判别分析-距离判别法ppt课件
合集下载
第7判别分析(共38张PPT)
![第7判别分析(共38张PPT)](https://img.taocdn.com/s3/m/c7435c343069a45177232f60ddccda38376be16d.png)
zf
7.2 距离判别 ❖ 基本思想:
即:首先根据已知分类的数据,分别计算各类 的重心即各组(类)的均值,判别的准则是对任 给样品,计算它到各类重心的距离,哪个距离最
小就将它判归哪个类。
zf
yG1,如d2y,G1d2y,G2, yG2,如d2y,G2d2y,G1
待判, 如d2(y,G1)d2(y,G2)
0.87973×花瓣长-2.28382×花瓣宽 变色鸢尾花: Y=1.100772×花萼长+1.070119×花萼宽 +1.000877×花瓣长+0.197345×花瓣宽
佛吉尼亚鸢尾花: Y=0.865205×花萼长+0.746515×花萼宽
+1.646601×花瓣长+1.694931×花瓣宽
zf
五、判别新样本所属类别 742082 Z ×花萼宽 1、输入历史数据,计算 和 当总体分类不清楚时,先用聚类分析对一批样本进行分类,再用判别分析构建判别式对新样本进行判别。 007192×花萼长+0. 2、聚类分析则是对研究对象的类型未知的情况下,对其进行分类的方法。 二、判别分析的基本要求: Fisher判别的优势在于对分布、方差等都没有什么限制,应用范围较广。 例2:中小企业的破产模型 3、X3:高峰时期每三分钟国际电话的成本 二、判别分析的基本要求: 742082 Z ×花萼宽 分界图,将坐标平面划分为 87973×花瓣长-2. 所谓Fisher判别法,就是用投影的方法将k个不同总体在p维空间上的点尽可能分散,同一总体内的各样本点尽可能的集中。 ⑴ 指定分组变量及其取值范围。 所谓Fisher判别法,就是用投影的方法将k个不同总体在p维空间上的点尽可能分散,同一总体内的各样本点尽可能的集中。 3、X3:高峰时期每三分钟国际电话的成本 06327×花萼长-0. 使用该方法后,按钮“Method”将被激活
7.2 距离判别 ❖ 基本思想:
即:首先根据已知分类的数据,分别计算各类 的重心即各组(类)的均值,判别的准则是对任 给样品,计算它到各类重心的距离,哪个距离最
小就将它判归哪个类。
zf
yG1,如d2y,G1d2y,G2, yG2,如d2y,G2d2y,G1
待判, 如d2(y,G1)d2(y,G2)
0.87973×花瓣长-2.28382×花瓣宽 变色鸢尾花: Y=1.100772×花萼长+1.070119×花萼宽 +1.000877×花瓣长+0.197345×花瓣宽
佛吉尼亚鸢尾花: Y=0.865205×花萼长+0.746515×花萼宽
+1.646601×花瓣长+1.694931×花瓣宽
zf
五、判别新样本所属类别 742082 Z ×花萼宽 1、输入历史数据,计算 和 当总体分类不清楚时,先用聚类分析对一批样本进行分类,再用判别分析构建判别式对新样本进行判别。 007192×花萼长+0. 2、聚类分析则是对研究对象的类型未知的情况下,对其进行分类的方法。 二、判别分析的基本要求: Fisher判别的优势在于对分布、方差等都没有什么限制,应用范围较广。 例2:中小企业的破产模型 3、X3:高峰时期每三分钟国际电话的成本 二、判别分析的基本要求: 742082 Z ×花萼宽 分界图,将坐标平面划分为 87973×花瓣长-2. 所谓Fisher判别法,就是用投影的方法将k个不同总体在p维空间上的点尽可能分散,同一总体内的各样本点尽可能的集中。 ⑴ 指定分组变量及其取值范围。 所谓Fisher判别法,就是用投影的方法将k个不同总体在p维空间上的点尽可能分散,同一总体内的各样本点尽可能的集中。 3、X3:高峰时期每三分钟国际电话的成本 06327×花萼长-0. 使用该方法后,按钮“Method”将被激活
判别分析-距离判别法
![判别分析-距离判别法](https://img.taocdn.com/s3/m/b345049be53a580216fcfe76.png)
判别规则为
x G1 , x G2 ,
如果 如果
x x
两个总体的距离判别法
(2) 当 μ1 μ 2 , Σ1 Σ 2 时,我们采用( 4.4)式作为判别 规则的形式。选择判别函数为
(1.1)
W * (X) D2 (X, G1 ) D2 (X, G2 ) 1 1 (X μ1 )Σ1 (X μ1 ) (X μ2 )Σ2 (X μ2 )
距离判别法例题
(6)对待样品判别归类结果如表4-5所示:
总结:回代率为百分之百,这与统计资料的结果相符,而待判的四 个样品的判别结果表明:中国、罗马尼亚为中等发展水平国家,即 第二类;希腊、哥伦比亚为高发展水平国家,即为第一类。这是符 合当时实际的,即与当时世界各国人文发展指数的水平相吻合。
SPSS运行结果
X i {x1 , x2 ,...,xm }T。令μ=E( X i)(i=1,2,
设X,Y是从总体G中抽取的两个样本,则X与Y之间的平方马 氏距离为: 2 d ( X , Y ) ( X Y )T 1 ( X Y ) 样本X与总体G的马氏距离的平方定义为:
d 2 ( X , G) ( X )T 1 ( X )
判别分析基本原理 判别函数 判别方法分类
引言
引 言
信息融合中的分析方法有三种,分别是:判别分析、聚类分 析、主成成分分析。 例如,某医院有部分患有肺炎、肝炎、冠心病、糖尿病等病 判别分析产生于 20 世纪 30 年代。近年来,在自然科学、社会 人的资料,记录了每个患者若干项症状指标数据。现在想利用现 学及经济管理学科中都有广泛的应用。 判别分析的特点是根据 有的这些资料找出一种方法,使得对于一个新的病人,当测得这 已掌握的、历史上每个类别的若干样本的数据信息,总结出客观 些症状指标数据时,能够判定其患有哪种病。这个问题可以应用 事物分类的规律性,建立判别公式和判别准则。然后,当遇到新 判别分析方法予以解决。 的样品时,只要根据总结出来的判别公式和判别准则,就能判别 该样品所属的类别。
x G1 , x G2 ,
如果 如果
x x
两个总体的距离判别法
(2) 当 μ1 μ 2 , Σ1 Σ 2 时,我们采用( 4.4)式作为判别 规则的形式。选择判别函数为
(1.1)
W * (X) D2 (X, G1 ) D2 (X, G2 ) 1 1 (X μ1 )Σ1 (X μ1 ) (X μ2 )Σ2 (X μ2 )
距离判别法例题
(6)对待样品判别归类结果如表4-5所示:
总结:回代率为百分之百,这与统计资料的结果相符,而待判的四 个样品的判别结果表明:中国、罗马尼亚为中等发展水平国家,即 第二类;希腊、哥伦比亚为高发展水平国家,即为第一类。这是符 合当时实际的,即与当时世界各国人文发展指数的水平相吻合。
SPSS运行结果
X i {x1 , x2 ,...,xm }T。令μ=E( X i)(i=1,2,
设X,Y是从总体G中抽取的两个样本,则X与Y之间的平方马 氏距离为: 2 d ( X , Y ) ( X Y )T 1 ( X Y ) 样本X与总体G的马氏距离的平方定义为:
d 2 ( X , G) ( X )T 1 ( X )
判别分析基本原理 判别函数 判别方法分类
引言
引 言
信息融合中的分析方法有三种,分别是:判别分析、聚类分 析、主成成分分析。 例如,某医院有部分患有肺炎、肝炎、冠心病、糖尿病等病 判别分析产生于 20 世纪 30 年代。近年来,在自然科学、社会 人的资料,记录了每个患者若干项症状指标数据。现在想利用现 学及经济管理学科中都有广泛的应用。 判别分析的特点是根据 有的这些资料找出一种方法,使得对于一个新的病人,当测得这 已掌握的、历史上每个类别的若干样本的数据信息,总结出客观 些症状指标数据时,能够判定其患有哪种病。这个问题可以应用 事物分类的规律性,建立判别公式和判别准则。然后,当遇到新 判别分析方法予以解决。 的样品时,只要根据总结出来的判别公式和判别准则,就能判别 该样品所属的类别。
判别分析PPT课件
![判别分析PPT课件](https://img.taocdn.com/s3/m/7cd79148453610661fd9f459.png)
zi(x)ln q ifi((x ))
lnqi 12ln|i |1 2(x(i))i1(x(i))]
问题转化为若 Zl(x)m 1ik[Z ai(x x),]则判 xGl 。 当协方差阵相等 1 k
则判别函数退化为 zi(x)ln qi1 2(xμ(i))Σ1(xμ(i)) ]
12[2lnqi (xμ(i))Σ1(x μ(i)) ] 令 F i(x) 2ln q i (x μ(i))Σ1(x μ(i)) ]
hj(x)qiC(j/i)fi(x)
i1
含义是:当抽取了一个未知总体的样品值x,要判别它属于 那个总体,只要先计算出k个按先验概率加权的误判平均损失
k
hj(x)qiC(j/i)fi(x) i1
然后比较其大小,选取其中最小的,则判定样品属 于该总体。
为了直观说明,作为例子,我们讨论k=2的情形。
ECM
其判别函数为
W (x)(x)12(12)
(12)/2 1 2
概 率 : P ( x /G 2 ) P ( x 2 1 2 2 2 )
P(x21 22)P(x2
12) 2
1(12) 2
2、 交叉核实
交叉核实法的思想是:为了判断第i个观测的判别
正确与否,用删除第i个观测的样本数据集计算出判
P i ( x ) 2 lq i n 2 μ ( ) Σ i 1 x μ ( ) Σ i 1 μ (i)
问题转化为若P l(x)m 1ik[P ii(nx)],则判 xGl 。
P i(x ) 2 (q li n 1 2 μ (i Σ ) 1 μ (i ) μ (Σ i )1 x )
P(好/做 人好事)
P好P 人 (做 P好 好 /好 P 人 事 )做 人 P(坏 好 /好 )P 人 事 (做 人好 /坏事 )人
贝叶斯判别分析ppt课件
![贝叶斯判别分析ppt课件](https://img.taocdn.com/s3/m/d6285eedad51f01dc281f186.png)
假定两总体G1,G2均服从4元正态分布,在误判损失相 等且先验概率按比例分配条件下,对待判样本进行bayes
判别.
19
表4-2 两类企业财务状况数据
G1(破产企业)
G2(非破产企业)
X1
X2
-0.45 -0.41
-0.56 -0.31
0.06 0.02
-0.07 -0.09
-0.10 -0.09
-0.14 -0.07
p20=1-chi2cdf(Q20, p*(p+1)/2) %卡方分布概率p20 p20 P{Q2 Q20}
输出结果:Q10=2.5784,Q20=0.7418均<7.8147=λ,
p10=0.4613,p20=0.8633,均>0.05,
认为两个总体协方差矩阵相等
15
(2)估计两个总体的先验概率 按样本容量比例选取.由于Apf与Af分别为
回代误判率: p pˆ N1 N2
n1 n2
交叉误判率:
p
pˆ *
N1*
N
* 2
mn
11
例4.3.1 6只Apf和9只Af蠓虫触角长度和翅膀长度数据: Apf:(1.14,1.78), (1.18,1.96), (1.20,1.86), (1.26,2.00), (1.28,2.00), (1.30,1.96) ; Af:(1.24,1.72), (1.36,1.74), (1.38,1.64),(1.38,1.82), (1.38,1.90),(1.40,1.70),(1.48,1.82),(1.54,1.82), (1.56,2.08).
0.40 0.38 0.11 3.27
0.26 0.19 0.05 2.25
判别.
19
表4-2 两类企业财务状况数据
G1(破产企业)
G2(非破产企业)
X1
X2
-0.45 -0.41
-0.56 -0.31
0.06 0.02
-0.07 -0.09
-0.10 -0.09
-0.14 -0.07
p20=1-chi2cdf(Q20, p*(p+1)/2) %卡方分布概率p20 p20 P{Q2 Q20}
输出结果:Q10=2.5784,Q20=0.7418均<7.8147=λ,
p10=0.4613,p20=0.8633,均>0.05,
认为两个总体协方差矩阵相等
15
(2)估计两个总体的先验概率 按样本容量比例选取.由于Apf与Af分别为
回代误判率: p pˆ N1 N2
n1 n2
交叉误判率:
p
pˆ *
N1*
N
* 2
mn
11
例4.3.1 6只Apf和9只Af蠓虫触角长度和翅膀长度数据: Apf:(1.14,1.78), (1.18,1.96), (1.20,1.86), (1.26,2.00), (1.28,2.00), (1.30,1.96) ; Af:(1.24,1.72), (1.36,1.74), (1.38,1.64),(1.38,1.82), (1.38,1.90),(1.40,1.70),(1.48,1.82),(1.54,1.82), (1.56,2.08).
0.40 0.38 0.11 3.27
0.26 0.19 0.05 2.25
判别分析-距离判别
![判别分析-距离判别](https://img.taocdn.com/s3/m/7410191e10a6f524cdbf8505.png)
= 2y′Σ −1 ( µ1 − µ 2 ) − ( µ1 + µ 2 )′Σ −1 ( µ1 − µ 2 )
( µ1 + µ 2 ) −1 = 2[y − ]′Σ ( µ1 − µ 2 ) 2 µ1 + µ 2 α = Σ −1 ( µ1 − µ2 ) = (a1 , a2 ,L, a p )′ 令µ = 2
利用这些数据找到一种判别函数,使得这一函数 具有某种最优性质,能把属于不同类别的样本点 尽可能的区别开来,并对同样测得 p项指标的新 样本进行归类.
关键:确定判别函数
判别准则: 判别准则: 用于衡量新样品与各已知组别接近程度的思路原则。 常用的有,距离准则、Fisher准则、贝叶斯准则。
判别函数: 判别函数: 基于一定的判别准则计算出的用于衡量新样品与各 已知组别接近程度的描述指标。
µ1 + µ 2
判别函数的常数项( 2 ′ ) Σ −1 ( µ1 − µ 2 )
(6)生成判别函数,将检验样本代入,判类。
三、多总体的距离判别法
设有 k 个 m元总体 G1,L, Gk ,分别有均值向量 µi和协方 差阵 Σi,对任给的 m元样品 X,判断它来自哪个总体 计算 X 到 k个总体的马氏距离,比较后,把 X 判归给 距离最小的那个总体,若
Y = (Y1 , Y2 ,..., Y p )',通常我们所说的两点间的距
离是指欧氏距离:
d 2 ( X , Y ) = ( X 1 − Y1 ) 2 + ... + ( X p − Yp ) 2
缺陷: 缺陷: 1、量纲的改变 2、数据的分散程度
1、设有量度重量和长度的两个变量 X和Y ,以单位 分别为kg和cm得到样本 A(0,5), B(10,0), C (1,0), D(0,10), 按照欧氏距离计算,有:
《判别分析》课件
![《判别分析》课件](https://img.taocdn.com/s3/m/8c72494977c66137ee06eff9aef8941ea76e4b96.png)
在金融领域的应用
信用评分
利用判别分析模型,通过借款人 的特征和历史表现,预测其未来 违约风险,为金融机构提供信贷
决策依据。
市场风险评估
判别分析用于评估金融市场风险 ,通过分析市场数据和变量,预 测市场走势,帮助投资者做出合
理决策。
投资组合优化
利用判别分析对投资组合进行优 化,通过评估不同资产的风险和 回报,为投资者提供最佳资产配
对判别分析的未来展望
改进算法
针对判别分析的假设严格问题,未来研究可以尝试改进算法,放宽 假设条件,使其更适用于实际数据。
结合其他技术
可以考虑将判别分析与其它机器学习算法相结合,如神经网络、支 持向量机等,以提高分类性能和泛化能力。
拓展应用领域
随着大数据时代的到来,判别分析在各个领域的应用越来越广泛,未 来可以进一步拓展其应用领域,解决更多实际问题。
在市场营销中,判别分析可用于市场 细分,根据消费者的购买行为、偏好 和需求等因素,将市场划分为不同的 细分市场,帮助企业制定更加精准的 市场策略。
广告投放优化
通过判别分析对广告投放效果进行评 估和优化,基于历史数据和实时监测 数据,分析不同广告渠道和创意的表 现,提高广告投放的效率和效果。
06 判别分析的案例分析
金融领域的判别分析案例
信用风险评估
利用判别分析对银行客户进行信用风险评估,根据客户的历 史表现和其他相关信息,预测其未来违约的可能性,帮助银 行制定更加精准的信贷政策。
股票市场预测
通过判别分析对股票市场走势进行预测,基于历史数据和市 场信息,构建预测模型,以指导投资者进行投资决策。
1. 单变量判别函数
基于单个特征的判别函数。
2. 多变量判别函数
判别分析的概念距离判别法费歇尔判别法贝叶
![判别分析的概念距离判别法费歇尔判别法贝叶](https://img.taocdn.com/s3/m/4e9ee0bc192e45361166f55d.png)
用数学的语言来说,判别问题可以表述为:对于n个样品, 每个样品有p个指标,已知每个样品属于某一k类别(总 体)G1,G2,…,Gk,对于每类别其分布函数分别为 f1(y),f2(y),…,fk(y),对于一个给定样品y,我们要判 断出这个样本来自哪个总体。判别分析的主要问题就是 如何寻找最佳的判别函数和建立判别规则。
D( X , G1) (X X (1) )( X X (1) )
D( X , G2 ) (X X (2) )( X X (2) ) X (1),X (2)分别为G1、G2的均值向量。 然后比较D( X , G1),D( X , G2 )的大小,按最近准则判别归类。 在多元统计分析中经常用马氏距离做上述判别分析。
聚类分析数据格式
k
判别分析数据格式
第二节 距离判别法
距离判别法就是根据已知分类的数 据,分别计算各类的重心即分组(类) 的均值,判别准则是对任给的一次观测, 若它与第i类的重心距离最近,就认为 它来自第i类。
距离判别法对各类(或总体)的分 布,并无特别的要求。
1、两个总体的距离判别法
设有两个总体G1、G2,村第一个总体中抽取n1个样品, 从第二个总体中抽取n2个样品,每个样品观测p个指标。 今取任一个样品,实测指标值为X=(x1, x2 , , xp ),问
X应判归那一类?
首先计算X到G1、G2总体的距离,分别记为D( X ,G1)和
D( X ,G2 ),按距离最近原则判别归类,则可以写成:
X G1,
X
Байду номын сангаас
G2
,
待判,
当D( X ,G1) D( X ,G2 ) 当D( X ,G1) D( X ,G2 ) 当D( X ,G1) D( X ,G2 )
判别分析-距离判别法PPT文档37页
![判别分析-距离判别法PPT文档37页](https://img.taocdn.com/s3/m/f50865c8192e45361166f51f.png)
判别分析-距离判别法
6
、
露
凝
无
游
Hale Waihona Puke 氛,天高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
37
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
6
、
露
凝
无
游
Hale Waihona Puke 氛,天高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
37
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
判别分析(共27张PPT)
![判别分析(共27张PPT)](https://img.taocdn.com/s3/m/336633ca29ea81c758f5f61fb7360b4c2f3f2a53.png)
w11 w12 w1 p w1r
w
21
w22
w2p
w2r
Qw=
w
p1
w p2 w pp
w
pr
wr1 wr 2 wrp wrr
使其中虚线左上部分便是只含 p 个变量的模型中的
类内离均差平方和矩阵Q( p ),而整个矩阵则是含p+1
w
个变量的模型中的类内离均差平方和矩阵Q ( p 1) 。
第12章 判别分析Discrimination Analysis
判别分析
:从反映个体性质各个侧面的P个变量出发,通过
定量分析,最终将其判归某一已知总体,从而将 对个体的研究置于更为广泛的总体研究背景上。
各种判别分析都是按照某种判别原则(视判别方
法不同而不同),在e
对变量进行剔除和引进的方法 差异显著地大于类内差异呢?还需进行测验。
第三节 逐步判别分析方法
Stepwise Discrimination Analysis
Wilk’s Λ统计量 何分类”、“某一个事例(或样品)属于那一类”等问题是并不知晓;
如果已知将原应属于Gi的样品误判为属于Gj所造成
第二节 贝叶斯判别分析
|Q | |Q |w 设叶X斯,判Y别是法从的均判值别向函量数为)μ,,协按方判差别阵函为数wΣ值的的总大体小G来中抽取的两个样品,定义X,Y之间的马氏距离平方为:
= ──── =── 用 F 测验可以检验增长是否显著。
|Q +Q | |Q | h 第与五多步 元、回如归果分有析待相判似数,据在,进将行其判代别入分,析并时判,别并e归不类是。
统计量为p,增加一个变
量 (x ) 后的 Bayes Discrimination Analysis
判别分析距离判别.ppt
![判别分析距离判别.ppt](https://img.taocdn.com/s3/m/674f00e70029bd64783e2ce7.png)
y1 0.60581 7.8 0.25362 39.11.83679 9.6 18.73596 4.0892 0(第一个新企业属于一类 )
y2 0.605818.1 0.25362 34.2 1.83679 6.9 18.73596 2.2956 0(第二个新企业属于二类 )
2、当总体的协方差已知,但不相等
体温 肺癌
2、某地区气象预报
气温
气压
湿度
阴晴 雨
3、经济学 人均消费水平 国民生产总值
工农业产值
国民经济发展 快速 中速 慢速
用数学语言表达:
设有n个样本,对每个样本测量p项指标的数据, 已知每个样本属于k 个类别(或总体)G1, G2 ,..., Gk
的某一类,分布函数分别为 F1(x), F2 (x),..., Fk (x) . 1、病人肺部阴影
P(X 2 )
P(X 2
2
1
2
2
2 )
P(X 2
2
1
2
2
)
P( X 2 2 1 2 )
2
1 (1 2 ) 2
1. 距离判别规则是符合习惯的; 2. 用这种判别方法是会发生误判的; 3. 当两总体靠得比较近时,即两总体的均值差
异较小时,无论用何种判别方法,判错的概 率都比较大,这时的判别分析也是没有意义 的,因此只有当两总体的均值有明显差异时, 进行判别分析才有意义,为此,要对两总体 的均值差异性进行检验. 4. 落在 附近的样品按上述判别规则虽可进行 判断,但误判的可能性较大。
和协方
i
差阵 i,对任给的m元样品 X,判断它来自哪个总体
计算 X 到 k个总体的马氏距离,比较后,把 X 判归给 距离最小的那个总体,若
y2 0.605818.1 0.25362 34.2 1.83679 6.9 18.73596 2.2956 0(第二个新企业属于二类 )
2、当总体的协方差已知,但不相等
体温 肺癌
2、某地区气象预报
气温
气压
湿度
阴晴 雨
3、经济学 人均消费水平 国民生产总值
工农业产值
国民经济发展 快速 中速 慢速
用数学语言表达:
设有n个样本,对每个样本测量p项指标的数据, 已知每个样本属于k 个类别(或总体)G1, G2 ,..., Gk
的某一类,分布函数分别为 F1(x), F2 (x),..., Fk (x) . 1、病人肺部阴影
P(X 2 )
P(X 2
2
1
2
2
2 )
P(X 2
2
1
2
2
)
P( X 2 2 1 2 )
2
1 (1 2 ) 2
1. 距离判别规则是符合习惯的; 2. 用这种判别方法是会发生误判的; 3. 当两总体靠得比较近时,即两总体的均值差
异较小时,无论用何种判别方法,判错的概 率都比较大,这时的判别分析也是没有意义 的,因此只有当两总体的均值有明显差异时, 进行判别分析才有意义,为此,要对两总体 的均值差异性进行检验. 4. 落在 附近的样品按上述判别规则虽可进行 判断,但误判的可能性较大。
和协方
i
差阵 i,对任给的m元样品 X,判断它来自哪个总体
计算 X 到 k个总体的马氏距离,比较后,把 X 判归给 距离最小的那个总体,若
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
COV (G) E[(G )(G )T ]
设X,Y是从总体G中抽取的两个样本,则X与Y之间的平方马 氏距离为:
d 2 ( X ,Y ) ( X Y )T 1( X Y ) 样本X与总体G的马氏距离的平方定义为:
d 2 ( X ,G) ( X )T 1( X )
两个总体的距离判别法
判别分析
—距离判别法
目录 / CONTENTS
01/引 言 02/距离判别法 03/距离判别法例题 04/距离判别法应用
2
资料来源
[1]彭力.冶金工业 出版社
[2]刘庆军,陈坤,刘晓光.煤与瓦斯突出预测PCA- 距离 判别法研究.煤矿安全,2016,42(10):97-101 [3]姜喜春.数据挖掘中的距离判别分析法.科技资讯,2015,新样品X到G1的距离与到G2的距 离之差,如果其值为正,X属于G2;否则X属于G1。
假设均值µ1,µ2以及协方差矩阵Σ已知,Σ相等,我们计算:
D2 (X, G1) D2 (X, G2 )
(X μ1)Σ1(X μ1) (X μ2 )Σ1(X μ2 )
判别分析的基本原理
♦判别分析是在已知研究对象分成了若干类型(组别),并已取 得各种类型的一批样品观测数据,在此基础上根据某些规则建立 判别式(判别量),然后对未知类型的样品进行判别分类。
♦已知n个总体,其分布函数分别为: F1(x),F2(x), …,Fk(x),
每一个总体都是一个p维函数,对于给定的样品x,我们应该通过 判别函数(判别准则),来决定该样品应属于这n个总体中的哪 一个总体。
首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值, 判别准则是对任给的一次观测,若它与第i类的重心距离最近,就 认为它来自第i类。
计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),
并按照如下的判别规则进行判断:
X∈G1,当 D2(X,G1)≤D2(X,G2) (1.1) X∈G2,当 D2(X,G1)> D2(X,G2)
(27):155-157 [4]罗磊,曹平.深部巷道岩爆破加权距离判别法模型的分 析和应用.中南大学学报,2012,43(10):71-75 [5]王吉亮,陈建平,杨静.距离判别法在公路隧道岩分类 中的应用.吉林大学学报.2008,38(6):999-1004
引言
判别分析基本原理 判别函数 判别方法分类
两个总体的距离判别法
其中µ=(µ1+µ2)/2是两个总体均值的平均值,α=Σ-1(µ1-µ2),记
W(X)=αꞌ(X-µ)
(1.2)
则判别规则(1.1)式可表示为
X∈G1,当 W(X)≥0
(1.3)
X∈G2,当 W(X)<0
这里称W(X)为两总体距离判别的判别函数,由于它是X的线性
函数,故又称为线性判别函数,α称为判别系数。
Σ 的一个联合无偏估计为
Σˆ
n1
1 n2
2
(S1
S2 )
这里
n
S (Xi( ) X( ) )(Xi( ) X( ) ), i 1
1, 2
判别分析可以从不同角度提出问题,因此有不同的判别准则, 如马氏距离最小准则、Fisher准则、平均损失最小准则、最小 平方准则、最大似然准则、最大概率准则等等,按判别准则的 不同又提出多种判别方法。判别分析中主要有四种常用的判别 方法,即距离判别法、Fisher(费希尔)判别法、贝叶斯判别 法和逐步判别法。
距离判别法
马氏距离 两个总体的距离判别法 多个总体的距离判别法
9
马氏距离
设总体 G {X1, X 2,..., X m}T 为m维总体(考察m个指标),样本 X i {x1, x2 ,..., xm}T。令μ=E( X i)(i=1,2, …,m),则总体均值向量为 {1, 2 ,m}T。总体G的协方差矩阵为:
在实际应用中,总体的均值和协方差矩阵一般是未知的,可 由样本均值和样本协方差矩阵分别进行估计。设 X1(i),X2(i),…,Xn1(i)来自总体的样本,i=1,2。则µ1和µ2的无 偏估计为:
两个总体的距离判别法
X(1)
1 n1
n1
X (1) i
i1
和
X(2) 1 n2
n2
X(2) i
i 1
引言
信息融合中的分析方法有三种,分别是:判别分析、聚类分 析、主成成分分析。
判例别如分,析某产医生院于有2部0世分纪患3有0年肺炎代、。肝近炎年、来冠,心在病自、然糖科尿学病、等社病会 学人的及资经料济,管记理录学了科每中个都患有者广若泛干的项应症用状。指标判数别据分。析现的在特想点利是用根现据 已有的掌这握些的资、料历找史出上一每种个方类法别,的使若得干对样于本一的个数新据的信病息人,,总当结测出得客这观 事些症物状分指类标的数规据律时性,,能建够立判判定别其公患式有和哪判种别病准。则这。个然问后题,可当以遇应到用新 的判别样分品析时方,法只予要以根解据决总。结出来的判别公式和判别准则,就能判别 该样品所属的类别。
判别函数
决定某一样品所属的类别,其实质是决定判别函数。根据样 品给定的多变量数据,由判别函数来决定该样品所属的类别。
例:设某班的学生经过八门课的考试,现需要根据考试的结果对学
生的学习情况进行分类。根据学生的成绩,可将学生分为四类:优
秀(A)、良好(B)、及格(C)、不及格(D)。为了决定每一位
学生的成绩类别,拟以八门课的平均成绩为准,且按:
100≥A类≥85
85>B类≥75 75>C类≥60
判别函数
D类<60
进行分类。
判别方法分类
判别分析内容很丰富,方法很多。
●按判别的组数来区分,有 两组判别分析 和 多组判别分析; ●按区分不同总体所用的数学模型来分,有 线性判别 和 非线 性判别; ●按判别时所处理的变量方法不同,有 逐步判别 和 序贯判别。
XΣ1X 2XΣ1μ1 μ1Σ1μ1 (XΣ1X 2XΣ1μ2 μ2Σ1μ2 )
2XΣ1(μ2 μ1) μ1Σ1μ1 μ2Σ1μ2 2XΣ1(μ2 μ1) (μ1 μ2 )Σ1(μ1 μ2 )
2
X
μ1
2
μ2
Σ 1 (μ1
μ2
)
2(X μ)α 2α(X μ)
设X,Y是从总体G中抽取的两个样本,则X与Y之间的平方马 氏距离为:
d 2 ( X ,Y ) ( X Y )T 1( X Y ) 样本X与总体G的马氏距离的平方定义为:
d 2 ( X ,G) ( X )T 1( X )
两个总体的距离判别法
判别分析
—距离判别法
目录 / CONTENTS
01/引 言 02/距离判别法 03/距离判别法例题 04/距离判别法应用
2
资料来源
[1]彭力.冶金工业 出版社
[2]刘庆军,陈坤,刘晓光.煤与瓦斯突出预测PCA- 距离 判别法研究.煤矿安全,2016,42(10):97-101 [3]姜喜春.数据挖掘中的距离判别分析法.科技资讯,2015,新样品X到G1的距离与到G2的距 离之差,如果其值为正,X属于G2;否则X属于G1。
假设均值µ1,µ2以及协方差矩阵Σ已知,Σ相等,我们计算:
D2 (X, G1) D2 (X, G2 )
(X μ1)Σ1(X μ1) (X μ2 )Σ1(X μ2 )
判别分析的基本原理
♦判别分析是在已知研究对象分成了若干类型(组别),并已取 得各种类型的一批样品观测数据,在此基础上根据某些规则建立 判别式(判别量),然后对未知类型的样品进行判别分类。
♦已知n个总体,其分布函数分别为: F1(x),F2(x), …,Fk(x),
每一个总体都是一个p维函数,对于给定的样品x,我们应该通过 判别函数(判别准则),来决定该样品应属于这n个总体中的哪 一个总体。
首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值, 判别准则是对任给的一次观测,若它与第i类的重心距离最近,就 认为它来自第i类。
计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),
并按照如下的判别规则进行判断:
X∈G1,当 D2(X,G1)≤D2(X,G2) (1.1) X∈G2,当 D2(X,G1)> D2(X,G2)
(27):155-157 [4]罗磊,曹平.深部巷道岩爆破加权距离判别法模型的分 析和应用.中南大学学报,2012,43(10):71-75 [5]王吉亮,陈建平,杨静.距离判别法在公路隧道岩分类 中的应用.吉林大学学报.2008,38(6):999-1004
引言
判别分析基本原理 判别函数 判别方法分类
两个总体的距离判别法
其中µ=(µ1+µ2)/2是两个总体均值的平均值,α=Σ-1(µ1-µ2),记
W(X)=αꞌ(X-µ)
(1.2)
则判别规则(1.1)式可表示为
X∈G1,当 W(X)≥0
(1.3)
X∈G2,当 W(X)<0
这里称W(X)为两总体距离判别的判别函数,由于它是X的线性
函数,故又称为线性判别函数,α称为判别系数。
Σ 的一个联合无偏估计为
Σˆ
n1
1 n2
2
(S1
S2 )
这里
n
S (Xi( ) X( ) )(Xi( ) X( ) ), i 1
1, 2
判别分析可以从不同角度提出问题,因此有不同的判别准则, 如马氏距离最小准则、Fisher准则、平均损失最小准则、最小 平方准则、最大似然准则、最大概率准则等等,按判别准则的 不同又提出多种判别方法。判别分析中主要有四种常用的判别 方法,即距离判别法、Fisher(费希尔)判别法、贝叶斯判别 法和逐步判别法。
距离判别法
马氏距离 两个总体的距离判别法 多个总体的距离判别法
9
马氏距离
设总体 G {X1, X 2,..., X m}T 为m维总体(考察m个指标),样本 X i {x1, x2 ,..., xm}T。令μ=E( X i)(i=1,2, …,m),则总体均值向量为 {1, 2 ,m}T。总体G的协方差矩阵为:
在实际应用中,总体的均值和协方差矩阵一般是未知的,可 由样本均值和样本协方差矩阵分别进行估计。设 X1(i),X2(i),…,Xn1(i)来自总体的样本,i=1,2。则µ1和µ2的无 偏估计为:
两个总体的距离判别法
X(1)
1 n1
n1
X (1) i
i1
和
X(2) 1 n2
n2
X(2) i
i 1
引言
信息融合中的分析方法有三种,分别是:判别分析、聚类分 析、主成成分分析。
判例别如分,析某产医生院于有2部0世分纪患3有0年肺炎代、。肝近炎年、来冠,心在病自、然糖科尿学病、等社病会 学人的及资经料济,管记理录学了科每中个都患有者广若泛干的项应症用状。指标判数别据分。析现的在特想点利是用根现据 已有的掌这握些的资、料历找史出上一每种个方类法别,的使若得干对样于本一的个数新据的信病息人,,总当结测出得客这观 事些症物状分指类标的数规据律时性,,能建够立判判定别其公患式有和哪判种别病准。则这。个然问后题,可当以遇应到用新 的判别样分品析时方,法只予要以根解据决总。结出来的判别公式和判别准则,就能判别 该样品所属的类别。
判别函数
决定某一样品所属的类别,其实质是决定判别函数。根据样 品给定的多变量数据,由判别函数来决定该样品所属的类别。
例:设某班的学生经过八门课的考试,现需要根据考试的结果对学
生的学习情况进行分类。根据学生的成绩,可将学生分为四类:优
秀(A)、良好(B)、及格(C)、不及格(D)。为了决定每一位
学生的成绩类别,拟以八门课的平均成绩为准,且按:
100≥A类≥85
85>B类≥75 75>C类≥60
判别函数
D类<60
进行分类。
判别方法分类
判别分析内容很丰富,方法很多。
●按判别的组数来区分,有 两组判别分析 和 多组判别分析; ●按区分不同总体所用的数学模型来分,有 线性判别 和 非线 性判别; ●按判别时所处理的变量方法不同,有 逐步判别 和 序贯判别。
XΣ1X 2XΣ1μ1 μ1Σ1μ1 (XΣ1X 2XΣ1μ2 μ2Σ1μ2 )
2XΣ1(μ2 μ1) μ1Σ1μ1 μ2Σ1μ2 2XΣ1(μ2 μ1) (μ1 μ2 )Σ1(μ1 μ2 )
2
X
μ1
2
μ2
Σ 1 (μ1
μ2
)
2(X μ)α 2α(X μ)