(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

合集下载

(完整版)直线和圆单元测试题

(完整版)直线和圆单元测试题

《直线和圆的方程》测试姓名: 得分:一、选择题1、三角形ABC 中,A(-2,1),B(1,1),C(2,3),则k AB ,k BC 顺次为 ( )A -71,2 B 2,-1 C 0,2 D 0,-71 2、斜率为-21,在y 轴上的截距为5的直线方程是 ( ) A x -2y = 10 B x + 2y = 10C x -2y + 10 = 0D x + 2y + 10 = 03、原点在直线l 上的射影是P (-2,1),则直线l 的方程为 ( )A x + 2y = 0B x + 2y -4 = 0C 2x -y + 5 = 0D 2x + y + 3 = 04、如果直线ax + 2y + 2 = 0与3x -y -2 = 0直线平行,那么系数a = ( )A -3B -6C -23D 32 5、点(0,10)到直线y = 2x 的距离是 ( ) A 25 B 5 C3 D5 6、到点C(3,-2)的距离等于5的轨迹方程为 ( )A (x -3)2 + (y + 2)2 = 5B (x -3)2 + (y + 2)2 = 25C (x + 3)2 + (y -2)2 = 5D (x + 3)2 + (y -2)2 = 257、已知圆的方程为x 2 + y 2-4x + 6y = 0,下列是通过圆心直线的方程为( )A 3x + 2y + 1 = 0B 3x -2y + 1= 0C 3x -2y = 0D 3x + 2y = 08、直线3x + 4y + 2 = 0与圆x 2 + y 2 + 4x = 0交于A ,B 两点,则线段AB 的垂直平分线的方程是 ( )A 4x -3y -2 = 0B 4x -3y -6 = 0C 4x + 3y + 6 = 0D 4x + 3y + 8 = 09、直线3x -4y -5 = 0和(x -1)2 + (y + 3)2 = 4位置关系是 ( )A 相交但不过圆心B 相交且过圆心C 相切D 相离10、点P (1,5)关于直线x + y = 0的对称点的坐标是 ( )A (5,1)B (1,-5)C (-1,5)D (-5,-1)11、过点P(2,3)且在两坐标轴有相等截距的直线方程是 ( )A x + y -5 = 0B x + y + 5 = 0C x + y -5 = 0 或x + y + 5 = 0D x + y -5 = 0 或3x -2y = 012、两条直线2x + 3y -k = 0和x -ky + 12 = 0的交点在y 轴上,那么k 的值是 ( )A -24B 6C ±6D 2413、已知圆C 1:x 2 + y 2 = 4和圆C 2:x 2 + y 2 + 4x -4y + 4 = 0关于直线l 对称,则直线l的方程为 ( )A x + y = 0B x + y = 2C x -y = 2D x -y =-214、直线l:01243=++y x 与9)1()1(22=++-y x 的位置关系为:( )A 相交B 相离C 相切D 无法确定15、如果实数x ,y 满足x 2 + y 2 = 4,那么3y -4x 的最大值是 ( )A 10B 8C 6D 10二、填空题16、经过两点A(-m ,6)、B(1,3m)的直线的斜率是12,则m 的值为 。

直线与圆的方程试题——含答案

直线与圆的方程试题——含答案

高中数学必修2 第1页 共4页高中数学必修2 第 2 页 共 4页林口林业局中学 班级 姓名……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线……………………必修二数学测试(直线方程与圆的方程)(全卷三个大题,共20个小题;满分100分,考试时间90分) 题号 一 二 三 总分 得分一、选择题(每小题3分,共36分)1.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB.032=-+y x C. 01=-+y x D. 052=--y x2.圆012222=+--+y x y x上的点到直线2=-y x 的距离最大值是( )A .2B .21+C .221+D .221+3.圆0422=-+x y x在点)3,1(P 处的切线方程( )A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x4.若直线2=-y x 被圆4)(22=+-y a x 所截得的弦长为22,则实数a 的值为( )A .1-或3 B .1或3 C .2-或6 D .0或45.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y x C .03222=-++x y xD .0422=-+x y x6.已知圆C :22()(2)4(0)x a y a -+-=>及直线03:=+-y x l ,当直线l 被C 截得的弦长为32时,则a =( )A .2 B .22- C .12- D .12+7.两圆229x y +=和228690x y x y +-++=的位置关系是( )A .相离B .相交C .内切D .外切8.已知点P (3,2)与点Q (1,4)关于直线l 对称,则直线l 的方程为( ) A .01=+-y xB .0=-y x C .01=++y x D .0=+y x9.若圆222)1()1(R y x =++-上有且仅有两个点到直线4x +3y =11的距离等于1,则半径R 的取值范围是 ( )A R >1B R <3C 1<R <3D R ≠2 10.若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直,则a 的值为( )A .3-B .1C .0或23-D .1或3- 11.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( )A.4)1()3(22=-++y x B. 4)3()1(22=-++y xC.4)3()1(22=++-y x D. 4)1()3(22=++-y x12. 对于任意实数k ,直线(32)20k x ky +--=与圆222220x y x y +---=的位置关系是( )A .相交B .相交或相切C .相交或相切或相离D .与k 值有关二、填空题(每小题4分,共16分)13.直线20x y +=被曲线2262150x y x y +---=所截得的弦长等于 。

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章 直线和圆的方程 专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一

第二章直线和圆的方程专题测试(原卷版+解析版) (人教A版)高二数学选择性必修一第二章直线和圆的方程专题测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息。

2.请将答案正确填写在答题卡上。

第I卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·福建高二学业考试)已知直线 $ $l_1\parallell_2$,则实数 $k=$()。

A。

$-2$B。

$-1$C。

$1$D。

$2$2.(2020·XXX高一月考)直线$l_1:(a-2)x+(a+1)y+4=0$,$l_2:(a+1)x+ay-9=0$ 互相垂直,则 $a$ 的值是()。

A。

$-0.25$B。

$1$C。

$-1$D。

$1$ 或 $-1$3.(2020·XXX高一月考)直线 $l:(m-1)x-my-2m+3=0$($m\in R$)过定点 $A$,则点 $A$ 的坐标为()。

A。

$(-3,1)$B。

$(3,1)$C。

$(3,-1)$D。

$(-3,-1)$4.(2020·广东高二期末)设 $a\in R$,则“$a=1$”是“直线$ax+y-1=0$ 与直线 $x+ay+1=0$ 平行”的()。

A。

充分不必要条件B。

必要不充分条件C。

充分必要条件D。

既不充分也不必要条件5.(2020·黑龙江高一期末)若曲线 $y=4-x^2$ 与直线$y=k(x-2)+4$ 有两个交点,则实数 $k$ 的取值范围是()。

A。

$\left[\frac{3}{4},1\right]$B。

$\left[\frac{3}{4},+\infty\right)$C。

$(1,+\infty)$D。

$(1,3]$6.(2020·XXX高三其他)已知直线 $x+y=t$ 与圆$x+y=2t-t^2$($t\in R$)有公共点,则 $\frac{t(4-t)}{9}$ 的最大值为()。

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

人教版高中数学选修一第二单元《直线和圆的方程》测试(含答案解析)

一、选择题1.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为( ) A .72B .4C .1D .52.若平面上两点()2,0A -,()10B ,,则l :()1y k x =-上满足2PA PB =的点P 的个数为( ) A .0 B .1C .2D .与实数k 的取值有关3.点()4,2P -与圆224x y +=上任一点连线的中点轨迹方程是( ) A .()()22211x y -++= B .()()22214x y -++= C .()()22421x y ++-=D .()()22211x y ++-=4.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4±B .-4C .4D .2±5.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-6.点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,则四边形PAOB (O 为坐标原点)的面积的最小值等于( ) A .8 B .4C .24D .167.已知圆222:(1)(1)(0)C x y r r -+-=>,若圆C 上至少有3个点到直线20x y ++=,则实数r 的取值范围为( )A .(0,B .C .)+∞D .+∞[)8.在平面直角坐标系中,定义1212(,)||||d A B x x y y =-+-为两点11(,)A x y 、22(,)B x y 的“切比雪夫距离”,又设点P 及直线l 上任意一点Q ,称(,)d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(,)d P l ,给出下列三个命题: ①对任意三点A 、B 、C ,都有(,)(,)(,)d C A d C B d A B +≥; ②已知点(3,1)P 和直线:210l x y --=,则4(,)3d P l =; ③定义(0,0)O ,动点(,)P x y 满足(,)1d P O =,则动点P 的轨迹围成平面图形的面积是4;其中真命题的个数( ) A .0B .1C .2D .39.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A B C D 10.已知点(1,1)A - 和圆221014700C x y x y +--+=: ,一束光线从点A 出发,经过x 轴反射到圆C 的最短路程是( ) A .6B .7C .8D .911.曲线34y x x =-在点(1,3)--处的切线方程是( ) A .74y x =+B .72y x =+C .4y x =-D .2y x =-12.设点()0,1M x ,若在圆22:1O x y +=上存在点N ,使得45OMN ︒∠=,则0x 的取值范围是( )A .[0,1]B .[1,1]-C .⎡⎢⎣⎦D .⎡⎢⎣⎦二、填空题13.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______. 14.直线360x y +-=和圆()2215x y +-=的位置关系为______.15.已知圆C 过点(8,1),且与两坐标轴都相切,则面积较小的圆C 的方程为________. 16.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.17.直线()130m x my m ++++=被圆2225x y +=所截的弦长的最小值为________. 18.若P 为直线40x y -+=上一个动点,从点P 引圆2240y x C x +-=:的两条切线PM ,PN (切点为M ,N ),则MN的最小值是________.19.若直线y x b =+与曲线y =b 的范围______________.20.若实数,a b ∈R 且0b ≠,则()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为_______.三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线l 经过直线10x y -+=与直线240x y +-=的交点,且()2,3M ,()4,5N -到l 的距离相等,求直线l 的方程.23.已知圆C 过A (1,5)、B (4,2)两点,且圆心在直线2y x =上,直线l 过点()3,2P --且与AB 平行.(1)求直线l 及圆C 的方程;(2)设点M 、N 分别是直线l 和圆C 上的动点,求|MN |的取值范围. 24.已知圆C 的圆心在直线2y x =-上,且过点(2,1),(0,3)-- (1)求圆C 的方程;(2)已知直线l 经过原点,并且被圆C 截得的弦长为2,求直线l 的方程. 25.已知直线:10l x y +-=与圆22:430C x y x +-+=相交于,A B 两点. (1)求||AB ;(2)若(,)P x y 为圆C 上的动点,求+1yx 的取值范围. 26.如图,已知ABC 的边AB 所在直线的方程为360x y --=,()2,0M 满足BM MC =,点()1,1T -在AC 边所在直线上且满足0AT AB ⋅=.(1)求AC 边所在直线的方程; (2)求ABC 外接圆的方程;(3)求过()2,0N -的ABC 外接圆的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.C解析:C 【分析】首先利用直接法求点P 的轨迹方程,则转化为直线()1y k x =-与轨迹曲线的交点个数. 【详解】 设(),P x y ,2PA PB =,=整理为:()22224024x y x x y +-=⇔-+=, 即点P 的轨迹是以()2,0为圆心,2r为半径的圆,直线():1l y k x =-是经过定点()1,0,斜率存在的直线,点()1,0在圆的内部,所以直线():1l y k x =-与圆有2个交点,则l :()1y k x =-上满足2PA PB =的点P 的个数为2个. 故选:C方法点睛:一般求曲线方程的方法包含以下几种:直接法:把题设条件直接“翻译”成含,x y 的等式就得到曲线的轨迹方程.定义法:运用解析几何中以下常用定义(如圆锥曲线的定义),可从曲线定义出发,直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程.相关点法:首先要有主动点和从动点,主动点在已知曲线上运动,则可以采用此法.3.A解析:A 【分析】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,由此得解轨迹方程.【详解】设圆上任意一点为()11,x y ,中点为(),x y ,则114222x x y y +⎧=⎪⎪⎨-⎪=⎪⎩,112422x x y y =-⎧⎨=+⎩代入224x y +=得()()2224224x y -++=,化简得()()22211x y -++=.故选:A . 4.B解析:B 【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案. 【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±. 当4a =时,两直线重合,所以4a =舍去. 当4a =-时,符合题意. 所以4a =-. 故选:B 【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题5.C【分析】根据勾股定理由切线长最小值求出||PC C 到直线l 的距离为l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1,因为切线长的最小值为2,所以min ||PC ==所以圆心C 到直线l ,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --===22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l 的距离是解题关键.6.A解析:A 【分析】根据题意,得到四边形PAOB 的面积22PAOS S PA ===只需求PO 最小值,进而可求出结果. 【详解】因为圆224x y +=的圆心为()0,0O ,半径为2r,圆心()0,0O 到直线2100x y ++=的距离为2d ==>,所以直线2100x y ++=与圆224x y +=相离,又点P 是直线2100x y ++=上的动点,直线PA ,PB 分别与圆224x y +=相切于A ,B 两点,所以PA PB =,PA OA ⊥,PB OB ⊥,因此四边形PAOB 的面积为12222PAO PBOPAOS SSSPA r PA =+==⨯⨯== 为使四边形面积最小,只需PO 最小,又min PO 为圆心()0,0O 到直线2100x y ++=的距离d =所以四边形PAOB 的面积的最小值为8=. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据圆的切线的性质,将四边形的面积化为2PAOS =求面积最值问题,转化为定点到线上动点的最值问题,即可求解.7.D解析:D 【分析】根据题意,得到直线不过圆心,且求得圆心到直线的距离,结合题中条件,得到实数r 的取值范围. 【详解】圆222:(1)(1)(0)C x y r r -+-=>的圆心(1,1)到直线20x y ++=为:d ==,且直线20x y ++=不过圆心,若圆222:(1)(1)(0)C x y r r -+-=>上至少有3个点到直线20x y ++=,则有r ≥=所以实数r 的取值范围为+∞[), 故选:D. 【点睛】思路点睛:该题考查的是有关直线与圆的相关问题,解决该题的思路如下: (1)求得圆心到直线的距离,并且发现直线不过圆心; (2)结合题中条件,得到r 的取值范围.8.B解析:B 【分析】由新定义表示出三点,,A B C 两两之间的“切比雪夫距离”,然后根据绝对值的性质判断①,由新定义计算出(,)d P l ,判断②,根据新定义求出P 的轨迹方程,确定其轨迹,求得轨迹围成的图形面积判断③. 【详解】①设112233(,),(,),(,)A x y B x y C x y ,则1212(,)d A B x x y y =-+-,13132323(,)(,)d A C d B C x x y y x x y y +=-+-+-+-,显然1323132312()()x x x x x x x x x x -+-≥---=-,同理132312y y y y y y -+-≥-,∴(,)(,)(,)d C A d C B d A B +≥,①正确; ②设(,)P x y 是直线l 上任一点,则21y x =-,(,)31322d P l x y x x =-+-=-+-35,31,1353,1x x x x x x -≥⎧⎪=+≤<⎨⎪-<⎩,易知(,)d P l 在[1,)+∞上是增函数,在(,1)-∞上是减函数,∴1x =时,min (,)13222d P l =-+-=,②错; ③由(,)1d P O =得1x y +=,易知此曲线关于x 轴,y 轴,原点都对称,它是以(1,0),(0,1),(1,0),(0,1)--为顶点的正方形,其转成图形面积为12222S =⨯⨯=,③错.故选:B . 【点睛】关键点点睛:本题考查新定义,解题关键是理解新定义,解题方法是把新概念转化为绝对值的问题,利用绝对值的性质求解.9.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C. 【点睛】关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.10.C解析:C 【分析】先将圆221014700C x y x y +--+=:化为标准方程,求出圆心和半径,再找出圆心O 关于x 轴对称的点'O ,最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离. 【详解】解:由题可知,圆221014700C x y x y +--+=:,整理得()()222572C x y -+-=:,圆心()5,7O ,半径2r最短距离即(1,1)A -和圆C 的圆心()5,7O 关于x 轴对称的点()'5,7O -的距离再减去半径的距离,所以21028d ==-=.故选:C 【点睛】本题主要考查圆的方程和直线与圆的位置关系,考查两点间的距离公式,属于简单题.11.D解析:D 【分析】已知点(1,3)--在曲线上,若求切线方程,只需求出曲线在此点处的斜率,利用点斜式求出切线方程. 【详解】由已知得:曲线为34y x x =-;则:对其进行求导得243y x '=-;当1x =-时,243(1)1y '=-⨯-=∴ 曲线34y x x =-在点(1,3)--处的切线方程为:31(1)y x +=⨯+化简得:2y x =-; 故选:D.【点睛】本题主要考查了求曲线切线方程,解题关键是掌握根据导数求切线的方法,考查了分析能力和计算能力,属于中档题.12.B解析:B 【分析】首先根据题中条件,可以判断出直线MN 与圆O 有公共点即可,从而可以断定圆心O 到直线MN 的距离小于等于半径,列出对应的不等关系式,求得结果. 【详解】依题意,直线MN 与圆O 有公共点即可, 即圆心O 到直线MN 的距离小于等于1即可,过O 作OA ⊥MN ,垂足为A , 在Rt OMA ∆中,因为OMA ∠045=, 故02sin 452OA OM ==1≤, 所以2OM ≤2012x +≤,解得011x -≤≤.故选:B. 【点睛】该题考查的是有关直线与圆的问题,涉及到的知识点有直线与圆的位置关系,解直角三角形,属于简单题目.二、填空题13.【分析】由题意可知直线的斜率存在且不为零可设直线的方程为求出点的坐标结合已知条件可求得的取值范围并求出的面积关于的表达式利用基本不等式可求得面积的最小值及其对应的值由此可求得直线的方程【详解】由题意 解析:480x y +-=【分析】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,求出点A 、B 的坐标,结合已知条件可求得k 的取值范围,并求出AOB 的面积关于k 的表达式,利用基本不等式可求得AOB 面积的最小值及其对应的k 值 ,由此可求得直线l 的方程. 【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-. 在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=. 即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <, AOB 的面积为()1411111481688222AOBk S k k k k ⎛-⎛⎫=⨯⨯-=--≥+= ⎪ ⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=. 故答案为:480x y +-=. 【点睛】关键点点睛:解本题的关键在于以下两点: (1)将三角形的面积利用k 加以表示;(2)在求解最值时,可充分利用基本不等式、导数、函数的单调性等知识来求解.14.相交【分析】由圆的标准方程求出圆心和半径根据圆心到直线的距离与半径的大小关系确定出直线与圆的位置关系【详解】解:圆的圆心坐标为半径则圆心到直线的距离直线与圆的位置关系是相交故答案为:相交【点睛】方法解析:相交 【分析】由圆的标准方程求出圆心和半径,根据圆心到直线的距离与半径的大小关系,确定出直线与圆的位置关系 【详解】解:圆()2215x y +-=的圆心坐标为(0,1),半径r =则圆心到直线360x y +-=的距离d =< ∴直线360x y +-=与圆()2215x y +-=的位置关系是相交.故答案为:相交. 【点睛】方法点睛:判断直线与圆的位置关系,常用圆心到直线的距离d 与圆半径r 的大小比较:(1)若d r =,则直线与圆相切; (2)若d r <,则直线与圆相交; (3)若dr ,则直线与圆相离.15.【分析】设圆的方程为代入点求得或进而得到圆的方程【详解】由题意圆过点且与两坐标轴都相切设圆的方程为将点代入圆的方程可得整理得解得或当时圆的面积较小所以圆的方程为故答案为:【点睛】求解圆的方程的两种方 解析:()()225525x y -+-=【分析】设圆的方程为222()()(0)x a y a a a -+-=>,代入点(8,1),求得5a =或13a =,进而得到圆的方程. 【详解】由题意,圆C 过点(8,1),且与两坐标轴都相切, 设圆的方程为222()()(0)x a y a a a -+-=>, 将点(8,1)代入圆的方程,可得222(8)(1)a a a -+-=, 整理得218650a a -+=,解得5a =或13a =,当5a =时,圆C 的面积较小,所以圆的方程为()()225525x y -+-=. 故答案为:()()225525x y -+-=. 【点睛】求解圆的方程的两种方法:几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; 待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F 的值,代入标准方程或一般方程.16.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2,所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.17.【分析】转化条件为直线过结合垂径定理可得当直线与直线垂直时弦长最小即可得解【详解】直线可变为由可得所以直线过定点又圆的圆心为半径所以点在圆内所以当直线与直线垂直时弦长最小此时弦长为故答案为:【点睛】解析:【分析】转化条件为直线过()3,2A -,结合垂径定理可得当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,即可得解.【详解】直线()130m x my m ++++=可变为()130x y m x ++++=,由1030x y x ++=⎧⎨+=⎩可得32x y =-⎧⎨=⎩,所以直线()130m x my m ++++=过定点()3,2A -, 又圆2225x y +=的圆心为()0,0O ,半径=5r ,所以213AO =,点()3,2A -在圆内,所以当直线AO 与直线()130m x my m ++++=垂直时,弦长最小,此时弦长为==.故答案为: 【点睛】关键点点睛:解决本题的关键是找到直线经过的定点,再利用几何法转化出弦长.18.【分析】根据题意得当的长度最小时取最小值进而根据几何关系求解即可【详解】如图由题可知圆C 的圆心为半径要使的长度最小即要最小则最小因为所以当最小时最小因为所以当最小时最小因为所以所以由于所以故答案为:【分析】根据题意得当||MN 的长度最小时,||PC 取最小值,进而根据几何关系求解即可. 【详解】如图,由题可知圆C 的圆心为(2,0)C ,半径2r.要使||MN 的长度最小,即要MCN ∠最小,则MCP ∠最小. 因为||||tan 2PM PM MCP r ∠==, 所以当||PM 最小时,||MN 最小因为2||4PM PC =-∣, 所以当||PC 最小时,||MN 最小. 因为min ||3211PC ==+, 所以2cos 332MCP ∠==, 所以7sin 3MCP ∠=, 由于1in 2s 2MCP MN∠=所以min 47||MN =. 47. 【点睛】本题解题的关键是根据已知当||MN 的长度最小,即要MCN ∠最小,进而得当||PC 最小时,||MN 最小.由于||PC 的最小值为C 点到直线40x y -+=,故min ||32PC =.考查化归转化思想和运算能力,是中档题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或22b = 【分析】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】 由曲线24y x =-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<. ②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.2【分析】根据两点间的距离公式的几何意义可知表示点到点的距离点在直线上点在曲线上通过平移法设曲线的切线方程联立切线方程和曲线方程通过求出可求出切线方程最后利用两平行线间的距离公式求出两平行直线与的距【分析】(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离,点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x =-上,通过平移法,设曲线1y x=-的切线方程y x m =+,联立切线方程和曲线方程,通过0∆=求出m ,可求出切线方程,最后利用两平行线间的距离公式,求出两平行直线0x y -=与20x y -+=的距. 【详解】表示点(),a a 到点1,b b ⎛⎫- ⎪⎝⎭的距离, 而点(),a a 在直线y x =上,点1,b b ⎛⎫- ⎪⎝⎭在曲线1y x=-上, 将直线y x =平移到与曲线1y x=-相切,设切线为y x m =+,切线方程和曲线方程联立,即1y x my x =+⎧⎪⎨=-⎪⎩,得210x mx ++=,则240m ∆=-=,解得:2m =±,当2m =时,切线方程为:2y x =+,即20x y -+=, 所以两平行直线0x y -=与20x y -+=的距离为:d ==,所以()221a b a b ⎛⎫-++ ⎪⎝⎭的最小值为2. 故答案为:2. 【点睛】本题考查利用两点间距离的几何意义求最值,考查两点间的距离公式以及两平行线间的距离公式的应用,还涉及两平行线的斜率关系和一元二次方程根的判别式,考查转化思想和三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA =2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.3270x y +-=或460x y +-=. 【分析】根据题意求出交点坐标,由M ,N 到l 的距离相等,可判断直线有两种情况:①直线l 经过线段MN 的中点;②直线//l MN ,分别求解两种情况下的直线方程即可. 【详解】 联立10240x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,所以直线10x y -+=与直线240x y +-=的交点为()1,2P ,由M ,N 到l 的距离相等,知直线l 经过线段MN 的中点,或者直线//l MN ,线段MN 的中点为()3,1Q -,35424MN k +==--, ∴过点P ,Q 的直线l 的方程为3270x y +-=,∴过点P 与直线MN 平行的直线l 的方程为460x y +-=, 综上,直线l 的方程为3270x y +-=或460x y +-=. 【点睛】本题考查直线方程的求法,考查两直线交点等基础知识,两个点到直线的距离相等,可以分为两种情况:①直线l 经过线段MN 的中点;②直线//l MN ;当MN 的中点()3,1Q -在直线l 上时,计算出斜率PQ k ,利用点斜式即可得出直线l 的方程;当//MN l时,计算出斜率MN k ,再根据斜率相等,利用点斜式即可得出直线l 的方程.23.(1)x +y +5=0,(x -1)2+(y -2)2=9;(2))3,⎡+∞⎣. 【分析】(1)求出AB 的斜率,利用点斜式可得直线l 的方程,求出AB 的中垂线的方程,结合圆心在直线2y x =上可得圆心坐标,求出半径后可得所求的圆的方程. (2)求出圆心到直线l 的距离后可得|MN |的取值范围. 【详解】(1)∵1AB k =-, 直线l:y +2=-(x +3),即l:x +y +5=0,AB 的中点为57,22⎛⎫⎪⎝⎭,故AB 的中垂线方程为57122y x x =-+=+,由21y x y x =⎧⎨=+⎩解得12x y =⎧⎨=⎩,∴圆心C (1,2),半径3r CA ===, ∴圆C 的方程为:(x -1)2+(y -2)2=9.(2) ∵圆心C 到直线l 的距离为3d ==>,∴直线l 与圆C 相离,∴|MN |的最小值为3-,无最大值,∴|MN |的取值范围为)3,⎡+∞⎣. 【点睛】 方法点睛:(1)求圆的方程,关键是确定圆心坐标和圆的半径,前者的确定需要利用一些几何性质,如果圆心在弦的中垂线上,也在过切点且垂直于切线的直线上.(2)直线与圆的位置关系中的最值问题,往往转化为圆心到几何对象的距离问题. 24.(1)22(1)(2)2x y -++=;(2)0x =或34y x =-.【分析】(1)根据题意设圆心坐标为(,2)a a -,进而得222222(2)(12)(0)(32)a a r a a r ⎧-+-+=⎨-+-+=⎩,解得1,a r ==,故圆的方程为22(1)(2)2x y -++=(2)分直线l 的斜率存在和不存在两种情况讨论求解即可. 【详解】(1)圆C 的圆心在直线2y x =-上,设所求圆心坐标为(,2)a a - ∵ 过点(2,1),(0,3)--,222222(2)(12)(0)(32)a a r a a r ⎧-+-+=∴⎨-+-+=⎩解得1,a r ==∴ 所求圆的方程为22(1)(2)2x y -++= (2)直线l 经过原点,并且被圆C 截得的弦长为2 ①当直线l 的斜率不存在时,直线l 的方程为0x =, 此时直线l 被圆C 截得的弦长为2,满足条件; ②当直线l 的斜率存在时,设直线l 的方程为y kx =,由于直线l 被圆C 截得的弦长为2,故圆心到直线l 的距离为1d = 故由点到直线的距离公式得:1d ==解得34k =-,所以直线l 的方程为34y x =- 综上所述,则直线l 的方程为0x =或34y x =- 【点睛】易错点点睛:本题第二问在解题的过程中要注意直线斜率不存在情况的讨论,即分直线l 的斜率存在和不存在两种,避免在解题的过程中忽视斜率不存在的情况致错,考查运算求解能力与分类讨论思想,是中档题.25.(1;(2)⎡⎢⎣⎦. 【分析】(1)求出圆的圆心与半径,利用点到直线的距离公式求出圆心到直线的距离d ,由||AB =.(2)利用+1yx 表示圆上的点与原点构成直线的斜率即可求解. 【详解】(1)()222243021x y x x y +-+=⇒-+=,所以圆心为()2,0,半径1r =,则圆心到直线:10l x y +-=的距离:2d ==,所以||AB ===(2)+1yx 表示圆上的点(),x y 与()1,0-构成直线的斜率,当直线与圆相切时取得最值,设(1),1+1yk y k x x ==-=,,可得2291k k =+,218k =,k =±+1y x的取值范围为44⎡-⎢⎣⎦.【点睛】关键点睛:解题的关键在于利用几何法求弦长以及利用两点求斜率的计算公式得到+1yx 的取值范围26.(1)320x y ++=;(2)22(2)8x y -+=;(3)20x y -+=或20x y ++=. 【分析】(1)求出直线AC 的斜率后可得直线AC 的方程.(2)求出点A 的坐标,结合圆心坐标可求圆的半径,从而可得圆的方程. (3)利用点到直线的距离为半径可求切线的斜率,从而可得所求的切线的方程. 【详解】 (1)0AT AB ⋅=,AT AB ∴⊥,又T 在AC 上,AC AB ∴⊥,ABC ∴为Rt ABC ∆,又AB 边所在直线的方程为360x y --=,∴直线AC 的斜率为3-, 又点()1,1T -在直线AC 上,AC ∴边所在直线的方程为13(1)y x -=-+,即320x y ++=.(2)AC 与AB 的交点为A ,∴由360320x y x y --=⎧⎨++=⎩解得点A 的坐标为()0,2-,BM MC =,()2,0M ∴为Rt ABC 斜边上的中点,即为Rt ABC 外接圆的圆心,又||r AM === 从而ABC 外接圆的方程为22(2)8x y -+=. (3)设切线方程为(2)y k x =+=,解得1k =或1-.所以切线方程为20x y -+=或20x y ++=.【点睛】思路点睛:(1)确定直线的方程往往需要两个独立的条件,比如直线所过的两个不同点,或直线所过的一个点和直线的斜率;(2)确定圆的方程,关键是圆心坐标和半径的确定;(2)直线与圆的位置关系,往往通过圆心到直线的距离与半径的大小关系来判断.。

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

新人教版高中数学选修一第二单元《直线和圆的方程》测试卷(含答案解析)

一、选择题1.如果实数x 、y 满足22640x y x +-+=,那么yx的最大值是( )A .23B C .3D 2.一束光线从点()2,3A 射出,经x 轴上一点C 反射后到达圆22(3)(2)2x y ++-=上一点B ,则AC BC +的最小值为( )A.B .C .D .3.过点()1,0P 作圆22(2)(2)1x y -+-=的切线,则切线方程为( ) A .1x =或3430x y +-= B .1x =或3430x y --= C .1y =或4340x y -+=D .1y =或3430x y --=4.已知圆()221:24C x a y ++=与圆()22:1C x y b +-=有且仅有1条公切线,则2211a b +的最小值为( ) A .6 B .7C .8D .95.圆22(1)2x y ++=上一点到直线5y x =+的距离最小值为( )A .1B .2CD .6.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D7.两圆交于点(1,3)A 和(,1)B m ,两圆的圆心都在直线02cx y -+=上, 则m c += . A .1B .2C .3D .48.过点()3,1作圆()2211x y -+=的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .230x y +-=B .230x y --=C .430x y --=D .430x y +-=9.已知圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,则实数m 的取值范围是( )A .(2,32⎡-⎣ B .(2,32⎡-⎣C .2,32⎡⎡-⎣⎣D .((2,32-10.若过点(2,1)P 的圆与两坐标轴都相切,则圆心到直线230x y -+=的距离是( )A.5B.5CD11.曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时,则实数k的取值范围是( ) A .50,12⎛⎫⎪⎝⎭B .13,34⎛⎫⎪⎝⎭C .5,12⎛⎫+∞⎪⎝⎭D .53,12412.若圆()2220x y r r +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1二、填空题13.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by cax by cδ++=++,以下命题中正确的序号为__________.(1)存在实数δ,使得点N 在直线l 上; (2)若1δ=,则过M 、N 的直线与直线l 平行; (3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 14.已知点M 是直线l :22y x =--上的动点,过点M 作圆C :()()22114x y -+-=的切线MA ,MB ,切点为A ,B ,则当四边形MACB 的面积最小时,直线AB 的方程为______.15.已知点(3,1)A -,点M 、N 分别是x 轴和直线250x y +-=上的两个动点,则AM MN +的最小值等于_________.16.过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为_________.17.与两圆22(2)1x y ++=,22(2)1x y -+=都相切,且半径为3的圆一共有________个18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.直线:20180l x y +-=的倾斜角为__________; 20.已知定点A 到动直线l :()221420+---=mx m y m (m R ∈)的距离为一常数,则定点A 的坐标为________.三、解答题21.在ABC 中,(2,5)A ,()1,3B (1)求AB 边的垂直平分线所在的直线方程;(2)若BAC ∠的角平分线所在的直线方程为30x y -+=,求AC 所在直线的方程. 22.以点1(),C m m为圆心的圆与x 轴相交于点O ,A ,与y 轴相交于点,O B (O 为坐标原点).(1)求证OAB 的面积为定值,并求出这个定值;(2)设直线23y x =-+与圆C 相交于点,P Q ,且||||OP OQ =,求圆C 的方程. 23.已知三条直线123121323:20,:20,:210,,,l x y l x l x y l l A l l B l l C -=+=+-=⋂=⋂=⋂=.(1)求ABC 外接圆的方程;(2)若圆22:20D x y ax +-=与ABC 的外接圆相交,求a 的取值范围.24.圆心为C 的圆经过点(4,1)A -和(3,2)B -,且圆心C 在直线:20l x y --=上. (1)求圆心为C 的圆的方程;(2)过点(5,8)P 作圆C 的切线,求切线的方程.25.当实数m 的值为多少时,关于,x y 的方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆?26.已知圆C 方程222410x y x y +-++= (1)求圆C 的圆心,半径;(2)直线l 经过(2,0),并且被圆C 截得的弦长为l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】本题首先可求出圆的圆心与半径,然后将yx看作圆上一点(),x y 与()0,0连线的斜率,并结合图像得出当过原点的直线与圆相切时斜率最大,最后根据直线与圆相切即可得出结果. 【详解】22640x y x +-+=,即()2235x y -+=,圆心为()3,0yx的几何意义是圆上一点(),x y 与()0,0连线的斜率, 如图,结合题意绘出图像:结合图像易知,当过原点的直线与圆相切时,斜率最大,即yx最大, 令此时直线的倾斜角为α,则5tan 2α=,y x 的最大值为5,故选:D. 【点睛】关键点点睛:本题考查直线的斜率的几何意义的应用,考查直线与圆相切的相关性质,能否将yx看作点(),x y 与()0,0连线的斜率是解决本题的关键,考查数形结合思想,是中档题.2.C解析:C 【分析】做出圆22(3)(2)2x y ++-=关于x 轴的对称圆,进而根据图形得AC BC AP r+≥-即可求解. 【详解】解:如图,圆22(3)(2)1x y ++-=的圆心()3,2-,其关于x 轴的对称圆的圆心为()3,2P --, 由图得AC BC AP r +≥-52242=-=.故选:C. 【点睛】解题的关键在于求圆关于x 轴的对称圆圆心P ,进而将问题转化AC BC AP r +≥-求解.3.B解析:B 【分析】按照过点P 的直线斜率是否存在讨论,结合直线与圆相切的性质及点到直线的距离公式即可得解. 【详解】圆22(2)(2)1x y -+-=的圆心为()2,2,半径为1,点P 在圆外,当直线的斜率不存在时,直线方程为1x =,点()2,2到该直线的距离等于1,符合题意; 当直线的斜率存在时,设直线方程为()1y k x =-即kx y k 0--=,1=,解得34k =,所以该切线方程为3430x y --=; 所以切线方程为1x =或3430x y --=. 故选:B. 【点睛】方法点睛:求过圆外一点()00,x y 的圆的切线方程的方法几何法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即000kx y y kx -+-=.由圆心到直线的距离等于半径,即可求出k 的值,进而写出切线方程;代数法:当斜率存在时,设为k ,则切线方程为00()y y k x x -=-,即00y kx kx y =-+,代入圆的方程,得到一个关于x 的一元二次方程,由0∆=,求得k ,切线方程即可求出.4.D解析:D 【分析】由题意可知,圆2C 内切于圆1C ,由题意可得出2241a b +=,然后将代数式2211a b +与224a b +相乘,展开后利用基本不等式可求得2211a b+的最小值. 【详解】圆()221:24C x a y ++=的圆心为()12,0C a -,半径为12r =,圆()22:1C x y b +-=的圆心为()20,C b ,半径为21r =,由于两圆有且仅有1条公切线,则圆2C 内切于圆1C ,所以12121C C r r ==-=,可得2241a b +=,()2222222222111144559b a a b a b a b a b ⎛⎫+=++=∴++≥+= ⎪⎝⎭, 当且仅当222b a =时,等号成立,因此,2211a b +的最小值为9. 故选:D. 【点睛】结论点睛:圆与圆的位置关系:设圆1C 与圆2C 的半径长分别为1r 和2r .(1)若1212C C r r <-,则圆1C 与圆2C 内含; (2)若1212C C r r =-,则圆1C 与圆2C 内切; (3)若121212r r C C r r -<<+,则圆1C 与圆2C 相交; (4)若1212C C r r =+,则圆1C 与圆2C 外切; (5)若1212C C r r >+,则圆1C 与圆2C 外离.5.C解析:C 【分析】求出圆心到直线距离,减去半径得解. 【详解】圆心为(1,0)-,直线方程为5y x =+,所以d == ,圆22(1)2x y ++=上一点到直线5y x =+的距离最小值d r -=故选C . 【点睛】圆上的点到直线的距离的最值的几何求法通常运用圆心到直线的距离加减半径得到.属于基础题.6.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.7.C解析:C 【分析】由两圆相交且圆心都在直线02c x y -+=上可知线段AB 中点在02cx y -+=上,代入中点坐标整理即可. 【详解】由题意可知:线段AB 的中点1,22m +⎛⎫⎪⎝⎭在直线02c x y -+=上 代入得:12022m c+-+= 整理可得:3m c +=本题正确选项:C 【点睛】本题考查两圆相交时相交弦与圆心连线之间的关系,属于基础题.8.A解析:A 【分析】求出以(3,1)、(1,0)C 为直径的圆的方程,将两圆的方程相减可得公共弦AB 的方程. 【详解】圆22(1)1x y -+=的圆心为(1,0)C ,半径为1,以(3,1)、(1,0)C 为直径的圆的方程为2215(2)()24x y -+-=,因为过点()3,1圆()2211x y -+=的两条切线切点分别为A ,B ,所以,AB 是两圆的公共弦,将两圆的方程相减可得公共弦AB 的方程230x y +-=, 故选:A . 【点睛】本题考查直线和圆的位置关系以及圆和圆的位置关系、圆的切线性质,体现了数形结合的数学思想,属于基础题.9.D【分析】先判断圆心到直线的距离()1,3d ∈,再利用距离公式列不等式即解得参数的取值范围. 【详解】圆C :224x y +=的圆心是()0,0C ,半径2r,而圆C :224x y +=上恰有两个点到直线l :0x y m -+=的距离都等于1,所以圆心()0,0C 到直线l :0x y m -+=的距离()1,3d ∈,即()1,3d ==,解得m -<<m <<.故选:D. 【点睛】本题考查了圆上的点到直线的距离问题和点到直线的距离公式,属于中档题.10.C解析:C 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y -+=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=. 由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心()1,1到直线230x y -+=的距离均为15d ==圆心()5,5到直线230x y -+=的距离均为25d ==圆心到直线230x y -+=的距离均为5d ==;所以,圆心到直线230x y -+=. 故选:C.关键点点睛:本题考查圆心到直线距离的计算,求出圆的圆心是解题的关键,考查计算能力.11.D解析:D 【分析】 易知曲线214y x 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,然后在同一坐标系中作出直线与半圆的图象,利用数形结合法求解. 【详解】 曲线214y x 变形为22214141y x x y y 表示以()0,1 为圆心,以2为半径的半圆,直线()24y k x =-+过定点()2,4A ,在同一坐标系中作出直线与半圆的图象,如图所示:当直线()24y k x =-+与圆相切时,圆心到直线的距离等于半径,23221kk -=+,解得512k =,即512AC k ,又413224AB k , 由图知:当曲线214y x ([]2,2x ∈-)与直线()24y k x =-+有两个公共点时:ACAB k kk ,即53124k <≤. 故选:D 【点睛】本题主要考查直线与圆的位置关系的应用,还考查了数形结合的思想方法,属于中档题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.14.【分析】由已知结合四边形面积公式可得四边形MACB 面积要使四边形MACB 面积最小则需最小此时CM 与直线垂直求得以CM 为直径的圆的方程再与圆C 的方程联立可得AB 所在直线方程【详解】由圆的标准方程可知圆 解析:210x y ++=【分析】由已知结合四边形面积公式可得四边形MACB面积2||||2||CAM S S CA AM MA ==⋅==△要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,求得以CM 为直径的圆的方程,再与圆C 的方程联立可得AB 所在直线方程. 【详解】由圆的标准方程可知,圆心C (1,1) ,半径r =2.因为四边形MACB的面积2||||2||CAM S S CA AM MA ==⋅==△ 要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直. 直线CM 的方程为11(x 1)2y -=- ,即11.22y x =+联立112222y x y x ⎧=+⎪⎨⎪=--⎩,解得(1,0)M -则以CM 为直径的圆的方程为2215()24x y +-=, 联立222215(),24(1)(1)4x y x y ⎧+-=⎪⎨⎪-+-=⎩消去二次项可得直线AB 的方程为210x y ++=, 故答案为:210x y ++= 【点睛】关键点点睛:根据四边形的面积表达式可以看出要使四边形MACB 面积最小,则需||CM 最小,此时CM 与直线l 垂直,此时所做圆的直径为CM ,写出圆的方程,两圆方程相减即可求出过AB 的直线方程.15.【分析】利用对称性作点关于轴的对称点利用数形结合求的最小值【详解】作点关于轴的对称点则最小值即为到直线的距离所以的最小值为故答案为:【点睛】关键点点睛:本题的关键是利用对称性作点关于轴的对称点则再利解析:5【分析】利用对称性,作点(3,1)A -关于x 轴的对称点(3,1)A '--,||||||||AM MN A M MN '+=+,利用数形结合求AM MN +的最小值.【详解】作点(3,1)A -关于x 轴的对称点(3,1)A '--,则||||||||AM MN A M MN '+=+,最小值即为(3,1)A '--到直线250x y +-=的距离,12555d ==,所以||||AM MN +的最小值为55. 125【点睛】关键点点睛:本题的关键是利用对称性作点(3,1)A -关于x 轴的对称点(3,1)A '--,则AM A N '=,再利用点到直线的距离比其他折线都短,计算||||AM MN +的最小值. 16.x +4y -4=0【分析】设l1与l 的交点为A(a8-2a)求得关于的对称点坐标利用对称点在直线上求得即得点坐标从而得直线方程【详解】设l1与l 的交点为A(a8-2a)则由题意知点A 关于点P 的对称点B解析:x +4y -4=0【分析】设l 1与l 的交点为A (a,8-2a ),求得A 关于P 的对称点坐标,利用对称点在直线2l 上求得a ,即得A 点坐标,从而得直线l 方程.【详解】设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上, 代入l 2的方程得-a -3(2a -6)+10=0,解得a =4, 即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0. 故答案为:x +4y -4=0. 【点睛】本题考查求直线方程,解题方法是根据点关于点的对称点求解,直线l 与已知两直线各有一个交点,P 是这两个交点连线段中点,因此可设其中一点坐标,由对称性表示出另一点坐标,代入第二条直线方程可求得交点坐标,从而得直线方程.17.7【分析】根据两圆相离可以判定出与两圆都相切且半径为3的圆有7个【详解】解:因为两圆是相离的所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个是以原点为圆心即;与两圆都外切的有2个设切点解析:7 【分析】根据两圆相离,可以判定出与两圆都相切且半径为3的圆有7个.【详解】解:因为两圆221:(2)1O x y ++=,222:(2)1O x y -+=是相离的,所以与两圆都相切且半径为3的圆的情况如下:与两圆都内切的有1个,是以原点为圆心,即229x y +=;与两圆都外切的有2个,设切点为(0,)b 4b =⇒=±∴22(9x y +±=,同理,利用圆与圆的圆心距和半径的关系可得:与圆1O 外切于圆2O 内切的圆有2个;与圆1O 内切于圆2O 外切的圆有2个;分别为223()(92x y ++±=和223()(92x y -+=,共7个, 故答案为:7. 【点睛】由圆心距判断两圆的位置关系相离,再利用直观想象可得与两圆都相切的情况,包括内切和外切两类.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+,故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.【分析】把直线的一般方程化为斜截式方程得到斜率即可求出倾斜角【详解】由可得:所以斜率即所以倾斜角为故填【点睛】本题主要考查直线的斜率及倾斜角属于基础题解析:34π 【分析】 把直线的一般方程化为斜截式方程,得到斜率,即可求出倾斜角. 【详解】由20180x y +-=可得:2008y x =-+ ,所以斜率1k =-,即tan 1α=-,所以倾斜角为34π,故填34π. 【点睛】本题主要考查直线的斜率及倾斜角,属于基础题.20.【解析】【分析】设出定点A 根据点到直线的距离公式求出点到直线l 的距离由距离为常数利用一般到特殊的思想令分析可得定点A 的坐标检验一般性可知动直线l 是以为圆心半径为的圆的切线系即可求出定点A 的坐标为【详 解析:()2,1【解析】 【分析】设出定点A ,根据点到直线的距离公式求出点A 到直线l 的距离,由距离为常数,利用一般到特殊的思想,令0,1,1m =-分析可得,定点A 的坐标,检验一般性可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,即可求出定点A 的坐标为()2,1. 【详解】设定点A 为(),a b ,所以点A 到直线l 的距离d =无论m R ∈,d 为定值,所以令0m = 可得,2d b =-,令1m = 可得,3d a =-, 令1m =-可得,1d a =- ,由31a a -=- 可得,2a =,即有1b =或3b = .当定点A 为()2,1 时,22111m d m +===+ ,符合题意; 当定点A 为()2,3时,22131m d m -==+ ,显然d 的值随m 的变化而变化,不符题意,舍去.综上可知,动直线l 是以()2,1 为圆心,半径为1的圆的切线系,所以定点A 为2,1.故答案为:()2,1. 【点睛】本题主要考查直线系方程的识别和应用,点到直线的距离公式的应用,考查学生的转化能力和数学运算能力,属于中档题.三、解答题21.(1)11924y x =-+;(2)280x y -+=. 【分析】(1)设AB 边的垂直平分线为l ,求出12l k =-,即得AB 边的垂直平分线所在的直线方程;(2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ,求出(0,4)M 即得解. 【详解】(1)设AB 边的垂直平分线为l , 有题可知53221AB k -==-,12lk , 又可知AB 中点为3,42⎛⎫⎪⎝⎭,∴l 的方程为13422y x ⎛⎫-=-- ⎪⎝⎭,即11924y x =-+, (2)设B 关于直线30x y -+=的对称点M 的坐标为(,)a b ;则311133022b a a b -⎧=-⎪⎪-⎨++⎪-+=⎪⎩,解得04a b =⎧⎨=⎩,所以(0,4)M ,由题可知A ,M 两点都在直线AC 上,所以直线AC 的斜率为541202-=-,所以直线AC 的方程为14(0)2y x -=-, 所以AC 所在直线方程为280x y -+=.【点睛】方法点睛:求直线方程常用的方法是:待定系数法,先定式(点斜式、斜截式、两点式、截距式、一般式),再定量.22.(1)证明见解析;定值为2;(2)225((2x y -+=. 【分析】(1)由题可得出圆的方程,即可得出,A B 坐标,进而可求出面积; (2)由题可得OC PQ ⊥,利用斜率可求出m . 【详解】解:(1)由已知圆的半径r OC ==, 故圆C 的方程为222211()()x m y m m m-+-=+, 即22220x y mx y m +--=, ∴(2,0)A m ,2(0,)B m, ∴112||||2222OABSOA OB m m=⋅=⨯⋅=, ∴OAB 的面积为定值2.(2)∵||||OP OQ =,||||CP CQ =,∴OC PQ ⊥,而2PQ k =-,∴2112OC k m==,∴m =∴圆C 的方程为225((22x y +-=或225(()22x y +++=当圆C 为225((22x y ++=时,圆心到直线23y x =-+的距离|3|352d --==>, 此时直线与圆相离,故舍去.∴圆C 的方程为225((22x y +-=. 【点睛】关键点睛:本题考查圆中三角形面积的定值问题以及求圆的标准方程,解题的关键是将点A ,B 都用m 表示出来,根据||||OP OQ =得出OC PQ ⊥. 23.(1)22(2)(2)9x y ++-=;(2)11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【分析】(1)由三条直线得到三交点,,A B C 构成直角三角形,联立方程组,求得,A C 点的坐标,得到圆心坐标和半径,进而求得圆的方程;(2)由两圆相交,得到|3|||43||a a -<<+,即可求得a 的取值范围. 【详解】(1)由题意,三条直线123:20,:20,:210l x y l x l x y -=+=+-=, 可得2l 平行于y 轴,1l 与3l 互相垂直,三交点,,A B C 构成直角三角形, 经过,,A B C 三点的圆就是以AC 为直径的圆. 由方程组2020x y x -=⎧⎨+=⎩,解得21x y =-⎧⎨=-⎩,所以点A 的坐标是(2,1)--.由方程组20210x x y +=⎧⎨+-=⎩,解得25x y =-⎧⎨=⎩,所以点C 的坐标是(2,5)-.可得线段AC 的中点坐标是(2,2)-,又由||6AC =,所以ABC 外接圆的方程为22(2)(2)9x y ++-=.(2)由圆222:()D x a y a -+=与22(2)(2)9x y ++-=相交,所以|3|||43||a a -<<+,化简得6||146||1a a a -+<<+, 当0a <时,12a <-;当0a >时,110a >. 综上可得,a 的取值范围是11,,210⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.24.(1)22(2)25x y ++=;(2)5x =或34170x y -+=. 【分析】(1)联立点A 和B 的中垂线与直线l ,求出圆心坐标,算出圆心与A 距离,写出圆的标准方程即可;(2)讨论斜率存在与不存在,将直线与圆相切转化为d r =,解出k ,代回直线方程化简即可. 【详解】(1)根据题意可得2113(4)AB k -==---,,A B 中点坐标为73(,)22-,所以AB 的中垂线为7322y x ⎛⎫=-++ ⎪⎝⎭,即2y x =--, 联立方程202x y y x --=⎧⎨=--⎩可得圆心坐标(0,2)-,又222(0(3))(22)25r =--+--=, 所以圆C 的方程为22(2)25x y ++=.(2)①过点P 斜率不存在的直线为5x =,与圆C 相切; ②过点P 斜率存在的直线设斜率为k , 则(5)8y k x =-+,即580kx y k --+= 圆心(0,2)-到切线的距离为5=,解得34k =综上,切线的方程为5x =或34170x y -+=. 【点睛】求圆的方程的两种方法:(1)几何法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程; (2)待定系数法:①根据题意,选择标准方程与一般方程; ②根据条件列出关于,,a b r 或,,D E F 的方程组; ③解出,,a b r 或,,D E F ,代入标准方程或一般方程.25.3m =-【分析】圆的方程中22,x y 系数需相等,可得22212m m m m +-=-+,解方程即可得答案; 【详解】要使方程()()222221220m m x m m y m +-+-+++=表示的图形是一个圆,需满足22212m m m m +-=-+,得2230m m +-=, 所以3m =-或1m =.①当1m =时,方程为2232x y +=-不合题意,舍去;②当3m =-时,方程为2214141x y +=,即22114x y +=为半径的圆.综上,3m =-满足题意. 【点睛】圆的一般方程形式为2222(4)00x y Dx Ey F D E F ++++=+->,注意方程的特点是求解的关键.26.(1)圆心(1,2)-;半径2;(2)2x =或3460x y --=. 【分析】(1)将圆的方程化为标准方程,直接求圆心和半径;(2)利用弦长公式,得到圆心到直线的距离,分斜率存在和不存在两种情况,求直线方程. 【详解】(1)()()22222410124x y x y x y +-++=⇔-++=圆心(1,2)- 半径2;(2)圆222410x y x y +-++=可化为22(1)(2)4x y -++=.所以圆心到直线的距离为1d ==当直线l 的斜率不存在时,直线l 的方程为2x =, 此时直线l被圆C 截得的弦长为当直线l 的斜率k 存在时,设直线l 的方程为(2)y k x =-,即20kx y k --=1= 解得34k =∴直线的方程为3460x y --=综上所述,直线l 的方程为2x =或3460x y --=.【点睛】易错点睛:本题第二问,根据弦长求直线方程时,不要忽略过定点直线,其中包含斜率存在和不存在两种情况,否则容易丢根.。

(完整版)直线与圆的方程测试题(含答案)

(完整版)直线与圆的方程测试题(含答案)

直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是32π,则斜率是( ) A.3-3B.33C.3-D.34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,2π) D. 直线倾斜角的范围是(0,π)5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是() A.x+2=0 B.x-2=0 C.y+2=0 D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+21=0与直线6x-2y+1=0之间的位置关系是( )A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误..的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=21x-1垂直,则a=( )A.2B.-2C. 21D. 21-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是( )A.1B.511 C.53 D.3 15. 圆心在( -1,0),半径为5的圆的方程是( )A.(x+1)2+y 2=5B. (x+1)2+y 2=25C. (x-1)2+y 2=5D. (x-1)2+y 2=2516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k ≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是( )A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。

直线与圆的方程单元测试题含答案

直线与圆的方程单元测试题含答案
在判断直线与圆的位置关系时,需要注意直线的斜率是否存在以及圆心和半径的取值是否合 理。
掌握直线与圆的位置关系判断是解决直线与圆相关问题的基础,对于提高解题能力和数学思 维能力有很大的帮助。
定义:直线方程的基本形式是y=kx+b,其中k是斜率,b是截距。
斜率:表示直线与x轴的夹角,当k>0时,夹角为锐角;当k<0时,夹角为钝角。 截距:表示直线与y轴的交点,当b>0时,交点在正半轴上;当b<0时,交点在负半轴 上。
圆的一般方程:x^2+y^2+Dx+Ey+F=0,其中D、E、F为常数
圆的参数方程:x=a+r*cosθ,y=b+r*sinθ,其中(a,b)为圆心,r为半径,θ为参数
圆的切线方程:在已知圆x^2+y^2+Dx+Ey+F=0上,切线的方程可表示为:D*x*x0+E*y*y0+F*x+E*y+C=0, 其中(x0,y0)为切点
单击此处添加标题
圆的直径的方程:$(x-\frac{x1+x2}{2})^2+(y\frac{y1+y2}{2})^2=(\frac{\sqrt{(x1-x2)^2+(y1-y2)^2}}{2})^2$,其中 $(x1,y1)$和$(x2,y2)$为直径的两个端点
联立方程法:通过将直线方程与圆方程联立,消元求解交点坐标
添加文档副标题
目录
01.
02.
03.
定义:表示直线上的点与固定点之间的距离始终等于一个常数 形式:Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0 分类:一般式、点斜式、斜截式、两点式和截距式 适用范围:适用于所有直线方程,是直线方程的基本形式

高二数学直线与圆单元测试题与答案

高二数学直线与圆单元测试题与答案

《直线和圆的方程》一. 单选题:(每小题5分,共50分)1、已知A (x 1,y 1)、B (x 2,y 2)两点的连线平行y 轴,则|AB |=( )A 、|x 1-x 2|B 、|y 1-y 2|C 、 x 2-x 1D 、 y 2-y 12、方程(x-2)2+(y+1)2=1表示的曲线关于点T (-3,2)的对称曲线方程是: ( )A 、 (x+8)2+(y-5)2=1B 、(x-7)2+(y+4)2=2C 、 (x+3)2+(y-2)2=1D 、(x+4)2+(y+3)2=23、已知三点A (-2,-1)、B (x ,2)、C (1,0)共线,则x 为: ( )A 、7B 、-5C 、3D 、-14、方程x 2+y 2-x+y+m=0表示圆则m 的取值范围是 ( )A 、 m ≤2B 、 m<2C 、 m<21D 、 m ≤215、过直线x+y-2=0和直线x-2y+1=0的交点,且垂直于第二直线的直线方程为 ( )A 、+2y-3=0B 、2x+y-3=0C 、x+y-2=0D 、2x+y+2=06、圆心在直线x=y 上且与x 轴相切于点(1,0)的圆的方程为: ( )A 、(x-1)2+y 2=1B 、(x-1)2+(y-1)2=1C 、(x+1)2+(y-1)2=1D 、(x+1)2+(y+1)2=17、光线沿直线2x-y-3=0经两坐标轴反射后所在的直线是( )A 、2x+y+3=0B 、2x+y-3=0C 、2x-y+3=0D 、x-2y-3=08、已知直线ax+y+2=0及两点P (-2,1)、Q (3,2),若直线与线段PQ 相交,则a 的取值范围是 ( )A 、a ≤-34或a ≥23B 、a ≤-23或a ≥34C 、-34≤a ≤23D 、-23≤a ≤34 9、已知点P (a,b )是直线x+2y=1右上半平面内(含边界)任一点,则2a +4b 的最小值是 ( )A 、8B 、6C 、22D 、3210、取第一象限内的两点P 1(11,y x )、P 2(22,y x ),使1,1x ,2x ,2,依次成等差数列,1,1y ,2y ,2依次成等比数列,则点P 1、P 2与射线l :y=x ( x ≥0 )的关系为 ( )A 、点P 1、P 2都在l 的上方B 、点P 1、P 2都在l 上C 、点P 1、P 2都在l 的下方D 、点P 1在l 的下方,点P 2在l 的上方。

《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)

《第二章 直线和圆的方程》单元检测试卷与答案解析(共四套)

《第二章 直线和圆的方程》单元检测试卷(一)第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .12.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-13.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件,5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .3277.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2-8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90°二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y +=第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______. 14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为____.四、解答题(17题10分,其余12分,共70分) 17.已知圆C 的方程为()()22215x y -+-=. (1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R. (1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程.19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=.(1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点; (2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P (,x y )在圆C 上,求22x y +的最大值.20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1). (1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围; (3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程; (2)若过点P 的直线2l 与圆O 交于不同的两点A ,B . ①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由. 答案解析第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分) 1.已知直线1l :2y x =-,2l :y kx =,若12//l l ,则实数k =( ) A .-2 B .-1 C .0 D .1 【答案】D【解析】已知直线1l :2y x =-,2l :y kx =,因为12//l l ,所以1k =故选:D2.直线()()1:2140l a x a y -+++=与()2:190l a x ay ++-=互相垂直,则a 的值是( ). A .-0.25 B .1 C .-1 D .1或-1 【答案】D【解析】当10a +=时,1a =-,此时14:3l x =,2:9l y =-,显然两直线垂直, 当0a =时,此时1:240l x y -++=,2:9l x =,显然两直线不垂直, 当10a +≠且0a ≠时,因为12l l ⊥,所以()()()2110a a a a -+++=,解得:1a =,综上可知:1a =或1-.故选D.3.直线:l (1)230m x my m ---+=(m R ∈)过定点A ,则点A 的坐标为( ) A .(3,1)- B .(3,1) C .(3,1)- D .(3,1)-- 【答案】B【解析】根据直线(1)230m x my m ---+=得()230m x y x ---+=, 故直线过定点为直线20x y --=和30x -+=的交点,联立方程得2030x y x --=⎧⎨-+=⎩,解得31x y =⎧⎨=⎩ ,所以定点A 的坐标为()3,1A .故选:B.4.设a R ∈,则“a=1”是“直线ax+y-1=0与直线x+ay+1=0平行”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件, 【答案】C【解析】若直线ax+y-1=0与直线x+ay+1=0平行,则21a =,且11a-≠解得1a =故选C5.若曲线y 与直线y =k (x ﹣2)+4有两个交点,则实数k 的取值范围是( ) A .3,14⎛⎤⎥⎝⎦ B .3,4⎛⎫+∞ ⎪⎝⎭C .(1,+∞)D .(1,3] 【答案】A【解析】作出曲线y 的图像,直线y =k (x ﹣2)+4恒过定点()2,4,当直线与曲线相切时,原点到直线240kx y k --+=的距离等于22=,解得34k =, 由图可知, ()3401422k -<≤=--,故选:A 6.已知直线x y t +=与圆()2222x y t tt R +=-∈有公共点,则()4t t -的最大值为( ) A .4 B .289 C .329D .327【答案】C【解析】因为()2222x y t tt R +=-∈表示圆,所以220->t t ,解得02t <<,因为直线x y t +=与圆()2222x y t tt R +=-∈有公共点,所以圆心到直线的距离d r ≤,即≤403t ≤≤,此时403t ≤≤, 因为()()()224424=-=-+=--+f t t t t t t ,在40,3⎡⎤⎢⎥⎣⎦递增,所以()4t t -的最大值34329⎛⎫= ⎪⎝⎭f . 故选:C7.若两平行直线20,(0)x y m m ++=>与30x ny --=则m+n =( ) A .0 B .1 C .1- D .2- 【答案】A【解析】由直线20,(0)x y m m ++=>与30x ny --=平行可得2n -=即2n =-, 则直线20,(0)x y m m ++=>与230x y +-=,=2m =或8m =-(舍去),所以()220m n +=+-=.故选:A.8.过直线y =x 上的一点作圆22(5)(1)2x y -+-=的两条切线l 1,l 2,当直线l 1,l 2关于y =x 对称时,它们之间的夹角为( )A .30°B .45°C .60°D .90° 【答案】C【解析】如图所示,过圆心C 作CP 垂直直线y x =于点P ,直线,PA PB 分别与圆:C 22(5)(1)2x y -+-=相切,切点分别为,A B ,根据几何知识可知,直线12,l l 也关于直线CP对称,所以直线12,l l 的夹角为APB ∠(或其补角).在Rt CBP 中,BC =CP ==所以1sin 2BPC ∠=,而BPC ∠为锐角,即有30BPC ∠=,60APB ∠=. 故选:C .二、多选题(每题不止有一个选项为正确答案,每题5分,共20分)9.圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有( )A .公共弦AB 所在直线方程为0x y -= B .线段AB 中垂线方程为10x y +-=C .公共弦AB 的长为2D .P 为圆1O 上一动点,则P 到直线AB 1+ 【答案】ABD【解析】对于A ,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B ,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确; 对于C ,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==C 不正确;对于D ,P 为圆1O 上一动点,圆心1O ()1,0到0x y-=的距离为2d =,半径1r =,即P到直线AB 1+,故D 正确.故选:ABD10.已知直线12:10,:(2)330l x my l m x y +-=-++=,则下列说法正确的是( )A .若12l l //,则m=-1或m=3B .若12l l //,则m=3C .若12l l ⊥,则12m =-D .若12l l ⊥,则12m = 【答案】BD【解析】直线12l l //,则3(2)0m m --=,解得3m =或1m =-,但1m =-时,两直线方程分别为10x y --=,3330x y -++=即30x y --=,两直线重合,只有3m =时两直线平行,A 错,B 正确;12l l ⊥,则230m m -+=,12m =,C 错,D 正确. 故选:BD .11.已知直线l 与圆22:240C x y x y a ++-+=相交于,A B 两点,弦AB 的中点为()0,1M ,则实数a 的取值可为( )A .1B .2C .3D .4 【答案】AB【解析】圆C 的标准方程为:()()22125x y a ++-=-,故5a <.又因为弦AB 的中点为()0,1M ,故M 点在圆内,所以()()2201125a ++-<-即3a <. 综上,3a <. 故选:AB.12.下列说法正确的是( )A .直线32()y ax a a R =-+∈必过定点(3,2)B .直线32y x =-在y 轴上的截距为2-C 10y ++=的倾斜角为60°D .过点(1,2)-且垂直于直线230x y -+=的直线方程为20x y += 【答案】ABD【解析】32()y ax a a R =-+∈可化为()23y a x -=-,则直线32()y ax a a R =-+∈必过定点(3,2),故A 正确;令0x =,则2y =-,即直线32y x =-在y 轴上的截距为2-,故B 正确;10y ++=可化为1y =-,则该直线的斜率为,即倾斜角为120︒,故C 错误;设过点(1,2)-且垂直于直线230x y -+=的直线的斜率为k 因为直线230x y -+=的斜率为12,所以112k ⋅=-,解得2k =- 则过点(1,2)-且垂直于直线230x y -+=的直线的方程为22(1)y x -=-+,即20x y +=,故D 正确; 故选:ABD第II 卷(非选择题)三、填空题(每题5分,共20分)13.圆C 的圆心为(21),-,且圆C 与直线3450x y --=相切,则圆C 的方程为_______.【答案】22(2)(1)1x y -++=【解析】圆C 的圆心为(2,1)-,与直线:3450l x y --=相切, 圆心到直线的距离等于半径,即1r d ===,∴圆C 的方程为22(2)(1)1x y -++=.故答案为:22(2)(1)1x y -++=.14.经过点P (2,1)作直线l 分别交x 轴、y 轴的正半轴于A 、B 两点,当△AOB 面积最小时,直线l 的方程为_____. 【答案】x+2y ﹣4=0;【解析】由题意可知,直线的斜率一定存在,故设直线方程y ﹣1=k (x ﹣2),k <0, 令x =0可得,y =1﹣2k ,令y =0可得x =2﹣1k, 则11121222AOBSOA OB k k =⋅=⨯--=()1114444422k k ⎛⎫--+≥+= ⎪⎝⎭, 当且仅当﹣4k =﹣1k即k =﹣12时取等号,此时直线方程y ﹣1=﹣12(x ﹣2),即x+2y ﹣4=0. 故答案为:x+2y ﹣4=0.15.在圆22420x y x y +-+=内,过点1,0()M 的最短弦的弦长为_____;【答案】【解析】圆22420x y x y +-+=化简得:()()22215x y -++=,点M 在圆内部,记圆心为()2,1C -,根据几何性质知过M 且与OM 垂直的弦最短,CM =由垂径定理得弦长为==故答案为:16.圆()()221:29C x m y -++=与圆()()222:14C x y m ++-=内切,则m 的值为______.【答案】2-或1-【解析】圆1C 的圆心为(),2m -,半径为13r =,圆2C 的圆心为()1,m -,半径为22r =,所以两圆的圆心距d =,1=,解得2m =-或1m =-.故答案为:2-或1-.四、解答题(17题10分,其余12分,共70分)17.已知圆C 的方程为()()22215x y -+-=.(1)写出圆心C 的坐标与半径长;(2)若直线l 过点()0,1P ,试判断与圆C 的位置关系,并说明理由.【答案】(1)圆心C 的坐标为()2,1,半径长r =(2)相交,理由见解析.【解析】(1)圆心C 的坐标为()2,1,半径长r =(2)当直线l 垂直于x 轴时,直线方程为0x =,与圆有2个交点;当直线l 不垂直于x 轴时,设直线l 的方程为1y kx =+,将1y kx =+代入()()22215x y -+-=整理,得()221410kx x +--=, 因为210k +≠,且()216410k∆=++>恒成立,所以直线l 与圆C 相交.综上所述,直线l 与圆C 相交.18.已知圆C :(x+2)2+y 2=5,直线l :mx ﹣y+1+2m =0,m ∈R.(1)判断直线与圆的位置关系,并说明理由;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的中点M 的轨迹方程. 【答案】(1)相交,理由见解析;(2)()2211224x y ⎛⎫++-= ⎪⎝⎭ 【解析】(1)直线l :120mx y m -++=,也即()12y m x -=+,故直线恒过定点()2,1-,又()222215-++<,故点()2,1-在圆C 内,此时直线l 一定与圆C 相交.(2)设点(),M x y ,当直线AB 斜率存在时,12AB y k x -=+, 又2MC y k x =+,1AB MC k k ⨯=-, 即1122y y x x -⨯=-++, 化简可得:()()22112,224x y x ⎛⎫++-=≠- ⎪⎝⎭; 当直线AB 斜率不存在时,显然中点M 的坐标为()2,1-也满足上述方程.故M 点的轨迹方程为:()2211224x y ⎛⎫++-= ⎪⎝⎭. 19.已知圆()()22:1225C x y -+-=和直线()():211740l m x m y m +++--=. (1)证明:不论 m 为何实数,直线l 都与圆 C 相交于两点;(2)求直线被圆 C 截得的弦长最小时直线l 的方程;(3)已知点P ( ,x y )在圆C 上,求22x y +的最大值.【答案】(1)证明见解析;(2)250x y --=;(3)30+【解析】(1)因为()():211740l m x m y m +++--=所以()()2740x y m x y +-++-=令27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩ 所以直线l 过定点()3,1.而()()22311225-+-<,即点()3,1在圆内部. 所以直线l 与恒交于两点.(2).过圆心()1,2与点()3,1的直线1l 的方程为1522y x =-+, 被圆 C 截得的弦长最小时,直线l 必与直线1l 垂直,所以直线l 的斜率2k =,所以直线l 的方程为()123y x -=-,即250x y --=.(3)因为2222(0)(0)x y x y +-+-=,表示圆上的点(),x y 到()0,0的距离的平方,因为圆心到原点的距离d ==所以2a 2m x 2)(530(+==+x y 20.在平面直角坐标系中,直线=0与圆C 相切,圆心C 的坐标为(1,-1).(1)求圆C 的方程;(2)设直线y =kx+2与圆C 没有公共点,求k 的取值范围;(3)设直线y =x+m 与圆C 交于M ,N 两点,且OM ⊥ON ,求m 的值.【答案】(1)22()(11)9x y -++=;(2)30,4⎛⎫ ⎪⎝⎭;(3)1m =-±【解析】(1)∵直线0x y ++=与圆C 相切,且圆心C 的坐标为(1,1)-,∴圆C的半径3r ==, 则圆C 的方程为22()(11)9x y -++=;(2)∵直线y =kx+2与圆C 没有公共点,∴点(1,1)C -3>,解得304k <<, ∴k 的取值范围为30,4⎛⎫ ⎪⎝⎭; (3)联立22(1)(1)9y x m x y =+⎧⎨-++=⎩,得2222270x mx m m +++-=, 由()2248270m m m ∆=-+->,解得22m --<<-+设()()1122,,,M x y N x y , 则2121227,2m m x x m x x +-+=-=, ∵OM ON ⊥,∴12120OM ON x x y y ⋅=+=,即()()()21212121220x x x m x m x x m x x m +++=+++=,∴2270m m +-=,解得1m =-±∴1m =-±21.已知圆C :2240x y mx ny ++++=关于直线10x y ++=对称,圆心C 在第四象限,半径为1.(1)求圆C 的标准方程;(2)是否存在直线与圆C 相切,且在x 轴,y 轴上的截距相等?若存在,求出该直线的方程;若不存在,说明理由.【答案】(1)()()22121x y -++=;(2)存在,34y x =-或1y x =--±【解析】(1)将圆C 化为标准方程,得222216()()224m n m n x y +-+++= ∴ 圆心C (,22m n --),半径r =由已知得10222412m n m n ⎧--+=⎪=-⎧⎪⇒⎨=⎩=⎩或42m n =⎧⎨=-⎩ 又C 在第四象限, ∴()1,2C -∴圆C 的标准方程为22(1)(2)1x y -++=(2)当直线过原点时,l 斜率存在,则设:l y kx =314k =⇒=- 此时直线方程为34y x =-; 当直线不过原点时,设:0l x y t +-=1= 解得1t =-10x y +++=或10x y ++= 综上,所求直线的方程为:34y x =-或1y x =--±22.平面直角坐标系xOy 中,已知点()2,4P ,圆22:4O x y +=与x 轴的正半轴的交于点Q .(1)若过点P 的直线1l 与圆O 相切,求直线1l 的方程;(2)若过点P 的直线2l 与圆O 交于不同的两点A ,B .①设线段AB 的中点为M ,求点M 纵坐标的最小值;②设直线QA ,QB 的斜率分别是1k ,2k ,问:12k k +是否为定值,若是,则求出定值,若不是,请说明理由.【答案】(1)2x =和34100x y -+=;(2)①2 ②是定值,1-.【解析】(1)圆22:4O x y +=的圆心为()0,0,半径为2, 若过点()2,4P 直线1l 垂直于x 轴,则方程为2x =,与圆相切,符合题意;若过点()2,4P 直线1l 不垂直于x 轴,设直线1l 的斜率与k ,则直线1l 方程为()42y k x -=-,即240kx y k --+=,因为直线1l 与圆22:4O x y +=相切,所以圆心到直线1l的距离2d ==,解得34k =, 所以切线方程为34100x y -+=;综上得:切线1l 的方程为2x =和34100x y -+=;(2)①设点(),M x y ,因为M 为弦AB 中点,所以MO MP ⊥,又因为(),OM x y =,()2,4PM x y =--,所以由OM PM ⊥得(2)(4)0x x y y -+-=化简得22240x y x y +--=.联立22224240x y x y x y ⎧+=⎨+--=⎩得20x y =⎧⎨=⎩或6585x y ⎧=-⎪⎪⎨⎪=⎪⎩; 又因为点M 在圆22:4O x y +=内部,所以点M 的轨迹是圆22240x y x y +--=中以点68,55⎛⎫- ⎪⎝⎭和()2,0为端点的一段劣弧(不包括端点),由22240x y x y +--=即()()22125x y -+-=,令1x =得2y =±根据点(1,2在22:4O x y +=内部,所以点M纵坐标的最小值是2-; ②由题意点()2,0Q ,联立224(2)4y k x x y -=-⎧⎨+=⎩得()22214(2)(24)40k x k k x k +--+--=, 设()()1122,,,A x y B x y ,则12221224(2)1(24)410k k x x k k x x k -⎧+=⎪+⎪--⎪=⎨+⎪∆>⎪⎪⎩, 所以()()121212121224242222k x k x y k k x x x y x -+-++=+=+---- ()()121212214444222224x x k k x x x x x x +-=++=+---++ 22224(2)444(84)1221(24)44(2)162411k k k k k k k k k k k -⎡⎤⋅-⎢⎥++⎣⎦=+=-=-----⋅+++. 所以12k k +是定值,定值为1-.《第二章 直线和圆的方程》单元检测试卷(二)一、单选题1.直线:的倾斜角为( )A .B .C .D .2.圆心为,且过原点的圆的方程是( )A .B .C .D .3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-24.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定5.从点向圆引切线,则切线长的最小值( )A ..5 C.6.已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或17.若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .8.过点且倾斜角为的直线被圆所截得的弦长为( ) A.1 C.9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B . x y +-0=30︒45︒60︒135︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=22(1)5x y +-=120mx y m -+-=(,3)P m 22(2)(2)1x y +++=420ax y a +-+=(a =)1-2-(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=()1,030()2221x y -+=20kx y -+=()3,2M -()2,5N 32k ≤32k ≥C .D .或 10.已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A . BC .二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是( ) A . B . C .D . 12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .三、填空题14.直线过定点______;若与直线平行,则______.15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 16.圆关于直线的对称圆的标准方程为__________.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________. 4332k -≤≤43k ≤-32k ≥()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+42y ax a =+222()x a y a ++=A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()4,3C -22:1O x y +=22230x y y ++-=10x y +-=a b 10x y ++=()()224x a y b -+-=ab四、解答题18.求圆上与直线的距离最小的点的坐标. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.224x y +=43120x y +-=l (2,1)P -O l 2l O l l ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC 22:(2)1C x y -+=P :4l x =P C ,AB AB Q ,PA PB y ,M N QMN22.已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.答案解析一、单选题1.直线:的倾斜角为( )A .B .C .D .【答案】D【解析】直线的斜率,设直线的倾斜角为, 则,所以.故选:D.2.圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A【解析】根据题意. (4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a (2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++x y +-0=30︒45︒60︒135︒0x y +-=1k =-0x y +-=1(080)a a ︒≤<︒tan 1α=-135α=︒()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=故选:.3.如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C【解析】(2a +5)(2-a)+(a -2)(a +3)=0,所以a =2或a =-2.4.圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】C【解析】 直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.从点向圆引切线,则切线长的最小值( )A ..5 C.【答案】A【解析】设切线长为,则,故选:A.6.已知直线在两坐标轴上的截距相等,则实数 )A .1B .C .或1D .2或1【答案】D【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意; A 22(1)5x y +-=120mx y m -+-=120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4d 2222(2)51(2)24d m m =++-=++min d ∴=20ax y a +-+=(a =1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得; 综上所述,实数或.故选:D .7.若点为圆的弦的中点,则弦所在直线的方程为( ) A . B .C .D .【答案】B【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.过点且倾斜角为的直线被圆所截得的弦长为( )A .B .1 C.【答案】C【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,2a 0-+≠a 2≠ax y 2a 0+-+=122x y a a a+=--2a 2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030()2221x y -+=2()1,030l ()tan301y x =-)13y x =-10x -=()2221x y -+=()2,01r =设直线与圆交于点,圆心到直线的距离, 则C. 9.已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B .C .D .或 【答案】C【解析】 因为直线恒过定点,又因为,,所以直线的斜率k 的范围为. 故选:C . 10.已知圆,圆,、分别是圆、l AB 12d ==2AB ==20kx y -+=()3,2M -()2,5N 32k ≤32k ≥4332k -≤≤43k ≤-32k ≥20kx y -+=()0,2A 43AM k =-32AN k =4332k -≤≤()()221:231C x y -+-=()()222:349C x y -+-=M N 1C上动点,是轴上动点,则的最大值是( )A . BC .【答案】D【解析】如下图所示:圆的圆心,半径为,圆的圆心,半径为, ,由圆的几何性质可得,, ,当且仅当、、三点共线时,.故选:D.二、多选题11.在同一直角坐标系中,直线与圆的位置不可能是()A .B .C .D . 2C P x PN PM -4+41C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC ≤+=+1111PM PC r PC ≥-=-2112444PN PM PC PC C C -≤-+≤+=1C P 2C PN PM -42y ax a =+222()x a y a ++=【答案】ABD【解析】直线经过圆的圆心,且斜率为. 故选项满足题意.故选:.12.已知点是直线上一定点,点、是圆上的动点,若的最大值为,则点的坐标可以是( )A .B .C .D . 【答案】AC【解析】如下图所示:原点到直线的距离为,则直线与圆相切, 由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,, 则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或. 故选:AC. 2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=PAQ ∠90A (()1))1,1l 1d ==l 221x y +=AP AQ 221x y +=PAQ ∠OP OQ PAQ ∠9090APO AQO ∠=∠=1OP OQ ==APOQ OA ==OA ==220t -=0t =A ()13.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .【答案】AD【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为, 代入欧拉线方程,得,②由 ①②可得或 .故选:AD三、填空题14.直线过定点______;若与直线平行,则______.【答案】【解析】(1),故. 即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故. ABC ∆()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-(,),C x y AB y x =-ABC ∆20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y ∴==∴++-=()4,0A -()0,4B ABC ∆44(,)33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R ∈1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=⇒-+-=101202x x x y y -==⎧⎧⇒⎨⎨-==⎩⎩()1,21l 2:310l x my --=()()()()()2310130m m m m +---=⇒-+=1m =3m =-1m =1l 2l 3m =-故答案为:(1) ; (2)15.已知以为圆心的圆与圆相内切,则圆C 的方程是______. 【答案】(x -4)2+(y +3)2=36.【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.圆关于直线的对称圆的标准方程为________.【答案】【解析】 ,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】 【解析】因为直线截圆所得的弦长为,且圆的半径为2. 故圆心到直线的距离()1,23-()4,3C -22:1O x y +=5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=2222230(41)x y y x y ++-=⇒+=+∴(0,1)-210x y +-=(,)x y ∴1(1)1,2,1.110,22y x x y x y +⎧⨯-=-⎪=⎧⎪⇒⎨⎨=-⎩⎪+-=⎪⎩∴22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=()()224x a y b -+-=(),a b d ==,因为、为正实数,故,所以. 当且仅当时取等号. 故答案为: 四、解答题18.求圆上与直线的距离最小的点的坐标. 【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,, 又因为与直线的距离最小,所以. 19.已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)=a b 1a b +=2124a b ab +⎛⎫≤= ⎪⎝⎭12a b ==14224x y +=43120x y +-=86,55P ⎛⎫ ⎪⎝⎭43120x y +-=340x y -=224340x y x y ⎧+=⎨-=⎩86,55⎛⎫ ⎪⎝⎭86,55⎛⎫-- ⎪⎝⎭43120x y +-=86,55P ⎛⎫ ⎪⎝⎭l (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=【解析】(1)①当直线的斜率不存在时,方程符合题意;②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为 故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率 所以其方程为,即20.在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2) 【解析】(1)边上的高为,故的斜率为, 所以的方程为, 即,因为的方程为 l 2x =l k ()12y k x +=-210.kx y k ---=2=34k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ⊥011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC ∆(1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=解得 所以. (2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为 即的方程为.21.如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程:21154047180x y x y -+=⎧⎨-+=⎩,,66x y =⎧⎨=⎩()66C ,()00,B x y M AB M 0012,22x y -+⎛⎫ ⎪⎝⎭0000122115402274460x y x y -+⎧-+=⎪⎨⎪+-=⎩0028x y =⎧⎨=⎩()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A B AB Q ,PA PB y ,M N QMN 5,02Q ⎛⎫⎪⎝⎭(4,)P t CP, 与圆,两式相减得:,所以直线恒过定点. (2)设直线与的斜率分别为,与圆,即.所以,,所以面积的最小值为22.已知点,,直线:,设圆的半径为,圆心在直线上. (1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)或.【解析】()22232t x y ⎛⎫-+-= ⎪⎝⎭⎪⎝⎭22:(2)1C x y -+=:2(2)1AB l x ty -+=5,02Q ⎛⎫ ⎪⎝⎭AP BP 12,k k (4)y t kx -=-C1=223410k tk t -+-=2121241,33-+=⋅=t t k k k k 14M y t k =-24N y t k =-12||44=-==≥MN k k ()min 152323MNQ S ∆=⨯⨯=3(4,4)A (0,3)B l 1y x =-C 1C l C 37y x =-A C C M 2MB MO =O C a 4x =3440x y -+=22a -≤≤-22a ≤≤(1)由得:,所以圆C :..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足 所以切线方程为:或. (2)由圆心在直线l :上,设设点,由化简得:,所以点M 在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:或. 23.已知点,点在圆上运动. (1)求过点且被圆截得的弦长为(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72. 【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为所以圆心到直线的,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.137y x y x =-⎧⎨=-⎩()3,2C 22(3)(2)1x y -+-=4(4)y k x -=-1d ==34k =4x =4x =3440x y -+=C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ≤≤13≤22a -≤≤-22a ≤≤(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y =+-+=-因为,所以,即的最大值为88,最小值为72.《第二章 直线和圆的方程》单元检测试卷(三)一、选择题1.圆心为()1,1且过原点的圆的方程是( )A .()()22111x y -+-=B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-=2.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 ( )A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0 3.平行于直线2x+y+1=0且与圆x 2+y 2=5相切的直线的方程是( ) A .2x+y+5=0或2x+y ﹣5=0 B .2x+y+=0或2x+y ﹣=0C .2x ﹣y+5=0或2x ﹣y ﹣5=0D .2x ﹣y+=0或2x ﹣y ﹣=04.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分又不必要条件 5.(多选题)下列说法中正确的是( ) A .若两条直线互相平行,那么它们的斜率相等B .方程()()()()211211x x y y y y x x --=--能表示平面内的任何直线C .圆22240x y x y ++-=的圆心为()1,2-D .若直线()2320t x y t -++=不经过第二象限,则t 的取值范围是30,2⎡⎤⎢⎥⎣⎦6.(多选题)已知圆O :224x y +=和圆M :224240x y x y +-++=相交于A 、B 两22y -≤≤7280488y ≤-≤222||||||PA PB PC ++点,下列说法正确的是( ) A .两圆有两条公切线B .直线AB 的方程为24y x =+C .线段ABD .所有过点A 、B 的圆系的方程可以记为()()()222244240,1xy x y x y R λλλ+-++-++=∈≠-二、填空题7.圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a = . 8.如图,已知圆C 与x 轴相切于点,与y 轴正半轴交于两点A ,B (B 在A 的上方),且2AB =.(Ⅰ)圆C 的标准方程为_________;(Ⅱ)圆C 在点B 处的切线在x 轴上的截距为_________.9.若⊙221:5O x y +=与⊙222:()20()O x m y m R -+=∈相交于A 、B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是 .10.已知,AC BD 为圆O :224x y +=的两条互相垂直的弦,且垂足为M ,则四边形ABCD 的面积的最大值为______. 三、解答题11.在平面直角坐标系中,曲线与162+-=x x y 坐标轴的交点都在圆C 上, (1)求圆C 的方程;(2)如果圆C 与直线0=+-a y x 交于A,B 两点,且OB OA ⊥,求a 的值。

高二数学单元过关质量检测题(直线和圆方程)

高二数学单元过关质量检测题(直线和圆方程)

高二数学单元过关质量检测题(直线和圆方程)各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢高二数学单元过关质量检测题(直线和圆的方程)一、选择题1.下列命题正确的是………………………………()若直线的倾斜角为,则任何直线都有斜率直线不经过第一象限直线恒过点(1,0)2.若直线与直线互相垂直,则的值是……()-68-10103.若直线与平行,则的值是………………()或(D)4.若点到直线的距离不大于3,则的取值范围是……()5.与直线关于点对称的直线方程是……………………()6.直线与圆在第一象限内有两个不同的交点,则的取值范围是……………………………………………………………………………………()7.已知等腰直角三角形斜边所在直线的方程,直角顶点坐标为,则两条直角边所在直线的方程分别为…………………………………………()8.若动点分别在直线和上移动,则中点到原点的距离的最小值为……………………………………()二、填空题9.将直线绕点顺时针旋转所得的直线方程是____________________.10.已知直线的斜率满足,则直线的倾斜角的范围是_____________;若已知直线的倾斜角满足,则直线的斜率的取值范围是_______.11.两直线的夹角是__________.12.经过两点和,并且圆心在轴上的圆的方程为_____________________.13.点到直线的距离等于4,且在不等式表示的平面区域内,则点的坐标是___________.14.已知直线,是上一动点,过作轴、轴的垂线,垂足分别为、,则在、连线上且满足的点的轨迹方程是____________________.三、解答题15.已知三边所在直线的方程分别为:,求(1)的大小;(2)边上的中线所在直线的方程;(3)边上的高所在的直线方程。

16.已知圆的半径为,圆心在直线上,圆被直线截得的弦长为,求圆的方程。

17.一直线被两平行直线所截线段的中点在直线上,并且这条直线与两平行直线的夹角为,求这条直线的方程。

(完整版)直线和圆的方程单元测试题含答案解析.docx

(完整版)直线和圆的方程单元测试题含答案解析.docx

完美 WORD 格式 .整理《直线与圆的方程》练习题1一、选择题1.方程 x2+y2+2ax-by+c=0 表示圆心为 C( 2, 2),半径为 2 的圆,则 a、 b、c 的值依次为( B )( A)2、 4、 4;( B)-2 、 4、4;( C) 2、 -4 、 4;( D) 2、-4 、 -42.点 (1,1) 在圆 ( x a ) 2( y a ) 2 4 的内部,则a的取值范围是(A)(A)1a1(B)0a1(C)a1或 a 1 (D) a 13.自点A(1,4 ) 作圆 (x 2 ) 2( y 3 ) 21的切线,则切线长为(B)(A)5(B) 3(C)10(D) 54.已知 M (-2,0), N (2,0),则以 MN为斜边的直角三角形直角顶点P 的轨迹方程是 ( D )(A)x 2y 22(B)x 2y 24(C)x 2y 22(x 2 )(D)x 2y 24( x2)5.若圆 x2y 2(1)x2y0 的圆心在直线x 1 左边区域,则的取值范围是2(C)A. (0,+)B.1,+1(1,∞ )D. R C. (0, )56. . 对于圆x2y121上任意一点P( x, y),不等式x y m0 恒成立,则m的取值范围是BA .( 2 1,+ )B .2,C.( 1,+ )D.1,+ 1 +7. 如下图,在同一直角坐标系中表示直线y =ax与=+,正确的是 (C)y x a完美 WORD 格式 .整理8. 一束光线从点A( 1,1)出发,经x轴反射到圆 C : ( x 2)2( y 3) 2 1 上的最短路径是( A)A. 4B. 5C.32 1D.269.直线 3 x y 230 截圆x2+y2=4得的劣弧所对的圆心角是( C )A、B、C、D、643210. 如图,在平面直角坐标系中,Ω是一个与 x 轴的正半轴、 y 轴的正半轴分别相切于点C、 D的定圆所围成的区域( 含边界 ) ,、、、是该圆的四等分点.若点 (, ) 、点′( ′,y′)A B C D P x yP x满足 x≤ x′且 y≥ y′,则称 P优于 P′.如果Ω中的点 Q满足:不存在Ω中的其它点优于Q,那么所有这样的点组成的集合是劣弧()QA. ABB. BCC. CDD. DA[ 答案 ]D[ 解析 ]首先若点M 是Ω 中位于直线右侧的点,则过,作与BD平行的直线交于AC M ADC一点 N,则 N 优于 M,从而点 Q必不在直线 AC右侧半圆内;其次,设 E 为直线 AC左侧或直线 AC 上任一点,过 E 作与 AC平行的直线交AD于 F.则 F 优于 E,从而在 AC左侧半圆内及 AC上( A 除外 ) 的所有点都不可能为Q,故 Q点只能在 DA上.二、填空题11. 在平面直角坐标系xoy中,已知圆x2y2 4 上有且仅有四个点到直线12x 5 y c 0 的距离完美 WORD 格式 .整理为 1,则实数 c 的取值范围是( 13,13).12. 圆:x2y 24x 6 y0和圆: x 2y26x 0 交于 A, B 两点,则AB的垂直平分线的方程是3x y9013. 已知点 A(4,1) , B(0,4) ,在直线L: y=3x-1 上找一点P,求使 |PA|-|PB|最大时P的坐标是( 2,5 )14. 过点A( - 2,0)22→→的直线交圆 x + y =1交于 P、Q两点,则 AP· AQ的值为________.[ 答案 ]3[ 解析 ]设 PQ的中点为 M,|OM|= d,则| PM|=| QM|= 1-d2AM|2→=2,|= 4-d .∴|AP|4-d-2→221-d, | AQ|= 4-d+ 1-d,∴→·→= |→||→|cos0 °= ( 4-2- 1-2)(4-2+1-2) = (4 -2) - (1 -d2) = 3.AP AQ AP AQ d d d d d15. 如图所示,已知A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是________.[ 答案 ]210[ 解析 ]点P关于直线AB的对称点是 (4,2),关于直线的对称点是 ( - 2,0) ,从而所求路OB程为(4 + 2) 2+ 22= 2 10.三.解答题16. 设圆 C满足:①截y 轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3: 1;③圆心到直线 l : x 2 y 0 的距离为5,求圆 C的方程.5解.设圆心为(a,b) ,半径为r ,由条件①:r 2a2 1 ,由条件②:r 22b2,从而有:2b2a21 .由条件③:| a2b | 5 | a 2b |2b 2 a 2 1 a 1 1 ,解方程组 2b | 可得:b 155| a 1或a1, 所 以 r 22b 22 . 故 所 求 圆 的 方 程 是 (x1)2 ( y 1)22 或b1(x 1)2 ( y1)2 2 .17. 已知ABC 的顶点 A 为( 3,- 1),AB 边上的中线所在直线方程为 6x 10 y 59 0 ,B的平分线所在直线方程为x 4y 10 0 ,求 BC 边所在直线的方程.解:设 B(4 y 1 10, y 1) ,由 AB 中点在 6x 10 y59 0 上,可得: 6 4y 17 10 y 1 159 0 , y 1 = 5 ,所以 B(10,5) .22设 A 点关于 x4 y 10 0 的对称点为 A'( x ', y') ,x3 4 y 4 10A (1,7) . 故 BC : 2x 9 y 650 .则有2 1 1 2y1x3 418. 已知过点 M3, 3 的直线 l 与圆 x 2y 2 4 y 21 0 相交于 A, B 两点,( 1)若弦 AB 的长为 2 15 ,求直线 l 的方程;( 2)设弦 AB 的中点为 P ,求动点 P 的轨迹方程.解 : ( 1 ) 若 直 线 l 的 斜 率 不 存 在 , 则 l 的 方 程 为 x3 , 此 时 有 y 24 y 12 0 , 弦| AB | | y A y B | 268 ,所以不合题意.故设直线 l 的方程为 y3 k x 3 ,即 kx y 3k3 0 .x 2y 220, 2 ,半径 r 5 .将圆的方程写成标准式得25,所以圆心圆心 0, 2 到直线 l 的距离 d| 3k 1|,因为弦心距、半径、弦长的一半构成直角三角形,k 213k2所以 152120 ,所以 k3 .k 225,即 k31所求直线 l 的方程为 3xy 12 0 .( 2 )设 P x, y ,圆心 O 1 0, 2 ,连接 O 1 P ,则 O 1 PAB .当 x 0 且 x3 时,kO PkAB1,又kABkMPy( 3),x( 3)1则有y2 y3 22x1,化简得x3 y 55......( 1)0 x 3222当 x0 或 x 3时, P 点的坐标为0, 2 , 0, 3 , 3, 2 , 3, 3 都是方程(1)的解,22所以弦 AB 中点 P 的轨迹方程为 x3 y5 5 .22219. 已知圆 O 的方程为 x 2+y 2= 1,直线 l 1 过点 A (3,0) ,且与圆 O 相切.(1) 求直线 l 1 的方程;(2) 设圆 O 与 x 轴交于 P ,Q 两点, M 是圆 O 上异于 P , Q 的任意一点,过点A 且与 x 轴垂直的直线为 l 2,直线 PM 交直线 l 2 于点 P ′,直线 QM 交直线 l 2 于点 Q ′. 求证:以 P ′Q ′为直径的圆 C 总过定点,并求出定点坐标[ 解析 ](1) ∵直线 l 1 过点(3,0) ,∴设直线 l 1 的方程为 y = ( x - 3) ,即 kx - -3 = 0,Aky k则圆心 O (0,0) 到直线 l 1 的距离为 d = |3 k | = 1,2k + 12解得 k =± 4 .∴直线 l 1 的方程为 y =±2 ( x - 3) .4(2) 在圆 O 的方程 x 2+ y 2= 1 中,令 y = 0 得, x =± 1,即 P ( - 1,0) , Q (1,0).又直线 l 2 过点tA 与 x 轴垂直,∴直线 l 2 的方程为 x = 3,设 M ( s , t ) ,则直线 PM 的方程为 y = s + 1( x + 1) .x = 3 4t解方程组y = t ( x + 1)得, P ′ 3, s + 1 .s + 12 t同理可得 Q ′ 3, s -1 .4t 2t∴以 P ′ Q ′为直径的圆 C 的方程为 ( x -3)( x - 3) + y - s +1 y - s -1 = 0,.专业资料分享.又 s 2+ t 2= 1,∴整理得 ( x 2+ y 2- 6x +1) +6s -2y =0, t2若圆 C 经过定点,则 y = 0,从而有 x - 6x + 1= 0,∴圆 C 总经过的定点坐标为 (3 ±22 ,0) .20. 已知直线 l :y=k (x+2 2 ) 与圆 O: x 2 y 2 4 相交于 A 、B 两点, O 是坐标原点,三角形 ABO 的面积为 S. ( 1)试将 S 表示成的函数 S ( k ),并求出它的定义域; ( 2)求 S 的最大值,并求取得最大值时k 的值 .【解】: : 如图 ,(1) 直线 l 议程 kx y2 2k 0( k 0),原点 O 到 l 的距离为 oc2 2 k 1 k2弦长 AB2 228K 2 OAOC2 421 K( 2) ABO 面积S1AB OC4 2 K 2 (1 K 2 )AB 0,1 K1( K0),1K 22S(k ) 4 2 k 2 (1 k 2 )( 1 k 1且K1 k 2(2)令11 t1,1 k 2t,2S(k )4 2 k 2 (1 k 2 )422t 2 3t 14 22(t3) 2 1 .1 k 248当 t=3时 ,13 , k 2 1 , k 3时,Smax241 k2 4 3321. 已知定点A( 0, 1),B( 0, -1 ),C(1, 0).动点P满足:AP BP k | PC |2.(1)求动点P的轨迹方程,并说明方程表示的曲线类型;(2)当kuuur uuur2 时,求| 2AP BP | 的最大、最小值.uuur( x, yuuur uuur(1x, y) .因为解:( 1)设动点坐标为P(x, y),则AP1) , BP ( x, y1) , PC AP BP k | PC |2,所以x2y2 1 k[( x 1)2y 2 ] . (1k) x2(1k ) y22kx k 1 0 .若 k1,则方程为 x 1 ,表示过点(1, 0)且平行于 y 轴的直线.若 k1,则方程化为 (x k )2y2(1)2.表示以 (k,0) 为圆心,以1为1k1k k1|1 k |半径的圆.( 2)当k 2 时,方程化为(x2) 2y21,uuur uuur uuur uuur9x29 y2 6 y 1 .因为 2AP BP(3x,3 y 1) ,所以| 2 AP BP |又 x2y24xuuur uuur6y26 .3 ,所以| 2 AP BP | 36x因为 ( x 2) 2y 21,所以令 x2cos, y sin,则 36x6y26 6 37 cos()46[46637, 46637] .uuur uuur46637337 ,所以 | 2AP BP |的最大值为最小值为4663737 3 .。

2023-2024学年高二数学单元速记——直线与圆的方程(单元重点综合测试)(解析版)

2023-2024学年高二数学单元速记——直线与圆的方程(单元重点综合测试)(解析版)

第2章直线与圆的方程(单元重点综合测试)一、单项选择题:每题5分,共8题,共计40分。

1.已知直线方程为sin 60cos6030x y +-= ,则该直线的倾斜角为()A .30B .60C .120D .150【答案】C【分析】根据直线方程可整理得到斜率,由斜率和倾斜角关系可求得结果.【详解】由sin 60cos6030x y +-= 得:3tan 60cos 60y x =-⋅+,∴直线的斜率tan 60tan120k =-= ,∴直线的倾斜角为120 .故选:C.2.已知圆C 的方程为22880x y x +++=,则圆C 的半径为()A B .2C .D .8【答案】C【分析】化圆的一般式为标准式得圆C 的半径.【详解】由圆C 的半径得()2248x y ++=,所以圆C 的半径为,故选:C3.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为()A B C D 【答案】B【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离.【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=,可得2650a a -+=,解得1a =或5a =,所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为15d =;圆心到直线的距离均为25d =圆心到直线230x y --=的距离均为d ==;所以,圆心到直线230x y --=.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.4.经过点(2,2)A ,且与直线320x y -+=平行的直线方程为()A .380x y +-=B .380x y ++=C .340x y --=D .340x y -+=【答案】C【分析】根据题意,直线方程可设为30x y m -+=,代入(2,2)A 即可求解.【详解】与直线320x y -+=平行的直线方程可设为30x y m -+=,代入(2,2)A ,可得3220m ⨯-+=,得4m =-,故所求直线方程为:340x y --=故选:C5.已知P 是直线l :220x y --=上一点,M ,N 分别是圆1C :()()22182x y -+-=和2C :()26x -+()278y -=上的动点,则PM PN +的最小值是()A .B .C .D .【答案】A【分析】先由两圆的标准方程,求出圆心和半径,然后判断两圆与直线l 的位置关系,求出圆心()26,7C 关于直线l :220x y --=的对称点()10,1E -,则当M ,N ,P 三点共线且经过两圆圆心时,PM PN +取最小值,求解即可.【详解】圆1C :()()22182x y -+-=,则圆心()11,8C ,r圆2C :()()22678x y -+-=,则圆心()26,7C ,R =因为()(128262720)-⨯-⨯-⨯->,则两圆心在直线l 的同侧.又圆心()11,8C 到直线l的距离1d==>圆心()26,7C 到直线l 的距离2d ==>则两圆在直线l 的同侧且与直线相离,圆心()26,7C 关于直线l :220x y --=的对称点为(),E a b ,则6722022{726a bb a ++-⨯-=-=--,解得10a =,1b =-,所以()10,1E -,则当M,N ,P三点共线且经过两圆圆心时,PM PN +取最小值,所以PM PN +的最小值为16EC R r --=故选:A.6.已知直线1:0l x ay a +-=和直线2:(23)10l ax a y ---=,若12l l ⊥,则a 的值为()A .2B .3-C .0或2D .1或3-【答案】C【分析】由两直线垂直的充要条件建立方程求解即可.【详解】由12l l ⊥,得[]21(23)240a a a a a ⋅+⋅--=-+=,解得0a =,或2a =.故选:C.7.过圆2264x y +=上的动点作圆22:16C x y +=的两条切线,两个切点之间的线段称为切点弦,则圆C 不在任何切点弦上的点形成的区域的面积为()A .4πB .6πC .8πD .12π【答案】A【分析】求出切点弦的方程后可求不在任何切点弦上的点形成的区域的面积.【详解】设圆2264x y +=的动点为(),P m n ,过P 作圆C 的切线,切点分别为,A B ,则过,,P A B 的圆是以PO 直径的圆,该圆的方程为:()()0x x m y y n -+-=.由()()22160x y x x m y y n ⎧+=⎪⎨-+-=⎪⎩可得AB 的直线方程为:16mx ny +=.原点到直线16mx ny +=2=,故圆C 不在任何切点弦上的点形成的区域的面积为4π,故选:A.8.若方程3x b +=有两个不等的实根,则实数b 的取值范围为()A .(1-+B .(11]--C .[1,1-+D .(1-【答案】B【分析】将3y =化为22(2)(3)4-+-=x y (3y ≤),作出直线与半圆的图形,利用两个图形有2个公共点,求出切线的斜率,观察图形可得解.【详解】解:由3y =得22(2)(3)4-+-=x y (3y ≤),所以直线y x b =+与半圆22(2)(3)4-+-=x y (3y ≤)有2个公共点,作出直线与半圆的图形,如图:当直线经y x b =+过点(4,3)时,341b =-=-,当直线与圆22(2)(3)4-+-=x y 2=,解得1b =-或1b =+,由图可知,当直线y x b =+与曲线3y =有2个公共点时,11b -≤-,故选:B.二、多项选择题:每题5分,共4题,共计20分,全部选对得5分,部分选对得2分,有选错的不得分。

人教版高中数学选修一第二单元《直线和圆的方程》测试题(包含答案解析)(1)

人教版高中数学选修一第二单元《直线和圆的方程》测试题(包含答案解析)(1)

一、选择题1.两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,若a R ∈,b R ∈且0ab ≠,则2211a b+的最小值为( ) A .72B .4C .1D .52.直线1ax by +=与圆221x y +=有两个公共点,那么点(),a b 与圆22+1x y =的位置关系是( ) A .点在圆外B .点在圆内C .点在圆上D .不能确定3.若P 是直线l :3490x y +-=上一动点,过P 作圆C :2240x y x ++=的两条切线,切点分别为A ,B ,则四边形PACB 面积的最小值为( )A B .CD .4.圆C :x 2+y 2-6x -8y +9=0被直线l :ax +y -1-2a =0截得的弦长取得最小值时,此时a 的值为( ) A .3B .-3C .13D .-135.已知圆22:(1)1C x y +-=,点(3,0)A 在直线l 上,过直线l 上的任一点P 引圆C 的两条切线,若切线长的最小值为2,则直线l 的斜率k =( ) A .2B .12C .2-或12D .2或12-6.直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是( ) A .9B .4C .12D .147.直线0x y +=被圆226240x y x y +-++=截得的弦长等于( )A .4B .2C .D8.已知圆1C :224470x y x y ++-+=与圆2C :()()222516x y -+-=的位置关系是( ) A .外离B .外切C .相交D .内切9.直线210y x -+=关于30y x -+=对称的直线方程是( )A .280x y --=B .2100x y --=C .2120x y +-=D .2100x y +-= 10.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( )A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=011.已知()()4,0,0,4A B ,从点(1,0)P 射出的光线被直线AB 反射后,再射到直线OB上,最后经OB 反射后回到P 点,则光线所经过的路程是( )A B .6C .D .12.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D二、填空题13.直线:20l mx y m --+=与圆22:6O x y +=交于A 、B 两点,O 为坐标原点,则AOB 面积的最大值为__________.14.已知过点()4,1P 的直线l 与x 轴,y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,当AOB 的面积最小时,直线l 的方程为______.15.若直线0x y m +-=与曲线2y =没有公共点,则实数m 所的取值范围是______.16.直线:=l y kx O:221x y +=相交于,A B 两点,当AOB ∆的面积达到最大时,k =_______17.过圆226430x y x y +-+-=的圆心,且垂直于2110x y ++=的直线方程是______.18.已知k ∈R ,过定点A 的动直线10kx y +-=和过定点B 的动直线30x ky k --+=交于点P ,则22PA PB +的值为__________.19.若直线y x b =+与曲线y =b 的范围______________.20.已知点M 为直线1:20l x y a +-=与直线2:210l x y -+=在第一象限的交点,经过点M 的直线l 分别交x ,y 轴的正半轴于A ,B 两点,O 为坐标原点,则当AOBS 取得最小值为1425时,a 的值为________. 三、解答题21.在平面直角坐标系xOy 中,已知圆M 过点A (1,2),B (7,-6),且圆心在直线x +y -2=0上.(1)求圆M 的标准方程;(2)设平行于OA 的直线l 与圆M 相交于C ,D 两点,且CD =2OA ,求直线l 的方程. 22.已知直线:3470l x y +-=.(1)若直线m 与直线l 平行,且直线m 过点(2,5)P -,求直线m 的方程;(2)若点C 坐标为10,3⎛⎫- ⎪⎝⎭,过点C 的直线与直线l 垂直,垂足为M ,求点M 的坐标. 23.已知直线l 经过直线10x y -+=与直线240x y +-=的交点,且()2,3M ,()4,5N -到l 的距离相等,求直线l 的方程.24.已知点(1,0)M -,(1,0)N ,曲线E 上任意一点到点M 的距离均是到点N 倍.(1)求曲线E 的方程:(2)已知0m ≠,设直线1l :10x my --=交曲线E 于A 、C 两点,直线2l :0mx y m +-=交曲线E 于B 、D 两点,C 、D 两点均在x 轴下方.当CD 的斜率为1-时,求线段AB 的长.25.已知圆C :222440x y x y +-+-=,斜率为1的直线l 与圆C 交于A 、B 两点. (1)化圆的方程为标准形式,并指出圆心和半径;(2)是否存在直线l ,使以线段AB 为直径的圆过原点?若存在,求出直线l 的方程,若不存在,说明理由;(3)当直线l 平行移动时,求CAB △面积的最大值.26.直线21:20l a x y a ++=,2:10l x ay ++=,圆22:650C x y y +-+=.(1)当a 为何值时,直线1l 与2l 垂直;(2)若圆心C 在直线2l 的左上方,当直线2l 与圆C 相交于P ,Q 两点,且PQ =求直线2l 的方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由题意可知两圆外切,可得出2249a b +=,然后将代数式2211a b +与2249a b +相乘,展开后利用基本不等式可求得2211a b +的最小值. 【详解】圆222240x y ax a +++-=的标准方程为()224x a y ++=,圆心为()1,0C a -,半径为12r =,圆2224140x y by b +--+=的标准方程为()2221x y b +-=,圆心为()20,2C b ,半径为21r =.由于圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,则这两圆外切,所以,1212C C r r =+3=,所以,2249a b +=,所以,222222222211411141551999a b a b a b a b b a ⎛⎛⎫+⎛⎫+=+=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当222a b =时,等号成立,因此,2211a b +的最小值为1. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.A解析:A 【分析】直线1ax by +=与圆221x y +=||1<,即为1>,由此可得点与圆的位置关系.【详解】因为直线1ax by +=与圆221x y +=有两个公共点,||1<,1>,因为点(,)b a 与221x y += 圆224x y +=的半径为1,所以点P 在圆外. 故选:A. 【点睛】关键点点睛:本题的关键是将直线与圆的位置关系的判断式和点与圆的关系的判断式联系起来.3.B解析:B 【分析】画出图象,根据对称性可得四边形PACB 面积2PACS S=,利用勾股定理可得22PA PC AC =-,当PC 最小时,PA 最小,面积最小,根据点到直线距离公式,即可求得答案. 【详解】圆C :22(2)4x y ++=,圆心为(-2,0)半径2AC r ==,画出图象,如图所示:因为直线与圆相切,所以90PAC PBC ∠=∠=︒,且PAC PBC ≌ 所以四边形PACB 面积12222PACS S AC PA PA ==⨯⨯⨯=,又2224PA PC AC PC =-=-所以当PC 最小时,PA 最小,四边形PACB 面积的最小值, 由图象可得,PC 最小值即为点C 到直线3490x y +-=的距离, 所以min 223(2)9334PC ⨯--==+,所以min 945PA =-所以四边形PACB 面积的最小值225S PA == 故选:B 【点睛】解题的关键是画出图象,根据几何关系,得到PC 最小时,面积最小,再求解,将动点问题转化为点到直线距离问题,考查分析理解,计算求值的能力,属中档题.4.C解析:C 【分析】先判断直线l 恒过点(2,1)P ,可得直线l 垂直于直线PC 时,截得的弦长最短,利用直线垂直的性质可得答案.直线:120+--=l ax y a 可化为:(2)(1)0-+-=l a x y , 故直线l 恒过点(2,1)P .圆22:6890+--+=C x y x y 的圆心为(3,4)C ,半径为4. 当直线l 垂直于直线PC 时,截得的弦长最短, 因为直线PC 的斜率41332PC k -==-, ax +y -1-2a =0的斜率为a -, 此时1313PC l k k a a ⋅=-=-⇒=.故选:C . 【点睛】方法点睛:判断直线过定点主要形式有: (1)斜截式,0y kx y =+,直线过定点()00,y ; (2)点斜式()00,y y k x x -=-直线过定点()00,x y ; (3)化为()(),,0tf x y g x y +=的形式,根据()(),0,0f x y g x y ⎧=⎪⎨=⎪⎩ 求解.5.C解析:C 【分析】根据勾股定理由切线长最小值求出||PC 5C 到直线l 的距离为5l 的方程,根据点到直线的距离列式可解得结果.【详解】圆22:(1)1C x y +-=的圆心为(0,1)C ,半径为1, 因为切线长的最小值为2,所以2min ||215PC =+=所以圆心C 到直线l 5,所以直线必有斜率,设:(3)l y k x =-,即30kx y k --=,所以圆心(0,1)C 到直线30kx y k --=2211k k =++251k =+22320k k +-=,解得12k =或2k =-.故选:C 【点睛】关键点点睛:根据勾股定理由切线长的最小值求出||PC 的最小值,也就是圆心C 到直线l 的距离是解题关键.6.D【分析】根据弦长可知直线过圆心,再利用基本不等式求ab 的最大值. 【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=, 故该圆圆心为(1,2)-,半径为3. 因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D. 【点睛】关键点点睛:本题考查直线与圆相交,基本不等式求最值,本题的关键是根据弦长判断直线过圆心,这样问题就变得简单易求.7.A解析:A 【分析】先将圆化成标准方程,求出圆心与半径,再求圆心到直线的距离,然后解弦长即可. 【详解】因为226240x y x y +-++= 所以22(3)(1)6x y -++=,圆心到直线的距离为d ==直线0x y +=被圆226240x y x y +-++=截得的弦长4l =;故选:A . 【点睛】计算圆的弦长通常使用几何法简捷.也可使用代数法计算.8.B解析:B 【分析】分别求得两圆的圆心坐标和半径,结合圆与圆的位置关系的判定方法,即可求解. 【详解】由题意,圆1C :224470x y x y ++-+=,可得圆心坐标为1(2,2)C -,半径为11r =,圆2C :()()222516x y -+-=,可得圆心坐标为1(2,5)C ,半径为14r =,又由125C C ==,且12145r r =+=+,即1212C C r r =+,所以圆12,C C 相外切. 故选:B. 【点睛】圆与圆的位置关系问题的解题策略:判断两圆的位置关系时常采用几何法,即利用两圆的圆心之间的距离与两圆的半径间的关系进行判断,一般不采用代数法;若两圆相交,则两圆的公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.9.A解析:A 【分析】设所求直线上任意一点()()11,,,P x y Q x y 是P 关于直线30y x -+=的对称点,根据对称关系求得1133x y y x =+⎧⎨=-⎩,代入直线210y x -+=的方程整理即得所求. 【详解】解:设所求直线上任意一点()()11,,,P x y Q x y 是P 关于直线30y x -+=的对称点,则111113022y y x x y y x x -⎧=-⎪-⎪⎨++⎪-+=⎪⎩,解得1133x y y x =+⎧⎨=-⎩, 由对称性得Q 在直线210y x -+=上,()()23310x y ∴--++=, 即280x y --=, 故选:A. 【点睛】根据“一垂直二中点”列出方程组,求得1133x y y x =+⎧⎨=-⎩是解决问题的关键,利用轨迹方程思想方法求直线的方程也是重要的思想之一.10.D解析:D 【分析】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程. 【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立; 当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=, ∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =-.:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-=故选:D 【点睛】解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.11.A解析:A 【分析】设点P 关于y 轴的对称点P ',点P 关于直线:40AB x y +-=的对称点P '',由对称点可求得P '和P ''的坐标,在利用入射光线上的点关于反射轴的对称点在反射光线所在的直线上,光线所经过的路程||P P '''. 【详解】解:点P 关于y 轴的对称点P '坐标是(1,0)-,设点P 关于直线:40AB x y +-=的对称点(,)P a b ''∴0111422b a a b -⎧=⎪⎪-⎨+⎪+=⎪⎩,解得43a b =⎧⎨=⎩,(4,3)P ∴'',∴光线所经过的路程||P P '''=故选A . 【点睛】本题考查求一个点关于直线的对称点的方法(利用垂直及中点在轴上),入射光线上的点关于反射轴的对称点在反射光线所在的直线上,把光线走过的路程转化为||P P '''的长度,属于中档题.12.B解析:B 【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短. 【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA bk a =-,AA'的中点为2, 22 a b +⎛⎫⎪⎝⎭,故122422baa b⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a=,2b=,要使从点A到军营总路程最短,即为点fA到军营最短的距离,即为点'A和圆上的点连线的最小值,为点'A和圆心的距离减半径,“将军饮马”的最短总路程为4161251+-=-,故选:B【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.二、填空题13.3【分析】设出圆心到直线的距离为利用几何法求出表示出面积再利用二次函数的性质即可求出【详解】可得直线的定点在圆内则设圆心到直线的距离为则当即即时取得最大值为3故答案为:3【点睛】关键点睛:本题考查圆解析:3【分析】设出圆心O到直线的距离为d,利用几何法求出AB,表示出面积,再利用二次函数的性质即可求出.【详解】可得直线:20l mx y m--+=的定点()1,2在圆内,则m R∈设圆心O 到直线的距离为d,则221mdm-=+226AB d=-,∴()22422166392AOBS AB d d d d d d=⨯⨯=-=-+=--+当23d=,即()22231m m -=+,即m =时,AOBS 取得最大值为3.故答案为:3. 【点睛】关键点睛:本题考查圆内三角形面积的最值问题,解题的关键是利用几何法求出AB ,表示出三角形面积,利用二次函数性质求解.14.【分析】由题意可知直线的斜率存在且不为零可设直线的方程为求出点的坐标结合已知条件可求得的取值范围并求出的面积关于的表达式利用基本不等式可求得面积的最小值及其对应的值由此可求得直线的方程【详解】由题意 解析:480x y +-=【分析】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,求出点A 、B 的坐标,结合已知条件可求得k 的取值范围,并求出AOB 的面积关于k 的表达式,利用基本不等式可求得AOB 面积的最小值及其对应的k 值 ,由此可求得直线l 的方程.【详解】由题意可知,直线l 的斜率存在且不为零,可设直线l 的方程为()14y k x -=-,即14y kx k =+-. 在直线l 的方程中,令0x =,可得14y k =-;令0y =,可得41k x k-=. 即点41,0k A k -⎛⎫⎪⎝⎭、()0,14B k -,由题意可得410140k k k -⎧>⎪⎨⎪->⎩,解得0k <, AOB 的面积为()1411111481688222AOBk S k k k k ⎛-⎛⎫=⨯⨯-=--≥+= ⎪ ⎝⎭⎝△,当且仅当()1160k k k-=-<时,即当14k =-时,等号成立,所以,直线l 的方程为()1144y x -=--,即480x y +-=. 故答案为:480x y +-=. 【点睛】关键点点睛:解本题的关键在于以下两点: (1)将三角形的面积利用k 加以表示;(2)在求解最值时,可充分利用基本不等式、导数、函数的单调性等知识来求解.15.【分析】根据题意作出曲线的图象然后采用平移直线的方法求解出的临界值由此求解出的取值范围【详解】如下图所示:即为表示圆心在半径为的半圆当直线与曲线在左下方相切时此时所以此时(舍)或;当直线经过点时所以 解析:()(),122,-∞-⋃+∞【分析】根据题意作出曲线()22y x x =--+的图象,然后采用平移直线的方法求解出m 的临界值,由此求解出m 的取值范围. 【详解】如下图所示:()22y x x =--+即为()()()2212112x y y ++-=≤≤,表示圆心在()1,2-,半径为1的半圆,当直线与曲线在左下方相切时,此时0m <,所以12111m -+-=+,此时21m +=(舍)或12m =-;当直线经过点()0,2时,020m +-=,所以2m =,综上可知:当直线与曲线()22y x x =--+没有交点时,()(),122,m ∈-∞-⋃+∞, 故答案为:()(),122,-∞-⋃+∞.【点睛】思路点睛:根据直线与半圆的交点数求解参数范围的思路: (1)根据条件画出半圆的图象确定好圆心和半径; (2)采用平移直线的方法确定出直线的临界位置;(3)利用圆心到直线的距离公式以及直线经过某点求解出参数的临界值,由此确定出参数的取值范围.16.【分析】由三角形面积公式可得当时的面积达到最大进而可得圆心到直线的距离即可得解【详解】由圆可得圆心坐标为半径将直线的方程化为因为所以当即时的面积达到最大此时圆心到直线的距离解得故答案为:【点睛】关键解析:【分析】由三角形面积公式可得当2AOB π∠=时,AOB 的面积达到最大,进而可得圆心到直线的距离,即可得解. 【详解】由圆22:1O x y +=可得圆心坐标为()0,0O ,半径1r =,将直线的方程化为:0l kx y -=, 因为11sin sin 22AOB S OA OB AOB AOB =⋅∠=∠△, 所以当sin 1AOB ∠=即2AOB π∠=时,AOB 的面积达到最大,此时圆心()0,0O 到直线AB 的距离2222211d k k ,解得k =故答案为: 【点睛】关键点点睛:解决本题的关键是利用三角形面积公式转化面积最值为圆心到弦的距离,细心计算即可得解.17.【分析】求出圆心坐标由垂直设出直线方程为代入圆心坐标求出参数得直线方程【详解】圆的标准方程是圆心坐标为垂直于的直线方程为则∴所求直线方程为故答案为:【点睛】方法点睛:本题考查由垂直求直线方程解题方法 解析:280x y --=【分析】求出圆心坐标,由垂直设出直线方程为20x y m -+=,代入圆心坐标求出参数m ,得直线方程. 【详解】圆226430x y x y +-+-=的标准方程是22(3)(2)10x y -++=,圆心坐标为(3,2)-,垂直于2110x y ++=的直线方程为20x y m -+=,则23(2)0m ⨯--+=,8m =-, ∴所求直线方程为280x y --=. 故答案为:280x y --=. 【点睛】方法点睛:本题考查由垂直求直线方程,解题方法有两种:(1)由垂直得斜率乘积为1-,得出所求主直线的斜率,再由写出点斜式方程, (2)与直线0Ax By C ++=垂直的直线方程可设为0Bx Ay m -+=,代入已知点坐标求出参数m 后可得.18.13【分析】由两直线方程可得定点再联立两直线方程解出的坐标然后由两点间距离公式可得进而可以求解【详解】动直线过定点动直线过定点联立方程解得则由两点间距离公式可得:故答案为:13【点睛】本题考查了直线解析:13 【分析】由两直线方程可得定点(0,1)A ,(3,1)B --,再联立两直线方程解出P 的坐标,然后由两点间距离公式可得2PA ,2PB ,进而可以求解. 【详解】动直线10kx y +-=过定点(0,1)A 动直线30x ky k --+=过定点(3,1)B --联立方程1030kx y x ky k +-=⎧⎨--+=⎩,解得223(1k P k -+,2231)1k k k -+++, 则由两点间距离公式可得:PA =PB =2432432222222222224129412991249124()()(1)(1)(1)(1)k k k k k k k k k k PA PB k k k k -+-+++++∴+=+++++++422213(21)13(1)k k k ++==+, 故答案为:13. 【点睛】本题考查了直线中定点问题以及两点间距离公式,考查了学生的运算能力,属于基础题.19.或【分析】由曲线变形为画出的图象当直线经过时直线与曲线有两个公共点求出此时的以及直线过时的值再求出当直线与曲线相切时的的值数形结合即可得b 的范围【详解】由曲线变形为画出的图象①当直线经过时直线与曲线解析:22b -≤<或b = 【分析】由曲线y =()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图 象,当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,求出此时的b ,以及直线y x b =+过(2,0)C 时b 的值,再求出当直线与曲线相切时的b 的值,数形结合即可得b 的范围. 【详解】由曲线24y x=-变形为()2204y x y +=≥,画出 y x b =+,()2204y x y +=≥的图象,①当直线经过()2,0A - ,()0,2B 时,直线与曲线有两个公共点,此时2b =, 当直线y x b =+过(2,0)C 时02b =+,得2b =-, 所以若直线与曲线有1个公共点,则22b -≤<. ②当直线与曲线相切时,联立224y x bx y =+⎧⎨+=⎩ ,化为222240x bx b ++-=, 令2248(4)0b b ∆=--=,解得:22b =,或22b =-(舍去), 综上所述b 的范围: 22b -≤<或22b =. 故答案为:22b -≤<或22b =.【点睛】本题主要考查了直线与圆相交相切问题、采用数形结合思想,属于中档题.20.【分析】先求出点的坐标然后设直线的方程得出坐标后可得三角形面积由面积的最小值可求得【详解】由得即在第一象限则设直线方程为显然令得令得所以当且仅当即时等号成立所以最大值为解得或(舍去)故答案为:【点睛解析:32【分析】先求出点M 的坐标,然后设直线AB 的方程,得出,A B 坐标后可得三角形面积,由面积的最小值可求得a . 【详解】由20210x y a x y +-=⎧⎨-+=⎩,得21525a x a y -⎧=⎪⎪⎨+⎪=⎪⎩,即212(,)55a a M -+,M 在第一象限,则12a >,设直线l 方程为221()55a a y k x +--=-,显然k 0<, 令0x =得2(21)55B a a k y +-=-,令0y =得21255A a a x k-+=-, 所以112122(21)225555AOB A B a a a a k S x y k -++-⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭△221(2)2(2)(21)(21)()50a a a a k k ⎡⎤+=+-++--⎢⎥-⎣⎦12(2)(21)50a a ⎡≥+-+⎢⎢⎣2(2)(21)25a a +-=,当且仅当22(2)(21)()a a k k+=---,即221a k a +=--时等号成立. 所以OABS最大值为2(2)(21)142525a a +-=,解得32a =或3a =-(舍去).故答案为:32. 【点睛】本题考查求直线的交点坐标,考查求直线方程,三角形面积,考查用基本不等式求最值.本题考查了学生运算求解能力,属于中档题.三、解答题21.(1)()()224225x y -++=;(2)2200x y --=. 【分析】(1)联立线段AB 的垂直平分线所在的方程与圆心所在直线方程,可得圆心坐标,进而求出圆的半径以及圆M 的标准方程;(2)设出直线l 的方程,由CD =2OA 可得弦长,利用点到直线的距离公式结合勾股定理列出方程,可得直线l 的方程. 【详解】(1)由题意可解得线段AB 的垂直平分线所在的方程为:y +2=34(x -4),即354y x =-,因为圆心在直线x +y -2=0上,且圆M 过点A (1,2),B (7,-6),则圆心为直线354y x =-与直线x +y -2=0的交点,联立20354x y y x +-=⎧⎪⎨=-⎪⎩,解得42x y =⎧⎨=-⎩,即圆心M 为(4,-2),半径为MA5=,所以圆M 的标准方程为()()224225x y -++=.(2)由直线l 平行于OA ,可设直线l 的方程为:20y x m m =+≠,,则圆心M 到直线l的距离为d ==CD =2OA=2525d +=,所以d ==,则解得m =-20或m =0(舍去),则直线l 的方程为2200x y --=. 【点睛】关键点点睛:本题考查圆的标准方程,考查圆的性质,解决本题的关键点是由已知求出弦长CD ,利用圆的弦长的一半,圆心到直线的距离和圆的半径构造直角三角形,结合勾股定理计算出参数的值,进而可得直线的方程,考查了学生计算能力,属于中档题. 22.(1)34140x y +-=;(2)(1,1)M . 【分析】(1)通过平行设出直线方程,代入(2,5)P -即可;(2)过点C 10,3⎛⎫- ⎪⎝⎭的直线与直线l 垂直,可得004310x y --=,加上M 在直线上,联立求交点即可. 【详解】(1)因为直线m 与直线l 平行,设直线m :340(7)x y a a ++=≠-, 将点(2,5)P -代入得:14a =-,所以直线m :34140x y +-=. (2)设()0,0M x y ,则001433CMy k x ⎛⎫-- ⎪⎝⎭==,即004310x y --=①, 又M 在直线l 上,所以003470x y +-=②,①②联立得:0011x y =⎧⎨=⎩,所以(1,1)M .【点睛】本题主要考查直线的一般式的平行关系与垂直关系,正确写出解析式是处理此题的关键. 23.3270x y +-=或460x y +-=. 【分析】根据题意求出交点坐标,由M ,N 到l 的距离相等,可判断直线有两种情况:①直线l 经过线段MN 的中点;②直线//l MN ,分别求解两种情况下的直线方程即可. 【详解】联立10240x y x y -+=⎧⎨+-=⎩得12x y =⎧⎨=⎩,所以直线10x y -+=与直线240x y +-=的交点为()1,2P ,由M ,N 到l 的距离相等,知直线l 经过线段MN 的中点,或者直线//l MN ,线段MN 的中点为()3,1Q -,35424MN k +==--, ∴过点P ,Q 的直线l 的方程为3270x y +-=,∴过点P 与直线MN 平行的直线l 的方程为460x y +-=, 综上,直线l 的方程为3270x y +-=或460x y +-=. 【点睛】本题考查直线方程的求法,考查两直线交点等基础知识,两个点到直线的距离相等,可以分为两种情况:①直线l 经过线段MN 的中点;②直线//l MN ;当MN 的中点()3,1Q -在直线l 上时,计算出斜率PQ k ,利用点斜式即可得出直线l 的方程;当//MN l时,计算出斜率MN k ,再根据斜率相等,利用点斜式即可得出直线l 的方程.24.(1)22(2)3x y -+=;(2) 【分析】(1)设动点坐标为(,)x y ,由两点间距离公式得等式,化简后可得轨迹方程;(2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-,设直线:CD y x t =-+,可得22(,)22t t P +-,利用圆的几何性质得12NP CD ==0t =或3t =,确定直线:CD y x =-,可得,C D 坐标,然后求得,A B 两点坐标,得弦长AB .【详解】解:(1)设曲线E 上任意一点坐标为(,)x y ,=, 整理得22410x y x +-+=,即22(2)3x y -+=. (2)由题意知12l l ⊥,且两条直线均过定点(1,0)N ,设曲线E 的圆心为E ,则(2,0)E ,线段CD 的中点为P ,则直线:2EP y x =-, 设直线:CD y x t =-+,由2y x y x t=-⎧⎨=-+⎩得点22(,)22t t P +-,由圆的几何性质得12NP CD == 而22222222(1)(),3,22t t NP ED EP +-=-+==, 解得0t =或3t =,又,C D 两点均在x 轴下方,所以直线:CD y x =-,由22410x y x y x ⎧+-+=⎨=-⎩,解得1212x y ⎧=-⎪⎪⎨⎪=-⎪⎩或1212x y ⎧=+⎪⎪⎨⎪=--⎪⎩,不失一般性,设(11),(11)2222C D --+--, 由22410(1)x y x y u x ⎧+-+=⎨=-⎩,消去y 得2222(1)2(2)10u x u x u +-+++=① 方程①的两根之积为1,所以点A的横坐标2A x = 又因为点C (11)在直线1:10l x my --=上,解得1m ,直线1:1)(1)l y x =-,所以(2A +,同理可得(2B -, 所以线段AB的长为 【点睛】关键点点睛:本题考查求圆的轨迹方程,考查求圆中弦长.本题求弦长方程是求出交点坐标,再得弦长,而解题关键是由直线12l l ⊥,且交点为定点(1,0)N ,设出CD 方程,CD 中点P,由圆的性质得12NP CD ==求得CD 方程,得出,C D 两点坐标,再得,A B 两点坐标,得弦长.25.(1)()()22129x y -++=;圆心()1,2C -,3r =;(2)存在;;1y x =+或4y x =-;(3)92. 【分析】(1)将一般方程化为标准方程后即可得到结果;(2)设:l y x m =+,与圆的方程联立得到根与系数的关系,利用OA OB ⊥,即12120x x y y +=,由此整理可得方程求得m ,进而得到所求方程;(3)设:l y x m =+,由垂径定理表示出AB ,将所求面积表示为关于圆心到直线距离d 的函数,利用函数最值的求法可求得结果. 【详解】(1)由222440x y x y +-+-=得:()()22129x y -++=.∴圆C 的圆心为:()1,2C -,半径3r =.(2)假设存在直线l ,设方程为y x m =+,()11,A x y ,()22,B x y , 以AB 为直径的圆过圆心O ,∴OA OB ⊥,即12120x x y y +=.由222440y x m x y x y =+⎧⎨+-+-=⎩消去y 得:()22221440x m x m m ++++-=.由()()22418440m m m ∆=+-+->得:33m -<<.由根与系数关系得:()121x x m +=-+,212442m m x x +-=,()()()212121212y y x m x m x x m x x m ∴=++=+++,()21212121220x x y y x x m x x m ∴+=+++=,解得:1m =或4-.∴直线l 方程为:1y x =+或4y x =-.(3)设圆心C 到直线l :y x m =+的距离为d ,则AB =12CABSd ∴=⨯==∴当2d =()max92CAB S=,∴圆心到直线距离2d ==,解得:0m =或6m =-, ∴当直线l 的方程为y x =或6y x =-时,CAB △面积取得最大值92. 【点睛】方法点睛:处理直线与圆问题中的三角形面积的最值或取值范围问题时,通常结合垂径定理和点到直线距离公式将所求面积表示为关于圆心到直线距离d 或者半径r 的函数关系式的形式,利用函数最值的求解方法求得结果. 26.(1)0a =或1a =-(2)10x y -+= 【分析】(1)根据两条直线平行的条件列式解得结果即可得解;(2)设圆心(0,3)C 到直线2l 的距离为d ,利用弦长求出d ,根据圆心到直线的距离求出d ,由此可求出a ,再根据圆心C 在直线2l 的左上方,舍去一个值,从而可得直线2l 的方程. 【详解】(1)由直线1l 与2l 垂直得20a a +=,解得0a =或1a =-; (2)圆22:650C x y y +-+=的圆心(0,3)C ,半径为2,设圆心(0,3)C 到直线2l 的距离为d ,则d ==又d ==,所以27610a a +-=,所以17a =或1a =-,当17a =时,21:107l x y ++=,由0x =得73y =-<,此时圆心C 在直线2l 的右上方,不符合题意;当1a =-时,2:10l x y -+=,由0x =得1y =3<,此时圆心C 在直线2l 的左上方; 故直线2l 的方程为:10x y -+=【点睛】结论点睛:根据两条直线的位置关系求参数的结论:若1111:0l A x B y C ++=,2222:0l A x B y C ++=,11,A B 不同为0,22,A B 不同为0, ①若12l l //,则12210A B A B -=且12210AC A C -≠或12210B C B C -≠; ②若12l l ⊥,则12120A A B B +=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二直线和圆的方程单元测试卷班级: 姓名:一、选择题: 本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线 l 经过 A (2, 1)、B ( 1,m 2) (m ∈ R)两点,那么直线 l 的倾斜角的取值范围是A . [0, )B . [ 0, ] [3 C . [0, ], )444D . [0, ](, ) 422. 如果直线 (2a+5) x+( a - 2)y+4=0 与直线 (2- a)x+(a+3)y - 1=0 互相垂直,则 a 的值等于 A . 2 B .- 2C . 2,- 2D .2,0,- 2 3.已知圆 O 的方程为 x 2+ y 2= r 2,点 P ( a ,b )( ab ≠ 0)是圆 O 内一点,以P为中点的弦所在的直线为 m ,直线 n 的方程为 ax +by = r 2,则A .m ∥n ,且 n 与圆 O 相交B . m ∥ n ,且 n 与圆 O 相 离C . m 与 n 重合,且 n 与圆 O 相离D .m ⊥ n ,且 n 与圆 O 相离4. 若直线 ax2by 2 0( a,b 0) 始终平分圆 x 2y 2 4x 2 y8 0 的周长,则12a b的最小值为A .1B . 5 C.4 2D . 3 225. M (x 0 , y 0 ) 为 圆 x 2 y 2a 2 ( a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x 0 x y 0 y a 2 与该圆的位置关系为A .相切 B.相交C.相离 D .相切或相交6. 已知两点 M ( 2,- 3), N (- 3,- 2),直线 L 过点 P ( 1, 1)且与线段 MN 相交,则直线 L 的斜率 k 的取值范围是A .3≤k ≤ 4B . k ≥ 3或 k ≤- 4C . 3≤ k ≤ 4D .-34444≤ k ≤45) 2 1)27. 过直线 y x 上的一点作圆 (x ( y 2 的两条切线 l 1, l 2 ,当直 线 l 1, l 2 关于 yx 对称时,它们之间的夹角为A . 30oB . 45oC . 60oD . 90ox y 1 01x 、yy1 0,那么 xy8满足条件4()的最大值为.如果实数2xy 1 0A . 2B. 1C.1D.19 (0, a),1x 2 y224其斜率为 ,且与圆2相切,则 a 的值为.设直线过点A.4B. 2 2C.2D.210.如图, l 1 、 l 2 、 l 3 是同一平面内的三条平行直线,l 1 与 l 2 间的距离是 1,l 2 与 l 3 间的距离是 2,正三角形 ABC 的三顶点分别在 l 1 、l 2 、l 3 上,则⊿ ABC的边长是A. 23 4 63 172 21B.3 C.4D.3一、选择题答案123 45 678910二、填空题: 本大题共 5 小题,每小题 5 分,共 25 分.答案填在题中横线上.11.已知直线 l 1 : x y sin 1 0 , l 2 : 2x siny 1 0 ,若 l 1 // l 2 ,则.12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为- 1, 则其必互相垂直;③过点(- 1,1),且斜率为 2 的直线方程是y 1 2 ;x1④同垂直于 x 轴的两条直线一定都和 y 轴平行 ;⑤若直线的倾斜角为 ,则 0 .其中为真命题的有 _____________( 填写序号 ).13.直线 Ax + By +C = 0 与圆 x 2+ y 2= 4 相交于两点 M 、 N ,若满足 C 2= A 2+ uuuuruuurB 2,则 OM · ON ( O 为坐标原点)等于 _ .14.已知函数 f ( x) x 22x 3 ,集合 Mx, y f ( x) f ( y) 0 , 集 合 N x, y f ( x) f ( y) 0 , 则 集 合 MN 的 面 积是;15.集合P ( x, y) | x y 5 0,x N*,y N*},Q ( x, y) | 2x y m 0 ,M x, y) | z x y , ( x, y) ( P Q),若z 取最大值时,M(3,1) ,则实数m的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12 分)已知ABC 的顶点A为(3,-1),AB边上的中线所在直线方程为6x 10 y 59 0, B 的平分线所在直线方程为x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分12 分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元, 2 千元。

甲、乙产品都需要在A, B 两种设备上加工,在每台A,B 上加工一件甲产品所需工时分别为 1 时、2 时,加工一件乙产品所需工时分别为 2 时、 1 时, A, B 两种设备每月有效使用台时数分别为400 和 500。

如何安排生产可使月收入最大?18.(本小题满分12 分)设平面直角坐标系xoy 中,设二次函数 f x x22x b x R 的图象与两坐标轴有三个交点,经过这三个交点的圆记为C.求:(Ⅰ)求实数 b 的取值范围;(Ⅱ)求圆 C 的方程;(Ⅲ)问圆 C 是否经过某定点(其坐标与 b 无关)?请证明你的结论.19.(本小题满分 12 分)M (2,0) ,AB如图,矩形 ABCD 的两条对角线相交于点边所在直线的方程为x 3 y 6 0 ,点 T ( 11),在AD边所在直线上.y( I)求AD边所在直线的方程;( II )求矩形ABCD外接圆的方程;C( III )若动圆P过点N ( 2,0),且与矩形ABCD的T外接圆外切,求动圆 P 的圆心的方程.MDN O BxA第 1 页共 4 页20.(本小题满分 13 分)设等差数列 {a n } 的首项为 a(a ≠0),公差为 2a ,前 n 项和为 S n .记 A={( x ,y)| x=n , y=S n, n ∈ N * } , B={( x , y) | (x- 2)2 +y 2=1 ,x 、 y ∈ R}.n(1) 若 A ∩B ≠φ,求 a 的取值集合;(2) 设点 P ∈ A ,点 Q ∈ B ,当 a= 3 时,求 |PQ|的最小值 .21.(本小题满分 14 分)已知 a, b 都是正数,△ ABC 在平面直角坐标系xOy 内, 以两点 A ( a ,0 )和 B (0,b ) 为顶点的正三角形,且它的第三个顶点 C 在第一象限内 .( 1)若△ ABC 能含于正方形 D = { ( x , y ) | 0 x 1, 0 y 1} 内, 试求 变量 a,b 的约束条件,并在直角坐标系 aOb 内画出这个约束条件表示的 平面区域;( 2)当 ( a, b) 在( 1)所得的约束条件内移动时,求△ ABC 面积 S 的最大值,并求此时 (a, b) 的值 .第 2 页共 4 页荆门市龙泉中学高二 直线和圆的方程 单元测试卷 参考答案一、 : 1.D 2. C 3.B 4.D5. C 6.B 7.C 8. A 9.C 10.D二、填空 :11. k(k Z ).解:sin0 不合 意;4sin0 由 12sinsin21 sin2k,sin22411.sin12.②13.- 214. 4 解:集合 M 即 :( x 1)2( y1)28 ,集合 N 即 : (x y 2)( x y) 0,其面 等于半 面 。

15.7 m 5解:如P Q 所表示区域 阴影部分的所有整点 (横坐 ,坐 均 整数 ) , 于直 t : zx y,即 xy1 , z 即y直 t 的 截距的相反数,当直zzt 位于阴影部分最右端的整点 , 截距最小,z 最大,当 x 3 , 5y 1 z 取最大 , (3,1)q , 2 3 1 m 0∴ m 5 , 又 ( 4 , 1)P,但 (4 , 1) q , 即 8 1 m 0O∴ m 7 即7 m 5三、解答 :t16.B(4 y 110, y 1 ) ,由 AB 中点在 6x 10 y 590上, tq4 y 1 7y 1 159 0 , y 1 = 5 ,所以 B(10,5) .可得: 62102A 点关于 x 4y 10 0 的 称点 A '(x ', y ') ,有x3 4 y410 0.故 BC : 2x 9 y 65 0 .2 2y 1 1A (1,7)1x 3 417 . 解: 甲、乙两种 品的 量分x , y件, 束条件是yx 2 y 400因 半 a2 ,半焦距 c 2 .所以虚半 bc 2 a 22 .2 2从而 P 的 心的 迹方程xy2).21(x ≤220. 解 : (1)由已知得 S n =na+n(n1) ·2a=an2,S n=an.⋯⋯ 2 分2n∴ A={(x ,y)|y=ax , x ∈N *}.(a ≠0)⋯⋯ 3 分 由 B={(x , y)|(x- 2)2+y 2 =1, x , y ∈R} 知 |x- 2|≤ 1 ∴ 1≤x ≤3.由 A ∩B ≠φ ,知集合 B 中 x 只能取 1,2,3,又 y ≠ 0,∴ x=2.⋯⋯ 5 分此 y=±1,由 y=ax 可求得 a=±1. 故 a 的取 集合 {1 , - 1 }.⋯⋯ 7 分22 2(2) 由(1)知点 P 可 (n ,3 n), (x- 2)2+y 2=1 的 心 M(2 ,0) ,半径 r=1.先求 |PM|最222 21 2⋯⋯ 11 分小. |PM|=(n - 2) +3n =4n - 4n+4=4(n -2) +3.又 n ∈N *,∴ |PM|最小 2 (n=1).故 |PQ|min =|PM|min - r=2- 1=1.⋯⋯ 13分z=x —y21.解 : ( 1)由 意知: 点 C 是分 以 A 、 B 心,以 |AB| 半径的两 在第一象限的交点,由A: ( x –a)2 + y 2 = a 2+ b 2 , B: x 2 + ( y –b )2 = a 2 + b 2 .解得 xa3b , y3a b ,∴ C (a3b , 3a b )22225p △xABC 含于正方形 D 内,即三 点 A ,B ,C 含于区域 D 内 ,0 a 1,∴0 b 1,就是 ( a , b ) 的 束条件 . 其 形 右a 3b1,23a b 1.2的六 形,∵a > 0 , b > 0 , ∴ 中坐 上的点除外.( 2)∵△ ABC 是 a 2b 2 的正三角形 ,∴ S =3( a 2+ b 2)在( 1)的条件下 , 当 S 取最大 等价于六 形 形中的点( a, b )4到原点的距离最大 ,由六 形中 P 、Q 、R 相 的 OP 、 OQ 、 OR 的 算 .2x y 500 500OP 2 = OR 2 = 12 + ( 2 – 3 )2 = 8 –4 3 ,OQ 2 = 2( 3 –1)2 = 8 –4 3 .x 0, y 0,∴ OP = OR =OQ ∴当 ( a , b ) = ( 1, 2 – 3 ), 或( 3 –1, 3 –1),或( 2 – 3 , 1 )f3x 2 y ,要求出适当的 x ,y ,使 f3x 2 y目 函数是200, S max =2 3 –3.取得最大 。

相关文档
最新文档