹣x+m与y轴交于点C,且它们的图象都经过点D(1,﹣).(1)则点B的坐标为(,0),点C的坐标为(0,﹣1);(2)在x轴上有一点P(t,0),且t>,如果△BDP和△CDP的面积相等,求t的值;(3)在(2)的条件下,在y轴的右侧,以CP为腰作等腰直角△CPM,直接写出满足条件的点M的坐标.【分析】(1)根据待定系数法,可得函数解析式,分别令y=0和x=0,可得B、C点坐标;(2)根据面积的和差,可得关于t的方程,根据解方程,可得答案;(3)分情况讨论,注意是在y轴的右侧,有三个符合条件的点M,作辅助线,构建三角形全等,根据全等三角形的判定与性质,可得M的坐标.【解答】解:(1)将D(1,﹣)代入y=x+n,解得n=﹣3,即y=x﹣3,当y=0时,x﹣3=0.解得x=,即B点坐标为(,0);将(1,﹣)代入y=﹣x+m,解得m=﹣1,即y=﹣x﹣1,当x=0时,y=﹣1.即C点坐标为(0,﹣1);故答案为:(,0),(0,﹣1);(2)如图1,S△BDP=(t﹣)×|﹣|=,当y=0时,﹣x﹣1=0,解得x=﹣,即E点坐标为(﹣,0),S△CDP=S△DPE﹣S△CPE=(t+)×﹣×(t+)×|﹣1|=,由△BDP和△CDP的面积相等,得:=+,解得t=5.2;(3)以CP为腰作等腰直角△CPM,有以下两种情况:①如图2,当以点C为直角顶点,CP为腰时,点M1在y轴的左侧,不符合题意,过M2作M2A⊥y轴于A,∵∠PCM2=∠PCO+∠ACM2=∠PCO+∠OPC=90°,∴∠ACM2=∠OPC,∵∠POC=∠CAM2,PC=CM2,∴△POC≌△CAM2(AAS),∴PO=AC=5.2,OC=AM2=1,∴M2(1,﹣6.2);②如图3,当以点P为直角顶点,CP为腰时,过M4作M4E⊥x轴于E,同理得△COP≌△PEM4,∴OC=EP=1,OP=M4E=5.2,∴M4(6.2,﹣5.2),同理得M3(4.2,5.2);综上所述,满足条件的点M的坐标为(1,﹣6.2)或(6.2,﹣5.2)或(4.2,5.2).。
江西省萍乡市2019-2020学年八年级下期末数学试题((有答案))
2019-2020学年江西省萍乡市八年级(下)期末数学试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.“a是正数”用不等式表示为()A.a≤0 B.a≥0 C.a<0 D.a>02.当x=1时,下列式子无意义的是()A.B.C.D.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11 C.5,12,12 D.1,1,4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+16.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4 B.m<4 C.m≥4 D.m>48.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.59.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.2010.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC =16,则MD等于()A.4 B.3 C.2 D.1二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=.12.若一个正多边形的每个外角都等于36°,则它的内角和是.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了cm.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面包.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖元.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.20.先化简,再求值:(1+)÷,其中x=﹣5.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O 按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.2019-2020学年江西省萍乡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题只有一个正确答案)1.“a是正数”用不等式表示为()A.a≤0 B.a≥0 C.a<0 D.a>0【分析】正数即“>0”可得答案.【解答】解:“a是正数”用不等式表示为a>0,故选:D.【点评】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.2.当x=1时,下列式子无意义的是()A.B.C.D.【分析】分式无意义则分式的分母为0,据此求得x的值即可.【解答】解:A、x=0分式无意义,不符合题意;B、x=﹣1分式无意义,不符合题意;C、x=1分式无意义,符合题意;D、x取任何实数式子有意义,不符合题意.故选:C.【点评】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.下列各组数中,以它们为边长的线段能构成直角三角形的是()A.2,4,5 B.6,8,11 C.5,12,12 D.1,1,【分析】根据勾股定理的逆定理,只需验证两小边的平方和是否等于最长边的平方即可.【解答】解:A、∵22+42=20≠52,∴不能构成直角三角形,故本选项不符合题意;B、∵62+82=100≠112,∴不能构成直角三角形,故本选项不符合题意;C、∵52+122=169≠122,∴不能构成直角三角形,故本选项不符合题意;D、∵12+12=2=()2,∴能够构成直角三角形,故本选项符合题意.故选:D.【点评】本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.如图,在△ABC中,AB=AC,∠A=40°,将△ABC绕点B逆时针旋转得到△A′BC′,若点C的对应点C′落在AB边上,则旋转角为()A.40°B.70°C.80°D.140°【分析】根据旋转角的定义,旋转角就是∠ABC,根据等腰三角形的旋转求出∠ABC即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=(180°﹣∠A)=×140°=70°,∵△A′BC′是由△ABC旋转得到,∴旋转角为∠ABC=70°.故选:B.【点评】本题考查旋转的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键的理解旋转角的定义,属于中考常考题型.5.将下列多项式因式分解,结果中不含有因式(x﹣2)的是()A.x2﹣4 B.x3﹣4x2﹣12xC.x2﹣2x D.(x﹣3)2+2(x﹣3)+1【分析】对各多项式进行因式分解即可求出答案.【解答】解:(A)原式=(x+2)(x﹣2),结果中含有因式(x﹣2);(B)原式=x(x2﹣4x﹣12)=x(x+2)(x﹣6),结果中不含有因式(x﹣2);(C)原式=x(x﹣2),结果中含有因式(x﹣2);(D)原式=[(x﹣3)+1]2=(x﹣2)2,结果中含有因式(x﹣2);故选:B.【点评】本题考查因式分解,解题的关键是熟练运用因式分解的方法,本题属于基础题型.6.如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是()A.AD=BC B.CD=BF C.∠A=∠C D.∠F=∠CDE【分析】把A、B、C、D四个选项分别作为添加条件进行验证,D为正确选项.添加D选项,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB.【解答】解:添加:∠F=∠CDE,理由:∵∠F=∠CDE,∴CD∥AB,在△DEC与△FEB中,,∴△DEC≌△FEB(AAS),∴DC=BF,∵AB=BF,∴DC=AB,∴四边形ABCD为平行四边形,故选:D.【点评】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.7.不等式组的解集是x>4,那么m的取值范围是()A.m≤4 B.m<4 C.m≥4 D.m>4【分析】求出第一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了结合不等式组的解集即可得答案.【解答】解:解不等式(x+2)﹣3>0,得:x>4,由不等式组的解集为x>4知m≤4,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键8.若关于x的分式方程﹣1=无解,则m的值为()A.﹣1.5 B.1 C.﹣1.5或2 D.﹣0.5或﹣1.5【分析】方程无解即是分母为0,由此可得:原分式方程中的分母为0:x=0或x=3,解方程后x=﹣,分母2m+1=0,解出即可.【解答】解:﹣1=,方程两边都乘以x(x﹣3),得:x(x+2m)﹣x(x﹣3)=2(x﹣3),整理,得:(2m+1)x=﹣6,x=﹣,∵原分式方程无解,∴2m+1=0或﹣=3或﹣=0,解得:x=﹣0.5或x=﹣1.5,故选:D.【点评】本题考查分式方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型,分式方程无解,则分母为0.9.如图,点D是等边△ABC的边AC上一点,以BD为边作等边△BDE,若BC=10,BD=8,则△ADE的周长为()A.14 B.16 C.18 D.20【分析】由△DBC≌△EBA,可知AE=DC,推出AE+AD+DE=AD+CD+ED=AC+DE即可解决问题;【解答】解:∵△ABC,△DBE都是等边三角形,∴BC=BA,BD=BE,∠ABC=∠EBD,∴∠DBC=∠EBA,∴△DBC≌△EBA,∴AE=DC,∴AE+AD+DE=AD+CD+ED=AC+DE,∵AC=BC=10,DE=BD=8,∴△AED的周长为18,故选:C.【点评】本题考查等边三角形的性质、全等三角形的判定和性质等知识,解题时根据是正确寻找全等三角形解决问题,属于中考常考题型.10.如图,△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD于点D,若AB=12,AC =16,则MD等于()A.4 B.3 C.2 D.1【分析】延长BD交AC于H,根据等腰三角形的性质得到BD=DH,AH=AB=12,根据三角形中位线定理计算即可.【解答】解:延长BD交AC于H,∵AD平分∠BAC,BD⊥AD,∴BD=DH,AH=AB=12,∴HC=AC﹣AH=4,∵M是BC中点,BD=DH,∴MD=CH=2,故选:C.【点评】本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共8个小题,每小题3分,共24分)11.分解因式:2m3﹣8m=2m(m+2)(m﹣2).【分析】提公因式2m,再运用平方差公式对括号里的因式分解.【解答】解:2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).故答案为:2m(m+2)(m﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.若一个正多边形的每个外角都等于36°,则它的内角和是1440°.【分析】先根据多边形的外角和求多边形的边数,再根据多边形的内角和公式求出即可.【解答】解:∵一个正多边形的每个外角都等于36°,∴这个多边形的边数为=10,∴这个多边形的内角和=(10﹣2)×180°=1440°,故答案为:1440°.【点评】本题考查了多边形的内角与外角,能正确求出多边形的边数是解此题的关键,注意:多边形的外角和等于360°,边数为n的多边形的内角和=(n﹣2)×180°.13.点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,则m=﹣3 .【分析】根据向右平移横坐标加,y轴上的点的横坐标为0列方程求解即可.【解答】解:∵点P(m+2,2m+1)向右平移1个单位长度后,正好落在y轴上,∴m+2+1=0,解得m=﹣3.故答案为:﹣3.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.14.如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 到D,则橡皮筋被拉长了 2 cm.【分析】根据勾股定理,可求出AD、BD的长,则AD+BD﹣AB即为橡皮筋拉长的距离.【解答】解:Rt△ACD中,AC=AB=4cm,CD=3cm;根据勾股定理,得:AD==5cm;∴AD+BD﹣AB=2AD﹣AB=10﹣8=2cm;故橡皮筋被拉长了2cm.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用.15.颖颖同学用20元钱去买方便面35包,甲种方便面每包0.7元,乙种方便面每包0.5元,则她最多可买甲种方便面12 包.【分析】设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据总价=单价×数量结合总价不超过20元,即可得出关于x的一元一次不等式,解之取其中的最大整数是解题的关键.【解答】解:设可购买甲种方便面x包,则可购买乙种方便面(35﹣x)包,根据题意得:0.7x+0.5(35﹣x)≤20,解得:x≤12.5,∵x为整数,∴x≤12.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.16.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直,垂足为A,交CD于D,若AD=8,则点P到BC的距离是 4 .【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.【解答】解:过点P作PE⊥BC于E,∵AB∥CD,PA⊥AB,∴PD⊥CD,∵BP和CP分别平分∠ABC和∠DCB,∴PA=PE,PD=PE,∴PE=PA=PD,∵PA+PD=AD=8,∴PA=PD=4,∴PE=4.故答案为:4【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.17.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54元钱,比平时多买了3个,则平时每个粽子卖 2 元.【分析】设平时每个粽子卖x元,根据题意列出分式方程,解之并检验得出结论.【解答】解:设平时每个粽子卖x元.根据题意得:解得:x=2经检验x=2是分式方程的解故答案为2元【点评】本题考查了分式方程的应用,解题的关键是找准等量关系,列出分式方程.18.如图,在△ABC中,∠BAC=90°,AB=4,AC=6,点D、E分别是BC、AD的中点,AF∥BC交CE的延长线于F.则四边形AFBD的面积为12 .【分析】由于AF∥BC,从而易证△AEF≌△DEC(AAS),所以AF=CD,从而可证四边形AFBD是平行四边形,所以S=2S△ABD,又因为BD=DC,所以S△ABC=2S△ABD,所四边形AFBD以S四边形AFBD=S△ABC,从而求出答案.【解答】解:∵AF∥BC,∴∠AFC=∠FCD,在△AEF与△DEC中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形,∴S四边形AFBD=2S△ABD,又∵BD=DC,∴S△ABC=2S△ABD,∴S四边形AFBD=S△ABC,∵∠BAC=90°,AB=4,AC=6,∴S△ABC=AB•AC=×4×6=12,∴S四边形AFBD=12.故答案为:12【点评】本题考查平行四边形的性质与判定,涉及全等三角形的判定与性质,平行四边形的判定与性质,勾股定理等知识,综合程度较高.三、(本大题共3个题,其中第19题8分,第20,21题各5分,共18分)19.(1)解不等式组:,并把解集在数轴上表示出来.(2)解方程:=﹣1.【分析】(1)分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,表示在数轴上即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)由①得:x<﹣1,由②得:x≤2,∴不等式组的解集为x<﹣1,解集表示在数轴上为:;(2)分式方程去分母得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,经检验x=2是分式方程的解.【点评】此题考查了解分式方程,解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.先化简,再求值:(1+)÷,其中x=﹣5.【分析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=•=•=,当x=﹣5时,原式==.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式混合运算顺序和运算法则.21.如图,在△ABC中,AD平分∠BAC交BC于D,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若DC=4,∠DAC=30°,求AD的长.【分析】(1)根据角平分线的性质得到DE=DF,证明Rt△BDE≌Rt△CDF,根据全等三角形的性质得到∠B=∠C,根据等腰三角形的判定定理证明;(2)根据直角三角形的性质求出AC,根据勾股定理计算即可.【解答】(1)证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF,∴∠B=∠C,∴AB=AC;(2)解:∵AD平分∠BAC,BD=CD,∴AD⊥BC,∵∠DAC=30°,∴AC=2DC=8,∴AD==4.【点评】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.四、(本大题共2个小题,每小题5分,共10分)22.利用对称性可以设计美丽的图案,在边长为1的正方形方格纸中,有如图所示的四边形(顶点都在格点上).(1)先作出该四边形关于直线l成轴对称的图形,再作出上面所作的图形连同原四边形绕点O 按顺时针方向旋转90°后的图形;(2)完成上述设计后,求出整个图案的面积.【分析】(1)直接利用旋转变换以及轴对称变换得出对应点位置进而得出答案.【解答】解:(1)如图所示:(2)一个四边形面积为:×5×1×2=5,整个图案面积为:5×4=20.【点评】此题主要考查了利用旋转设计图案以及利用轴对称设计图案,正确得出对应点位置是解题关键.23.甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【解答】解:(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:1.5×=,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路=15﹣1.5a(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.【点评】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.五、(本大题共2个小题,第24题5分,第25题6分,共11分)24.如图,点O是△ABC内一点,连接OB,OC,并将AB,OB,OC,AC的中点D,E,F,G依次连接得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若OB⊥OC,∠EOM和∠OCB互余,OM=3,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可.(2)想办法证明OM=MF=ME即可解决问题.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵OB⊥OC,∴∠BOC=90°,∵∠EOM+∠COM=90°,∠EOM+∠OCB=90°,∴∠COM=∠OCB,∵EF∥BC,∴∠OFE=∠OCB,∴∠MOF=∠MFO,∴OM=MF,∵∠OEM+∠OFM=90°,∠EOM+∠MOF=90°,∴∠EOM=∠MEO,∴OM=EM,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】本题考查平行四边形的判定与性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG是平行四边形.25.“五•一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以下信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)请你帮助小明计算并选择哪个出游方案合算.【分析】(1)根据函数图象中的信息,分别运用待定系数法,求得y1,y2关于x的函数表达式即可;(2)当y1=y2时,15x+80=30x,当y1>y2时,15x+80>30x,当y1<y2时,15x+80<30x,分求得x的取值范围即可得出方案.【解答】解:(1)设y1=k1x+80,把点(1,95)代入,可得95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,选择甲乙公司一样合算;当租车时间小于小时,选择乙公司合算;当租车时间大于小时,选择甲公司合算.【点评】本题主要考查了一次函数的应用,解题时注意:求正比例函数y=kx,只要一对x,y 的值;而求一次函数y=kx+b,则需要两组x,y的值.六、(本大题共1个小题,共7分)26.如图,在▱ABCD中,AB⊥AC,对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转一个角度α(0°<α≤90°),分别交线段BC,AD于点E,F,连接BF.(1)如图1,在旋转的过程中,求证:OE=OF;(2)如图2,当旋转至90°时,判断四边形ABEF的形状,并证明你的结论;(3)若AB=1,BC=,且BF=DF,求旋转角度α的大小.【分析】(1)由平行四边形的性质得出∠OAF=∠AOF,OA=OC,进而判断出△AOF≌△COE,即可得出结论;(2)先判断出∠BAC=∠AOF,得出AB∥EF,即可得出结论;(3)先求出AC=2,进而得出A=1=AB,即可判断出△ABO是等腰直角三角形,进一步判断出△BFD是等腰三角形,利用等腰三角形的三线合一得出∠BOF=90°,即可得出结论.【解答】(1)证明:在▱ABCD中,AD∥BC,∴∠OAF=∠OCE,∵OA=OC,∠AOF=∠COE,∴△AOF≌△COE(ASA),∴OE=OF;(2)解:当旋转角为90°时,四边形ABEF是平行四边形,理由:∵AB⊥AC,∴∠BAC=90°,∵∠AOF=90°,∴∠BAC=∠AOF,∴AB∥EF,∵AF∥BE,∴四边形ABEF是平行四边形;(3)解:在Rt△ABC中,AB=1,BC=,∴AC==2,∴OA=1=AB,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵BF=DF,∴△BFD是等腰三角形,∵四边形ABCD是平行四边形,∴OB=OD,∴OF⊥BD(等腰三角形底边上的中线是底边上的高),∴∠BOF=90°,∴∠α=∠AOF=∠BOF﹣∠AOB=45°.【点评】此题是四边形综合题,主要考查了平行四边形的性质和判定,全等三角形的判定和性质,等腰三角形的判定和性质,等腰直角三角形的性质,旋转的性质,判断出△ABO是等腰直角三角形是解本题的关键.。
2019-2020学年广东省中山市八年级(上)期末数学试卷含答案
2019-2020学年广东省中山市八年级(上)期末数学试卷一、选择题(本大题10题,每小题3分,共30分)1.(3分)下列四个手机APP 图标中,是轴对称图形的是( )A .B .C .D .2.(3分)已知某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为( ) A .1.52×10﹣5米 B .﹣1.52×105米 C .152×105米D .1.52×10﹣4米3.(3分)下列等式成立的是( ) A .x 2+x 3=x 5 B .(a ﹣b )2=a 2﹣b 2C .(x 2)3=x 6D .(﹣1)0=﹣14.(3分)点A (2,﹣1)关于y 轴对称的点的坐标是( ) A .(2,1) B .(﹣2,﹣1) C .(﹣1,2)D .(﹣2,1)5.(3分)若分式,则( ) A .x ≠0B .x =2C .x =0D .x =0或x =26.(3分)下列因式分解正确的是( ) A .x 2+y 2 =(x +y )2B .x 4﹣y 4 =(x 2+y 2)(x 2﹣y 2)C .﹣3a +12=﹣3(a ﹣4)D .a 2+7a ﹣8=a (a +7)﹣87.(3分)一边长为3,另一边长为6的等腰三角形的周长是( ) A .12 B .15 C .12或15D .98.(3分)已知,则的值为( )A .6B .﹣6C .D .﹣ 9.(3分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,AB =6cm ,DE =4cm ,S △ABC =30cm 2,则AC 的长为( )A .10cmB .9cmC .4.5cmD .3cm10.(3分)如图,Rt △ACB 中,∠ACB =90°,∠A =60°,CD 、CE 分别是△ABC 的高和中线,下列说法错误的是( )A .AD =AB B .S △CEB =S △ACEC .AC 、BC 的垂直平分线都经过ED .图中只有一个等腰三角形二、填空题(本大题7题,每小题4分,共28分) 11.(4分)(﹣2a 2)3÷a 2= .12.(4分)如图,在△ABC 中,D 是BC 延长线上一点,∠A =68°,∠B =65°,则∠ACD = .13.(4分)如图,BC =EF ,AC ∥DF ,请你添加一个适当的条件,使得△ABC ≌△DEF , .(只需填一个答案即可)14.(4分)方程的解x = .15.(4分)已知ab=﹣3,a+b=5,则10+a2b+ab2= .16.(4分)关于x的分式方程的解为正数,则m的取值范围是 .17.(4分)如图,∠AOB=30°,点P是∠AOB内任意一点,且OP=7,点E和点F分别是射线OA和射线OB上的动点,则△PEF周长的最小值是 .三、解答题(一)(本大题3题,每小题6分,共18分)18.(6分)计算:(2x﹣1)2﹣x(4x﹣1)19.(6分)先化简,再求值:,其中a=﹣1.20.(6分)如图,已知△ABC中,∠BAC=23°,∠BCA=125°.(1)尺规作图:作AC的垂直平分线,交BC的延长线于点D;(不写作法,保留作图痕迹)(2)连接AD,求∠BAD的度数.四、解答题(二)(本大题3题,每小题8分,共24分)21.(8分)如图,已知△ABC≌△DEF,BG、EH分别是△ABC和△DEF的中线,求证:BG=EH.22.(8分)如图,△ABC中,AE=BE,∠AED=∠ABC.(1)求证:BD平分∠ABC;(2)若AB=CB,∠AED=4∠EAD,求∠C的度数.23.(8分)某商家用1000元购进一批多肉盆栽,很快售完,接着又用了1600元购进第二批多肉盆栽,且数量是第一批的1.2倍,已知第一批盆栽的单价比第二批的单价少3元,问这两批多肉盆栽的单价各是多少元?五、解答题(三)(本大题2题,每小题10分,共20分)24.(10分)如图,在△ABC中,∠ACB=90°,AC=BC,D为BC边的中点,BE⊥AB交AD的延长线于点E,CF平分∠ACB交AD于点F,连接CE.求证:(1)点D是EF的中点;(2)△CEF是等腰三角形.25.(10分)已知△ABC中,∠B=60°,点D是AB边上的动点,过点D作DE∥BC交AC于点E,将△ADE沿DE折叠,点A对应点为F点.(1)如图1,当点F恰好落在BC边上,求证:△BDF是等边三角形;(2)如图2,当点F恰好落在△ABC内,且DF的延长线恰好经过点C,CF=EF,求∠A的大小;(3)如图3,当点F恰好落在△ABC外,DF交BC于点G,连接BF,若BF⊥AB,AB =9,求BG的长.2019-2020学年广东省中山市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题10题,每小题3分,共30分)1.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:B.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:某细菌直径长的0.0000152米,那么该细菌的直径长用科学记数法可表示为1.52×10﹣5米.故选:A.3.【分析】根据幂的乘方与积的乘方,完全平方公式的应用,以及零指数幂的运算方法,逐项判断即可.【解答】解:∵x2+x3≠x5,∴选项A不符合题意;∵(a﹣b)2=a2﹣2ab+b2,∴选项B不符合题意;∵(x2)3=x6,∴选项C符合题意;∵(﹣1)0=1,∴选项D不符合题意.故选:C.4.【分析】根据关于y轴对称的点的纵坐标相等,横坐标互为相反数,可得答案.【解答】解:A(2,﹣1)关于y轴对称的点的坐标是(﹣2,﹣1),故选:B.5.【分析】直接利用分式的值为零则分子为零进而得出答案.【解答】解:分式,则x=0.故选:C.6.【分析】根据十字相乘法,提公因式法,以及公式法在因式分解中的应用,逐项判断即可.【解答】解:∵x2+y2 ≠(x+y)2,∴选项A不符合题意;∵x4﹣y4 =(x2+y2)(x+y)(x﹣y),∴选项B不符合题意;∵﹣3a+12=﹣3(a﹣4),∴选项C符合题意;∵a2+7a﹣8=(a+8)(a﹣1),∴选项D不符合题意.故选:C.7.【分析】因为已知长度为3和6两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当3为底时,其它两边都为6,3、6、6可以构成三角形,周长为15;②当3为腰时,其它两边为3和6,∵3+3=6∴不能构成三角形,故舍去.∴这个等腰三角形的周长为15.故选:B.8.【分析】根据已知条件可得=6,进而可得m﹣n=﹣6mn,然后再代入可得答案.【解答】解:∵,∴=6,n﹣m=6mn,∴m﹣n=﹣6mn,∴==﹣,故选:D.9.【分析】过点D作DF⊥AC于F,然后利用△ABC的面积公式列式计算即可得解.【解答】解:过点D作DF⊥AC于F,∵AD是△ABC的角平分线,DE⊥AB,∴DE=DF=4,∵AB=6,∴S△ABC=×6×4+AC×4=30,解得AC=9;故选:B.10.【分析】根据等腰三角形的判定和性质和直角三角形的性质即可得到结论.【解答】解:∵∠ACB=90°,AD⊥AB,∠A=60°,∴∠ACD=∠B=30°,∴AC=,AD=AC,∴AD=AB;故A正确;∵CE是△ABC的中线,∴S△BCE=S△ACE,故B正确,∵CE=AE=BE=AB,∴AC、BC的垂直平分线都经过E,故C正确;∴△ACE和△BCE是等腰三角形,故D错误;故选:D.二、填空题(本大题7题,每小题4分,共28分)11.【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案.【解答】解:原式=﹣8a6÷a2=﹣8a4.故答案为:﹣8a4.12.【分析】根据三角形的一个外角等于和它不相邻的两个内角的和计算.【解答】解:∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=68°+65°=133°,故答案为:133°.13.【分析】根据全等三角形的判定方法解决问题即可.【解答】解:∵AC∥DF,∴∠ACB=∠F,∵BC=EF,∴添加AC=DF或∠A=∠D或∠B=∠DEF即可证明△ABC≌△DEF,故答案为AC=DF或∠A=∠D或∠B=∠DEF.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x﹣x2+4=3x+6,解得:x=﹣,经检验x=﹣是分式方程的解,故答案为:﹣15.【分析】直接提取公因式ab,将原式变形进而求出答案.【解答】解:∵ab=﹣3,a+b=5,∴10+a2b+ab2=10+ab(b+a)=10﹣3×5=﹣5.故答案为:﹣5.16.【分析】方程两边同乘以x﹣1,化为整数方程,求得x,再列不等式得出m的取值范围.【解答】解:方程两边同乘以x﹣1,得,m﹣3=x﹣1,解得x=m﹣2,∵分式方程的解为正数,∴x=m﹣2>0且x﹣1≠0,即m﹣2>0且m﹣2﹣1≠0,∴m>2且m≠3,故答案为m>2且m≠3.17.【分析】设点P关于OA的对称点为C,关于OB的对称点为D,当点F、E在CD上时,△PEF的周长最小.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=5cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7cm.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.18.【分析】根据完全平方公式和单项式乘以多项式的法则计算即可.【解答】解:(2x﹣1)2﹣x(4x﹣1)=4x2﹣4x+1﹣4x2+x=﹣3x+1.19.【分析】首先计算括号里面分式的减法,然后再计算括号外的除法,化简后,再把a的值代入即可.【解答】解:原式=(﹣),=,=•,=﹣,当a=﹣1时,原式=﹣2.20.【分析】(1)直接利用线段垂直平分线的作法得出AC的垂直平分线,进而得出答案;(2)利用线段垂直平分线的性质得出AD=DC,进而得出∠ACD=∠CAD=55°,即可得出答案.【解答】解:(1)如图所示:D点即为所求;(2)∵∠BCA=125°,∴∠ACD=55°,∵ED垂直平分线AC,∴DC=AD,∴∠ACD=∠CAD=55°,∵∠BAC=23°,∴∠BAD=23°+55°=78°.21.【分析】根据全等三角形的性质得到BC=EF,AC=DF,∠C=∠F,证明△BCG≌△EFH,根据全等三角形的性质证明结论.【解答】证明:∵△ABC≌△DEF,∴BC=EF,AC=DF,∠C=∠F,∵BG、EH分别是△ABC和△DEF的中线,∴CG=AC,FH=DF,∴CG=FH,在△BCG和△EFH中,,∴△BCG≌△EFH(SAS)∴BG=EH.22.【分析】(1)要证明BD平分∠ABC,只要证明∠DBC=∠ABE即可,根据题目中的条件和三角形外角和内角的关系,可以证明∠DBC=∠ABE,从而可以证明结论成立;(2)根据(1)中的结论和题意,利用三角形内角和可以求得∠C的度数.【解答】(1)证明:∵∠AED=∠ABC,∠AED=∠ABE+∠EAB,∠ABC=∠ABE+∠DBC,∴∠EAB=∠DBC,∵AE=BE,∴∠EAB=∠ABE,∴∠DBC=∠ABE,∴BD平分∠ABC;(2)设∠EAD=x,则∠AED=4x,∵∠AED=∠ABE+∠EAB,∠EAB=∠ABE,BD平分∠ABC,∴∠BAE=2x,∠ABC=4x,∴∠BAC=3x,∵AB=CB,∴∠BAC=∠C,∴∠C=3x,∵∠ABC+∠BAC+∠C﹣180°,∴4x+3x+3x=180°,解得,x=18°,∴∠C=3x=54°,即∠C的度数是54°.23.【分析】首先设第一批单价为x元,则第二批单价为(x+3)元,根据题意可得等量关系:进一批的数量×1.2=第二批的数量,根据等量关系列出方程,再解即可.【解答】解:设第一批单价为x元,则第二批单价为(x+3)元,由题意得:×1.2=,解得:x=9,经检验:x=9是分式方程的解,x+3=9+3=12,答:第一批单价为9元,则第二批单价为12元.五、解答题(三)(本大题2题,每小题10分,共20分)24.【分析】(1)根据ASA证明△CDF≌△BDE,即可得出DF=DE;(2)由(1)中的全等得:CF=BE,判定△ACF≌△CBE,得到∠CAF=∠BCE,根据三角形外角的性质和等腰三角形的判定可得结论.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵EB⊥AB,∴∠ABE=90°,∴∠CBE=45°,∵CF平分∠ACB,∴∠DCF=45°=∠CBE,在△CDF和△BDE中,∵,∴△CDF≌△BDE(ASA),∴DF=DE,∴点D是EF的中点;(2)由(1)知△CDF≌△BDE,∴CF=BE,在△ACF和△CBE中,∵,∴△ACF≌△CBE(SAS),∴∠CAF=∠BCE,∵∠CFE=∠CAF+∠ACF,∠ECF=∠BCF+∠BCE,∠ACF=∠BCF,∴∠CFE=∠ECF,∴EC=EF,∴△CEF是等腰三角形.25.【分析】(1)利用平行线的性质得出∠ADE=60°,再利用翻折变换的性质得出∠ADE =∠EDF=60°,进而得出∠BDF=60°,即可得出结论;(2)由折叠的性质得出∠ADE=∠FDE=60°,∠A=∠DFE,得出∠ADC=120°,由等腰三角形的性质得出∠FEC=∠FCE,设∠FEC=∠FCE=x,由三角形的外角性质得出∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,由三角形内角和定理得出方程,解方程即可;(3)同(1)得出△BDG是等边三角形,∠ADE=∠B=60°,得出BG=BD,由折叠的性质得出AD=FD,由直角三角形的性质得出FD=2BD,得出AD=2BD,由已知得出2BD+BD=9,求出BD=3,即可得出BG=BD=3.【解答】(1)证明:如图1,∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∴∠BDF=60°,∴∠DFB=60°=∠B=∠BDF,∴△BDF是等边三角形;(2)解:∵∠B=60°,DE∥BC,∴∠ADE=∠B=60°,∵△ADE沿DE折叠,点A对应点为F点,∴∠ADE=∠FDE=60°,∠A=∠DFE,∴∠ADC=120°,∵CF=EF,∴∠FEC=∠FCE,设∠FEC=∠FCE=x,则∠A=∠DFE=∠FEC+∠FCE=2x,在△ADC中,∠A+∠ACD+∠ADC=180°,即2x+x+120°=180°,解得:x=20°,∴∠A=2x=40°;(3)解:同(1)得:∠BDF=60°,△BDG是等边三角形,∠ADE=∠B=60°,∴BG=BD,由折叠的性质得:AD=FD,∵BF⊥AB,∴∠BFD=90°﹣60°=30°,∴FD=2BD,∴AD=2BD,∵AD+BD=AB,∴2BD+BD=9,∴BD=3,∴BG=BD=3.。
2019-2020学年安徽省六安市霍邱县八年级下学期期末数学试卷 (解析版)
2019-2020学年安徽六安市霍邱县八年级第二学期期末数学试卷一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣22.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1 4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.95.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3 6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.57.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,78.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=120009.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是.12.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于.三、解答题(本大题共有9小题,共计90分)15.计算:.16.解方程:x2﹣6x﹣4=0.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为,BC的长为.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明其正确性.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.参考答案一、选择题(共10小题).1.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】二次根式有意义,被开方数是非负数.解:依题意,得x﹣2≥0,解得,x≥2.故选:A.2.下列运算正确的是()A.=﹣2B.(2)2=6C.+=D.×=【分析】根据二次根式的性质以及二次根式加法,乘法及乘方运算法则计算即可.解:A:=2,故本选项错误;B:=12,故本选项错误;C:与不是同类二次根式,不能合并,故本选项错误;D:根据二次根式乘法运算的法则知本选项正确.故选:D.3.用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17B.(x﹣3)2=14C.(x﹣6)2=44D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.4.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A.6B.7C.8D.9【分析】根据多边形的内角和公式及外角的特征计算.解:多边形的外角和是360°,根据题意得:180°•(n﹣2)=3×360°解得n=8.故选:C.5.一个三角形三个内角之比为1:2:3,其所对三边之比为()A.1:2:3B.1::C.1::2D.1::3【分析】求出三角形的各个内角,利用直角三角形30度角的性质解决问题即可.解:设△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,∴∠A=30°,∠B=60°,∠C=90°,设BC=a,则AB=2a,AC=a,∴BC:AC:AB=1::2,故选:C.6.如图,矩形ABCD的对角线AC=10,∠BOC=120°,则AB的长度是()A.5B.6C.8D.5【分析】由矩形的性质得出OA=OB=4,证明△AOB是等边三角形,得出AB=OA即可.解:∵四边形ABCD是矩形,∴OA=AC=5,OB=OD,AC=BD=10,∴OA=OB=5,∵∠BOC=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=5;故选:A.7.一组数据4,5,6,7,7,8的中位数和众数分别是()A.7,7B.7,6.5C.5.5,7D.6.5,7【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解:在这一组数据中7是出现次数最多的,故众数是7,而将这组数据从小到大的顺序排列后,处于中间位置的数是6,7,那么由中位数的定义可知,这组数据的中位数是(6+7)÷2=6.5.故选:D.8.为执行“均衡教育“政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是()A.2500(1+2x)=12000B.2500(1+x)2=1200C.2500+2500(1+x)+2500(1+2x)=12000D.2500+2500(1+x)+2500(1+x)2=12000【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.解:设每年投入教育经费的年平均增长百分率为x,由题意得,2500+2500×(1+x)+2500(1+x)2=12000.故选:D.9.下列命题正确的是()A.一组对边相等,另一组对边平行的四边形一定是平行四边形B.对角线相等的四边形一定是矩形C.两条对角线互相垂直的四边形一定是菱形D.两条对角线相等且互相垂直平分的四边形一定是正方形【分析】A、一组对边相等,另一组对边平行的四边形不一定为平行四边形,例如等腰梯形满足一组对边相等,另一组对边平行,但不是平行四边形;B、对角线相等的四边形不一定为矩形,例题等腰梯形的对角线相等,但不是矩形,应改为对角线相等的平行四边形为矩形;C、对角线互相垂直的四边形不一定为菱形,例如:画出图形,如图所示,AC与BD垂直,但是显然ABCD不是菱形,应改为对角线互相垂直的平行四边形是菱形;D、两条对角线相等且互相垂直平分的四边形是正方形,根据题意画出相应的图形,如图所示,根据对角线互相平分,得到四边形为平行四边形,再由平行四边形的对角线相等,得到平行四边形为矩形,最后根据矩形的对角线互相垂直得到矩形为正方形.解:A、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如等腰梯形,一组对边平行,另一组对边相等,不是平行四边形,故本选项为假命题;B、对角线相等的四边形不一定是矩形,例如等腰梯形对角线相等,但不是矩形,故本选项为假命题;C、两条对角线互相垂直的四边形不一定是菱形,如图所示:AC⊥BD,但四边形ABCD不是菱形,本选项为假命题;D、两条对角线相等且互相垂直平分的四边形是正方形,已知:四边形ABCD,AC=BD,AC⊥BD,OA=OC,OB=OD,求证:四边形ABCD为正方形,证明:∵OA=OC,OB=OD,∴四边形为平行四边形,又AC=BD,∴四边形ABCD为矩形,∵AC⊥BD,∴四边形ABCD为正方形,则本选项为真命题,故选:D.10.如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为()A.4B.4C.10D.8【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB==4,再由勾股定理求出AC即可.解:连接AE,如图:∵EF是AC的垂直平分线,∴OA=OC,AE=CE,∵四边形ABCD是矩形,∴∠B=90°,AD∥BC,∴∠OAF=∠OCE,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE=5,∴AE=CE=5,BC=BE+CE=3+5=8,∴AB===4,∴AC===4;故选:A.二、填空题(本大题共有4小题,每小题5分,共计20分)11.计算÷的结果是3.【分析】根据二次根式的性质把化简,再根据二次根式的性质计算即可.解:.故答案为:312.已知x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,则m的值是4.【分析】根据方程的系数结合两根之和等于3,即可得出关于m的一元一次方程,解之即可得出m的值.解:∵x1,x2是关于x的方程x2﹣(m﹣1)x﹣m=0的两个根,且x1+x2=3,∴m﹣1=3,∴m=4.故答案为:4.13.四边形具有不稳定性.如图,矩形ABCD按箭头方向变形成平行四边形A'B'C'D',变形后∠A'=30°,若矩形ABCD的面积是9,则平行四边形A'B'C'D'的面积是【分析】根据30°角所对的直角边等于斜边的一半,可知平行四边形的高等于矩形的宽的一半,由于底不变,所以平行四边形A'B'C'D'的面积是矩形面积的一半.解:由题意可知,平行四边形A'B'C'D'的底边A'D'与矩形的长AD相等,平行四边形A'B'C'D'的高变为矩形的宽的一半,所以平行四边形A'B'C'D'的面积是矩形面积的一半.所以平行四边形A'B'C'D'的面积是.故答案为:.14.如图,Rt△ABC中,∠ACB=90°,AC=12,BC=5,延长BC至点D,连接AD,若△ABD是以AD为其中一腰的等腰三角形,则线段DC的长等于5或.【分析】先利用勾股定理求出AB的长,再分①AD=AB;②AD=BD两种情况进行讨论即可得出结论.解:∵Rt△ABC中,∠ACB=90°,AC=12,BC=5,∴AB===13.∵△ABD是以AD为其中一腰的等腰三角形,∴分两种情况:①当AD=AB时,∵AC⊥BD,∴DC=BC=5;②当AD=BD时,设DC=x,则AD=BD=5+x.∵Rt△ADC中,∠ACD=90°,∴DC2+AC2=AD2,即x2+122=(5+x)2,解得x=.综上所述,线段DC的长等于5或.故答案为:5或.三、解答题(本大题共有9小题,共计90分)15.计算:.【分析】首先利用乘法分配律计算乘法,然后化简,再算加减即可.解:原式=+﹣4=2+﹣4=﹣2+.16.解方程:x2﹣6x﹣4=0.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.解:移项得x2﹣6x=4,配方得x2﹣6x+9=4+9,即(x﹣3)2=13,开方得x﹣3=±,∴x1=3+,x2=3﹣.17.已知:如图,E,F为▱ABCD对角线AC上的两点,且AE=CF,连接BE,DF,求证:BE=DF.【分析】证明△AEB≌△CFD,即可得出结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC.∴∠BAE=∠DCF.在△AEB和△CFD中,,∴△AEB≌△CFD(SAS).∴BE=DF.18.已知关于x的方程x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,化简:.【分析】首先利用根的判别式确定m的取值范围,再化简二次根式,利用绝对值的性质计算即可.解:∵x2+2(m﹣1)x+m2+5=0有两个不相等的实数根,∴△=4(m﹣1)2﹣4(m2+5)≥0,即﹣8m﹣16≥0,解得:m<﹣2,则=|1﹣m|+|m+2|=1﹣m﹣m﹣2=﹣2m﹣1.19.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点都在网格交点上,请按要求完成下列各题.(1)线段AB的长为5,BC的长为2.(2)点D也在格点上,且以A,B,C,D为顶点的四边形是平行四边形.请在网格图中画出一个符合条件的平行四边形;(3)设(2)中你所画的平行四边形的面积为S,请通过计算说明;S=AC•BC.【分析】(1)利用勾股定理计算即可.(2)根据平行四边形的判定画出图形即可.(3)利用勾股定理的逆定理证明解:(1)由题意,AB==5,BC==2,故答案为5,.(2)如图所示.(3)由勾股定理得,又∵AB=5,,∴AC2+BC2=AB2,∴∠ACB=90°,由勾股定理逆定理得△ACB为以AC和BC为直角边的直角三角形,∵,又∵所作的平行四边形的面积为△ACB面积的两倍,∴S=AC•BC.20.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,…按照以上规律,解决下列问题:(1)写出第5个等式:5+1;(2)写出你猜想的第n个等式:(+1)(n+1﹣)=n+1(用含n的等式表示),并证明其正确性.【分析】(1)根据所给等式可得答案;(2)首先写出第n个等式,然后再利用二次根式的乘法进行计算即可.【解答】(1)解:(+1)(6﹣)=5+1,故答案为:5+1;(2)(+1)(n+1﹣)=n+1,证明:∵=∴,故答案为:(+1)(n+1﹣)=n+1.21.某校初二学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):′1号2号3号4号5号总分甲班1009811089103500乙班891009511997500经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.请你回答下列问题:(1)计算两班的优秀率;(2)求两班比赛数据的中位数;(3)计算两班比赛数据的方差哪一个小?(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.方差的公式为.【分析】(1)优秀率等于100分以上(含100分)的人数除以总人数;(2)按大小顺序排列,中间一个数或两个数的平均数为中位数;(3)由方差的公式进行计算即可;(4)根据比赛成绩的优秀率高,中位数大,方差小,综合评定,则甲班踢毽子水平较好.解:(1)甲班的优秀率为:3÷5=0.6=60%,乙班的优秀率为:2÷5=0.4=40%;(2)甲班5名学生比赛成绩的中位数是100个乙班5名学生比赛成绩的中位数是97个;(3)甲班的平均分为,乙班的平均分为==100,甲班在这次比赛中的方差为:,乙班在这次比赛中的方差为:∴S甲2<S乙2;(4)甲班定为冠军.因为甲班5名学生的比赛成绩的优秀率比乙班高,中位数比乙班大,方差比乙班小,综合评定甲班踢毽子水平较好.22.“疫情”期间,李晨在家制作一种工艺品,并通过网络平台进行线上销售.经过一段时间后发现:当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,设该商品的售价为x元/件(20≤x≤40).(1)请用含售价x(元/件)的代数式表示每天能售出该工艺品的件数;(2)已知每件工艺品需要20元成本,每天销售该工艺品的纯利润为900元.①求该商品的售价;②为了支持“抗疫”行动,李晨决定每销售一件该工艺品便通过网络平台自动向某救助基金会捐款0.5元,求李晨每天通过销售该工艺品面捐款的数额.【分析】(1)由该商品的售价结合售价每降低1元就会多售出3件,即可得出每天售出该工艺品的件数;(2)①根据总利润=每件工艺品的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;②根据每天通过销售该工艺品面捐款的数额=0.5×每天销售的数量,即可得出结论.解:(1)∵该商品的售价为x元/件(20≤x≤40),且当售价是40元/件时,每天可售出该商品60件,且售价每降低1元,就会多售出3件,∴每天能售出该工艺品的件数为60+3(40﹣x)=(180﹣3x)件.(2)①依题意,得:(x﹣20)(180﹣3x)=900,整理,得:x2﹣80x+1500=0,解得:x1=30,x2=50(不合题意,舍去).答:该商品的售价为30元/件.②0.5×(180﹣3×30)=45(元).答:李晨每天通过销售该工艺品面捐款的数额为45元.23.我们给出如下定义:把对角线相等的四边形叫做“对等四边形”.如图①,在四边形ABCD中,AC=BD,四边形ABCD就是“对等四边形”.(1)下列四边形中,一定是“对等四边形”的是②(填序号)①平行四边形②矩形③菱形④梯形(2)如图②,在“对等四边形”ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,求证:四边形EFGH是菱形.(3)在(2)的条件下,若四边形EFGH也是“对等四边形”,且对角线长为2,求四边形ABCD的面积.【分析】(1)由矩形的性质可求解;(2)由三角形中位线定理可得EH=BD=FG,EF=AC=GH,由“对等四边形”的性质可得AC=BD,可得EH=FG=EF=GH,可得结论;(3)先证四边形EFGH是正方形,边长为,可得EF⊥FG,EF=FG=,由三角形中位线定理解得BD⊥AC,BD=AC=,可求解.解:(1)∵矩形的对角线相等,∴矩形一定是“对等四边形”,故答案为:②;(2)证明:连接AC、BD,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴EH=BD=FG,EF=AC=GH,∵四边形ABCD是“对等四边形”,∴AC=BD,∴EH=FG=EF=GH,∴四边形EFGH是菱形;(3)连接EG,HF,∵四边形EFGH是菱形,∴GE与HF互相垂直平分,又∵四边形EFGH是“对等四边形”,且对角线长为2,∴GE=HF=2,∴四边形EFGH是正方形,边长为,∴EF⊥FG,EF=FG=,∵点E,F,G,H分别为边AB,BC,CD,DA的中点,∴FG∥BD,FG=BD,EF∥AC,EF=AC,∴BD⊥AC,BD=AC=,∴四边形ABCD的面积等于AC×BD=4.。
2019-2020学年北京市平谷区初二第一学期期末数学试卷(含答案)
平谷区2019—2020学年度第一学期期末质量监控试卷初 二数 学 2020年1月一、选择题(本题共16分,每小题2分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.4的平方根A .2±B .2C .-2D .16 2.下面是一些北京著名建筑物的简笔画,其中不是..轴对称图形的是A .B .C .D .3.下列实数中,是有理数的是A . 2B .πC .227 D .0.131131113…4.已知如图DC ∥EG ,∠C=40°,∠A=70°,则∠AFE 的度数为A.140°B. 110°C. 90°D.30°5. 下列二次根式中,与5是同类二次根式的是A . 25B .51C .10D .50 6. 如图,△ABC 是等边三角形,AB =2, AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE+PC 的最小值为 A . 1 B.2 C.3 D. 327.下列等式成立的是A .1-=--y x x yB .n m n a m a =--C .428x x x = D .22x y x y x y+=++PEDCBA如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作弧DE ,交射线OB 于点F ,连接CF ;(2)以点F 为圆心,CF 长为半径作弧,交弧DE 于点G ; (3)连接FG ,CG .作射线OG .根据以上作图过程及所作图形,下列结论中错误的是 A.∠BOG =∠AOB B.若 CG=OC 则∠AOB=30°C.OF 垂直平分CGD.CG=2FG二、填空题(本题共16分,每小题题2分)9.若分式2xx -有意义,则x 的取值范围是 .10. 若,则 = .11.如图,已知△ABC ,通过测量、计算得△ABC 的面积约为______cm 2.(结果保留一位小数)12.化简:=-2)3(π .13.已知:如图,AE 与BD 相交于点C ,BC=CE,请添加一个条件 ,使得△ABC ≌△DEC .14.对于两个非零的实数a ,b , 定义运算※如下:a ※11b ba=-.例如:3※4. 若x ※y=2,则yx xy-的值为________________________. 15.某小组计划在本周的一个下午借用A 、B 、C 三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A 、B 、C 三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:通过调查,本次彩排安排在星期 的下午找到空教室的可能性最大.第10题图CBAD18.计算:308-32201912+-+-.19.如图,已知∠AOB ,作∠AOB 的平分线OC ,将直角尺DEMN 如图所示摆放,使EM 边与OB 边重合,顶点D 落在OA 边上,DN 边与OC 交于点P. (1) 猜想△DOP 是_______三角形; (2) 补全下面证明过程:∵OC 平分∠AOB ∴______=______ ∵DN ∥EM∴______=______ ∴______=______ ∴______=______20.计算:261.39a a ++-21.计算:()()()2152323-++-.22. 解分式方程:0132=--x x23.已知:如图,点A ,F ,C ,D 在同一直线上,AB=DE ,AB ∥DE ,BC ∥EF ,求证:BC =EF .24.已知012=--a a ,求代数式321a (1)121a a a -÷+++的值.25.已知:如图, CB=CD ,分别过点B 和点D 作AB ⊥BC , AD ⊥DC ,两垂线相交于点A 。
江苏省扬州市仪征市2019-2020学年八年级上学期期末数学试题(解析版)
2019-2020 年度第一学期期末调研试题八年级数学一、选择题1.下列大学的校徽图案是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选:B .【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2.在下列各数中,无理数是( )B. 3πC. 227 【答案】B【解析】【分析】根据无理数的定义进行判断即可.,2273π是无理数,故选B.【点睛】本题主要考查无理数的定义,无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.3.下列四组线段中,可以构成直角三角形的是()A. 2,3,4B. 3,4,5C. 4,5,6D. 1,,3【答案】B【解析】【分析】根据勾股定理逆定理进行分析.【详解】A. 22+32≠42,,,构成直角三角形;B. 32+42=52 ,可以构成直角三角形;C. 42+52≠62,,,构成直角三角形;D. 122≠32,,,构成直角三角形.故选B【点睛】本题考核知识点:勾股定理逆定理.解题关键点:熟记勾股定理逆定理.4.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画了一个与书上完全一样的三角形,那么亮亮画图的依据是()A. SSSB. SASC. ASAD. AAS【答案】C【解析】【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【详解】根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C .【点睛】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.5.在2(1)1y k x k =++-中,若y 是x 的正比例函数,则k 值为( )A. 1B. 1-C. ±1D. 无法确定【答案】A【解析】【分析】 先根据正比例函数的定义列出关于k 的方程组,求出k 的值即可.【详解】Q 函数()2y k 1x k 1=++-是正比例函数, 210k 10k +≠⎧∴⎨-=⎩, 解得k 1=,故选A .【点睛】本题考查的是正比例函数的定义,正确把握“形如(0)=y kx k =≠的函数叫正比例函数”是解题的关键.6.已知等腰三角形的周长为 17cm ,一边长为 5cm ,则它的腰长为( )A. 5cmB. 6cmC. 5.5cm 或 5cmD. 5cm 或 6cm【答案】D【解析】【分析】分为两种情况:5cm 是等腰三角形的底边或5cm 是等腰三角形的腰.然后进一步根据三角形的三边关系进行分析能否构成三角形.【详解】解:当5cm是等腰三角形的底边时,则其腰长是(17-5)÷2=6(cm),能够组成三角形;当5cm是等腰三角形的腰时,则其底边是17-5×2=7(cm),能够组成三角形.故该等腰三角形的腰长为:6cm或5cm.故选:D.【点睛】本题考查了等腰三角形的两腰相等的性质,三角形的三边关系,熟练掌握等腰三角形的性质是解题的关键.7.已知:点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,则(m+n)2019的值为()A. 0B. 1C. ﹣1D. 32019【答案】B【解析】【分析】根据关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,进而可得答案.【详解】解:∵点A(m﹣1,3)与点B(2,n﹣1)关于x轴对称,∴m﹣1=2,n﹣1=﹣3,∴m=3,n=﹣2,∵(m+n)2019=1,故选:B.【点睛】本题考查坐标对称点的特性,熟记知识点是解题关键.8.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组3243x y ax y a-=-⎧⎨+=-+⎩的解(a 为任意实数),则当a 变化时,点P 一定不会经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】首先用消元法消去a,得到y与x的函数关系式,然后根据一次函数的图象及性质即可得出结论.【详解】解:3243x y a x y a -=-⎧⎨+=-+⎩①②用②×2+①,得52x y +=∴52y x =-+∵50,20-<>∴52y x =-+过一、二、四象限,不过第三象限∴点P 一定不会经过第三象限,故选:C .【点睛】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a ,求出y 与x 的函数关系式.二、填空题9.将数字 1657900 精确到万位且用科学记数法表示的结果为__________.【答案】1.66×106【解析】【分析】用科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,再对千位数的数字进行四舍五入即可.【详解】解:1657900=1.6579×106≈1.66×106.故答案为:1.66×106.【点睛】本题考查了科学记数法表示较大的数的方法,准确确定a 与n 值是关键.10.在平面直角坐标系中,把直线 y =-2x +3 沿 y 轴向上平移 3 个单位长度后,得到的直线函数关系式为__________.【答案】y=-2x+6【解析】【分析】根据平移法则上加下减可得出平移后的解析式.【详解】解:由题意得:平移后的解析式为:y=-2x+3+3=-2x+6.故答案为:y=-2x+6.【点睛】本题考查了一次函数图形的平移变换和函数解析式之间的关系,掌握一次函数的规律:左加右减,上加下减是解决此题的关键.11.如图,将一个边长分别为1、3的长方形放在数轴上,以原点O 为圆心,长方形的对角线OB 长为半径作弧,交数轴正半轴于点A ,则点A 表示的实数是_______.【解析】【分析】根据勾股定理求出OB ,根据实数与数轴的关系解答.【详解】在Rt △OAB 中,,∴点A,【点睛】本题考查的是勾股定理,实数与数轴,掌握如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2是解题的关键.12.与0.5_____0.5.(填“,”,“=”,“,”, 【答案】>【解析】10.52-==20>0>0.5> ,故答案为>. 13.如图,直线y =x +1与直线y =mx -n 相交于点M (1,b ),则关于x ,y 的方程组1x y mx y n +⎧⎨-⎩==的解为:________.【答案】12x y ==⎧⎨⎩【解析】【分析】首先利用待定系数法求出b的值,进而得到M点坐标,再根据两函数图象的交点就是两函数组成的二元一次去方程组的解可得答案.【详解】∵直线y=x+1经过点M(1,b),∴b=1+1,解得b=2,∴M(1,2),∴关于x的方程组1x ymx y n+⎧⎨-⎩==的解为12xy==⎧⎨⎩,故答案为12 xy==⎧⎨⎩.【点睛】此题考查二元一次方程组与一次函数的关系,解题关键是掌握两函数图象的交点就是两函数组成的二元一次去方程组的解.14.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.【答案】3【解析】【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×12ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【点睛】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.15.如图,在△ABC 中,AB=AC=12,BC=8,BE 是高,且点D、F 分别是边AB、BC 的中点,则△DEF 的周长等于_____________________.【答案】16【解析】【分析】根据三角形中位线定理分别求出DF,再根据直角三角形斜边的中线等于斜边的一半计算出DE、EF即可.【详解】解:点D、F分别是边AB、BC的中点,∴DF=12AC=6∵BE 是高∴∠BEC=∠BEA=90°∴DE=12AB=6,EF=12BC=4∴△DEF的周长=DE+DF+EF=16故答案为:16.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线的性质,掌握直角三角形斜边上的中线等于斜边的一半和三角形中位线的性质是解题的关键.16.“三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,C点固定,OC=CD=DE,点D、E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是__________【答案】80°【解析】【分析】根据OC=CD=DE ,可得∠O=∠ODC ,∠DCE=∠DEC ,根据三角形的外角性质可知∠DCE=∠O+∠ODC=2∠ODC 据三角形的外角性质即可求出∠ODC 数,进而求出∠CDE 的度数.【详解】∵OC CD DE ==,∴O ODC ∠=∠,DCE DEC ∠=∠,设O ODC x ∠=∠=,∴2DCE DEC x ∠=∠=,∴180CDE DCE DEC ∠=︒-∠-∠1804x =︒-,∵75BDE ∠=︒,∴180ODC CDE BDE ∠+∠+∠=︒,即180475180x x +-+=︒︒︒,解得:25x =︒,180480CDE x ︒∠=-=︒.【点睛】本题考查等腰三角形的性质以及三角形的外角性质,理清各个角之间的关系是解答本题的关键.17.如图,已知ABC V中,AB AC 16cm ==,B C ∠∠=,BC 10cm =,点D 为AB 的中点,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若当BPDV 与CQP V全等时,则点Q 运动速度可能为____厘米/秒.【答案】2或3.2【解析】【分析】B C ∠∠=,表示出BD 、BP 、PC 、CQ ,再根据全等三角形对应边相等,分①BD 、PC 是对应边,②BD 与CQ 是对应边两种情况讨论求解即可.【详解】AB 16cm =Q ,BC 10cm =,点D 为AB 的中点,1BD 168cm 2∴=⨯=, 设点P 、Q 的运动时间为t ,则BP 2t =,()PC 102t cm =-①当BD PC =时,102t 8-=,解得:t 1=,则BP CQ 2==,故点Q 的运动速度为:212(÷=厘米/秒);②当BP PC =时,BC 10cm =Q ,BP PC 5cm ∴==,t 52 2.5(∴=÷=秒).故点Q 的运动速度为8 2.5 3.2(÷=厘米/秒).故答案为2或3.2厘米/秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.18.已知函数 y 1=x +2,y 2=4x -4,y 3=-12x +1,若无论 x 取何值,y 总取 y 1,y 2,y 3 中的最大值,则 y 的最小值是__________. 【答案】23【解析】分析】利用两直线相交的问题,分别求出三条直线两两相交的交点,然后观察函数图象,利用一次函数的性质易得:当x≤-23时,y 3最大;当-23≤x ≤2时,y 1最大;当x≥2时,y 2最大,于是可得满足条件的y 的最小值. 【详解】解:y 1=x +2,y 2=4x -4,y 3=-12x +1,如下图所示:令y 1=y 2, 得x+2=4x -4解得:x=2,代入解得y=4∴直线y 1=x+2与直线y 2=4x -4的交点坐标为(2,4),令y 2= y 3,得4x -4=-12x +1 解得:x=109 代入解得: y=49∴直线y 2=4x -4与直线y 3=-12x +1的交点坐标为(104,99), 令y 1=y 3,得x+2=-12x +1 解得:x=23- 代入解得: y=23 ∴直线y 1=x+2与直线y 3=-12x +1的交点坐标为(2233-,), 由图可知:①当x≤-23时,y 3最大 ∴此时y= y 3,而此时y 3的最小值为23,即此时y 的最小值为23; ②当-23≤x ≤2时,y 1最大 ∴此时y= y 1,而此时y 1的最小值为23,即此时y 的最小值为23; ③当x≥2时,y 2最大,,∴此时y= y2,而此时y2的最小值为4,即此时y的最小值为4综上所述:y的最小值为23.故答案为:23.【点睛】本题考查了一次函数的交点问题和利用一次函数的图象解决问题,掌握一次函数的交点求法和学会观察一次函数的图象是解决此题的关键.三、解答题19.计算:(1)计算:(-1)2020 3-+(2)求x 的值:4x2-25=0【答案】(1)0;(2)x1=52,x2=-52.【解析】【分析】(1)先化简乘方、根式和绝对值,再利用实数的运算顺序求解即可;(2)利用直接开平方法求解即可.【详解】解:(1)(-1)2020 3-+=1+4-3-2=0;(2)∵4x2-25=0∴4x2=25,∴x2=25 4,∴x=±5 2 ,∴x1=52,x2=-52.【点睛】本题考查了实数是混合运算和解含平方的方程,熟练掌握运算法则及平方根的定义是解题的关键.20.如图,已知点B、F、C、E 在一条直线上,BF = CE,AC = DF,且AC∥DF.求证:∠B =∠E.【答案】见解析【解析】【分析】先证出BC=EF ,∠ACB=∠DFE ,再证明△ACB ≌△DFE ,得出对应角相等即可.【详解】证明:∵BF=CE ,∴BC=EF ,∵AC ∥DF ,∴∠ACB=∠DFE ,在△ACB 和△DFE 中,BC EF ACB DFE AC DF =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DFE (SAS ),∴∠B=∠E .【点睛】本题考查了全等三角形的判定与性质、平行线的性质,熟练掌握全等三角形的判定方法,证出三角形全等是解题的关键.21.已知 2x -1 的算术平方根是 3,12y+3 的立方根是-1,求代数式 2x+y 的平方根 【答案】【解析】【分析】 利用算术平方根、立方根定义求出x 与y 的值,进而求出2x+y 的值,即可求出平方根.【详解】解:∵2x -1的算术平方根为3,∴2x -1=9,解得:x=5,,∵12y+3 的立方根是-1,∴12y+3=-1,解得:y=-8,∴2x+y=2×5-8=2,∴2x+y的平方根是【点睛】本题考查了立方根,算术平方根,以及平方根,熟练掌握各自的性质是解题的关键.22.已知y 与x﹣2 成正比例,且当x =﹣4 时,y =﹣3.(1)求y 与x 的函数关系式;(2)若点M(5.1,m)、N(﹣3.9,n)在此函数图像上,判断m 与n 的大小关系.【答案】(1)y=12x-1;(2)m>n.【解析】【分析】(1)首先根据题意设出关系式:y=k(x-2),再利用待定系数法把x=-4,y=-3代入,可得到k的值,再把k 的值代入所设的关系式中,可得到答案;(2)利用一次函数图象上点的坐标特征可求出m,n的值,比较后即可得出结论.【详解】解:∵y与x-2成正比例,∴关系式设为:y=k(x-2),∵x=-4时,y=-3,∴-3=k(-4-2),解得:k=12,∴y与x的函数关系式为:y=12(x-2)=12x-1.故答案为:y=12x-1;(2)∵点M(5.1,m)、N(﹣3.9,n)是一次函数y=12x-1图象上的两个点,∴m=12×5.1-1=1.55,n=12×(-3.9)-1=-2.95.∵1.55>-2.95,∴m>n.【点睛】本题考查了待定系数法求一次函数关系式和一次函数图象上点的坐标特征,关键是设出关系式,代入x,y的值求k是解题的关键.23.如图,在平面直角坐标系中,已知△ ABC 的三个顶点的坐标分别为A(-3,5),B(-2,1).(1)请在如图所示的网格内画出平面直角坐标系,并写出C 点坐标;(2)先将△ABC 沿x 轴翻折,再沿x 轴向右平移4 个单位长度后得到△A1B1C1,请在网格内画出△A1B1C1;(3)在(2)的条件下,△ABC 的边AC 上一点M(a,b)的对应点M1的坐标是.(友情提醒:画图结果确定后请用黑色签字笔加黑)【答案】(1)图见解析; C(-1,3);(2)图见解析;(3) (a+4,-b).【解析】【分析】(1)根据A、B的坐标即可画出平面直角坐标系,进而得出点C的坐标;(2)依据轴对称的性质,即可得到△ABC关于x轴对称的图形,然后利用平移的性质得到△A1B1C1;(3)利用关于x轴对称的两点坐标关系和平移规律即可求出点M1的坐标.【详解】(1)根据点A(-3,5),故将A向右移动3个单位、向下移动5个单位,即可得到原点的位置,建立坐标系,如图所示平面直角坐标系即为所求,此时点C(-1,3);(2)根据题意,翻折和平移后得到△A1B1C1,如图所示△A1B1C1即为所求:(3)点M(a,b)关于x轴对称点为(a,-b),然后向右平移4个单位后的坐标为(a+4,-b)M1的坐标为(a+4,-b).【点睛】本题考查了轴对称和平移变换,熟练掌握轴对称和平移变换的性质是解题的关键.24.如图,将长方形ABCD 沿EF 折叠,使点D 与点B 重合.(1)若∠AEB=40°,求∠BFE 的度数;(2)若AB=6,AD=18,求CF 的长.【答案】(1)70°;(2)8.【解析】【分析】(1)依据平行线的性质可求得∠BFE=∠FED,然后依据翻折的性质可求得∠BEF=∠DEF,最后根据平角的定义可求得∠BFE的度数;(2)先依据翻折的性质得到CF=GF,AB=DC=BG=6,然后设CF=GF=x,然后在RT△BGF中,依据勾股定理列出关于x的方程求解即可.【详解】解:(1)∵AD∥BC,∴∠BFE=∠FED,由翻折的性质可知:∠BEF=∠DEF,∴∠BFE=∠FED=∠BEF∵∠FED+∠BEF+∠AEB=180°∴2∠BFE =180°-40°=140°,∴∠BFE=70°;(2)由翻折的性质可知CF=GF,AB=DC=BG=6,设CF=GF=x,则BF=18-x,在Rt△BGF中,依据勾股定理可知:BF2=BG2+GF2,即(18-x)2=62+x2,解得:x=8即CF=8【点睛】本题考查了翻折的性质及勾股定理,熟练掌握翻折的性质和利用勾股定理解直角三角形是解题的关键.25.某长途汽车客运公司规定旅客可以免费携带一定质量的行李,当行李的质量超过规定时,需付的行李费y(元)是行李质量x(千克)的一次函数,且部分对应关系如下表所示.(1)求y 关于x 的函数关系式;(2)求旅客最多可免费携带行李的质量;(3)当行李费为3≤y≤10 时,可携带行李的质量x 的取值范围是.【答案】(1)y=15x-2;(2)10千克;(3)25≤x≤60.【解析】【分析】(1)利用待定系数法求一次函数解析式即可解答;(2)令y=0时求出x的值即可;(3)分别求出y=3时,x的值和y=10时,x的值,再利用一次函数的增减性即可求出x的取值范围.【详解】解:(1)∵y是x的一次函数,∴设y=kx+b(k≠0)将x=15,y=1;x=20,y=2分别代入y=kx+b,得1=15220k b k b+⎧⎨=+⎩, 解得:152k b ⎧=⎪⎨⎪=-⎩,∴函数表达式为y=15x -2, (2)将y=0代入y=15x -2,得0=15x -2, ∴x=10,答:旅客最多可免费携带行李的质量为10千克.(3)把y=3代入解析式,可得:x=25,把y=10代入解析式,可得:x=60, ∵15>0 ∴y 随x 的增大而增大所以可携带行李的质量x (kg )的取值范围是25≤x≤60,故答案为:25≤x≤60.【点睛】本题考查了一次函数的应用,掌握利用了待定系数法求一次函数解析式和已知函数值的取值范围求自变量的取值范围是解决此题的关键.26.请你用学习 “一次函数”时积累的经验和方法研究函数 y =1x +的图像和性质,并 解决问题. (1)按照下列步骤,画出函数 y =1x +的图像;①列表;②描点;③连线.(友情提醒:画图结果确定后请用黑色签字笔加黑)(2)观察图像,填空;①当 x 时,y 随 x 的增大而减小; 当 x 时,y 随 x 的增大而增大;②此函数有最 值(填“大”或“小”),其值是 ;(3)根据图像,不等式1x +> 12x +72的解集为 . 【答案】(1)见解析;(2)①<-1,> -1;②小,0;(3)x>5或x<-3.【解析】【分析】(1)描点画出图象解答即可;(2)根据函数的图象解答即可;(3)先画出两个函数的图象,再根据函数图象解答即可.【详解】(1)画函数图象如图:(2)由图象可得:①当x<-1时,y 随 x 的增大而减小; 当x>-1时,y 随 x 的增大而增大故答案为: <-1,> -1;②此函数有最小值,其值是0;故答案为: 小,0;(3)在同一直角坐标系画y=12x +72,①列表;②描点; ③连线.如图所示: 当x <-1时,y =11x x +=--联立11722y x y x =--⎧⎪⎨=+⎪⎩解得:32x y =-⎧⎨=⎩ 当x >-1时,y =11x x +=+联立11722y x y x =+⎧⎪⎨=+⎪⎩解得56x y =⎧⎨=⎩∴两函数图象的交点分别为(-3,2)和(5,6)根据图像,当y 1>y 2时,x>5或x<-3∴不等式1x +> 12x +72的解集为:x>5或x<-3. 【点睛】本题考查了函数与不等式的关系,函数的图象画法等知识点,掌握求函数图象的画法和一次函与不等式的关系是解决此题的关键.27.如图在△ABC 中,AB 、AC 边的垂直平分线相交于点 O ,分别交 BC 边于点 M 、N ,连接 AM ,AN .(1)若△AMN 的周长为 6,求 BC 的长;(2)若∠MON=30°,求∠MAN 的度数;(3)若∠MON=45°,BM=3,BC=12,求 MN 的长度.【答案】(1)6;(2)120°(3)5.【解析】分析】(1)根据垂直平分线的性质可得BM=AM ,CN=AN ,再根据三角形的周长即可求出BC ;(2)设射线OM 交AB 于E ,射线ON 交AC 于F ,根据四边形的内角和,即可求出∠EAF ,再根据三角形的内角和,即可求出∠B +∠C ,然后根据等边对等角即可求出∠MAB +∠NAC ,从而求出∠MAN ; (3)设射线OM 交AB 于E ,射线ON 交AC 于F ,根据四边形的内角和,即可求出∠EAF ,再根据三角形的内角和,即可求出∠B +∠C ,然后根据等边对等角即可求出∠MAB +∠NAC ,从而求出∠MAN ,设MN=x ,根据勾股定理列出方程求出x 即可. 【详解】解:(1)∵AB 、AC 边的垂直平分线相交于点 O ,分别交 BC 边于点 M 、N ,∴BM=AM ,CN=AN∵△AMN 的周长为 6,∴AM +AN +MN=6 ∴BC=BM +MN +CN= AM +MN +AN =6;(2)设射线OM 交AB 于E ,射线ON 交AC 于F ,【在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=150°∴∠B+∠C=180°-∠BAC=30°∵BM=AM,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=30°∴∠MAN=∠EAF-(∠MAB+∠NAC)=120°;(3)设射线OM交AB于E,射线ON交AC于F,在四边形AEOF中,∠EAF=360°-∠AEO-∠AFO-∠MON=135°∴∠B+∠C=180°-∠BAC=45°∵BM=AM=3,CN=AN∴∠MAB=∠B,∠NAC=∠C∴∠MAB+∠NAC=45°∴∠MAN=∠EAF-(∠MAB+∠NAC)=90°设MN=x,则AN =CN=BC-BM-MN=9-x在Rt△AMN中,MN2=AM2+AN2即x2=32+(9-x)2解得:x=5即MN=5【点睛】此题考查的是垂直平分线的性质、等腰三角形的性质和勾股定理,掌握垂直平分线的性质、等边对等角和用勾股定理解直角三角形是解决此题的关键.28.如图1 ,等腰直角三角形ABC 中,∠ACB=90°,CB=CA,直线DE 经过点C,过A 作AD⊥DE 于点D,过B 作BE⊥DE 于点E,则△BEC≌△CDA,我们称这种全等模型为“K 型全等”.(不需要证明)【模型应用】若一次函数y=kx+4(k≠0)的图像与x 轴、y 轴分别交于A、B 两点.(1)如图2,当k=-1 时,若点B 到经过原点的直线l 的距离BE 的长为3,求点A 到直线l 的距离AD 的长;(2)如图3,当k=-43时,点M 在第一象限内,若△ABM 是等腰直角三角形,求点M 的坐标;(3)当k 的取值变化时,点A 随之在x 轴上运动,将线段BA 绕点B 逆时针旋转90° 得到BQ,连接OQ,求OQ 长的最小值.【答案】(1;(2)点M的坐标为(7,3)或(4,7)或(72,72);(3)OQ的最小值为4.【解析】【分析】(1)先求出A、B两点的坐标,根据勾股定理即可求出OE的长,然后利用AAS证出△ADO≌△OEB,即可求出AD的长;(2)先求出A、B两点的坐标,根据等腰直角三角形的直角顶点分类讨论,分别画出对应的图形,利用AAS 证出对应的全等三角形即可分别求出点M的坐标;(3)根据k的取值范围分类讨论,分别画出对应的图形,设点A的坐标为(x,0),证出对应的全等三角形,利用勾股定理得出OQ2与x的函数关系式,利用平方的非负性从而求出OQ的最值.【详解】解:(1)根据题意可知:直线AB的解析式为y=-x+4当x=0时,y=4;当y=0时,x=4∴点A 的坐标为(4,0)点B 的坐标为(0,4)∴OA=BO=4根据勾股定理:OE= =∵∠ADO=∠OEB=∠AOB=90°∴∠AOD +∠OAD=90°,∠AOD +∠BOE=90°∴∠OAD=∠BOE在△ADO 和△OEB 中ADO OEB OAD BOE OA BO ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADO ≌△OEB∴(2)由题意可知:直线AB 的解析式为y=43-x+4 当x=0时,y=4;当y=0时,x=3∴点A 的坐标为(3,0)点B 的坐标为(0,4)∴OA=3,BO=4①当△ABM 是以∠BAM 为直角顶点的等腰直角三角形时,AM=AB ,过点M 作MN ⊥x 轴于N∵∠MNA=∠AOB=∠BAM=90°∴∠MAN +∠AMN=90°,∠MAN +∠BAO=90°∴∠AMN=∠BAO在△AMN 和△BAO 中MNA AOB AMN BAO AM BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMN ≌△BAO∴AN=BO=4,MN=AO=3∴ON=OA +AN=7∴此时点M 的坐标为(7,3);②当△ABM 是以∠ABM 为直角顶点的等腰直角三角形时,BM=AB ,过点M 作MN ⊥y 轴于N∵∠MNB=∠BOA=∠ABM=90°∴∠MBN +∠BMN=90°,∠MBN +∠ABO=90°∴∠BMN=∠ABO在△BMN 和△ABO 中MNB BOA BMN ABO BM AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BMN ≌△ABO∴BN=AO=3,MN=BO=4∴ON=OB +BN=7∴此时点M 的坐标为(4,7);③当△ABM 是以∠AMB 为直角顶点等腰直角三角形时,MA=MB ,过点M 作MN ⊥x 轴于N ,MD ⊥y 轴于D ,设点M 的坐标为(x ,y )∴MD =ON=x ,MN = OD =y ,∠MNA=∠MDB=∠BMA=∠DMN=90°∴BD=OB -OD=4-y ,AN=ON -OA=x -3,∠AMN +∠DMA=90°,∠BMD +∠DMA=90° ∴∠AMN=∠BMD在△AMN 和△BMD 中MNA MDB AMN BMD MA MB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AMN ≌△BMD∴MN=MD ,AN=BD∴x=y ,x -3=4-y解得:x=y=72 ∴此时M 点的坐标为(72,72) 综上所述:点M 的坐标为(7,3)或(4,7)或(72,72). (3)①当k <0时,如图所示,过点Q 作QN ⊥y 轴,设点A 的坐标为(x ,0)该直线与x 轴交于正半轴,故x >0 的∴OB=4,OA=x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN +∠BQN=90°,∠QBN +∠ABO=90°∴∠BQN=∠ABO在△BQN 和△ABO 中QNB BOA BQN ABO BQ AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BQN ≌△ABO∴QN=OB=4,BN=OA=x∴ON=OB +BN=4+x在Rt △OQN 中,OQ 2=ON 2+QN 2=(4+x )2+42=(x +4)2+16,其中x >0∴OQ 2=(x +4)2+16>16②当k >0时,如图所示,过点Q 作QN ⊥y 轴,设点A 的坐标为(x ,0)该直线与x 轴交于负半轴,故x <∴OB=4,OA=-x由题意可知:∠QBA=90°,QB=BA∵∠QNB=∠BOA=∠ABQ=90°∴∠QBN +∠BQN=90°,∠QBN +∠ABO=90°∴∠BQN=∠ABO在△BQN 和△ABO 中QNB BOA BQN ABO BQ AB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BQN ≌△ABO∴QN=OB=4,BN=OA=-x∴ON=OB -BN=4+x在Rt △OQN 中,OQ 2=ON 2+QN 2=(4+x )2+42=(x +4)2+16,其中x <0∴OQ 2=(x +4)2+16≥16(当x=-4时,取等号)综上所述:OQ 2的最小值为16∴OQ 的最小值为4.【点睛】此题考查是一次函数与图形的综合大题,难度系数较大,掌握全等三角形的判定及性质、等腰三角形的性质、勾股定理、平方的非负性和分类讨论的数学思想是解决此题的关键.。
2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷 (解析版)
2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷一.选择题(共10小题)1.下列几何图形中,不是中心对称图形的共有()A.1个B.2个C.3个D.4个2.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球3.下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC4.若直线y=kx+k﹣3经过第二、三、四象限,则k的取值范围是()A.k<0B.k>3C.k<3D.0<k<35.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为()A.B.C.D.6.已知第一组数据:12,14,16,18的方差为S12;第二组数据:32,34,36,38的方差为S22;第三组数据:2020,2019,2018,2017的方差为S32,则S12,S22,S32的大小关系表示正确的是()A.S12>S22>S32B.S12=S22>S32C.S12<S22<S32D.S12=S22<S327.下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0B.2x2﹣3x+5=0C.x2+3x+5=0D.2x2+9x+5=0 8.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=69.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A.②B.①C.①②D.①③10.如图,矩形ABCD中,AB=6,AD=4,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.4B.4.5C.4.8D.5二.填空题(共8小题)11.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是.12.已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为.13.将点A(4,5)绕着原点顺时针旋转90°得到点B,则点B的坐标是.14.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是.15.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB 于H,连接OH,则∠DHO=度.16.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为.17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.18.如图①,在四边形ABCD中,AD∥BC,直线l⊥AB.当直线l沿射线BC方向,从点B 开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长y,且y与x的函数关系如图②所示,则四边形ABCD的周长是.三.解答题19.解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.20.下表某公司25名员工月收入的资料.月收入/元45000170001000056005000380030001600人数111451111(1)这个公司员工月收入的平均数是6312,中位数是,众数是;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?22.如图,E,F为▱ABCD对角线BD上的两点,若再添加一个条件,就可证出AE∥CF.请完成以下问题:(1)你添加的条件是.(2)请根据题目中的条件和你添加的条件证明AE∥CF.23.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.24.如图1,C是线段AB上一个定点,动点P从点A出发向点B匀速移动,动点Q从点B出发向点C匀速移动,点P,Q同时出发,移动时间记为x(s),点P与点C的距离记为y1(cm),点Q与点C的距离记为y2(cm).y1、y2与x的关系如图2所示.(1)线段AB的长为cm;(2)求点P出发3秒后y1与x之间的函数关系式;(3)当P,Q两点相遇时,x=s.25.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD,BE,BC于点P,O,Q,连接BP,EQ.(1)依题意补全图形(保留作图痕迹),并求证四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,且OF+OB=9,求PQ的长.26.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A,B的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x==2,y==4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.2019-2020学年江苏省南通市如皋市八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题)1.下列几何图形中,不是中心对称图形的共有()A.1个B.2个C.3个D.4个【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.【解答】解:等边三角形不是中心对称图形,是轴对称图形;正方形既是中心对称图形,也是轴对称图形;正五边形不是中心对称图形,是轴对称图形;圆既是中心对称图形,也是轴对称图形.∴不是中心对称图形有等边三角形和正五边形共2个.故选:B.2.不透明袋子中有除颜色外完全相同的4个黑球和2个白球,从袋子中随机摸出3个球,下列事件是必然事件的是()A.3个都是黑球B.2个黑球1个白球C.2个白球1个黑球D.至少有1个黑球【分析】正确理解“必然事件”的定义,即可解答.必然事件是指事件一定会发生,即事件发生的可能性为100%.【解答】解:A袋子中装有4个黑球和2个白球,摸出的三个球中可能为两个白球一个黑球,所以A不是必然事件;B.C.袋子中有4个黑球,有可能摸到的全部是黑球,B、C有可能不发生,所以B、C 不是必然事件;D.白球只有两个,如果摸到三个球不可能都是白梂,因此至少有一个是黑球,D正确.故选:D.3.下列不能判定四边形是平行四边形的条件是()A.∠A=∠C,∠B=∠D B.AB∥CD,AD∥BCC.AB∥CD,AD=BC D.AB=CD,AD=BC【分析】根据平行四边形的判定定理和平行线的性质判断即可.【解答】解:A、∵∠A=∠C,∠B=∠D,∴四边形ABCD是平行四边形,故本选项不符合题意;B、∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故本选项不符合题意;C、∵AB∥CD,AD=BC,∴四边形ABCD可能是等腰梯形,故本选项符合题意;D、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故本选项不符合题意.故选:C.4.若直线y=kx+k﹣3经过第二、三、四象限,则k的取值范围是()A.k<0B.k>3C.k<3D.0<k<3【分析】根据一场函数图象经过的象限可得出关于k的一元一次不等式组,解之即可得出k的取值范围.【解答】解:根据题意得k<0且k﹣3<0,所以k<0.故选:A.5.某鱼塘里养了1600条鲤鱼,若干条草鱼和800条罗非鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右,则该鱼塘捞到鲤鱼的概率约为()A.B.C.D.【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.【解答】解:∵捕捞到草鱼的频率稳定在0.5左右,设草鱼的条数为x,可得:=0.5,解得:x=2400,∴由题意可得,捞到鲤鱼的概率为:=;故选:C.6.已知第一组数据:12,14,16,18的方差为S12;第二组数据:32,34,36,38的方差为S22;第三组数据:2020,2019,2018,2017的方差为S32,则S12,S22,S32的大小关系表示正确的是()A.S12>S22>S32B.S12=S22>S32C.S12<S22<S32D.S12=S22<S32【分析】先计算出三组数据的平均数,再根据方差的定义计算出方差,从而得出答案.【解答】解:∵==15,==35,==2018.5,∴S12=×[(12﹣15)2+(14﹣15)2+(16﹣15)2+(18﹣15)2]=5,S22=×[(32﹣35)2+(34﹣35)2+(36﹣35)2+(38﹣35)2]=5,S32=×[(2020﹣2018.5)2+(2019﹣2018.5)2+(2018﹣2018.5)2+(2017﹣2018.5)2]=,∴S12=S22>S32,故选:B.7.下列所给方程中,有两个不相等的实数根的是()A.x2﹣6x+9=0B.2x2﹣3x+5=0C.x2+3x+5=0D.2x2+9x+5=0【分析】若方程有两个不相等的实数根,则△=b2﹣4ac>0,可据此判断出正确的选项.【解答】解:A、△=36﹣4×9=0,原方程有两个相等的实数根,故A错误;B、△=9﹣4×2×5=﹣31<0,原方程没有实数根,故B错误;C、△=9﹣4×5=﹣11<0,原方程没有实数根,故C错误;D、△=81﹣4×2×5=41>0,原方程有两个不相等的实数根,故D正确.故选:D.8.某省正加速布局以5G等为代表的战略性新兴产业.据统计,该省目前5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.按照计划,设2020年底到2022年底,全省5G基站数量的年平均率为x,根据题意列方程,得()A.6(1+x)2=17.34B.17.34(1+x)2=6C.6(1﹣x)2=17.34D.17.34(1﹣x)2=6【分析】根据2020年底及2022年底全省5G基站的数量,即可得出关于x的一元二次方程,此题得解.【解答】解:依题意,得:1.5×4(1+x)2=17.34,即6(1+x)2=17.34.故选:A.9.某市组织全民健身活动,有100名男选手参加由跑、跳、投等10个田径项目组成的“十项全能”比赛,其中25名选手的一百米跑成绩排名,跳远成绩排名与10项总成绩的排名情况如图所示:甲、乙、丙表示三名男选手,下面有3个推断:①甲的一百米跑成绩排名比10项总成绩排名靠前;②乙的一百米跑成绩排名比10项总成绩排名靠后;③丙的一百米跑成绩排名比跳远成绩排名靠前.其中合理的是()A.②B.①C.①②D.①③【分析】先从由统计图获取信息,明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息,即可得出答案.【解答】解:由折线统计图可知:①甲的一百米跑成绩排名比10项总成绩排名靠前;结论正确;②乙的一百米跑成绩排名比10项总成绩排名靠前;故原说法错误;③无法比较丙的一百米跑成绩与跳远成绩;故原说法错误.所以合理的是①.故选:A.10.如图,矩形ABCD中,AB=6,AD=4,E为AB的中点,F为EC上一动点,P为DF 中点,连接PB,则PB的最小值是()A.4B.4.5C.4.8D.5【分析】由中位线定理可得点P的运动轨迹是线段P1P2,再由垂线段最短可得当BP⊥P1P2时,PB取得最小值,连接BP1、BP2,作BP′⊥P1P2于P′,作P2Q⊥AB于Q,则BP的最小值为BP′的长,P2Q是△EAD的中位线,由勾股定理求出BP2、BP1、CE 的长,由三角形中位线定理得出P1P2的长,设P′P2=x,则P′P1=﹣x,由勾股定理得BP22﹣P′P2=BP12﹣P′P12,解得x=,即可得出结果.【解答】解:当点F与点C重合时,点P在P1处,CP1=DP1,当点F与点E重合时,点P在P2处,EP2=DP2,∴P1P2∥CE且P1P2=CE,当点F在EC上除点C、E的位置处时,有DP=FP,由中位线定理可知:P1P∥CE且P1P=CF,∴点P的运动轨迹是线段P1P2,如图所示:∴当BP⊥P1P2时,PB取得最小值,∵四边形ABCD是矩形,∴AD=BC=4,AB=CD=6,∠DAB=∠BCD=∠ABC=90°,∴CP1=CD=3,∵E为AB的中点,∴AE=BE=AB=3,连接BP1、BP2,作BP′⊥P1P2于P′,作P2Q⊥AB于Q,则BP的最小值为BP′的长,P2Q是△EAD的中位线,∴P2Q=AD=2,QE=AQ=AE=,∴BQ=BE+QE=3+=,在Rt△BP2Q中,由勾股定理得:BP2===,在Rt△CBE中,由勾股定理得:CE===5,∴P1P2=CE=,在Rt△BCP1中,由勾股定理得:BP1===5,设P′P2=x,则P′P1=﹣x,由勾股定理得:BP22﹣P′P2=BP12﹣P′P12,即()2﹣x2=52﹣(﹣x)2,解得:x=,∴BP′2=()2﹣()2=,∴BP′=4.8,故选:C.二.填空题(共8小题)11.小丽微信支付密码是六位数(每一位可显示0~9),由于她忘记了密码的末位数字,则小丽能一次支付成功的概率是.【分析】由末尾数字是0至9这10个数字中的一个,利用概率公式可得答案.【解答】解:∵末尾数字是0至9这10个数字中的一个,∴小丽能一次支付成功的概率是,故答案为.12.已知方程x2﹣6x﹣2=0,用配方法化为a(x+b)2=c的形式为(x﹣3)2=11.【分析】方程移项后,两边加上一次项系数一半的平方,变形得到结果,即可作出判断.【解答】解:方程x2﹣6x﹣2=0,移项得:x2﹣6x=2,配方得:x2﹣6x+9=11,即(x﹣3)2=11.故答案为:(x﹣3)2=11.13.将点A(4,5)绕着原点顺时针旋转90°得到点B,则点B的坐标是(5,﹣4).【分析】画出图形利用图象法解决问题.【解答】解:如图,观察图象可知B(5,﹣4),故答案为(5,﹣4).14.已知x=1是方程x2+bx﹣2=0的一个根,则方程的另一个根是﹣2.【分析】根据根与系数的关系得出x1x2==﹣2,即可得出另一根的值.【解答】解:∵x=1是方程x2+bx﹣2=0的一个根,∴x1x2==﹣2,∴1×x2=﹣2,则方程的另一个根是:﹣2,故答案为﹣2.15.如图,四边形ABCD是菱形,∠DAB=48°,对角线AC,BD相交于点O,DH⊥AB 于H,连接OH,则∠DHO=24度.【分析】由菱形的性质可得OD=OB,∠COD=90°,由直角三角形的性质可得OH=BD=OB,可得∠OHB=∠OBH,由余角的性质可求解.【解答】解:∵四边形ABCD是菱形,∴OD=OB,∠COD=90°,∠DAB=∠DCB=48°,∵DH⊥AB,∴OH=BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=∠DCB=24°,故答案为:24.16.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c 的解为x≤1.【分析】将点P(m,3)代入y=x+2,求出点P的坐标;结合函数图象可知当x≤1时x+2≤ax+c,即可求解;【解答】解:点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x≤1;故答案为x≤1;17.如图,已知正方形ABCD的边长为5,点E、F分别在AD、DC上,AE=DF=2,BE 与AF相交于点G,点H为BF的中点,连接GH,则GH的长为.【分析】根据正方形的四条边都相等可得AB=AD,每一个角都是直角可得∠BAE=∠D =90°,然后利用“边角边”证明△ABE≌△DAF得∠ABE=∠DAF,进一步得∠AGE =∠BGF=90°,从而知GH=BF,利用勾股定理求出BF的长即可得出答案.【解答】解:∵四边形ABCD为正方形,∴∠BAE=∠D=90°,AB=AD,在△ABE和△DAF中,∵,∴△ABE≌△DAF(SAS),∴∠ABE=∠DAF,∵∠ABE+∠BEA=90°,∴∠DAF+∠BEA=90°,∴∠AGE=∠BGF=90°,∵点H为BF的中点,∴GH=BF,∵BC=5、CF=CD﹣DF=5﹣2=3,∴BF==,∴GH=BF=,故答案为:.18.如图①,在四边形ABCD中,AD∥BC,直线l⊥AB.当直线l沿射线BC方向,从点B 开始向右平移时,直线l与四边形ABCD的边分别相交于点E,F.设直线l向右平移的距离为x,线段EF的长y,且y与x的函数关系如图②所示,则四边形ABCD的周长是12+2.【分析】分别研究直线l在直线a的位置、直线l经过a后平移到b的位置、直线l到达直线c的位置三种情况,线段l与四边形ABCD的位置,进而求解.【解答】解:过A、C、D分别作直线l的平行线,延长BC交直线c于点F,设直线a 交BC于点M,直线b交AD于点N,①当直线l在直线a的位置时,AM=EF=2,BM=4,则sin B==,故∠B=30°,则AB=BMosc30°=2,∴∠BMA=60°=∠DFC;直线l经过a后平移到b处时,MC=6﹣4=2=AN,即BC=MB+MC=4+2=6,当直线l到达直线c的位置时,CF=8﹣6=2=ND,则AD=AN+ND=2+2=4,此时,∠DCF=60°,CF=DF=2,故△CDF为等边三角形,即CD=2,四边形ABCD的周长=AB+AD+BC+CD=2+4+6+2=12+2,故答案为12+2三.解答题19.解下列方程:(1)x(2x﹣1)=2x﹣1;(2)x2﹣4x﹣3=0.【考点】A6:解一元二次方程﹣配方法;A8:解一元二次方程﹣因式分解法.【专题】523:一元二次方程及应用;66:运算能力.【分析】(1)利用因式分解法求解可得;(2)利用配方法求解可得.【解答】解:(1)∵x(2x﹣1)﹣(2x﹣1)=0,∴(2x﹣1)(x﹣1)=0,则2x﹣1=0或x﹣1=0,解得x=0.5或x=1;(2)∵x2﹣4x=3,∴x2﹣4x+4=3+4,即(x﹣2)2=7,∴x﹣2=,∴x=2.20.下表某公司25名员工月收入的资料.月收入/元45000170001000056005000380030001600人数111451111(1)这个公司员工月收入的平均数是6312,中位数是3800,众数是3000;(2)在(1)中三个集中趋势参数中,你认为用哪一个反映公司全体员工月收入水平更合适?请说明理由.【考点】W4:中位数;W5:众数.【专题】542:统计的应用;65:数据分析观念.【分析】(1)根据中位数的定义把这组数据从小到大排列起来,找出最中间一个数即可;根据众数的定义找出现次数最多的数据即可;(2)根据平均数、中位数和众数的意义回答.【解答】解:(1)共有25个员工,中位数是第13个数,则中位数是3800元;3000出现了11次,出现的次数最多,则众数是3000.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45000元的影响,只有3个人的工资达到了6312元,不恰当.故答案为3800;3000.21.某校计划在暑假第二周的星期一至星期四开展社会实践活动,要求每位学生选择两天参加活动.(1)甲同学随机选择连续的两天,其中有一天是星期二的概率是;(2)乙同学随机选择两天,其中有一天是星期二的概率是多少?【考点】X6:列表法与树状图法.【专题】543:概率及其应用;67:推理能力.【分析】(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,由概率公式即可得出结果;(2)由树状图得出共有12个等可能的结果,其中有一天是星期二的结果有6个,由概率公式即可得出结果.【解答】解:(1)甲同学随机选择连续的两天,共有3个等可能的结果,即(星期一,星期二),(星期二,星期三),(星期三,星期四);其中有一天是星期二的结果有2个,即(星期一,星期二),(星期二,星期三),则甲同学随机选择连续的两天,其中有一天是星期二的概率是;故答案为:;(2)画树状图如图所示:共有12个等可能的结果,其中有一天是星期二的结果有6个,则乙同学随机选择两天,其中有一天是星期二的概率为=.22.如图,E,F为▱ABCD对角线BD上的两点,若再添加一个条件,就可证出AE∥CF.请完成以下问题:(1)你添加的条件是BE=DF.(2)请根据题目中的条件和你添加的条件证明AE∥CF.【考点】L5:平行四边形的性质.【专题】555:多边形与平行四边形;67:推理能力.【分析】(1)可添加BE=DF;(2)连接AC交BD于点O,连接AF、CE,由四边形ABCD是平行四边形知OA=OC、OB=OD,结合BE=DF得OE=OF,据此可证四边形AECF是平行四边形,从而得出答案.【解答】解:(1)添加的条件是:BE=DF,故答案为:BE=DF;(2)如图,连接AC交BD于点O,连接AF、CE,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形,∴AE∥CF.23.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为50m2的矩形ABCD场地?能围成一个面积为52m2的矩形ABCD场地吗?如能,说明围法;若不能,说明理由.【考点】AD:一元二次方程的应用.【专题】12:应用题;523:一元二次方程及应用;66:运算能力;69:应用意识.【分析】设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,可根据长方形的面积公式即可列方程进行求解.【解答】解:设垂直于墙的一边AB长为xm,那么另一边长为(20﹣2x)m,由题意得x(20﹣2x)=50,解得:x1=x2=5,(20﹣2×5)=10(m).围成一面靠墙,其它三边分别为5m,10m,5m的矩形.答:不能围成面积52m2的矩形ABCD场地.理由:若能围成,则可列方程x(20﹣2x)=52,此方程无实数解.所以不能围成一个面积为52m2的矩形ABCD场地.24.如图1,C是线段AB上一个定点,动点P从点A出发向点B匀速移动,动点Q从点B出发向点C匀速移动,点P,Q同时出发,移动时间记为x(s),点P与点C的距离记为y1(cm),点Q与点C的距离记为y2(cm).y1、y2与x的关系如图2所示.(1)线段AB的长为27cm;(2)求点P出发3秒后y1与x之间的函数关系式;(3)当P,Q两点相遇时,x=s.【考点】FH:一次函数的应用.【专题】533:一次函数及其应用.【分析】(1)根据函数图象中的数据可以得到线段AB的长;(2)根据图象中的数据和题意可以得到点P出发3秒后y1与x之间的函数关系式;(3)根据题意可以得到点P和Q的速度,从而可以求得x的值.【解答】解:(1)由图可得,线段AC的长度为6cm,线段BC的长为21cm,∴段AB的长为6+21=27cm,故答案为:27;(2)设点P出发3秒后,y1与x之间的函数关系式为y1=kx+b(k≠0),由图象可得,点P的运动速度为:6÷3=2cm/s,由27÷2=13.5,可知y1=kx+b的图象过点(13.5,21),又∵y1=kx+b的图象过点(3,0),,得,即y1与x的函数关系式为y1=2x﹣6;(3)由题意可得,点Q的速度为:21÷7=3cm/s,则当P,Q两点相遇时,x=,故答案为:.25.如图,在矩形ABCD中,E是AD上一点,PQ垂直平分BE,分别交AD,BE,BC于点P,O,Q,连接BP,EQ.(1)依题意补全图形(保留作图痕迹),并求证四边形BPEQ是菱形;(2)若AB=6,F为AB的中点,且OF+OB=9,求PQ的长.【考点】KG:线段垂直平分线的性质;LA:菱形的判定与性质;LB:矩形的性质;N3:作图—复杂作图.【专题】13:作图题;556:矩形菱形正方形;69:应用意识.【分析】(1)根据要求作出图形即可,根据对角线垂直的平行四边形是菱形证明即可.(2)解直角三角形求出PB,OB,利用勾股定理即可解决问题.【解答】解:(1)图形如图所示.四边形BPEQ是菱形.理由:∵PQ垂直平分线段BE,∴OE=OB,∵四边形ABCD是矩形,∴PE∥BQ,∴∠PEO=∠OBQ,∵∠POE=∠QOB,∴△POE≌△QOB(ASA),∴OP=OQ,∵OE=OB,∴四边形BPEQ是平行四边形,∵BE⊥PQ,∴四边形BPEQ是菱形.(2)∵AF=BF,OE=OB,∴AE+BE=2OF+2OB,设AE=x,则BE=18﹣x,在Rt△ABE中,62+x2=(18﹣x)2,解得x=8,∴BE=18﹣8=10,∴OB=BE=5,设PE=y,则AP=8﹣y,BP=PE=y,在Rt△ABP中,62+(8﹣y)2=y2,解得y=,在Rt△BOP中,OP==,∴PQ=2OP=.26.定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A,B的三分点.例如:A(﹣1,5),B(7,7),当点T(x,y)满足x==2,y==4时,则点T(2,4)是点A,B的三分点.(1)已知点C(﹣1,8),D(1,2),E(4,﹣2),请说明其中一个点是另外两个点的三分点.(2)如图,点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点.①试确定y与x的关系式.②若①中的函数图象交y轴于点M,直线l交y轴于点N,当以M,N,B,T为顶点的四边形是平行四边形时,求点B的坐标.③若直线AT与线段MN有交点,直接写出t的取值范围.【考点】LO:四边形综合题.【专题】533:一次函数及其应用;555:多边形与平行四边形;69:应用意识.【分析】(1)由“三分点”的定义可求解;(2)①由“三分点”定义可得:,即可求解;②先求出点M,点N的坐标,分两种情况讨论,利用平行四边形的性质可求解;③利用特殊位置,分别求出AT过点M和过点N时,t的值,即可求解.【解答】解:(1)∵,∴点D(1,2)是点C,点E的三分点;(2)①∵点A为(3,0),点B(t,2t+3)是直线l上任意一点,点T(x,y)是点A,B的三分点,∴,∴y=2x﹣1;②∵y=2x﹣1图象交y轴于点M,直线l交y轴于点N,∴点M(0,﹣1),点N(0,3),当四边形MTBN是平行四边形时,∴BT∥MN,∵B(t,2t+3),T(,),∴t=,∴t=,∴点B的坐标(,6);当四边形MTNB是平行四边形时,设BT与MN交于点P,则点P为BT与MN的中点,∴点P(0,1),∵B(t,2t+3),T(,),∴t+=0,∴t=﹣,∴点B(﹣,),综上所述:点B的坐标为(,6)或(﹣,);③当直线AT过点M时,∵点A(3,0),点M(0,﹣1),∴直线AM解析式为y=x﹣1,∵点T是直线AM上,∴=×﹣1∴t=﹣3,当直线AT过点N时,∵点A(3,0),点M(0,3),∴直线AN解析式为y=﹣x+3,∵点T是直线AN上,∴=﹣+3,∴t=1,∵直线AT与线段MN有交点,∴﹣3≤t≤1.。
人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案
13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P
M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111
2019-2020学年山东省济宁市曲阜市八年级下学期期末数学试卷 (解析版)
2019-2020学年山东济宁市曲阜市八年级第二学期期末数学试卷一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣52.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,66.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4 7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,159.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0 10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.二、填空题(共6小题).11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为.13.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为分,方差为分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是;(2)化简:=;(3)化简:……+.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?参考答案一、选择题(共10小题).1.要使二次根式有意义,x的值可以是()A.﹣2B.﹣3C.﹣4D.﹣5解:由题意得,x+2≥0,解得,x≥﹣2,故选:A.2.一次函数y=2﹣x与x轴的交点为()A.(1,1)B.(0,2)C.(2,0)D.(3,0)解:令y=0,则2﹣x=0,解得x=2,所以一次函数y=2﹣x与x轴的交点坐标是(2,0),故选:C.3.在▱ABCD中、如果∠A=65°、那么∠C的度数是()A.115°B.65°C.25°D.35°解:∵四边形ABCD是平行四边形,∴∠C=∠A=65°,故选:B.4.某青年排球队l2名队员的年龄情况如下表所示:年龄1819202122人数14322则这12名队员的平均年龄是()A.18岁B.19岁C.20岁D.21岁解:(18+4×19+3×20+2×21+2×22)÷12=(18+76+60+42+44)÷12=240÷12=20(岁).故这l2名队员的平均年龄是20岁.故选:C.5.以下列各组数为边长,能构成直角三角形的是()A.5,12,13B.1,2,C.,,2D.4,5,6解:A、52+122=132,能构成直角三角形,故选项符合题意;B、12+22≠()2,不能构成直角三角形,故选项不合题意;C、()2+22≠()2,不能构成直角三角形,故选项不合题意;D、42+52≠62,不能构成直角三角形,故选项不合题意.故选:A.6.下列运算结果正确的是()A.=﹣3B.(﹣)2=2C.÷=2D.=±4解:A、=3,故本选项不符合题意;B、(﹣)2=2,故本选项符合题意;C、÷=,故本选项不符合题意;D、=4,故本选项不符合题意;故选:B.7.已知四边形ABCD是平行四边形,下列结论不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是菱形解:A、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,故正确;B、∵四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,故正确;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,故正确;D、∵四边形ABCD是平行四边形,AC=BD,四边形ABCD是矩形,故错误.故选:D.8.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15B.13,15C.13,20D.15,15解:把这组数据从小到大排列:10、13、15、15、20,最中间的数是15,则这组数据的中位数是15;15出现了2次,出现的次数最多,则众数是15.故选:D.9.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<0解:∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0.故选:C.10.已知:如图,矩形ABCD中,AB=5,BC=12,对角线AC、BD相交于点O,点P是线段AD上任意一点,且PE⊥AC于点E,PF⊥BD于点F,则PE+PF等于()A.B.C.D.解:连接PO,∵矩形ABCD的两边AB=5,BC=12,∴S矩形ABCD=AB•BC=60,OA=OC,OB=OD,AC=BD,AC===13,∴S△AOD=S矩形ABCD=15,OA=OD=AC=,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=××(PE+PF)=15,∴PE+PF=,故选:A.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.正比例函数图象经过(3,﹣6),则这个正比例函数的解析式是y=﹣2x.解:设这个正比例函数的解析式为y=kx(k≠0),∵正比例函数的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴y=﹣2x.故答案是:y=﹣2x.12.已知:x=,y=﹣2,代数式x2﹣2xy+y2的值为4.解:∵x=,y=﹣2,∴x﹣y=2,∴原式=(x﹣y)2=4,故答案为:413.已知,如图,一小船以20海里/时的速度从港口A出发向东北方向航行,另一小船以15海里/时的速度同时从港口A出发向东南方向航行,离开港口1小时后,则两船相距25海里.解:由题意得:两船的行驶方向为直角,向东北方向航行的小船行驶路程为:20×1=20(海里),向东南方向航行的小船行驶路程为:15×1=15(海里),两船的距离:=25(海里),故答案为:25海里.14.将直线y=2x﹣5向上平移2个单位,所得直线解析式为y=2x﹣3.解:由“上加下减”的原则可知,将函数y=2x﹣5向上平移,2个单位所得函数的解析式为y=2x﹣5+2,即y=2x﹣3.故答案为:y=2x﹣3.15.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AB边中点,菱形ABCD的周长为24,则OH的长等于3.解:∵菱形ABCD的周长等于24,∴AB==6,∵四边形ABCD是菱形,∴AC⊥BD,∵H为AB边中点,∴在Rt△AOB中,OH为斜边上的中线,∴OH=AB=3.故答案为:3.16.如图,正方形ABCD的边长是2,对角线AC、BD相交于点O,点E、F分别在边AD、AB上,且OE⊥OF,则四边形AFOE的面积为1.解:∵四边形ABD是正方形,∴OA=OB,∠OAE=∠OBF=45°,AC⊥BD,∴∠AOB=90°,∵OE⊥OF,∴∠EOF=90°,∴∠AOE=∠BOF,在△AOE和△BOF中,,∴△AOE≌△BOF(ASA),∴△AOE的面积=△BOF的面积,∴四边形AFOE的面积=正方形ABCD的面积=×22=1;故答案为:1.三、解答题:共72分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.计算:×+6﹣.解:原式=+2﹣=2+2﹣=3.18.如图,每个小正方形的边长都为1(1)求四边形ABCD的周长;(2)求∠BCD的大小.解:(1)由勾股定理得:DC==,BC==2,AD==,AB==,所以四边形ABCD的周长为AB+BC+cd+ad=+2++=+3+;(2)连接BD,由勾股定理得:BD==5,∵DC=,BC=2,∴DC2+BC2=BD2,∴∠BCD=90°.19.甲、乙两名同学5次数学练习的成绩如下表:(单位:分)测试日期2月10日2月20日3月5日3月18日3月27日甲126127130133134乙130125130135130已知甲同学这5次数学练习成绩的平均数为130分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为130分,方差为10分2;(2)甲、乙都认为自己在这5次练习中的表现比对方更出色,请分别写出一条支持他们俩观点的理由.解:(1)乙的平均分=(130+125+130+135+130)=130,方差=[(130﹣130)2+(125﹣130)2+(130﹣130)2+(135﹣130)2+(130﹣130)2]=10.故答案为130,10.(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在130分以上(含130分)的次数更多.20.如图,在平行四边形ABCD中,E、F为对角线BD上的两点,且∠BAF=∠DCE.求证:BE=DF.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中,∴△ABF≌△CDE(ASA),∴ED=BF,∴BD﹣CF=BD﹣DE,∴BE=DF.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x 轴相交于点B,与y轴交于点D,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k,b的值;(2)请直接写出不等式kx+b﹣3x>0的解集;(3)M为射线CB上一点,过点M作y轴的平行线交y=3x于点N,当MN=OD时,求M点的坐标.解:(1)当x=1时,y=3x=3,∴C点坐标为(1,3).直线y=kx+b经过(﹣2,6)和(1,3),则,解得:k=﹣1,b=4;(2)x<1;(3)当x=0时,y=﹣x+4=4,∴D点坐标为(0,4),∴OD=4.设点M的横坐标为m,则M(m,﹣m+4),N(m,3m),∴MN=3m﹣(﹣m+4)=4m﹣4∵MN=OD,∴4m﹣4=4,解得m=2.即M点坐标为(2,2).22.“双剑合璧,天下无敌”,其意思是指两个人合在一起,取长补短,威力无比.在二次根式中也常有这种相辅相成的“对子”,如:(2+)(2﹣)=1,=3,它们的积中不含根号,我们说这两个二次根式是互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样解:,=7+4.像这样通过分子、分母同乘一个式子把分母中的根号化去的方法,叫做分母有理化.解决下列问题:(1)将分母有理化得;+1的有理化因式是﹣1;(2)化简:=﹣;(3)化简:……+.解:(1)==,(+1)(﹣1)=()2﹣12=2﹣1=1,即+1的有理化因式是﹣1,故答案为:,﹣1;(2)===﹣,故答案为:﹣.(3)原式=﹣1+﹣+﹣+…+﹣=﹣1=10﹣1=9.23.如图,矩形ABCD中,点P是线段AD上的一个动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向点D运动(不与D 重合).设点P运动的时间为t秒,请用t表示PD的长;并求出t为何值时,四边形PBQD是菱形?解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠QBO,∵O为BD的中点,∴DO=BO,在△PDO和△QBO中,,∴△PDO≌△QBO(ASA),∴OP=OQ;(2)由题意知:AD=8cm,AP=tcm,∴PD=8﹣t,∵PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+t2=(8﹣t)2,解得t=,∴当t=时,PB=PD.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年八年级数学期末试卷(含答案)温馨提示:时间120分钟,满分150分。
请仔细审题,细心答题,相信你一定会有出色的表现!一、选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1.下列图案是轴对称图形的是( )A .B .C .D .2.如图所示是一个风筝的图案,它是以直线AF 为对称轴的轴对称图形,下列结论中不一定成立的是( )A.△ABD ≌△ACDB.AF 垂直平分EGC.直线BG ,CE 的交点在AF 上D.△DEG 是等边三角形3.如图,在△ABC 中,∠A =36°,AB =AC ,BD 是△ABC 的角平分线.若在边AB 上截取BE =BC ,连接DE ,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个4.如图,在△ABC 中,AC =4cm ,线段AB 的垂直平分线交AC 于点N ,△BCN 的周长是7cm ,则BC 的长为( ) A .1cm B . 2cm C . 3cm D .4cm 5.下列运算正确的是( )A .a 2•a 3=a 6B .(﹣a 2)-3=a -6C .(﹣a +b )(a +b )=b 2﹣a 2D .a 3+a 5=a 86. 如图,边长为a ,b 的矩形的周长为14,面积为10,则a 2b +ab 2的值为( ) A .140 B .70C .35D .24 7. 定义运算:a *b=a (1﹣b ).下面给出了关于这种运算的几种结论:①2*(﹣2)=6,②a *b=b *a ,③若a+b=0,则(a *a )+(b *b )=2ab ,④若a *b=0,则a=0或b=1,其中结论正确的序号是( )A . ①④B . ①③C . ②③④D . ①③④第2题图 第3题图 第4题图第6题图8. 化简分式xx x -+-1112的结果是( ) A. 1+x B.11+x C. 1-x D. 1-x x 9.无论实数 a ,b 取什么值,分式222a ba ab++的值都不可能是下列哪个值( ) A .12B .1C .0D .-110如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( ) A . 25° B . 30° C . 35° D . 40°二、填空题(本题共5小题,每小题4分,共20分)11. 一个正多边形的内角和是外角和的3倍,则它的每个外角度数是 .12. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC = . 13. 校园围墙边有一块三角形绿地如图,课外兴趣小组测得AC =10m ,BC =8m ,∠ACB =150°则这块绿地的面积为 .14.若整式23x ax +-可以因式分解为(x +m )(x +n )(m 、n 均为整数),则a 的值是 . 15.在“母亲节”前夕,某花店用16000元购进第一批礼盒鲜花,上市后很快预售一空.根据市场需求情况,该花店又用7500元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.若设第二批鲜花每盒的进价是x 元,可列出方程 。
三、(本大题2小题,每小题8分,共16分)16. (1)化简:22)+(3)(3)x x x --+(.第10题图第12题图BA第13题图(2)分解因式:x 3y ﹣2x 2y +xy . .17.如图,已知线段AC 与BD 相交于点E ,且AD =BC ,请再添加一个条件,能证明出AC =BD ,不要在图中再添加任何其他字母或线段。
你添加的条件是: ; 证明过程:四、(本题共2小题,每小题8分,共16分)18.先化简:22121(1)11x x x x ++-÷--,再将x 取一个合适的值代入求值。
19.尺规作图:如图,已知:线段a 及∠MON .求作:△ABC ,使底边BC =a ,底角等于∠MON . (保留作图痕迹,不必写作法和证明)五、(本题共2小题,每小题10分,共20ABaO分)20. 如图所示,长方形ABCD 被分成六个大小不一的正方形,已知中间一个小正方形面积为4,求长方形ABCD 中最大正方形与最小正方形的面积之差.21.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?第19题图六、(本题12分)22. 小明解方程121x x x--=的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.七、(本题12分)23.探究应用:(1)计算:(a -2)(a 2+ 2a + 4)= ; (2x -y )(4x 2+2xy +y 2)= ;(2)上面的乘法计算结果很简洁,聪明的你又可以发现一个新的乘法公式,可以用含a ,b 的字母表示为 ;(3)下列各式能用你发现的乘法公式计算的是( )A 、(a -3)(a 2-3a +9) B 、(2m -n )(2m 2+ 2mn + n 2) C 、(4-x )(16 + 4x + x 2) D 、(m -n )(m 2+ 2mn + n 2)(4)直接用公式计算:(3x - 2y )(9x 2+ 6xy + 4y 2)= .八、(本题14分)24.如图,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点,过点E作EN∥AD交射线AM于点N.(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;(2)将图1中的△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△ACN为等腰直角三角形;(3)将图1中△BCE绕点B旋转到图3位置时,(2)中的结论是否仍成立?若成立,试证明之,若不成立,请说明理由.八年级数学参考答案及评分标准一、1-5 CDDCC 6-10BDACB二、11、45°, 12、52°, 13、20m 2, 14、±2, 15、7500116000210x x =⨯+; 三、16、解:(1)22)+(3)(3)x x x --+(22244(3)(3)449413x x x x x x x x =-+--+=-+-+=-+(2)x 3y ﹣2x 2y +xy =xy(x 2-2x+1)………………..2分 =xy(x-1)2…………………….4分17、添加的条件不唯一,如添加条件∠DAB =∠CBA ,再用SAS 证明出△ABD ≌△BAC ,从而得出AC =BD 。
添加的条件正确得2分. 18、211(1)(1)1=)=.11(1)111x x x x x xx x x x x x -+--+⨯⨯=--+-++解:原式(代入求值不规定,只要x ≠±1均可。
19、(1)作出底边BC =a ,并痕迹清晰 …… …1分(2)作出底角∠B=∠MON , 并痕迹清晰 …… …4分 (3)作出另一底角∠C=∠MON(或作出BC 的垂直平分线)与∠B 的另一边交于点A ,并痕迹清晰…… …7分 (4)答句“△ABC 即为所求作的三角形”…… …1分20、解:由题意,得b =a+2,c =b+2=a+4,d=c+2=a+6,∵AB=DC ,∴d+c=b+2a. ∴a+6+a+4=a+2+2a.∴a=8.∴两正方形的面积差为d 2-4=(a+6)2-4=(8+6)2-4=192.21、解:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫是2x 件,依题意有+10=,解得x=120,经检验,x=120是原方程的解,且符合题意. 答:该商家购进的第一批衬衫是120件.A B(2)3x=3×120=360,设每件衬衫的标价y 元,依题意有(360﹣50)y+50×0.8y ≥(13200+28800)×(1+25%), 解得y ≥150.答:每件衬衫的标价至少是150元. 22、解:小明的解法有三处错误:步骤①去分母错误;步骤②去括号错误;步骤⑥之前缺少“检验”步骤。
(每找出一处错误得1分,共3分)正确的解答过程如下:去分母,得1-(x-2)=x ,去括号,得1-x+2=x , 移项,得-x-x=-1-2,合并同类项,得-2x=-3,两边同除以-2,得32=x . 经检验,32=x 是原方程的解, ∴原方程的解是32=x ………………………….12分23、(1)83-a 、 338y x -..........每填对一题得2分,计4分(2)3322))((b a b ab a b a -=++-………………8分 (3)C .......................10分 (4)33827y x -………………………12分24、(1)证明:如图1,∵EN ∥AD ,∴∠MAD=∠MNE ,∠ADM=∠NEM . ∵点M 为DE 的中点, ∴DM=EM .在△ADM 和△NEM 中, ∴.∴△ADM ≌△NEM . ∴AM=MN .∴M 为AN 的中点.(2)证明:如图2,∵△BAD 和△BCE 均为等腰直角三角形, ∴AB=AD ,CB=CE ,∠CBE=∠CEB=45°. ∵AD ∥NE ,∴∠DAE+∠NEA=180°.∵∠DAE=90°,∴∠NEA=90°.∴∠NEC=135°.∵A,B,E三点在同一直线上,∴∠ABC=180°﹣∠CBE=135°.∴∠ABC=∠NEC.∵△ADM≌△NEM(已证),∴AD=NE.∵AD=AB,∴AB=NE.在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.(3)△ACN仍为等腰直角三角形.证明:如图3,延长AB交NE于点F,∵AD∥NE,M为中点,∴易得△ADM≌△NEM,∴AD=NE.∵AD=AB,∴AB=NE.∵AD∥NE,∴AF⊥NE,在四边形BCEF中,∵∠BCE=∠BFE=90°∴∠FBC+∠FEC=360°﹣180°=180°∵∠FBC+∠ABC=180°∴∠ABC=∠FEC在△ABC和△NEC中,∴△ABC≌△NEC.∴AC=NC,∠ACB=∠NCE.∴∠ACN=∠BCE=90°.∴△ACN为等腰直角三角形.。