2015年合工大超越数学1五套卷-试题加模4模5答案【A3纸打印】
合肥市2015年高三第一次教学质量检测数学(文科)试题及答案
合肥市2015年高三第一次教学质量检测数学试题(文)(考试时间:120分钟满分:150分)注意事项:1. 答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2. 答第[卷时,每小題选出答案后•用2E铅笔把答题卡上对应題目的答裳标号涂黑.如需改动,用橡皮擦千净后,再选涂其他答案标号.3. 答第II卷时•必须使用0.5毫米的黑色墨水签字笔在答題卷上书写,要求字体工整、• • • •笔迹清晰•作图题可先用铅笔在答题卷规定的位置绘出•确认后再用0.5<米的黑色• • ••墨水签字笔描清楚•必须在题号所指示的答题区域作答•超出答题区域书写的答案无• ••••••••••• 瑕译迭寧李、芋葫第占爹厚不瑕・4. 考试结束,务必将答题卡和答题卷一并上交.第I卷(选择题共50分)选择题(本大题共10小题•每小題5分•共50分.在每小題给出的四个选项中,只有一项是符合題目要求的)3 + i・gm 亠1. 复数^=—(1为虚数单位)的虚部为()A. 1B.-1C.3D.-32. 已知集合^ = {x|l<x<2},5 = {r|x-l<0},则亦B =( )A. {x|-l<x<l}B. {x|-l<x<2)C. {1}D. 0高三数学试题(文)第1页(共4页)3. 执行右边的程序框图•输岀的结果为()A.9B.8C.6D.4高三数学试题(文)第2页(共4页)高三数学试题(文)第2页(共4页)4•一个正方体挖去一个圆锥得到一个儿何体■其正视图与俯视图如图所示•则该儿何体的侧(左)视图是(C5•已知点P 在圆C : x 2 I = 2x I 2y 上•则点P 的距离最大值为( )A. —B. 2 近C.也D. 3 近2 26・函数/(x ) = Asin ((ox +(p )(A >0,<y >0)的部分图象如医所示.& MBC 中■角4、B 、C 所对的边分别为ci 、b 、c •若B = A + ’、b = 2a •则角3 =( )39・如图,已知四边形ABCD 为正方形.PD 丄平面ABCD • 且PD^AD •则下列命题中错误的是()• • 则/(X )的解析式可以为()A. f(x) = 3sin(2x-—)B. f (x) = 3sin(2x + —)4431 -----YC. /(x) = 3sin(* 一苧)D. /(x) = 3sin(* +乎) 71 O•3X7.已知P>Sq> 0 •且2p + g = 8,则"g 的最大值为()第6题A. 8C.764B 百B2第4题A. 过〃£)且与PC平行的平面交尢4于M点•则M为P/I的中点B. a AC且与垂直的平面交P*于N点,则N为第9題的中点C. 过AD且与PC垂直的平面交PC于H点,则"为PC的中点D. 过P、B、C的平面与平面PAD的交线为直线2,则I//AD10.M a<-l ”是“函数/(X)= lnx + or +丄在[1,+8)上是单凋递滅函数”的(>XA•充分不必要条件B必要不允分条件C.充分必要条件I)•既不允分也不必要条件高三数学试题(文)第2页(共4页)高三数学试题(文〉第3页(共4页〉第II 卷(满分10()分)二.填空题(本大题共5小题•每小题5分•共25分•把签案與在签題卡的相应位置) H.函数/CO = -A-T 的定义域为 ______________ •2 — 1 X 2 V 2(2 76 )12•已知椭圆匚+ 2L = i 过点/•则该椭圆的离心率为加33}13. C 知函数/(切是定义在R 上单调递减的奇函数•则满足不等式f\f (t -l )]<0的实数 !的取值范围是 ____________________ .x+y-1<014. 已知不等式组・x-y + \>0表示的平面区域被直线2x^y-k = 0平分成面积相等的八0两部分•则实数*的值为 ____________ .15. 已知8个非零实数a 1 ,如,。
2015年中考一模名校联考数学试题及答案.com
2015年中考一模名校联考数学试题(卷)时间120分钟满分120分 2015/3/5 一、选择题(每小题3分,共24分)1.(3分)在0.1,﹣3,和这四个实数中,无理数是()A.0.1 B.﹣3 C. D.2.(3分)2014年3月21日上午,我国新型导弹驱逐舰昆明舰举行入列仪式,正式加入人民海军战斗序列.昆明舰采用柴燃交替动力,配备2台QC208燃气轮机,单台功率37500马力.数据37500用科学记数表示为()A. 3.75×104B.37.5×103C.0.375×105D. 3.75×1033.(3分)有一组数据:2,4,3,4,5,3,4,则这组数据的众数是()A. 5 B. 4 C. 3 D. 24.(3分)将“中国梦我的梦”六个字分别写在一个正方体的六个面上,这个正方体的展开图如图,那么在这个正方体中,和“我”字相对的字是()A.中 B.国 C.的 D.梦5.(3分)不等式组的解集是()A.﹣1<x≤1B.﹣1<x<1 C.x>﹣1 D.x≤16.(3分)如图,直线l1∥l2,且分别与△ABC的两边AB、AC相交,若∠A=50°,∠1=35°,则∠2的度数为()A.35° B 65°C.85°D.95°3题图6题图 7题图 8题图7.(3分)如图,⊙O是△ABC的外接圆,连结OA、OB,且点C、O在弦AB的同侧,若∠ABO=50°,则∠ACB的度数为()A.50°B.45°C.30°D.40°8.(3分)如图,在平面直角坐标系中,菱形ABCD的顶点C的坐标为(﹣1,0),点B的坐标为(0,2),点A在第二象限.直线y=﹣x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位,当点D落在△MON的内部时(不包括三角形的边),则m的值可能是()A.1 B 2 C.4 D.8二、填空题(每小题3分,共18分)9.(3分)计算:﹣2= .10.(3分)某饭店在2014年春节年夜饭的预定工作中,第一天预定了a桌,第二天预定的桌数比第一天多了4桌,则这两天该饭店一共预定了桌年夜饭(用含a的代数式表示).11.(3分)一个正方形与一个正六边形如图放置,正方形的一条边与正六边形的一条边完全重合,则∠1的度数为度.11题图 12题图 13题图 14题图12.(3分)如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C 在⊙O上,若⊙O的半径为5,AB=4,则AD边的长为 6 .13.(3分)如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.14.(3分)如图,点A在反比例函数y=(x>0)的图象上,过点A作AD⊥y轴于点D,延长AD至点C,使AD=DC,过点A作AB⊥x轴于点B,连结BC交y轴于点E.若△ABC的面积为4,则k的值为.三、解答题(本大题10小题,共78分)15.(5分)化简:÷.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A、B、C,每张卡片除了标记不同外,其余均相同.某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A的概率.17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.18.(7分)如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC 的度数.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.23.(10分)如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.【探究】:(1)当n=1时,点B的纵坐标是;(2)当n=2时,点B的纵坐标是;(3)点B的纵坐标是(用含n的代数式表示).【应用】:如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.(1)求点C的坐标(用含n的代数式表示);(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是.24.(12分)如图,在R t△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A 出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s 的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD 沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P 的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t 的值.参考答案一、选择题(每小题3分,共24分)1.C.2.A.3.B.4.B.5. A.6.D.7.D.8.C.二、填空题(每小题3分,共18分)9.1.10.(2a+4)11.30度.12.6.13.y=﹣x2+2x+3.14.4.三、解答题(本大题10小题,共78分)15.(5分)化简:÷.考点:分式的乘除法.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=•=.点评:此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.16.(6分)在一个不透明的盒子中放有三张卡片,分别标记为A、B、C,每张卡片除了标记不同外,其余均相同.某同学第一次从盒子中随机抽取一张卡片,卡片放回,第二次又随机抽取一张卡片.请用画树状图(或列表)的方法,求两次抽取的都是A的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的都是A的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两次抽取的都是A的有1种情况,∴两次抽取的都是A的概率为:.点评:本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.17.(6分)某车间接到加工200个零件的任务,在加工完40个后,由于改进了技术,每天加工的零件数量是原来的2.5倍,整个加工过程共用了13天完成.求原来每天加工零件的数量.考点:分式方程的应用.分析:设原来每天加工零件的数量是x个,根据整个加工过程共用了13天完成,列出方程,再进行检验即可.解答:解:设原来每天加工零件的数量是x个,根据题意得:+=13,解得:x=8将检验x=8是原方程的解,答:原来每天加工零件的数量是8个.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.涉及到的公式:工作时间=工作总量÷工作效率.18.(7分)如图,在矩形ABCD中,以点D为圆心,DA长为半径画弧,交CD于点E,以点A为圆心,AE长为半径画弧,恰好经过点B,连结BE、AE.求∠EBC的度数.考点:矩形的性质;等腰直角三角形.分析:根据题意可得AD=DE,AE=AB,再根据矩形的性质可得∠D=∠ABC=∠DAB=90°,然后根据等腰三角形的性质分别算出∠DAE和∠EAB,再根据叫的和差关系可得答案.解答:解:由题意得:AD=DE,AE=AB,∵四边形ABCD是矩形,∴∠D=∠ABC=∠DAB=90°,∵AD=DE,∴∠DAE=45°,∴∠EAB=45°,∵AE=AB,∴∠EBA=∠AEB==67.5°,∴∠EBC=90°﹣67.5°=22.5°.点评:此题主要考查了矩形的性质,以及等腰三角形的性质,关键是掌握矩形的四个角都是直角.19.(7分)周末,小强在文化广场放风筝.如图,小强为了计算风筝离地面的高度,他测得风筝的仰角为58°,已知风筝线BC的长为10米,小强的身高AB为1.55米.请你帮小强画出测量示意图,并计算出风筝离地面的高度(结果精确到0.1米).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)考点:解直角三角形的应用-仰角俯角问题.分析:根据题意画出图形,根据sin58°=可求出CE的长,再根据CD=CE+ED即可得出答案.解答:解:如图,过点C作地面的垂线CD,垂足为D,过点B作BE⊥CD于E.在Rt△CEB中,∵sin∠CBE=,∴CE=BC•sin58°=10×0.85≈8.5m,∴CD=CE+ED=8.5+1.55=10.05≈10.1m,答:风筝离地面的高度约为10.1m.点评:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(8分)为了了解某市初中学生上学的交通方式,从中随机调查了a名学生的上学交通方式,统计结果如图.(1)求a的值;(2)补全条形统计图并求出乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数;(3)该市共有初中学生15000名,请估计其中坐校车上学的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)用乘坐私家车的人数除以其所占的百分比即可确定a值;(2)总数减去其他交通方式出行的人数即可确定乘坐校车的人数,从而补全统计图;(3)用学生总数乘以乘坐校车的所占的百分比即可.解答:解:(1)观察两种统计图知:乘坐私家车上学的有600人,占20%,∴a=600÷20%=3000人;(2)乘坐校车的有3000﹣600﹣600﹣300﹣300=1200人,统计图为:乘坐公共汽车上学占上学交通方式百分比的扇形圆心角的度数为×360°=120°;(3)初中学生15000名中,坐校车上学的人数有15000×=6000人.点评:本题考查了条形统计图及扇形统计题的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息,难度适中.21.(8分)一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t 小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.(1)求轿车从乙地返回甲地时的速度和t的值;(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.考点:一次函数的应用.分析:(1)利用行驶的速度变化进而得出时间变化,进而得出t的值;(2)利用待定系数法求一次函数解析式进而利用图象得出自变量x的取值范围;(3)利用函数图象交点求法得出其交点横坐标,进而得出答案.解答:解:(1)∵一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,∴行驶的时间分别为:=3小时,则=2小时,∴t=3+2=5;∴轿车从乙地返回甲地时的速度是:=120(km/h);(2)∵t=5,∴此点坐标为:(5,0),设轿车从乙地返回甲地时y与x之间的函数关系式为:y=kx+b,∴,解得:,∴轿车从乙地返回甲地时y与x之间的函数关系式为:y=﹣120x+600(3≤x≤5);(3)设货车行驶图象解析式为:y=ax,则240=4a,解得:a=60,∴货车行驶图象解析式为:y=60x,∴当两图象相交则:60x=﹣120x+600,解得:x=,故﹣3=(小时),∴轿车从乙地返回甲地时与货车相遇的时间小时.点评:此题主要考查了一次函数的应用以及待定系数法求一次函数解析式等知识,利用数形结合得出函数解析式是解题关键.22.(9分)如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连接AC、BD.在四边形ABCD的外部以BC为一边作等边三角形BCE,连接AE.(1)求证:BD=AE;(2)若AB=2,BC=3,求BD的长.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:(1)由∠ADC=60°,AD=DC,易得△ADC是等边三角形,又由△BCE是等边三角形,可证得△BDC≌△EAC(SAS),即可得BD=AE;(2)由△BCE是等边三角形,∠ABC=30°,易得∠ABE=90°,然后由勾股定理求得AE的长,即可求得BD的长.解答:(1)证明:∵在△ADC中,AD=DC,∠ADC=60°,∴△ADC是等边三角形,∴DC=AC,∠DCA=60°;又∵△BCE是等边三角形,∴CB=CE,∠BCE=60°,∴∠DCA+∠ACB=∠ECB+∠ACB,即∠DCB=∠ACE,在△BDC和△EAC中,,∴△BDC≌△EAC(SAS),∴BD=AE;(2)解:∵△BCE是等边三角形,∴BE=BC=3,∠CBE=60°.∵∠ABC=30°,∴∠ABE=∠ABC+∠CBE=90°.在Rt△ABE中,AE===,∴BD=AE=.点评:此题考查了全等三角形的判定与性质、等边三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想的应用.23.(10分)如图①,在平面直角坐标系中,点A是抛物线y=x2在第一象限上的一个点,连结OA,过点A作AB⊥OA,交y轴于点B,设点A的横坐标为n.【探究】:(1)当n=1时,点B的纵坐标是2;(2)当n=2时,点B的纵坐标是5;(3)点B的纵坐标是n2+1(用含n的代数式表示).【应用】:如图②,将△OAB绕着斜边OB的中点顺时针旋转180°,得到△BCO.(1)求点C的坐标(用含n的代数式表示);(2)当点A在抛物线上运动时,点C也随之运动.当1≤n≤5时,线段OC扫过的图形的面积是2.考点:二次函数综合题.分析:探究;依据直角三角形的射影定理即可求得B点的坐标.应用:(1)依据全等三角形的性质即可求得C点的坐标,(2)通过(1)可求得C1、C2的坐标,从而得出矩形面积和三角形的面积,最后求得当1≤n≤5时,线段OC扫过的图形的面积.解答:解:探究(3)如图1所示:设点A的横坐标为n,点A是抛物线y=x2在第一象限上的一个点;∴A(n,n2);∴AD=n,OD=n2;在Rt△ACB中,AD2=OD•BD;设B点的纵坐标为y1,则n2=n2•(y1﹣n2),解得:y1=n2+1,∴点B的纵坐标是n2+1.应用:(1)点B的纵坐标是n2+1,A点的纵坐标是n2,∴BD=1,根据旋转的定义可知CE=AD=n,OE=BD=1;∴C点的坐标为:(﹣n,1);(2)当n=1时C点的坐标为C1(﹣1,1),当n=5时C点的坐标为C2(﹣5,1),如上图所示;S=S﹣S=×1×5﹣×1×1=2.∴当1≤n≤5时,线段OC扫过的图形的面积是2.点评:本题考查了直角三角形的射影定理的应用,全等三角形的性质,直角坐标系中面积求法是本题的关键.24.(12分)如图,在Rt△ABC中,∠ACB=90°,AC=8cm,AB=10cm.点P从点A出发,以5cm/s的速度从点A运动到终点B;同时,点Q从点C出发,以3cm/s的速度从点C运动到终点B,连结PQ;过点P作PD⊥AC交AC于点D,将△APD沿PD翻折得到△A′PD,以A′P和PB为邻边作▱A′PBE,A′E交射线BC于点F,交射线PQ于点G.设▱A′PBE与四边形PDCQ重叠部分图形的面积为Scm2,点P的运动时间为ts.(1)当t为何值时,点A′与点C重合;(2)用含t的代数式表示QF的长;(3)求S与t的函数关系式;(4)请直接写出当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时t的值.考点:相似形综合题;解一元一次不等式组;等腰三角形的判定与性质;勾股定理;平行四边形的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)易证△ADP∽△ACB,从而可得AD=4t,由折叠可得AA′=2AD=8t,由点A′与点C重合可得8t=8,从而可以求出t的值.(2)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(3)根据点F的位置不同,可分点F在BQ上(不包括点B)、在CQ上(不包括点Q)、在BC的延长线上三种情况进行讨论,就可解决问题.(4)可分①S△A′PG:S四边形PBEG=1:3,如图7,②S△BPN:S四边形PNEA′=1:3,如图8,两种情况进行讨论,就可解决问题.解答:解:(1)如图1,由题可得:PA′=PA=5t,CQ=3t,AD=A′D.∵∠ACB=90°,AC=8,AB=10,∴BC=6.∵∠ADP=∠ACB=90°,∴PD∥BC.∴△ADP∽△ACB.∴==.∴==.∴AD=4t,PD=3t.∴AA′=2AD=8t.当点A′与点C重合时,AA′=AC.∴8t=8.∴t=1.(2)①当点F在线段BQ上(不包括点B)时,如图1,则有CQ≤CF<CB.∵四边形A′PBE是平行四边形,∴A′E∥BP.∴△CA′F∽△CAB.∴=.∴=.∴CF=6﹣6t.∴3t≤6﹣6t<6.∴0<t≤.此时QF=CF﹣CQ=6﹣6t﹣3t=6﹣9t.②当点F在线段CQ上(不包括点Q)时,如图2,则有0≤CF<CQ.∵CF=6﹣6t,CQ=3t,∴0≤6﹣6t<3t.∴<t≤1.此时QF=CQ﹣CF=3t﹣(6﹣6t)=9t﹣6.③当点F在线段BC的延长线上时,如图3,则有AA′>AC,且AP<AB.∴8t>8,且5t<10.∴1<t<2.同理可得:CF=6t﹣6.此时QF=QC+CF=3t+6t﹣6=9t﹣6.综上所述:当0<t≤时,QF=6﹣9t;当<t<2时,QF=9t﹣6.(3)①当0<t≤时,过点A′作A′M⊥PG,垂足为M,如图4,则有A′M=CQ=3t.∵==,==,∴=,∵∠PBQ=∠ABC,∴△BPQ∽△BAC.∴∠BQP=∠BCA.∴PQ∥AC.∵AP∥A′G.∴四边形APGA′是平行四边形.∴PG=AA′=8t.∴S=S△A′PG=PG•A′M=×8t×3t=12t2.②当<t≤1时,过点A′作A′M⊥PG,垂足为M,如图5,则有A′M=QC=3t,PQ=DC=8﹣4t,PG=AA′=8t,QG=PG﹣PQ=12t﹣8,QF=9t﹣6..∴S=S△A′PG﹣S△GQF=PG•A′M﹣QG•QF=×8t×3t﹣×(12t﹣8)×(9t﹣6)=﹣42t2+72t﹣24.③当1<t<2时,如图6,∵PQ∥AC,PA=PA′∴∠BPQ=∠PAA′,∠QPA′=∠PA′A,∠PAA′=∠PA′A.∴∠BPQ=∠QPA′.∵∠PQB=∠PQS=90°,∴∠PBQ=∠PSQ.∴PB=PS.∴BQ=SQ.∴SQ=6﹣3t.∴S=S△PQS=PQ•QS=×(8﹣4t)×(6﹣3t)=6t2﹣24t+24.综上所述:当0<t≤时,S=12t2;当<t≤1时,S=﹣42t2+72t﹣24:当1<t<2时,S=6t2﹣24t+24.(4)①若S△A′PG:S四边形PBEG=1:3,过点A′作A′M⊥PG,垂足为M,过点A′作A′T⊥PB,垂足为T,如图7,则有A′M=PD=QC=3t,PG=AA′=8t.∴S△A′PG=×8t×3t=12t2.∵S△APA′=AP•A′T=AA′•PD,∴A′T===t.∴S▱PBEA′=PB•A′T=(10﹣5t)×t=24t(2﹣t).∵S△A′PG:S四边形PBEG=1:3,∴S△A′PG=×S▱PBEA′.∴12t2=×24t(2﹣t).∵t>0,∴t=.②若S△BPN:S四边形PNEA′=1:3,如图8,同理可得:∠BPQ=∠A′PQ,BQ=6﹣3t,PQ=8﹣4t,S▱PBEA′=24t(2﹣t).∵四边形PBEA′是平行四边形,∴BE∥PA′.∴∠BNP=∠NPA′.∴∠BPN=∠BNP.∴BP=BN.∵∠BQP=∠BQN=90°,∴PQ=NQ.∴S△BPN=PN•BQ=PQ•BQ=(8﹣4t)×(6﹣3t).∵S△BPN:S四边形PNEA′=1:3,∴S△BPN=×S▱PBEA′.∴(8﹣4t)×(6﹣3t)=×24t(2﹣t).∵t<2,∴t=.综上所述:当射线PQ将▱A′PBE分成的两部分图形的面积之比是1:3时,t的值为秒或秒.点评:本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、平行四边形的性质、解一元一次不等式组、勾股定理等知识,还考查了分类讨论的思想,有一定的综合性.。
(合工大版)超越经典考研数学模拟试卷(15套)
2010年全国硕士研究生入学统一考试数学一模拟试卷(I )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)设数列{},{}n n a b 对任意的正整数n 满足1+≤≤n n n a b a ,则( ).(A )数列{},{}n n a b 均收敛,且lim lim →∞→∞=n n n n a b(B )数列{},{}n n a b 均发散,且lim lim →∞→∞==+∞n n n n a b(C )数列{},{}n n a b 具有相同的敛散性 (D )数列{},{}n n a b 具有不同的敛散性(2)设()f x 满足'(0)0f =,32'()[()]f x f x x +=,则有( ).(A )(0)f 是()f x 的极大值 (B )(0)f 是()f x 的极小值 (C )(0,(0))f 是()=y f x 的拐点(D )(0)f 不是()f x 的极值,(0,(0))f 也不是()=y f x 的拐点(3)设函数(,)f x y 在点000()P x ,y 处的两个偏导数00'()x f x ,y 、00'()y f x ,y 都存在,则(A )(,)f x y 在点0P 处必连续 (B )(,)f x y 在点0P 处必可微 (C )000lim (,)lim (,)x x y y f x y =f x y →→ (D )00lim (,)x x y y f x y →→存在(4)下列命题中正确的是( ).(A )设正项级数n =1n a ∞∑发散,则1n a n≥(B )设212n =1(+)n-n aa ∞∑收敛,则n =1n a ∞∑收敛(C )设n =1n n a b ∞∑收敛,则22=1=1,nn n n a b ∞∞∑∑均收敛(D )设22=1=1,n nn n a b∞∞∑∑中至少有一个发散,则n =1(+)nn ab ∞∑发散(5)设,A B 为n 阶方阵,且()()r <r AB B ,则必有( ).(A )=0B (B )=0A (C )≠0B (D )≠0A (6)若=0Ax 的解都是=0B x 的解,则下列结论中正确的是( ).(A ),A B 的行向量组等价 (B ),A B 的列向量组等价(C )A 的行向量组可由B 的行向量组线性表示 (D )B 的行向量组可由A 的行向量组线性表示(7)设随机变量011344X ⎛⎫ ⎪ ⎪⎝⎭~,011122Y ⎛⎫⎪ ⎪⎝⎭~,且1Cov(,)=8X Y ,则{}11===P Y X (A )23 (B )13 (C )14 (D )18(8)设总体2(,)X N μσ~,其中,μσ已知,12,,,n X X X ⋅⋅⋅是来自总体X 的样本,样本方差2=11()1ni i S X X n =--∑2,则2()D S =( ). (A )21n σ- (B )221n σ- (C )41n σ- (D )421n σ-二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上.(9)111lim()122→∞++⋅⋅⋅+=++n n n n ______________.(10)2321(cos 22x x -+=⎰_____________.(11)函数222()2()()=---+-u x y y z z x 在点(1,2,2)处方向导数的最大值是_______. (12)微分方程1'''0x y y xe =x--的通解为___________________. (13)设,A B 均为三阶方阵,且3=A ,4=B ,则1*(2)(3)-=O A B O_____________.(14)设随机变量X 的概率密度函数和分布函数分别为()f x 和()F x ,当0≤x 时,()0=F x ;当0>x 时,()()1+=f x F x ,则当0>x ,()=f x ________________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设23310⎧=-⎪⎨++=⎪⎩x t ty ty ,确定函数()=y f x ,求=022t d y dx .(16)(本题满分10分)设函数()f x 、()g x 在[,]a b 上有连续二阶导数,若()()f a g a =,()()f b g b =,00()()f x g x >,其中0(,)x a b ∈. 证明:在(,)a b 内至少存在一点ξ,使得''()''()f ξ<g ξ.(17)(本题满分10分)设(,)f u v 有二阶连续偏导数,()u ϕ有二阶导数,令22[,()]z f x y xy ϕ=-,求2zx y∂∂∂.(18)(本题满分10分)设函数()f u 具有一阶连续偏导数,L 是以(1,1)A 和(3,3)B 为直径的左上半圆周,方向从A 到B ,计算曲线积分:11[()][()2]Lx xI f y dx f x dy x y y y=--+⎰.(19)(本题满分10分)将函数222()(1)ln(1)(1)f x x x x =++-+展开为x 的幂级数,并求级数1=1(1)(+1)n n n n ∞∑--的和.(20)(本题满分11分)(I )设n 维向量组12,,,,s ⋅⋅⋅αααβ线性相关,证明:β可唯一地由12,,,s ⋅⋅⋅ααα线性表示的充要条件是12,,,s ⋅⋅⋅ααα线性无关;(II )设4维向量组11(1,,0,0)T b =α,22(1,,1,0)Tb =α,33(1,,1,1)T b =α,4(1,,0,1)T b =β,且β可唯一地由123、、ααα线性表示,求常数1234b b b b 、、、满足的条件.(21)(本题满分11分)设三阶实对称矩阵A 的秩为2,且=AB C ,其中110011⎛⎫ ⎪= ⎪ ⎪-⎝⎭B ,110011-⎛⎫⎪= ⎪ ⎪⎝⎭C ,求A 的所有特征值与特征向量,并求矩阵A 及9999A .(22)(本题满分11分)设随机变量[0,2]XU π,sin Y X =,sin()Z X a =+,其中[0,2]a π∈为常数,问a 取何值时,Y 与Z 不相关,此时Y 与Z 是否独立?(23)(本题满分11分)已知一批产品的次品率为2%,现从中任意抽取n件产品进行检验. (I)若已知n件产品中有3件次品,求n的矩估计值ˆn;(II)试利用中心极限定理,确定n至少要取多少时,才能使得次品数占总数比例不大于4%Φ=)的概率不小于97.7%.((2)0.9772010年全国硕士研究生入学统一考试数学一模拟试卷(II )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)已知当0x →时,21)ln(1)x +是比ln(1)n x +高阶的无穷小,而ln(1)nx +是比lncos x 高阶的无穷小,则正整数n 等于( ).(A )4 (B )3 (C )2 (D )1 (2)设极限1x →=,则函数()f x 在x a =点处必( ).(A )取极大值 (B )取极小值 (C )可导 (D )不可导 (3)若(,)f x y 在点00(,)x y 处存在任意方向的方向导数,则( ). (A )(,)f x y 在点00(,)x y 处连续 (B )(,)f x y 在点00(,)x y 处可微 (C )0000'(,),'(,)x y f x y f x y 均存在(D )以上结论均不正确(4)数列{}{}{}n n n a b c 、、均满足n n n a b c ≤≤(1,2,n =⋅⋅⋅). 则下列命题正确的是( ) (A )数列{}{}n n a c 、均收敛,则数列{}n b 收敛 (B )数列{}{}n n a c 、均发散,则数列{}n b 发散 (C )若级数n=1n=1n na c∞∞∑∑、均发散,则级数n=1nb∞∑发散(D )若级数n=1n=1n na c∞∞∑∑、均收敛,则级数n=1nb∞∑收敛(5)设A 为m n ⨯矩阵,m E 为m 阶单位阵,,()m n r m <=A ,则下列结论 ①A 经初等行变换为(,)m E O ; ②A 经初等列变换为(,)m E O ; ③T A A 正定; ④T AA 正定;⑤=Ax b 必有解; ⑥=0Ax 仅有零解 中正确的个数为( ).(A )1 (B )2 (C )3 (D )4(6)设10001000010001⎛⎫⎪⎪=⎪⎪⎝⎭A,0001001001001000⎛⎫⎪⎪=⎪⎪⎝⎭B,则以下正确的是().(A)0+=A B(B)A与B相似(C)A与B合同但不相似(D)A与B等价但不合同(7)根据下列函数()F x的图形,指出可作为某随机变量X的分布函数()F x的是().(A)(B)(C)(D)(8)设12(,,,)(1)nX X X n⋅⋅⋅>为来自总体2(0,)X Nσ~的一个简单随机样本,则下列统计量中,是2σ的无偏估计且方差最小的为().(A)21X(B)2X(C)2S(D)n2=11iiXn∑二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上.(9)设函数3()f x x x=,则使得()(0)nf存在的最大正整数n=__________.(10)由半圆周21x y=-1,1,2y y x=-==所围成的平面图形D的形心坐标为____________.(11)二次积分551lnydxdyy x=⎰⎰____________.(12)微分方程''2'(1)xy y +y =e +x -的特解形式为___________________.(13)设三阶矩阵122212304-⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,三维列向量11t ⎛⎫ ⎪= ⎪ ⎪⎝⎭α,若向量,A αα线性相关,则t =__ (14)设随机变量()XP λ,()Y E λ,且X 与Y 独立,若已知EX EY =,则2(2)YE X =三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设0x >,证明:ln nx ne x ≥,其中n 为正整数.(16)(本题满分10分)设()f x 是区间[,]a b 上单调增加的连续函数,且()0f a <,()0b af x dx >⎰. 证明: (I )存在点(,)a b ξ∈,使得()0af x dx ξ=⎰;(II )存在点(,)a b η∈,使得()()af x dx f ηη=⎰.(17)(本题满分10分)若曲线()y y x =上任一点处的切线在y 轴上的截距等于该点处法线在x 轴上的截距的2倍,且该曲线过点(1,0),求该曲线方程.(18)(本题满分10分)计算曲面积分222222(1)x dydz y dzdx z dxdyI x y z ∑+++=++⎰⎰,其中∑为上半球球面2222(0)x y z R z ++=≥的上侧.(19)(本题满分10分)求幂级数2=1(1)2n nn n x ∞-∑的收敛域与和函数.(20)(本题满分11分)确定参数,a b 的值,使线性方程组12341234234123413222354(3)3x x x x x x x x a x x x x x a x x b+++=⎧⎪+++=⎪⎨++=⎪⎪++++=⎩有解,并求其解(将通解用该方程的一个的特解及其导出组的基础解系表示).(21)(本题满分11分)设12(,,,),(1,2,,),1TT n i a a a a R i n =⋅⋅⋅∈=⋅⋅⋅=ααα,10a ≠,T =A αα. (I )求A 的所有特征值和特征向量; (II )当k 为何值时,k +E A 为正交阵; (III )当k 为何值时,k -E A 为正定阵.(22)(本题满分11分)设有四个编号分别为1,2,3,4的盒子和三只球,现将每个球随机地放入四个盒子,记X 为至少有一个球的盒子的最小号码. (I )求X 的分布律;(II )若当X i =时,随机变量Y 在[0,]i 上服从均匀分布,1,2,3,4i =,求{}2P Y ≤.(23)(本题满分11分)设12,,,n X X X ⋅⋅⋅是来自正态总体2(0,)X N σ~的一个简单随机样本. (I )求2σ的极大似然估计量2ˆσ,并判断其无偏性; (II )求估计量2ˆσ的方差; (III )问2ˆσ是否为2σ的一致估计量?2010年全国硕士研究生入学统一考试数学一模拟试卷(III )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)已知数列{},{}n n x y 满足1n y ≥,且lim 0n n n x y →∞=,则( ).(A )lim n n x →∞=∞ (B )lim n n x →∞不存在,但不是∞(C )lim 0n n x →∞= (D )lim n n x →∞存在,但不是0(2)设函数()f x 在点0x 的某邻域0()U x 内连续,在0()U x 内可导,则“极限0lim '()x x f x →存在”是“()f x 在0x 处可导”的( ).(A )充分非必要条件 (B )必要非充分条件 (C )充分必要条件 (D )既不充分也不必要条件 (3)设(,)f x y 在区域D 内具有二阶偏导数,则( ).(A )必有22f fx y y x∂∂=∂∂∂∂ (B )(,)f x y 在D 内必连续 (C )(,)f x y 在D 必可微分 (D )以上三个结论都不正确(4)设正项级数=1ln(1)nn +a ∞∑收敛,则级数=1(1)n n ∞∑-- ).(A )条件收敛 (B )绝对收敛 (C )发散 (D )敛散性不定 (5)设、A B 为同阶可逆方阵,具有相同的特征值,则( ). (A )=AB BA (B )存在可逆矩阵C ,使得T=C AC B(C )存在可逆矩阵P ,使得1-=P AP B (D )存在可逆矩阵,P Q ,使得=PAQ B(6)设n 阶方阵A 的伴随矩阵*≠A O ,若123,,ξξξ是线性方程组=Ax b 的三个互不相等的解,则=0Ax 的基础解系为( ). (A )13-ξξ (B )12-ξξ,23-ξξ(C )12-ξξ,23-ξξ,31-ξξ(D )12+ξξ,23+ξξ,31+ξξ(7)设Ω为样本空间,,A B 为随机事件,且满足()0P A =,()1P B =,则( ). (A ),A B =∅=Ω (B )A B ⊂ (C )AB =∅ (D )()1P B A -=(8)设12,,,n X X X ⋅⋅⋅是来自2(,)X N μσ~的一个简单随机样本,2σ未知,n=11=i i X X n ∑,n2=11=()1i i S X X n ∑--2,()t n α为()t n 分布的上α分位点,则e μ的置信度为1α-的置信区间为( ).(A)αα22()()X X e n 1,e n 1⎛⎫ ⎪⎝⎭-- (B)αα1122(1)(1)XX e n ,e n ⎛⎫ ⎪⎝⎭---- (C)αα22exp{1)},exp{1)}X (n X (n ⎛⎫ ⎪⎝⎭-- (D)αα1122exp{(1)},exp{(1)}X n X n ⎛⎫ ⎪⎝⎭----二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)若[]x 表示不超过x 的最大整数,则211lim []nn x dx n →∞=⎰____________.(10)曲线sin y x =在点(,1)2π处的曲率圆方程为_________________.(11)设L 是上半圆周222(0,0)x y a y a +=≥>,则3222()()Lx y ds x y +=+⎰_____________. (12)设()f x 为可导函数,且,x y ∀均满足()()+()yxf x y e f x e f y +=,'(0)2f =,则()f x =_________________.(13)向量组1(1,1,2,3)T =-α,2(1,0,7,2)T=-α,3(2,2,4,6)T=-α,4(0,1,5,5)T =-α的极大线性无关组为__________________.(若有多组,只需填写一组)(14)设有10张奖券,其中8张为2元,2张为5元,现从中无放回地随机抽取3张,则得奖金额(单位:元)的数学期望是___________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤.(15)(本题满分10分)设0x >,证明:arctan ln(1)1xx x+>+.(16)(本题满分10分)已知抛物线2y ax bx c =++过点(0,0)与(1,2),且0a <,确定,,a b c 的值,使得抛物线与x 轴所围成平面图形的面积最小,并求该平面图形绕y 轴旋转一周所得旋转体的体积.(17)(本题满分10分)设(,)()y f x y F x =满足22220f fx y∂∂+=∂∂,其中F 具有二阶连续导数,求(,)f x y .(18)(本题满分10分)求极限2201lim cos(2)t xttt dx x y dy t+→-⎰⎰.(19)(本题满分10分)设交错级数1=1(1)(0,1,2,3,)n n n n u u n ∞≥=⋅⋅⋅∑--满足条件:(i )1(1,2,3,)n n u u n +≥=⋅⋅⋅; (ii )lim 0n n u →∞=.证明:1=1(1)n n n u ∞∑--收敛,且其和1S u ≤.(20)(本题满分11分)设m n ⨯A 为实矩阵,T A 是A 的转置矩阵,证明: (I )=0Ax 与T =0A Ax 同解; (II )T T =A Ax A b (其中b 为任意n 维列向量)恒有解.(21)(本题满分11分)设三阶实对称阵A 的特征值为2,2,1,对应特征值2λ=的两个特征向量为12(1,1,0),(1,1,1)T T ==αα.(I )证明3(0,0,1)T=α是A 的属于特征值2λ=的特征向量; (II )求1-+A A 的各行元素之和;(III )求正交变换=x P y ,化二次型123(,,)Tf x x x =x Ax 为标准形.(22)(本题满分11分)设二维随机变量(,)X Y 在区域{}(,)01,G x y y x y =<<<上服从均匀分布,令0,01,0X U X <⎧=⎨≥⎩,0,121,12Y V Y <⎧=⎨≥⎩.(I )问,X Y 是否相互独立? (II )求协方差Cov(,)X Y ,并问,X Y 是否不相关? (III )求协方差Cov(,)U V .(23)(本题满分11分)设总体X 的概率密度为,01(),120,bx x f x ax x ≤<⎧⎪=≤<⎨⎪⎩其他,样本观察值为0.5,0.8,1.5,1.5.(I )求a 与b 的极大似然估计值; (II )设XY e =,求{2}P Y <的极大似然估计值.2010年全国硕士研究生入学统一考试数学一模拟试卷(IV )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)在下列直线中,不是..曲线1(1)x xy e =+渐近线的为( ). (A )0y = (B )1y = (C )y e = (D )0x =(2)已知20lim(123)4x x x →++=21ax+bx ,则( ).(A )ln 2,a b R =∈ (B )10,ln 2a b ≠=(C )1,ln 2a b R =∈ (D )0,ln 2a b ≠= (3)空间曲线222241x y z L x y z ⎧++=⎨++=⎩: 在点(1,1,1)-处的切线与平面4x y z π-+=:的夹角为( ).(A )0 (B )π4 (C )π3 (D )π2(4)设级数=1(1)nn n a x ∞∑-在点1x =-处收敛,在点3x =处发散,则级数=13(1)()2nnn n a ∞∑-( ).(A )绝对收敛 (B )条件收敛 (C )发散 (D )敛散性不确定 (5)若n 阶实矩阵A 满足326116-+-=A A A E O ,则下列命题正确的是( ). (A )-E A 可逆,+E A 也可逆 (B )2-E A 可逆,2+E A 也可逆 (C )3-E A 可逆,3+E A 也可逆 (D )4-E A 可逆,4+E A 也可逆(6)设二次型T f =x Ax 的规范形为222123y y y -+,其中A 为三阶实对称矩阵,则以下结论中正确的个数为( ).①A 的特征值必为1,1,1- ②A 的秩为2③A 的行列式小于0 ④A 必相似于对角阵111⎛⎫⎪- ⎪⎪⎝⎭⑤A 合同于对角阵111⎛⎫ ⎪ ⎪ ⎪-⎝⎭ ⑥A 合同于对角阵123-⎛⎫⎪ ⎪⎪⎝⎭(A )1 (B )2 (C )3 (D )4(7)设随机变量X 与Y 独立,且都服从[0,3]上的均匀分布,则{}1min(,)2P X Y <≤=( ). (A )13 (B )49 (C )23 (D )89(8)设总体2(,)X N μσ~,2σ未知,统计假设00H μμ=:,10H μμ<:. 12,,,nx x x ⋅⋅⋅为样本,x 为样本均值,2s 为样本方差,则在显著水平为α下0H 的拒绝域为( ). (A2(1)t n α≥- (B x u α- (C (1)x t n α≤-- (D (1)x t n α≥- 其中(0,1)U N ~,()T t n ~,数u α满足{}P U u αα>=,()t n α满足{}()P T t n αα>=二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上.(9)曲线(1)y x x =-与x 轴所围图形绕y 轴旋转一周所得旋转体的体积为___________.(10)设2ln 30x yz z ++=,则(1,3,1)dz-=_____________.(11)曲面22:10x y z ∑--+=在点(1,1,1)处的切平面π被柱面2214y x +=所截下部分的面积为__________.(12)设()f x 具有一阶连续导数,且满足方程0()'()x f x x tf x t dt =+-⎰,则()f x =_______(13)已知2253102x y ⎛⎫⎪= ⎪ ⎪--⎝⎭A 的特征值为1,1,1---,则(,)x y =___________.(14)设总体(1,)X B p ~,1,1,1,0为来自总体X 的一个样本观察值,则2()D x 的矩估计值为_____________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设常数0a >,0b >,证明不等式:22()a ba b a b e ae be ++≤+.(16)(本题满分10分)就k 的取值讨论方程2xe kx =的实根个数.(17)(本题满分10分)利用变换t =化简微分方程2242(16(0)d y dyx y e x dx dx+-=>,并求出此微分方程的通解.(18)(本题满分10分)计算曲线积3(2)()()CI x y z dx x dy x y z dz =+++++⎰,其中C 为2221x y +=与222x y z +=-的交线,从原点看去是逆时针方向.(17)(本题满分10分)就常数p 的不同取值,讨论级数1111246p P P -+-+⋅⋅⋅的敛散性.(20)(本题满分11分)已知向量组A :1(0,1,2,3)T =a ,2(3,0,1,2)T=a ,3(2,3,0,1)T=a ; B :1(2,1,1,2)T =b ,2(0,2,1,1)T =-b ,3(4,4,1,3)T=b ;证明向量组B 能由向量组A 线性表示,但向量组A 不能由向量组B 线性表示.(21)(本题满分11分)已知三阶实对称矩阵A 的特征值为121λλ==,32λ=,且A 的对应于特征值1的特征向量123(,,)T x x x 满足方程12320x x x --=,求正交矩阵Q ,使得T =Q AQ Λ为对角阵.(22)(本题满分11分)设二维随机变量(,)X Y 在区域G :12x ≤≤,10y x≤≤ 上服从均匀分布,记U X =,V XY =,随机事件{}u A U u =≤,{}v B V v =≤. (I )求()u P A 、()v P B 与()u v P A B ,其中12u ≤≤,01v ≤≤;(II )分别求U 和V 的密度函数,及U 与V 的联合密度函数,并问U 与V 是否独立?(23)(本题满分11分)设随机变量()T t n ~,12(,)F F n n ~,常数()t n α、12(,)F n n α分别满足{()}=P T t n αα>,12{(,)}=P F F n n αα>. (I )证明22()(1,)t n F n αα=; (II )112211(,)(,)F n n F n n αα-=;(III )已知0.05(6) 1.943t =,求0.90(6,1)F .2010年全国硕士研究生入学统一考试数学一模拟试卷(V )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里. (1)函数13()lim(1)nnn f x x→∞=+在(,)-∞+∞内( ).(A )处处可导 (B )只有一个不可导点 (C )恰有两个不可导点 (D )至少有三个不可导点(2)设()f x 是(,)a b 区间内的连续函数,()F x 是()f x 在(,)a b 内的一个原函数,则( ). (A )当()f x 在(,)a b 内无界时,()F x 在(,)a b 内也无界 (B )当()f x 在(,)a b 内有界时,()F x 在(,)a b 内也有界 (C )当()f x 在(,)a b 内单调上升时,()F x 在(,)a b 内也单调上升 (D )当()f x 在(,)a b 内单调下降时,()F x 在(,)a b 内也单调下降 (3)设D 是由曲线sin ()22y x x ππ=-≤≤和直线2x π=-,1y =所围成的的区域,f 是连续函数,则322[1()]Dx y f x y dxdy ++=⎰⎰( ).(A )2- (B )1- (C )0 (D )2(4)设1,01()2,12x x f x x x +<≤⎧=⎨-+<≤⎩,又设()f x 展开的正弦级数为=1π()=sin 2nn n S x b x ∞∑,则(7)S =( ). (A )32 (B )32- (C )12 (D )12- (5)若,A B 为n 阶方阵,且(,)A B 经初等行变换可化为(,)n E C ,则矩阵C 为( ). (A )1-B (B )1-A (C )1-A B (D )1-B A (6)已知空间曲线11112222a xb yc zd l a x b y c z d ++=⎧⎨++=⎩:,平行于平面3333a x b y c z d π++=:,则矩阵111222333a b c a b c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 的秩()r =A ( ). (A )0 (B )1 (C )2 (D )3(7)设随机变量,X Y 相互独立,2(0,)X N σ~,111233Y -⎛⎫⎪ ⎪ ⎪⎝⎭~,则1X P Y ⎧⎫≤=⎨⎬⎩⎭( ).(A )11()3σΦ (B )21()3σΦ (C )1()σΦ (D )111()33σ+Φ (8)设二维随机变量(,)X Y 的分布函数为0,min(,)0(,)min(,),0min(,)11,min(,)1x y F x y x y x y x y <⎧⎪=≤<⎨⎪≥⎩,则有( ).(A )X 和Y 独立,且同分布 (B )X 和Y 不独立,但同分布 (C )X 和Y 独立,但不同分布 (D )X 和Y 不独立,且不同分布二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)1x e dx -=⎰___________________.(10)tan 0xx +→=_________________.(11)设,f g 均可微,[,ln ()]z f xy x g xy =+,则z zxy x y∂∂-=∂∂________________. (12)微分方程'''y y y =满足初始条件(0)0y =,'(0)2y =的特解为y =_______________.(13)1234567800=000a a a a a a a a ____________________. (14)已知随机变量X 的密度函数为偶函数,1DX =,且用切比雪夫不等式估计得{}0.96P X ε<≥,则常数ε=____________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设函数()f x 在[,]a b 上可微,且'()f x 在(,)a b 内单调增加,又()()f a f b A ==(常数),证明:(,)x a b ∀∈,恒有()f x A <.(16)(本题满分10分)已知222'()01()xf f xx xx-=+-,且(1)ln2f=,求()f x及()()nf x.(17)(本题满分10分)求函数4(,)3f x y xy x y=--在由抛物线24(0)y x x=-≥与两个坐标轴所围成的平面闭区域D上的最大值和最小值.(18)(本题满分10分)计算曲线积分22()(4)4Lx y dx y x dyx y++-+⎰,其中L 为椭圆周2244x y +=的逆时针方向.(19)(本题满分10分)设有幂级数2=112(+)n nn x nn ∞∑. 求: (I )该幂级数的收敛半径与收敛域; (II )该幂级数的和函数在收敛区间内的导函数.(20)(本题满分11分)设向量(1,2,1)T=α,1(1,,0)2T=β,(0,0,8)T =γ,T =A αβ,T =B βα. 求:(I )4A ,4B ; (II )x 为3维列向量,且满足22442=++B A x A x B x γ,求x .(21)(本题满分11分)已知三元二次型123(,,)Tf x x x =x Ax 经过正交变换=x P y 化为标准形2221232y y y -+. (I )求行列式1*2--A A ; (II )求3224--+A A A E .(22)(本题满分11分)若随机变量X的概率密度函数22(ln )2,>0()=0,0x X x f x x μσ--⎧≤⎩就称X 服从参数为2(,)μσ的对数正态分布.(I ) 证明X 服从参数为2(,)μσ的对数正态分布的充要条件是2ln (,)U X N μσ=~;(II )设X 与Y 相互独立,且均服从参数为2(,)μσ的对数正态分布,证明:V XY =服从参数为2(2,2)μσ的对数正态分布.(23)(本题满分11分)设12,,,(1)n X X X n ⋅⋅⋅>为来自总体()X P λ~的样本,其中未知参数0λ>. (I )求λ的极大似然估计ˆλ; (II )证明ˆ()n P n λλ~.2011年全国硕士研究生入学统一考试数学一模拟试卷(I )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里. (1)设ln ()sin 1xf x x x =-,则()f x 有( ). (A )两个可去间断点 (B )两个无穷间断点(C )一个可去间断点,一个跳跃间断点 (D )一个可去间断点,一个无穷间断点 (2)设函数()f x 在2x =处连续,且2()1lim22x f x x →=-. 函数()g x 在2x =的某邻域内可导,且2'()1lim22x g x x →=-,则( ). (A )函数()f x 在2x =处导数存在, ()g x 在2x =处二阶导数存在 (B )函数()f x 在2x =处取极小值, ()g x 在2x =处也取极小值 (C )函数()f x 在2x =处导数存在, ()g x 在2x =处取极小值 (D )函数()f x 在2x =处取极小值, ()g x 在2x =处二阶导数存在(3)设曲面22222{(,,)1,0}123x y z x y z z ∑++=≥:,并取上侧,则不等于...零的积分为( ). (A )2xd y d z ∑⎰⎰ (B )x d y d z ∑⎰⎰ (C )2z d z d x ∑⎰⎰ (D )z d z d x ∑⎰⎰(4)若幂级数=0(+1)nnn a x ∞∑在1x =处收敛,则级数=0nn a∞∑( ).(A )绝对收敛 (B )条件收敛 (C )发散 (D )敛散性不定 (5)设n 阶方阵12(,,,)n =⋅⋅⋅A ααα,12(,,,)n =⋅⋅⋅B βββ,(,,,)=⋅⋅⋅12n AB γγγ,记向量组(I ):12,,,n ⋅⋅⋅ααα; (II ):12,,,n ⋅⋅⋅βββ; (III ):,,,⋅⋅⋅12n γγγ. 如果向量组(III )线性相关,则( ).(A )向量组(I )与(II )都线性相关 (B )向量组(I )线性相关(C )向量组(II )线性相关(D )向量组(I )和(II )至少有一个线性相关(6)设四阶方阵1234(,,,)=A αααα,其中12,αα线性无关,3α不能由12,αα线性表示,412323=-+αααα,*A 为A 的伴随矩阵,则*()r =A ( ).(A )0 (B ) (C )2 (D )3 (7)设,X Y 为随机变量,3{0}5P XY ≤=,4{m a x (,)0}5P XY >=, 则{m i n (,)0}P X Y ≤=( ). (A )(B ) (C ) (D ) (8)设随机变量(,0.1)i X B i ~,1,2,,15i =⋅⋅⋅,且1215,,,X X X ⋅⋅⋅相互独立,则15=1{816}i i P X <<∑为( ).(A )0.325≥ (B )0.325≤ (C )0.675≥ (D )0.675≤二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)设曲线()y f x =在点(1,0)处的切线在y 轴上截距为1-,则1l i m [1(1)]n n f n→∞++=______________. (10)设为连续函数,且1[()()]1f x xf xt dt +=⎰,则()f x =_____________.(11)设(,)f x y 可微,1'(1,3)2f -=-,2'(1,3)1f -=,(2,)yz f x y x=-,则13x y dz ===(12)121220122cos cos y y y dy x dx dy x dx +=⎰⎰⎰⎰________________.(13)三阶方阵,A B 满足关系式+=E B AB ,A 的三个特征值分别为3,3,0-,则B 的特征值为_____________.(14)设22(200)χχ~,则由中心极限定理得2{240}P χ≤近似等于___________.(用标准正态分布的分布函数()Φ⋅表示)三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设函数π2π2()ln sin n f x x x xdx -=π-⎰,其中n 为正整数,试讨论方程()0f x =根的个数.(16)(本题满分10分)设12a =,111()(1,2,)2n n na a n a +=+=⋅⋅⋅. 证明: (I )lim n n a →∞存在; (2)级数=11(1)nn n a a ∞+-∑收敛.(17)(本题满分10分)设函数()f x 在闭区间[,]a b 上具有二阶导数,且()0f a <,()0f b <,()0baf x dx =⎰. 证明:(,)a b ξ∃∈,使得''()0f ξ<.(18)(本题满分10分)设当0x >时,()f x 可导,且(1)2f =.(I )试确定()f x ,使在右半平面内[2()]()y f x dx xf x dy -+为某函数(,)u x y 的全微分; (II )求(,)u x y ; (III )计算曲线积分[2()]()Cy f x dx xf x dy -+⎰,其中C 是右半平面内从点(1,0)到点(2,2)的任一条简单曲线.(19)(本题满分10分)设有微分方程'',1''2'0,1y y x x y y y x -=<⎧⎨-+=>⎩,试求在(,)-∞+∞内可导的函数()y y x =满足此方程,且有(0)0y =,'(0)1y =.(20)(本题满分11分)设A 为三阶方阵,并有可逆阵123(,,)P p p p ,(1,2,3)i i =p 为三维列向量,使得1100011001-⎛⎫⎪= ⎪ ⎪⎝⎭P AP . (I )证明:12,p p 为()-=0E A x 的解,3p 为2()-=-E A x p 的解,且A 不可相似对角化; (II )当211212112--⎛⎫⎪=-- ⎪ ⎪-⎝⎭A 时,求可逆矩阵P ,使得1100011001-⎛⎫⎪= ⎪ ⎪⎝⎭P AP .(21)(本题满分11分)已知二次型112312323112(,,)(,,)34325x f x x x x x x xa x -⎛⎫⎛⎫⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭的秩为,求常数a 的值,并求一个正交变换化该二次型为标准形.(22)(本题满分11分)设二维随机变量(,)X Y 的密度函数为4,01,01(,)0,x y x y f x y <<<<⎧=⎨⎩其他. (I )问,X Y 是否相互独立? (II )设2U X =和2V Y =的密度函数分别为()U f u 和()V f v ,求(),()U V f u f v ,并指出(,)U V 所服从的分布; (III )求22{1}PU V +≤.(23)(本题满分11分)设l n Y X =,Y 的密度函数为,0()0,0y Y e y f y y λλ-⎧≥=⎨<⎩(1λ>). (I )求EX ;(II )设12,,n XX X ⋅⋅⋅为来自总体X 的简单随机样本,求E X 的极大似然估计.2011年全国硕士研究生入学统一考试数学一模拟试卷(II )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)设函数在(,)-∞+∞内有定义,下列结论正确的是( ). (A )若lim ()2x f x π→∞≠,则2y π=不是曲线()y f x =的水平渐近线 (B )若0lim ()x f x →≠∞,则0x =不是曲线()y f x =的铅直渐近线(C )若()lim1x f x x→∞=,则曲线()y f x =必有斜渐近线 (D )以上都不对(2)设2arctan()()=lim +1n x n n e f x x →∞,则()f x ( ).(A )处处可导 (B )在点1x =-处可导(C )在点0x =处可导 (D )在点1x =处可导(3)设函数(,)z f x y =在点00(,)x y 处有00'(,)x f x y a =,00'(,)y f x y b =,则下列结论正确的是( ).(A )00lim (,)x x y y f x y →→存在,但(,)f x y 在点00(,)x y 处不连续(B )(,)f x y 在点00(,)x y 处连续 (C )()0,x y d z a d x b d y =+(D )00lim (,)x x f x y →及00lim (,)y y f x y →都存在且相等(4)设(n+1)πn πsin n xu dx x =⎰,则=1n n u ∞∑为( ). (A )发散的正项级数 (B )收敛的正项级数(C )发散的交错级数 (D )收敛的交错级数(5)设22221111ab c d a b c d ⎛⎫⎪= ⎪ ⎪⎝⎭A ,,,,a b c d 为互异实数,则下列说法正确的是( ). (A )齐次线性方程组=0Ax 只有零解 (B ) 齐次线性方程组T=0A Ax 有非零解 (C )齐次线性方程组T=0A x 有非零解 (D )齐次线性方程组T=0AA x 有非零解(6)设,A B 均为n 阶方阵,则下列命题正确的是( ).(A )若,A B 为等价矩阵,则,A B 的行向量组等价 (B )若,A B 的行列式相等,则,A B 为等价矩阵(C )若=0Ax 与=0B x 均只有零解,则,A B 为等价矩阵 (D )若,A B 为相似矩阵,则=0Ax 与=0B x 同解(7)设有随机事件,,A B C ,(),(),()(0,1)P A P B P C ∈,若C 分别与,A B 独立,A B =∅.则有( ).(A )A 与B C 独立 (B )B 与A C 独立 (C )C 与AB 独立 (D ),,A BC 两两独立(8)设总体2(,)X N μσ~,其中2,μσ均未知. 假设检验问题为2010H σ≤:,2110H σ>:,已知25n =,0.05α=,20.05(24)36.415χ=,且根据样本观察值计算得212s =,则检验结果为( ).(A )接受0H ,可能会犯第二类错误 (B )拒绝0H ,可能会犯第二类错误 (C )接受0H,可能会犯第一类错误 (D )拒绝0H,可能会犯第一类错误二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)不定积分222arctan 2(1)1xx edx x +=+⎰__________________.(10)设曲线222C x xy y a ++=:的长度为L ,则s i n ()s i n ()s i n ()s i n ()x yx y C a e b e d s e e +=+⎰_________. (11)设()y y x =是由10sin 10ln(1)x t e t x y t dt +⎧-+=⎪⎨=+⎪⎩⎰所确定的函数,则0t dy dx ==______________.(12)以21C y C x x=+为通解的微分方程______________________. (13)设A 为三阶方阵,A 的第一行元素为1,2,3,行列式A 中第二行元素的余子式为1,2,3a a a +++,则常数a =__________.(14)设(,)f x y 为二维随机变量(,)X Y 的密度函数,2U Y =,V X =-,则(,)U V 的密度函数(,)U V f u v =________________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)设曲线()y y x =由参数方程给出:ln x t t =,ln 1()t y t t e=>. (I )求()y y x =的单调区间、极值、凹凸区间和拐点; (II )求曲线()y y x =,直线1x e=-,x e =及x 轴所围平面区域的面积A .(16)(本题满分10分)求微分方程()x dyf xy y dx⋅=经变换xy u =后所转化的微分方程,并由此求微分方程22(1)y xy d x x d y +=的通解.(17)(本题满分10分)求幂级数2121(1)(1)nn n n x n∞+--∑=的收敛域及和函数()S x .(18)(本题满分10分)设函数()f x 在[,]a b 上连续,证明:(I )2()[()()]a b b aaf x dx f x f a b x dx +=++-⎰⎰;(II )利用(I )计算π23π6cos (2)xI dx x x π=-⎰.(19)(本题满分10分)在椭球面222221x y z ++=上求一点P ,使得三元函数222(,,)f x y z x y z=++在点P 处沿方向=-l i j 的方向导数最大.(20)(本题满分11分)设,,A B C 均为n 阶方阵,⎛⎫=⎪-⎝⎭AA M CBC .(I )证明:M 可逆的充要条件为,A B 均可逆; (II )如果M 可逆,求其逆矩阵1-M .(21)(本题满分11分)设13λ=,26λ=,39λ=是三阶对称矩阵A 的三个特征值,其对应的特征向量依次为11(2,2,1)3T =-α,21(1,2,2)3T =-α,31(2,1,2)3T =-α. (I )证明112233369TTT=++A αααααα;(II )设(1,2,3)T=β,分别将β和nA β用123,,ααα线性表示.(22)(本题满分11分)设1()X P λ~,2()Y P λ~,且X 与Y 相互独立.(I )证明:12()X Y P λλ++~; (II )求已知3X Y +=时,X 的条件分布.(23)(本题满分11分)设总体X 的密度函数为22,0()0,0x x e x f x x θθ-⎧⎪>=⎨⎪≤⎩,其中(0)θθ>为未知参数,12,,,n X X X ⋅⋅⋅是来自总体X 的简单随机样本.(I )求θ的极大似然估计量θ; (II )指出θ是否为θ的无偏估计.2011年全国硕士研究生入学统一考试数学一模拟试卷(III )一、选择题:1~8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个符合要求,把所选项前的字母填在题后的括号里.(1)求抛物线2y x x =+与23y x x =-的公切线为( ).(A )1y x =-- (B )1y x =-+ (C )1y x =- (D )1y x =+ (2)设220()(1)x t f x x e dt -=+⎰,则有( ).(A )(2010)(0)0f=,11()0f x dx -=⎰(B )(2010)(0)0f ≠,11()0f x dx -=⎰(C )(2010)(0)0f =,11()0f x dx -≠⎰(D )(2010)(0)0f ≠,11()0f x dx -≠⎰(3)设当0r +→,222()r C y d x x d yI x y x y -=++⎰与nr 为同阶无穷小,其中C为圆周2221x y r +=,取逆时针方向,则n 等于( ). (A ) (B )2 (C )3 (D )4 (4)设()y y x =是方程22(1)0x y d x x d y +-=及条件(0)1y =的解,则120()y x dx =⎰( ). (A )ln 3- (B )l n 3 (C )1l n 32-(D )1l n 32(5)设12,ηη为线性方程组12311232123322x x x a x x x a x x tx a-+=⎧⎪++=⎨⎪++=⎩的两个不同解,则必有( ).(A )2t =,1230a a a ++= (B )2t ≠,312a a a =+ (C )2t =,312a a a =+ (D )2t ≠,312a a a ≠+(6)设二次型123(,,)T f x x x =x Ax ,其中T=A A ,a =A ,()1r a b +=E ,则( ).(A )对任意的0a >,0b >,正定 (B )对任意的0a >,0b <,正定 (C )对任意的0a <,0b >,正定 (D )对任意的0a <,0b <,正定 (7)已知随机变量010.250.75X⎛⎫ ⎪⎝⎭,向量12,αα线性无关,则向量组12X -αα,12X -+αα线性相关的概率为( ).(A )0.25 (B )0.5 (C )0.75 (D ) (8)设总体X 的密度函数2,01()0,x x f x <<⎧=⎨⎩其他,1234,,,X X X X 为来自总体X 的简单随机样本,则(4)1234m a x (,,,)X X X X X =的密度函数为(4)()X f x =( ). (A )20,0,011,1x x x x ≤⎧⎪<<⎨⎪≥⎩ (B )80,0,011,1x x x x ≤⎧⎪<<⎨⎪≥⎩(C )78,010,x x ⎧<<⎨⎩其他 (D )34,010,x x ⎧<<⎨⎩其他二、填空题:9~14小题,每小题4分,共24分,把答案填在题中的横线上. (9)若()x x f t dt xe -=⎰,则1(ln )f x dx x+∞=⎰____________. (10)设函数()y x 满足2''(1)'xy x y x y e +-+=,且'(0)1y =. 若20()lim x y x xa x →-=,则a = (11)设()f r 在[0,1]上连续,则22221lim()n n x y x y f dxdy →∞+≤+=⎰⎰_____________.(12)已知向量222(,,)xy yz zx =A ,则(1,1,2)()grad div -=A ________________.(13)设,A B 为n 阶方阵,12,,n λλλ⋅⋅⋅为B 的n 个特征值,若存在可逆阵P ,使得11--=-+B PAP P AP E ,则12n λλλ++⋅⋅⋅=______________. (14)设(,)(0,14,90)X Y N ;;~,则{1}P X Y <-=_______________.三、解答题:15~23小题,共94分.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)旋转曲面224z x y =+上某点M 处的切平面为π,若平面π过曲线:2x t =,y t =,3(1)z t =-上对应于1t =的点处的切线,试求平面π的方程.(16)(本题满分10分)设()Df t x y tdx d y =-⎰⎰,其中D :01x ≤≤,01y ≤≤,[0,1]t ∈.(I )求()f t 的表达式; (II )证明'()0f t =在(0,1)内有且仅有一个根.(17)(本题满分10分)求数项级数=1(1)(21)!n n nn ∞-+∑的和.(18)(本题满分10分)设()f x 在[,]a b 上连续,在(,)a b 内可导,()0f a =,()1f b =,()1()f c a c b =-<<. 证明:(,)a b ξ∃∈,使得2(1)'()2()0f f ξξξξ+-=.(19)(本题满分10分)(I )设连续函数()f x 对任意的x 均满足()()2xf x af =,其中常数(0,1)a ∈. 证明()()2n nxf x a f =,进而再证(,)x ∀∈-∞+∞,()0f x ≡; (II )设()g x 具有二阶连续导数,且满足22()3x xg t dt x x =+⎰,求()g x 所满足的微分方程,并求()g x .。
合肥高考数学一模试卷理科含解析
合肥2015届高考数学一模试卷(理科含解析)2015年安徽省合肥168中学高考数学一模试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则B中所含元素的个数为()A.2B.3C.4D.62.若复数z=(其中i是虚数单位),则|z|=()A.2B.C.1D.13.如果随机变量ξ∽N(1,δ2),且P(1≤ξ≤3)=0.4,则P(ξ≤﹣1)=()A.0.1B.0.2C.0.3D.0.44.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2≠05.已知向量=(2,1)和=(x﹣1,y)垂直,则|+|的最小值为()A.B.5C.2D.6.设Sn为等差数列(n∈N+)的前n项和,且S2=S6,a4=1,则a5=()A.﹣1B.0C.1D.27.执行如图所示的程序框图,若输出的结果为21,则判断框中应填()A.i<5B.i<6C.i<7D.i<88.设n=(4sinx+cosx)dx,则二项式(x﹣)n的展开式中x的系数为()A.4B.10C.5D.69.点P是双曲线(a>0,b>0)左支上的一点,其右焦点为F(c,0),若M为线段FP的中点,且M到坐标原点的距离为,则双曲线的离心率e范围是()A.(1,8]B.C.D.(2,3]10.如图,在三棱锥P﹣ABC中,PA,PB,PC两两互相垂直,且PA=3,PB=2,PC=2,设M是底面三角形ABC内一动点,定义:f(M)=(m,n,p),其中m,n,p分别表示三棱锥M﹣PAB,M﹣PBC,M﹣PAC的体积,若f(M)=(1,x,4y),且+≥8恒成立,则正实数a的最小值是()A.2﹣B.C.D.6﹣4二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上11.已知实数x,y满足约束条件(k为常数),若目标函数z=2x+y的最大值是,则实数k的值是.12.已知某几何体的三视图如图所示,则该几何体的体积是.13.已知双曲线的右焦点为F,若以F为圆心的圆x2+y2﹣6x+5=0与此双曲线的渐近线相切,则该双曲线的离心率为.14.已知角φ的终边经过点P(1,﹣1),点A(x1,y1),B(x2,y2)是函数f(x)=sin(ωx+φ)(ω>0)图象上的任意两点,若|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值为,则的值是.15.已知定义在R上的偶函数满足:f(x+4)=f(x)+f (2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递增;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.上述命题中所有正确命题的序号为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,已知(sinA+sinB+sinC)(sinB+sinC ﹣sinA)=3sinBsinC.(1)求角A的值;(2)求的最大值.17.如图,斜三棱柱ABC﹣A1B1C1,已知侧面BB1C1C与底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A﹣B1B﹣C为30°,(Ⅰ)证明:面AA1C1C⊥平面BB1C1C及求AB1与平面AA1C1C所成角的正切值;(Ⅱ)在平面AA1B1B内找一点P,使三棱锥P﹣BB1C为正三棱锥,并求此时的值.18.在某次三星杯围棋决赛中,小将A以2:0战胜上届冠军B,引起B所在国围棋界一片哗然!已知三星杯决赛采用的是三局两胜制,若选手A在一次对决中战胜选手B 的概率为.(Ⅰ)求选手A战胜选手B的概率;(Ⅱ)若赛制改为七局四胜制,即选手A战胜选手B所需局数为X,求X的期望.19.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.20.已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).(1)求函数f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)单调增区间;(3)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.21.设Sn是各项均为非零实数的数列的前n项和,给出如下两个命题上:命题p:是等差数列;命题q:等式对任意n(n∈N*)恒成立,其中k,b是常数.(1)若p是q的充分条件,求k,b的值;(2)对于(1)中的k与b,问p是否为q的必要条件,请说明理由;(3)若p为真命题,对于给定的正整数n(n>1)和正数M,数列满足条件,试求Sn的最大值.2015年安徽省合肥168中学高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知集合A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},则B中所含元素的个数为()A.2B.3C.4D.6【考点】元素与集合关系的判断.【专题】集合.【分析】本题的关键是根据A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},写出集合B,并且找到集合B的元素个数【解答】解:∵A={1,2,3},B={(x,y)|x∈A,y∈A,x+y∈A},∴B={(1,1),(1,2),(2,1)}则B中所含元素的个数为:3故选:B【点评】本题主要考查集合的元素,属于基础题.2.若复数z=(其中i是虚数单位),则|z|=()A.2B.C.1D.1【考点】复数求模.【专题】数系的扩充和复数.【分析】利用复数模的运算性质“积的模”等于“模的积”即可求得答案.【解答】解:∵z=,∴|z|===,故选:B.【点评】本题考查复数求模运算,利用复数“积的模”等于“模的积”是迅速解题的关键,属于基础题.3.如果随机变量ξ∽N(1,δ2),且P(1≤ξ≤3)=0.4,则P(ξ≤﹣1)=()A.0.1B.0.2C.0.3D.0.4【考点】正态分布曲线的特点及曲线所表示的意义.【专题】计算题;概率与统计.【分析】根据随机变量ξ服从正态分布,可知正态曲线的对称轴,利用对称性,即可求得P(ξ≤﹣1).【解答】解:∵随机变量ξ服从正态分布N(1,δ2)∴正态曲线的对称轴是x=1∴P(1≤ξ≤3)=0.4,∴P(ξ≤﹣1)=P(ξ≥3)=0.5﹣0.4=0.1,故选:A.【点评】本题主要考查正态分布曲线的特点及曲线所表示的意义、函数图象对称性的应用等基础知识,属于基础题.4.“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是()A.若x,y∈R且x2+y2≠0,则x,y全不为0B.若x,y∈R且x2+y2≠0,则x,y不全为0C.若x,y∈R且x,y全为0,则x2+y2=0D.若x,y∈R且xy≠0,则x2+y2≠0【考点】四种命题.【专题】计算题.【分析】否定“若x,y∈R且x2+y2=0,则x,y全为0”的题设,得到否命题的题设,再否定“若x,y∈R且x2+y2=0,则x,y全为0”的结论,得到否命题的结论.由此能够得到命题“若x,y∈R且x2+y2=0,则x,y 全为0”的否命题.【解答】解:先否定“若x,y∈R且x2+y2=0,则x,y全为0”的题设,得到否命题的题设“若x,y∈R且x2+y2≠0”,再否定“若x,y∈R且x2+y2=0,则x,y全为0”的结论,得到否命题的结论“则x,y不全为0”.由此得到命题“若x,y∈R且x2+y2=0,则x,y全为0”的否命题是:若x,y∈R且x2+y2≠0,则x,y不全为0.故选B.【点评】本题考查四种命题的互换,是基础题.解题时要认真审题,仔细解答,注意全为0和否定形式是不全为0.5.已知向量=(2,1)和=(x﹣1,y)垂直,则|+|的最小值为()A.B.5C.2D.【考点】平面向量数量积的运算.【专题】平面向量及应用.【分析】首先求出+的坐标然后利用坐标表示出它的模的平方,进一步用二次函数配方求最小值.【解答】解:向量=(2,1)和=(x﹣1,y)垂直,则+=(x+1,y+1),又向量和垂直,=2(x﹣1)+y=0,即y=﹣2x+2;所以|+|2=(x+1)2+(y+1)2=5x2﹣10x+10=5(x﹣1)2+5,所以x=1时,|+|的最小值为;故选A.【点评】本题考查了向量的坐标运算、垂直的性质以及利用二次函数求最值.6.设Sn为等差数列(n∈N+)的前n项和,且S2=S6,a4=1,则a5=()A.﹣1B.0C.1D.2【考点】等差数列的前n项和.【专题】等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求出首项和公差,代入等差数列的通项公式得答案.【解答】解:设等差数列的首项为a1,公差为d,由S2=S6,a4=1,得,解得.∴a5=7+4×(﹣2)=﹣1.故选:A.【点评】本题考查了等差数列的通项公式,考查了等差数列的前n项和,是基础题.7.执行如图所示的程序框图,若输出的结果为21,则判断框中应填()A.i<5B.i<6C.i<7D.i<8【考点】程序框图.【专题】算法和程序框图.【分析】根据题意,模拟程序框图的执行过程,计算输出结果即可.【解答】解:模拟程序框图执行过程,如下;开始,i=1,s=0,不输出,进入循环,1是奇数?是,s=0﹣12=﹣1,i=1+1=2,不输出,进入循环,2是奇数?否,s=﹣1+22=3,i=2+1=3,不输出,进入循环,3是奇数?是,s=3﹣32=﹣6,i=3+1=4,不输出,进入循环,4是奇数?否s=﹣6+42=10,i=4+1=5,不输出,进入循环,5是奇数?是,s=10﹣52=﹣15,i=5+1=6,不输出,进入循环,6是奇数?否,s=﹣15+62=21,i=6+1=7,退出循环,输出21,∴判断框中的条件是:i<7?故选C.【点评】本题考查了程序框图的执行结果的问题,解题时应模拟程序的执行过程,是基础题.8.设n=(4sinx+cosx)dx,则二项式(x﹣)n的展开式中x的系数为()A.4B.10C.5D.6【考点】二项式系数的性质;定积分.【专题】二项式定理.【分析】在二项展开式的通项公式中,令x的幂指数等于0,求出r的值,即可求得展开式中x的系数.【解答】解:n=(4sinx+cosx)dx=(﹣4cosx+sinx)=5,则二项式(x﹣)n=(x﹣)5的展开式的通项公式为Tr+1=(﹣1)rx5﹣2r,令5﹣2r=1,求得r=2,∴展开式中x的系数为=10,故选:B.【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.9.点P是双曲线(a>0,b>0)左支上的一点,其右焦点为F(c,0),若M为线段FP的中点,且M到坐标原点的距离为,则双曲线的离心率e范围是()A.(1,8]B.C.D.(2,3]【考点】双曲线的简单性质.【专题】计算题.【分析】直接利用双曲线的定义,结合三角形的中位线定理,推出a,b,c的关系,求出双曲线的离心率.【解答】解:设双曲线的左焦点为F1,因为点P是双曲线(a>0,b>0)左支上的一点,其右焦点为F(c,0),若M为线段FP的中点,且M到坐标原点的距离为,由三角形中位线定理可知:OM=PF1,PF1=PF﹣2a,PF≥a+c.所以,1.故选B.【点评】本题是中档题,考查双曲线的基本性质,找出三角形的中位线与双曲线的定义的关系,得到PF≥a+c.是解题的关键.10.如图,在三棱锥P﹣ABC中,PA,PB,PC两两互相垂直,且PA=3,PB=2,PC=2,设M是底面三角形ABC内一动点,定义:f(M)=(m,n,p),其中m,n,p分别表示三棱锥M﹣PAB,M﹣PBC,M﹣PAC的体积,若f(M)=(1,x,4y),且+≥8恒成立,则正实数a的最小值是()A.2﹣B.C.D.6﹣4【考点】与二面角有关的立体几何综合题.【专题】空间位置关系与距离.【分析】先根据三棱锥的特点求出其体积,然后利用基本不等式求出的最小值,建立关于a的不等关系,解之即可.【解答】解:∵PA、PB、PC两两垂直,且PA=3.PB=2,PC=2.∴VP﹣ABC=×3×2×2=2=1+x+4y,即x+4y=1,∵+≥8恒成立,∴+=(+)(x+4y)=1+≥1+4a+4≥8,解得a≥∴正实数a的最小值为.故选:C.【点评】本题主要考查了棱锥的体积,同时考查了基本不等式的运用,是题意新颖的一道题目,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上11.已知实数x,y满足约束条件(k为常数),若目标函数z=2x+y的最大值是,则实数k的值是﹣3.【考点】简单线性规划.【专题】不等式的解法及应用.【分析】我们可以画出满足条件(k为常数)的可行域,根据目标函数的解析式形式,分析取得最优解的点的坐标,然后根据分析列出一个含参数k的方程组,消参后即可得到k的取值.【解答】解:画出x,y满足的(k为常数)可行域如图:由于目标函数z=2x+y的最大值是,可得直线y=2x+1与直线2x+y=的交点A(,),使目标函数z=2x+y取得最大值,将x=,y=,代入x+y+k=0得:k=﹣3,故答案为:﹣3.【点评】如果约束条件中含有参数,我们可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.12.已知某几何体的三视图如图所示,则该几何体的体积是.【考点】由三视图求面积、体积.【专题】计算题;空间位置关系与距离.【分析】几何体是三棱锥,结合直观图判断相关几何量的数据,把数据代入棱锥的体积公式计算.【解答】解:由三视图知:几何体是三棱锥,如图:其中SA⊥平面ABC,SA=2,BC=4,AD⊥BC,AD=2,∴几何体的体积V=×××2×2=.故答案为:.【点评】本题考查了由三视图求几何体的体积,根据三视图判断几何体的结构特征及数据所对应的几何量是解题的关键.13.已知双曲线的右焦点为F,若以F为圆心的圆x2+y2﹣6x+5=0与此双曲线的渐近线相切,则该双曲线的离心率为.【考点】双曲线的简单性质;直线与圆的位置关系.【专题】圆锥曲线的定义、性质与方程.【分析】通过配方先求出圆心和半径,圆x2+y2﹣6x+5=0与此双曲线的渐近线相切,利用点到直线的距离公式即可得到d=r,解出即可.【解答】解:圆x2+y2﹣6x+5=0化为(x﹣3)2+y2=4,∴圆心F(3,0),半径r=2.∵以F为圆心的圆x2+y2﹣6x+5=0与此双曲线的渐近线相切,∴,4a2=5b2,即.∴该双曲线的离心率e===.故答案为.【点评】熟练掌握配方法、圆的标准方程、双曲线的渐近线方程、圆与直线相切的性质、点到直线的距离公式是解题的关键.14.已知角φ的终边经过点P(1,﹣1),点A(x1,y1),B(x2,y2)是函数f(x)=sin(ωx+φ)(ω>0)图象上的任意两点,若|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值为,则的值是﹣.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;任意角的三角函数的定义.【专题】三角函数的图像与性质.【分析】由任意角的三角函数的定义求得tanφ=﹣1,故可以取φ=﹣.再根据函数的图象的相邻的2条对称轴间的距离等于,故函数的周期为,由此求得ω的值,从而求得函数的解析式,即可求得的值.【解答】解:∵角φ的终边经过点P(1,﹣1),∴角φ的终边在第四象限,且tanφ=﹣1,故可以取φ=﹣.点A(x1,y1),B(x2,y2)是函数f(x)=sin(ωx+φ)(ω>0)图象上的任意两点,若|f(x1)﹣f(x2)|=2时,|x1﹣x2|的最小值为,则函数的图象的相邻的2条对称轴间的距离等于,故函数的周期为,故=,解得ω=3.故函数的解析式为f(x)=sin(3x﹣),∴=sin()=sin=﹣sin=﹣,故答案为﹣.【点评】本题主要考查任意角的三角函数的定义,由函数y=Asin(ωx+φ)的部分图象求解析式,属于中档题.15.已知定义在R上的偶函数满足:f(x+4)=f(x)+f (2),且当x∈[0,2]时,y=f(x)单调递减,给出以下四个命题:①f(2)=0;②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递增;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.上述命题中所有正确命题的序号为①②④.【考点】命题的真假判断与应用;函数单调性的判断与证明;函数奇偶性的性质.【专题】计算题.【分析】根据f(x)是定义在R上的偶函数,及在f(x+4)=f(x)+f(2),中令x=﹣2可得f(﹣2)=f(2)=0,从而有f(x+4)=f(x),故得函数f(x)是周期为4的周期函数,再结合y=f(x)单调递减、奇偶性画出函数f(x)的简图,最后利用从图中可以得出正确的结论.【解答】解:∵f(x)是定义在R上的偶函数,∴f(﹣x)=f(x),可得f(﹣2)=f(2),在f(x+4)=f(x)+f(2),中令x=﹣2得f(2)=f(﹣2)+f(2),∴f(﹣2)=f(2)=0,∴f(x+4)=f(x),∴函数f(x)是周期为4的周期函数,又当x∈[0,2]时,y=f(x)单调递减,结合函数的奇偶性画出函数f(x)的简图,如图所示.从图中可以得出:②x=﹣4为函数y=f(x)图象的一条对称轴;③函数y=f(x)在[8,10]单调递减;④若方程f(x)=m在[﹣6,﹣2]上的两根为x1,x2,则x1+x2=﹣8.故答案为:①②④.【点评】本题考查函数奇偶性的性质,函数奇偶性的判断,考查学生的综合分析与转化能力,属于难题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,已知(sinA+sinB+sinC)(sinB+sinC﹣sinA)=3sinBsinC.(1)求角A的值;(2)求的最大值.【考点】三角函数中的恒等变换应用.【专题】计算题;三角函数的求值.【分析】(1)利用正弦定理将(sinA+sinB+sinC)(sinB+sinC﹣sinA)=3sinBsinC转化为边之间的关系,再由余弦定理即可求得求角A的值;(2)利用(1)中角A=60°,可求得B=120°﹣C,利用三角函数中的恒等变换可将sinB﹣cosC转化为关于角C的关系式,从而可求得其最大值.【解答】解:(1)∵(sinA+sinB+sinC)(sinB+sinC﹣sinA)=3sinBsinC,∴(sinB+sinC)2﹣sin2A=3sinBsinC,∴sin2B+sin2C﹣sin2A﹣sinBsinC=0,由正弦定理===2R得:b2+c2﹣a2﹣bc=0,又由余弦定理知,a2=b2+c2﹣2bccosA,∴cosA=,角A=60°.(2)∵角A=60°,在△ABC中,A+B+C=180°,∴B=120°﹣C,∴sinB﹣cosC=sin(120°﹣C)﹣cosC=(cosC﹣(﹣)sinC)﹣cosC=cosC+sinC=sin(C+),∵C∈(0°,120°),∴=1,即sinB﹣cosC得最大值为1.【点评】本题考查三角函数中的恒等变换应用,着重考查正弦定理与余弦定理,突出三角函数中的恒等变换及诱导公式的应用,属于中档题.17.如图,斜三棱柱ABC﹣A1B1C1,已知侧面BB1C1C与底面ABC垂直且∠BCA=90°,∠B1BC=60°,BC=BB1=2,若二面角A﹣B1B﹣C为30°,(Ⅰ)证明:面AA1C1C⊥平面BB1C1C及求AB1与平面AA1C1C所成角的正切值;(Ⅱ)在平面AA1B1B内找一点P,使三棱锥P﹣BB1C为正三棱锥,并求此时的值.【考点】棱柱、棱锥、棱台的体积;平面与平面垂直的性质.【专题】综合题.【分析】(1)根据条件和线面垂直的判定定理得:AC⊥面BB1C1C,再由面面垂直的判断定理证明出面BB1C1C⊥面AA1C1C,再根据条件和线面垂直、面面垂直分别做出二面角A﹣BB1﹣C的平面角、AB1与面AA1C1C所成的线面角,并分别证明和计算求解;(2)根据正三棱锥的定义和正三角形重心的性质,找到点P,再由条件求出PP1和点E到平面AA1C1C的距离,代入三棱锥的体积公式求出两个棱锥的体积比值.【解答】解:(Ⅰ)∵面BB1C1C⊥面ABC,且面BB1C1C∩面ABC=BC,AC⊥BC,∴AC⊥面BB1C1C,则面BB1C1C⊥面AA1C1C取BB1中点E,连接CE,AE,在△CBB1中,BB1=CB=2,∠CBB1=60°∴△CBB1是正三角形,∴CE⊥BB1,又∵AC⊥面BB1C1C,且BB1⊂面BB1C1C,∴BB1⊥AE,即∠CEA即为二面角A﹣BB1﹣C的平面角为30°,∵AC⊥面BB1C1C,∴AC⊥CE,在Rt△ECA中,CE=,∴AC=CEtan30°=1,取C1C中点D,连接AD,B1D,∵△CBB1是正三角形,且BB1=CB=2,∴B1D⊥C1C,∵AC⊥面BB1C1C,∴AC⊥面B1D,∵C1C∩AC=C,∴B1D⊥面AA1C1C,即∠B1DA即AB1与面AA1C1C所成的线面角,则tan∠DAB1=,…(Ⅱ)在CE上取点P1,使,∵CE是△BB1C的中线,∴P1是△BB1C的重心,在△ECA中,过P1作P1P∥CA交AE于P,∵AC⊥面BB1C1C,P1P∥CA,∴PP1⊥面CBB1,即P点在平面CBB1上的射影是△BCB1的中心,该点即为所求,且,∴PP1=,∵B1D∥CE,且B1D=CE=,∴==2.…【点评】本题考查了线面垂直的判定定理、面面垂直的判断定理和性质定理的综合应用,二面角、线面角的求解构成,以及三棱锥的体积公式的应用,难度很大.18.在某次三星杯围棋决赛中,小将A以2:0战胜上届冠军B,引起B所在国围棋界一片哗然!已知三星杯决赛采用的是三局两胜制,若选手A在一次对决中战胜选手B的概率为.(Ⅰ)求选手A战胜选手B的概率;(Ⅱ)若赛制改为七局四胜制,即选手A战胜选手B所需局数为X,求X的期望.【考点】离散型随机变量的期望与方差;互斥事件的概率加法公式.【专题】计算题;概率与统计.【分析】(Ⅰ)依题意,选手A战胜选手B分两种情况:2:0和2:1,即可求选手A战胜选手B的概率;(Ⅱ)依题意,X可取4,5,6,7,此时选手A战胜选手B的比分为4:0,4:1,4:2,4:3,利用概率公式求出每一个可能值下的概率,再利用期望定义求解.【解答】解:(Ⅰ)依题意,选手A战胜选手B分两种情况:2:0和2:1所以所求概率为0.42+×0.6×0.42=0.352.(Ⅱ)依题意,X可取4,5,6,7,此时选手A战胜选手B的比分为4:0,4:1,4:2,4:3,对应的情况分别为0.44,,×0.62×0.44,×0.63×0.44,其和为11.32×0.44,所以P(X=4)=,P(X=5)=,P(X=6)=,P(X=7)= 故X的期望为4×+5×+6×+7×=4.834.【点评】此题考查了学生的理解题意的能力,还考查了独立事件同时发生的概率公式及离散型随机变量的定义及分布列,还考查了离散型随机变量的期望.19.如图,在平面直角坐标系xOy中,椭圆的焦距为2,且过点.(1)求椭圆E的方程;(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.【考点】直线与圆锥曲线的关系;直线的一般式方程与直线的垂直关系;椭圆的标准方程.【专题】圆锥曲线的定义、性质与方程.【分析】(1)利用椭圆的标准方程及参数a,b,c之间的关系即可求出;(2)(i)利用斜率的计算公式、三点共线的斜率性质、点在椭圆上的性质即可证明;(ii)利用直线的点斜式及其(i)的有关结论即可证明.【解答】解:(1)由题意得2c=2,∴c=1,又,a2=b2+1.消去a可得,2b4﹣5b2﹣3=0,解得b2=3或(舍去),则a2=4,∴椭圆E的方程为.(2)(ⅰ)设P(x1,y1)(y1≠0),M(2,y0),则,,∵A,P,M三点共线,∴,∴,∵P(x1,y1)在椭圆上,∴,故为定值.(ⅱ)直线BP的斜率为,直线m的斜率为,则直线m的方程为,====,即.所以直线m过定点(﹣1,0).【点评】熟练掌握椭圆的定义及其性质、斜率的计算公式及其直线的点斜式是解题的关键.善于利用已经证明过的结论是解题的技巧.20.已知函数f(x)=ax+x2﹣xlna(a>0,a≠1).(1)求函数f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)单调增区间;(3)若存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1(e是自然对数的底数),求实数a的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】导数的综合应用.【分析】(1)先求函数的导函数f′(x),再求所求切线的斜率即f′(0),由于切点为(0,0),故由点斜式即可得所求切线的方程;(2)先求原函数的导数得:f'(x)=axlna+2x﹣lna=2x+(ax﹣1)lna,再对a进行讨论,得到f'(x)>0,从而函数f(x)在(0,+∞)上单调递增.(3)f(x)的最大值减去f(x)的最小值大于或等于e ﹣1,由单调性知,f(x)的最大值是f(1)或f(﹣1),最小值f(0)=1,由f(1)﹣f(﹣1)的单调性,判断f(1)与f(﹣1)的大小关系,再由f(x)的最大值减去最小值f(0)大于或等于e﹣1求出a的取值范围.【解答】解:(1)∵f(x)=ax+x2﹣xlna,∴f′(x)=axlna+2x﹣lna,∴f′(0)=0,f(0)=1即函数f(x)图象在点(0,1)处的切线斜率为0,∴图象在点(0,f(0))处的切线方程为y=1;(2)由于f'(x)=axlna+2x﹣lna=2x+(ax﹣1)lna>0 ①当a>1,y=2x单调递增,lna>0,所以y=(ax﹣1)lna单调递增,故y=2x+(ax﹣1)lna单调递增,∴2x+(ax﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;②当0<a<1,y=2x单调递增,lna<0,所以y=(ax﹣1)lna单调递增,故y=2x+(ax﹣1)lna单调递增,∴2x+(ax﹣1)lna>2×0+(a0﹣1)lna=0,即f'(x)>f'(0),所以x>0故函数f(x)在(0,+∞)上单调递增;综上,函数f(x)单调增区间(0,+∞);(3)因为存在x1,x2∈[﹣1,1],使得|f(x1)﹣f(x2)|≥e﹣1,所以当x∈[﹣1,1]时,|(f(x))max﹣(f(x))min| =(f(x))max﹣(f(x))min≥e﹣1,由(2)知,f(x)在[﹣1,0]上递减,在[0,1]上递增,所以当x∈[﹣1,1]时,(f(x))min=f(0)=1,(f(x))max=max{f(﹣1),f(1)},而f(1)﹣f(﹣1)=(a+1﹣lna)﹣(+1+lna)=a﹣﹣2lna,记g(t)=t﹣﹣2lnt(t>0),因为g′(t)=1+﹣=(﹣1)2≥0(当t=1时取等号),所以g(t)=t﹣﹣2lnt在t∈(0,+∞)上单调递增,而g(1)=0,所以当t>1时,g(t)>0;当0<t<1时,g(t)<0,也就是当a>1时,f(1)>f(﹣1);当0<a<1时,f(1)<f(﹣1)①当a>1时,由f(1)﹣f(0)≥e﹣1⇒a﹣lna≥e ﹣1⇒a≥e,②当0<a<1时,由f(﹣1)﹣f(0)≥e﹣1⇒+lna≥e﹣1⇒0<a≤,综上知,所求a的取值范围为a∈(0,]∪[e,+∞).【点评】本题考查了基本函数导数公式,导数的几何意义,利用导数研究函数的单调性及利用导数求闭区间上函数的最值.属于中档题.21.设Sn是各项均为非零实数的数列的前n项和,给出如下两个命题上:命题p:是等差数列;命题q:等式对任意n(n∈N*)恒成立,其中k,b是常数.(1)若p是q的充分条件,求k,b的值;(2)对于(1)中的k与b,问p是否为q的必要条件,请说明理由;(3)若p为真命题,对于给定的正整数n(n>1)和正数M,数列满足条件,试求Sn的最大值.【考点】等差数列与等比数列的综合;数列的求和.【专题】综合题;等差数列与等比数列.【分析】(1)设的公差为d,利用裂项法原等式可化为(﹣+﹣+…+﹣)=,整理可得(k﹣1)n+b=0对于n∈N*恒成立,从而可求得k,b的值;(2)当k=1,b=0时,假设p是q的必要条件,分当n=1时,当n≥2时,当n≥3时讨论即可判断结论是否正确;(3)由+≤M,可设a1=rcosθ,an+1=rsinθ,代入求和公式Sn=,利用三角函数的有界性即可求得其最大值.【解答】解:(1)设的公差为d,则原等式可化为(﹣+﹣+…+﹣)=,所以=,即(k﹣1)n+b=0对于n∈N*恒成立,所以k=1,b=0.…(2)当k=1,b=0时,假设p是q的必要条件,即“若++…+=①对于任意的n(n∈N*)恒成立,则为等差数列”.当n=1时,=显然成立.…当n≥2时,若++…+=②,由①﹣②得,=(﹣),即nan﹣(n﹣1)an+1=a1③.当n=2时,a1+a3=2a2,即a1、a2、a3成等差数列,当n≥3时,(n﹣1)an﹣1﹣(n﹣2)an=a1④,即2an=an ﹣1+an+1.所以为等差数列,即p是q的必要条件.…(3)由+≤M,可设a1=rcosθ,an+1=rsinθ,所以r≤.设的公差为d,则an+1﹣a1=nd=rsinθ﹣rcosθ,所以d=,所以an=rsinθ﹣,Sn==r≤=,所以Sn的最大值为…【点评】本题考查等差数列与等比数列的综合,突出考查“充分、必要条件”在数列中的综合应用,判断(2)中“p是否为q的必要条件”是难点,考查参数方程及三角函数的有界性,属于难题.。
2015年中考模拟名校联考数学试题及答案
2015年中考 模拟名校联考数 学 试 题(满分:150分 考试时间:120分钟)2015、3、12一、选择题(每小题3分,共18分)1.2-的相反数是…………………………………………………………………………( )A .2-B .2C .12D .12-2.下列各式的运算正确的是………………………………………………………………( )A .9)3(2-=-B .2323-=÷- C .523)(a a = D .65632a a a =⋅3.如图是由4个相同的正方体组成的几何体,则这个几何体的俯视图是………………( )4.已知3x =是关于x 的方程062=-+kx x 的一个根,则另一个根是………………( )A .=x 1B .=x -1C .=x -2D .=x 25.四边形ABCD 中,AC 、BD 相交于点O ,不能判定它是平行四边形的条件是………( )A .AB ∥CD ,AD ∥BC B .AO =CO ,BO =DOC .AB ∥CD ,AD =BC D .AB =CD ,AD =BC 6.如图,光点(0,1)处沿如图所示方向发射一束光,每当碰到镜面时会反射(反射时反射角等于入射角),当光线第30次碰到镜面时的坐标为( ) A .(30,3) B .(88,3) C .(30,0) D .(88,0)二、填空题(每题4分,共40分).7.据统计今年我省约有255000人报名参加高考,请将数据255000用科学记数法表示: .8.不等式组⎩⎨⎧>-≤-06312x x的解集是 .9.分解因式:=-362a .10.今年体育学业考试立定跳远项目测试时,某记录员记录一组五位同学的成绩(单位:米)分别是:1.3,2.2,2.0,1.8,1.6 ,则这组数据的中位数是 .A B C D11.正n 边形的一个外角等于40°.则n = .12. 计算:=-+-ab bb a a . 13.如图,AC ⊥BC 于点C ,DE ⊥BE 于点E ,BC 平分∠ABE ,∠BDE =58°.则∠A = 度. 14.如图,在菱形ABCD 中,2=AB ,︒=∠60A .则菱形ABCD 的面积=S .15.小李和小陆沿同一条路行驶到B 地,他们离出发地的距离S 和行驶时间t 之间的函数关系的图象如图所示.已知小李离出发地的距离S 和行驶时间t 之间的函数关系为102+=x y .则①小陆离出发地的距离S 和行驶时间t 之间的函数关系为: ;②他们相遇的时间=t .16.如图,矩形ABCD 中,3=AB ,4=BC ,点E 是BC 边上一点,把B ∠沿AE 折叠,使点B 落在点'B 处,则①='B A ;②当△'CEB 为直角三角形时,BE = .三、解答题 (共92分 ).17.(10分)计算:)2()2()2014(21852501-⨯-+--÷-⨯-π18.(10分)先化简,再求值:)42(2)2(2+-+x x ,其中2=x .20.(10分)如图,四边形ABCD 中,AD =CD ,连结BD .若不增加任何字母与辅助线,要使△ABD ≌△CBD ,则还需增加一个条件是 ,并给予证明.D(第13图)A B (第16图) E A B C D B '(第14图)BC D )(第15图)21.(9分)记者小张要了解市民对“雾霾天气产生的主要成因”的看法,随机调查了某区的部分市民,并绘制了如下不完整的统计图表.请根据提供的信息解答下列问题: (1)填空:m = ,n = ;(2)请求扇形统计图中E 选项所占的百分比为 ;(3)若该区人口约有40万人,请估计其中持D 选项“观点”的市民人数有多少人?22.(9分)一个不透明的口袋里装有分别标有汉字“石”、“化”、“新”、“城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从袋中任取一个球,球上的汉字刚好是“新”的概率为多少?(2)小明从袋中任取一球后,再任取一球,请用树状图或用列表的方法求出取出的两个球上的汉字能组成“石化”或“新城”的概率.23.(9分)如图,正方形ABCD 的顶点B 与⊙O 的圆心O 的重合,点A 在⊙O 上,CD =6cm .将C A BDE 00200010正方形ABCD 向右平移运动,当点B 到达⊙O 上时运动停止.设正方形ABCD 与⊙O 重叠部分(阴影部分)的面积为S . (1)请写出⊙O 半径的长度;(2)试写出正方形ABCD 平移运动过程中,S 的大小变化规律;(3)在平移过程中,AD 、BC 与⊙O 的交点分别为E 、F .当EF =6cm 时,求S24.(9分)“六一”节前,A 商店购进一批儿童衣服.若每件60元卖出,盈利率为20%. (1)请求出这批儿童的进价;(2)A 商店在试销售这种衣服时,决定每件售价不低于进价,又不高于每件70元.已知试销中销售量y (件)与销售单价x (元)的关系为100+-=x y .问当销售单价定为多少元时,商店销售这种衣服的利润最大?(00100⨯-=进价进价售价盈利率)25.(13分)如图,一次函数b ax y +=与反比例函数xy 2-=的图象交于A 、B 两点.过 A 点分别作x 轴、y 轴的垂线,E 、F 为垂足. (1)请直接写出矩形AEOF 的面积;(2)设一次函数b ax y +=与x 轴、y 轴的交点分别为C 、D ,当OE OC 3=时.①试求OCD ∆的面积;A②当1=OE 时,以BD 为直径作⊙N ,与x 轴相交于P 点,请求出P 点的坐标.26.(13分)如图,抛物线1C :42++=bx ax y 的图象与两坐标轴分别交于C B A 、、三点,经过点E (0,2-)的直线l :()02≠-=k kx y 与x 轴、抛物线的对称轴1-=x 交于点F . (1)填空:=OC ;=OF ;(2)连结AE .若OAE ∆∽OEF ∆,请求出抛物线1C 的解析式;(3)在(2)的条件下,把抛物线1C 向右平移1个单位后,向下平移29个单位得到新的抛物线2C .再将直线l 绕着点E 进行旋转,当直线l 与抛物线2C 相交于不同的两个交点N M 、时,过点P (0,2)、点M 与点N 分别作直线PN PM 、.猜想:直线PN PM 、、CE 之间的位置关系(除相交于点P 外).并请说明理由.数学参考答案及评分标准一、选择题(每小题3分,共21分)1.B ; 2.D ; 3.A ; 4.D ; 5.C ; 6.C ; 7.B ; 二、填空题(每小题4分,共40分)8.51055.2⨯; 9.x ≤2; 10.)6)(6(-+x x ; 11.1.8; 12.9; 13.1; 14.58°; 15.32; 16.①x y 10=,②45; 17.①3;②332或. 三、解答题(共89分)18.(9分)解:原式=4135+-- ……………………………………………………………………………8分=5 ………………………………………………………………………………………9分 19.(9分)解:原式84442--++=x x x ………………………………………………………………4分42-=x …………………………………………………………………………………6分当x =2时,4)2(422-=-x ………………………………………………………………7分=2- ………………………………………………………………………9分 20.(9分)解:答案不惟一,如:AB =DC 或∠ADB =∠BDC 等.证明: AB=BC ………………………………………………………………………………………3分在△ABD 和△CBD 中,⎪⎩⎪⎨⎧===BD BD CB AB CD AD ……………………………………………………………………………6分∴△ABD ≌△CBD(SAS) ………………………………………………………………………9分21.(9分)解:(1)填空:m =40,n =100…………………………………………………………………4分(2)8020%400÷=E 组所占百分比是604000.1515%÷==…………………………………………………………6分(3)持D 选项“观点”的市民所占的百分比为:1204000.330%÷==…………………………7分 ∴12304000=⨯ (万人)答:估计该区持D 选项“观点”的市民人数12万人.………………………………………………9分22.(9分)解:(1)任取一个球是“新”的概率为41; …………………………………………………3分(2)方法一(画树状图法):∵12种可能的结果中,能组成“石化”、“新城”各有2种可能. ……………………………… 8分∴31124=∴取出的两个球上的汉字恰能组成“石化”或“新城”的概率是31. …………………………… 9分 23.(9分)解:(1) ⊙O 半径cm OA 6=……………………………………………………………………… 3分(2) 正方形ABCD 平移运动过程中,S 的大小变化规律是先变大后变小……………… 5分(3) ∵cm EF cm OF cm OE 6,6,6===∴是等边三角形OEF ∆ ……………………………………………………………… 6分∴︒=∠60EOF ………………………………………………………………………… 7分第1颗球 第2颗球 ……………… 3分 ……………… 7分 石 化 新 城 化 新 城 石 新 城 石 化 城 石 化 新∴︒⨯⨯+⨯=60sin 66213606602πS ………………………………………………… 8分396+=π即 当6=EF 时, 396+=πS(2cm )………………………………………………… 9分24.(9分)解:(1)设购进这种衣服每件需a 元,依题意得:6020%a a -= ……………………………………………………………………………………2分解得:50a = ………………………………………………………………………………………3分答:购进这种衣服每件需50元 ……………………………………………………………………4分 (2)利润为(50)(100)x x ω=--+ ………………………………………………………………………6分21505000x x =-+-=2(75)625x --+ ……………………………………………………………………………7分 ∵函数2(75)625x ω=--+的图像开口向下,对称轴为直线75x =,∴当50x ≤≤时,ω随x的增大而增大,………………………………………………………………8分∴当70x =时,600ω=最大.答:当销售单价定为70元时,商店销售这种衣服的利润最大……………………………………………9分 25.(13分)解:(1)2 …………………………………………………………………………………… 3分(2)设OE= m (m >0).则E(-m ,0), C(3m ,0), A(-mAE ⊥x 轴、AF ⊥y 轴 ∴∠AEC =∠DOC =90°又∵∠ACE =∠DCO∴△AEC ∽△DOC ∴CE OCAE OD = ∴mAE CE OC OD 43=⋅= ……………………………………………………………………………7分∴294332121=⋅⋅=⋅=∆m m OD OC S OCD …………………………………………………………8分 (3)过点N 作NG ⊥y 轴于点G ,过点B 作BH ⊥y 轴于点H ,过点N 作NM ⊥x 轴于点M .当1=OE 时,得A (-1,2), C (3,0)代入b ax y +=,得⎩⎨⎧=+=+-032b a b a解得 21-=a ,23=b∴2321+-=x y ………………………………………………………………………………………9分由A 、B 两点在一次函数b ax y +=与反比例函数y 2-=的图象上xx 22321-=+- 解得11-=x ,42=x 当11-=x 时,21=y当42=x 时,212-=y∴点,21-)则直线2321+-=x y 与y 轴于点D (0,23)∴在BDH Rt ∆中,52422222=+=+=BH DH BD ∵NG ⊥y 轴,BH ⊥y 轴 ∴NG ∥BH又∵DN =BN∴DG =HG , 221==BH NG ∵点N 在直线2321+-=x y∴点)21,2(N ……………………………………………………………………………………………11分∴PMN Rt ∆中,419222=-=MN NP PM219=PM ……………………………………………………………………………………………12分∴P 点的坐标为( 2192-,0)或(2219+,0)……………………………………………13分26. (13分)解:(1)4;1……………………………………………………………………………… 2分(2)∵E (0,2-),()02≠-=k kx y 与抛物线的对称轴1-=x 交于点F∴OE =2,OF =1. …………………………………………………………………………………… 3分∵OAE ∆∽OEF ∆ OFOEOE OA = ………………………………………………………………………………………… 4分∴OA =4 即A (-4,0),B (2,0) …………………………………………………………………………… 5分代入42++=bx ax y 可解得1,21-=-=b a ………………………………………………… 6分∴4212+--=x x y …………………………………………………………………………… 7分(3)直线PN PM 、关于直线CE 成轴对称。
合肥工业大学2014-2015第一学期《高等数学》试卷A试题
一、填空题(每小题3分,共15分) 1、极限2sin 0lim(13)x x x →+= .2、设2arctan()y x x =,则y ' . 3、设()f x 的一个原函数为2x e-,则()________xf x dx '=⎰.4、曲线xe y =过原点的切线方程为____________. 5、曲线2r eθ=从0=θ至2πθ=的一段弧长=l ____________.二、选择题(每小题3分,共15分) 1、当1x →-时,31x +与3(1)x +为()(A) 高阶无穷小 (B) 低阶无穷小(C) 等价无穷小 (D) 同阶但不等价无穷小2、若()f x 的导函数为sin ,x 则()f x 的一个原函数是( )(A) 1sin x + (B) 1sin x - (C) 1cos x + (D) 1cos x -3、设()f x 在0x =处连续,且0()lim 11cos x f x x→=-,则在点0x =处( ). (A) (0)f '不存在 (B) (0)0f '=,且(0)f 为()f x 的极小值 (C) (0)f '存在,且(0)0f '≠ (D) (0)0f '=,且(0)f 为()f x 的极大值4、下列广义积分发散的是( )(A)1+∞⎰(B)111sin dx x -⎰ (C)221ln dx x x+∞⎰(D) 2x xe dx +∞--∞⎰5、曲线2211x x e y e--+=-()(A) 没有渐近线 (B) 仅有水平渐近线 (C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线三、计算下列各题(每小题6分,共36分)1、222111lim ()2n n n n n n πππ→∞++++++L . 2、)cos 1)(1(1cossin 3lim 20x e x x x xx +---→. 3、求sin (0)xy xx =>的导数()y x '. 4、已知()2ln 1,arctan ,x t y t ⎧=+⎪⎨=⎪⎩求22d d ,d d y yx x . 5、2arctan x dx x ⎰. 6、设2ln(1)0()101x x f x x x +≥⎧⎪=⎨<⎪+⎩,求20(1)f x dx -⎰. 四、(本题满分10分)设 ()()22021cos , 0, 1, 0,1cos d , 0,xx x x f x x t t x x ⎧-<⎪⎪==⎨⎪⎪>⎩⎰ 讨论()f x 在0x =处的连续性和可导性.五、(本题满分10分)设曲线2xe y =,切线2ey x =及y 轴围成的平面图形为D ,求D 绕y 轴旋转一周所得旋转体体积V .六、(本题满分8分)证明不等式:0>x 时,有11ln ≥+xx . 七、(本题满分6分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,0)(≠x f (01x <<),且0)1()0(==f f ,证明:在)1,0(内至少存在一点ξ,使()2015()f f ξξ'=.。
【真卷】2015年安徽省名校联盟高考数学一模试卷(理科)及答案
C.{x|0<x≤1} 等于( C. ﹣ i )
2. (5 分)已知 i 是虚数单位,则复数 A.﹣ + i B.﹣ + i
D. ﹣ i
3. (5 分)某校在暑假组织社会实践活动,将 8 名高一年级学生,平均分配甲、 乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑 特长学生也不能分给同一个公司,则不同的分配方案有( A.36 种 B.38 种 C.108 种 ) D.114 种
C.y=± x
D.y=±
x
二、填空题(共 5 小题,每小题 5 分,满分 25 分) 11. (5 分)已知 α 为钝角,sin( 12. (5 分)直线 l: +α)= ,则 sin( ﹣α)= . (θ 为参数)
(t 为参数)与圆 C: .
相交所得的弦长的取值范围是
13. (5 分)设等差数列{an}的前 n 项和为 Sn,若﹣1<a3<1,0<a6<3,则 S9 的取值范围是 .
C2:y=x2﹣b 截得的线段长等于椭圆 C1 的短轴长.C2 与 y 轴的交点为 M,过 点 M 的两条互相垂直的直线 l1,l2 分别交抛物线于 A、B 两点,交椭圆于 D、 E 两点, (Ⅰ)求 C1、C2 的方程; (Ⅱ)记△MAB,△MDE 的面积分别为 S1、S2,若 ,求直线 AB 的方程.
19. (13 分)如图,四面体 ABCD 中,平面 ABC⊥平面 BCD,AC=AB,CB=
第 4 页(共 22 页)
CD,∠DCB=120°,点 E 在 BD 上,且 CE=DE. (Ⅰ)求证:AB⊥CE; (Ⅱ)若 AC=CE,求二面角 A﹣CD﹣B 的余弦值.
20. (12 分) 已知数列{an}满足 a1= , an+1=an+ 有 (Ⅰ) < ;
2015年考研数学一真题与答案解析
2021 年全国硕士研究生入学统一考试数学〔一〕试题一、选择题:18小题,每题4分,共32分。
以下每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上。
(1)设函数f(x)在,内连续,其中二阶导数f(x)的图形如下列图,那么曲线yf(x)的拐点的个数为()(A)0(B)1(C)2(D)3【答案】〔C〕【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号。
因此,由f(x)的图形可得,曲线yf(x)存在两个拐点.应选〔C〕.(2)设112xxye(x)e是二阶常系数非齐次线性微分方程23xyaybyce的一个特解,那么()(A)a3,b2,c1(B)a3,b2,c1(C)a3,b2,c1(D)a3,b2,c1【答案】〔A〕【分析】此题考察二阶常系数非齐次线性微分方程的反问题——解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和构造来求解,也就是下面演示的解法.【解析】由题意可知,122xe、13xe为二阶常系数齐次微分方程yayby0的解,所以2,1为特征方程20rarb的根,从而a(12)3,b122,从而原方程变为x y3y2yce,再将特解xyxe代入得c1.应选〔A〕(3)假设级数a条件收敛,那么x3与x3依次为幂级数nn na(x1)的()nn1n1(A)收敛点,收敛点(B)收敛点,发散点(C)发散点,收敛点(D)发散点,发散点【答案】〔B〕【分析】此题考察幂级数收敛半径、收敛区间,幂级数的性质。
【解析】因为a条件收敛,即x2为幂级数nna(x1)的条件收敛点,所以nna(x1)nn1n1n1的收敛半径为1,收敛区间为(0,2)。
而幂级数逐项求导不改变收敛区间,故nna(x1)的收nn1敛区间还是(0,2)。
因而x3与x3依次为幂级数nna(x1)的收敛点,发散点.应选〔B〕。
2015数学一模拟题3试卷
共创(合肥工业大学)考研辅导中心绝密★启用前2015年全国硕士研究生入学统一考试数学一(模拟3)考生注意:本试卷共二十三题,满分150分,考试时间为3小时. 一、选择题:(1)~(8)小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的括号里.得分评卷人(1)曲线12111x x y e x -+=+的渐近线有()。
(A )1条 (B )2条 (C )3条(D )条4(2) 设(),()f x f x '为已知的连续函数,则方程()()()y f x y f x f x '''+=的解是( ) (A )()()1f x y f x ce-=-+; (B )()()1f x y f x ce -=++;(C )()()f x y f x c ce-=-+;(D)()()f x y f x ce-=+(3) 设0(0)(0)0,(0)1,()()d ()xk f f f g x f t t h x '''=====⎰,cx ,若时,则( ).0x →()~()g x h x (A )1,2c k ==2 (B )1,3c k ==2 (C )1,3c k 3== (D )1,36c k ==(4) 若2322(,),(,)2x 4f x x x f x x x x '==-,则2(,)y f x x '= ()(A ) 3x x + (B ) 2224x x + (C )25x x + (D ) 222x x +(5) 设A,B,C 是n 阶矩阵,并满足ABAC=E,则下列结论中不正确的是(A ) .TTTTA B A C E = (B) BAC CAB = (C) 2BA C E= (D) ACAB CABA =(6) 设A 是矩阵, ,则下列结论不正确的是( )m n ⨯()r A n = (A) 若,AB O =则B O = (B) 对任意矩阵有B ,()()r AB r B =(C) 存在使得B ,BA E = (E) 对任意矩阵有B ,()()r BA r B =(7)设随机变量(1)X E ,记{}max ,1=Y X ,则()E Y =().(A) 1(B) 1 (C) 11e -+1e--(D) 1e-(8)设12,,,n X X X 是来自总体2(,)X N μσ 的样本,为使Y k 成为总体方差的无偏估计,则应选为( ). (A) (B) (C) (D)1211(n i i i XX -+==-∑)k (A)11n - (B)1n(C)12(1)n - (D)12n祝:中国最强售后群 3600多名考生取得成功共创(合肥工业大学)考研辅导中心二、填空题:(9)~(14)小题,每小题4分,共24分.把答案填在题中的横线上. (9)ln 2ln lim 3ln n nn n n n n →∞-⎛⎫=⎪+⎝⎭。
2015数学(理)全国I大联考(一)附参考答案
全国大联考2015届高三第一次联考·数学试卷考生注意:1.本试卷共150分.考试时间120分钟.2.答题前,考生务必将密封线内的项目填写清楚.3.请将各题答案填在试卷后面的答题卷上.4.交卷时,可根据需要在加注“”标志的夹缝处进行裁剪.5.本试卷主要考试内容:集合与常用逻辑用语、函数与导数.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={x∈Z|-3<x<2},N={x∈Z|-1≤x≤3},则M∩N等于A.{0,1}B.{-1,0,1,2}C.{0,1,2}D.{-1,0,1}2.命题p:∀x∈R,x2+1≥1,则p是A.∀x∈R,x2+1<1B.∃x0∈R,+1≤1C.∃x0∈R,+1<1D.∃x0∈R,+1≥13.下列函数中,是偶函数且在(0,+∞)上为增函数的是A.y=cos xB.y=-x2+1C.y=log2|x|D.y=e x-e-x4.一元二次方程ax2+2x+1=0(a∈R且a≠0)有一正根和一负根的充分不必要条件是A.a<0B.a>0C.a<-1D.a>15.已知函数f(x)=ln(ax-1)的导函数是f'(x),且f'(2)=2,则实数a的值为A.B. C. D.16.已知a=0.-,b=sin ,c=log2.51.7,则a,b,c的大小关系是A.a<b<cB.c<b<aC.c<a<bD.b<c<a17.函数f(x)=x+sin x在x=处的切线与两坐标轴围成的三角形的面积为A.B. C. D.+18.设函数y=x3与y=()x-2的图象的交点为(x0,y0),且x0∈(m,m+1),m∈Z,则m的值为A.1B.2C.3D.49.已知“f(x)=xln x在定义域内单调递增”的否定为p,“已知f(x),g(x)的定义域都是R,若f(x),g(x)都是奇函数,则y=f(x)+g(x)是奇函数”的否命题为q,则下列命题为真命题的是A.p∨qB.p∧qC.p∧qD.p10.设函数y=f(x)在全体实数集R内有定义,对于给定的正数k,定义函数f k(x)=取函数f(x)=a-|x|(0<a<1),当k=时,函数f k(x)的值域为A.(0,a)∪(,+∞)B.[a,1]∪(,+∞)C.(0,a)∪[1,)D.(0,a]∪[1,)11.函数f(x)=的图象可能是A.(1)(3)B.(1)(2)(4)C.(2)(3)(4)D.(1)(2)(3)(4)12.设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-log2x]=3,若x0是方程f(x)-f'(x)=2的一个解,则x0可能存在的区间是A.(0,1)B.(1,2)C.(2,3)D.(3,4)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卷中的横线上.13.已知函数f(x)=则f[f(2)]=▲.214.(x+)dx=▲.15.已知函数f(x)=2ax2-ax+c的部分图象如图所示,且f'(x)是f(x)的导函数,若函数y=f'(x)的零点为m,则-m a+c=▲.16.给出下列命题:①若y=x3+ax在R上单调递增,则a≥0;②若p是q的充分必要条件,则p可能是q的必要不充分条件;③若函数f(x)是奇函数,则函数f(x+1)的图象关于点A(1,0)对称;④已知函数y=f(x)满足f(x+2)=2f(x),且当x∈[-1,1]时,f(x)=-|x|+1,则当x∈(0,5]时,函数y=f(x)与g(x)=lg x的图象有4个交点.其中真命题的序号为▲.(把所有真命题的序号都填上)三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)已知函数f(x)=-的定义域为集合A,函数g(x)=lg(-x2+2x+m)的定义域为集合B.(1)当m=3时,求A∩(R B);(2)若A∩B={x|-1<x<4},求实数m的值.18.(本小题满分12分)已知p:函数f(x)=(x-2)e x(e是自然对数的底数)在(m,2m)上是单调函数;q:“x2-2x≤0”是“x2-2mx-3m2≤0”的充分不必要条件.若p∨q为真,p∧q为假,求实数m的取值范围.319.(本小题满分12分)对于函数f(x),若在定义域内存在实数x,满足f(-x)=-f(x),则称f(x)为“局部奇函数”. (1)已知二次函数f(x)=ax2+2bx-4a(a≠0,b∈R),试判断f(x)是否为“局部奇函数”,并说明理由;(2)设f(x)=2x+m是定义在[-1,1]上的“局部奇函数”,求实数m的取值范围.20.(本小题满分12分)已知函数f(x)=(其中e是自然对数的底数,常数a>0).-(1)当a=1时,求曲线在(0,f(0))处的切线方程;(2)若存在实数x∈(a,2],使得不等式f(x)≤e2成立,求a的取值范围.21.(本小题满分12分)在2014年南京“青奥会”来临之际,某礼品加工厂计划加工一套“青奥会”纪念礼品投入市场.已知每加工一套这样的纪念品的原料成本为30元,且每套礼品的加工费用为6元,若该纪念品投放市场后,每套礼品出厂的价格为x(60≤x≤100)元,根据市场调查可知,这种纪念品的日销售量q与成反比,当每套礼品的出厂价为81元时,日销量为200个.(1)若每天加工产品个数根据销量而定,使得每天加工的产品恰好销售完,求该礼品加工厂生产这套“青奥会”纪念品每日获得的利润y元与该纪念品出厂价格x元的函数关系;(2)若在某一段时间为了增加销量,计划将每套纪念品在每天获得最大利润的基础上降低t元进行销售,但保证每日的利润不低于9000元,求t的取值范围.22.(本小题满分12分)已知函数f(x)=ln x-ax2-bx(a,b∈R,且a≠0).(1)当b=2时,若函数f(x)存在单调递减区间,求a的取值范围;(2)当a>0且2a+b=1时,讨论函数f(x)的零点个数.42015届高三第一次联考·数学试卷参考答案1.D∵M={-2,-1,0,1},N={-1,0,1,2,3},∴M∩N={-1,0,1}.2.C全称命题的否定是特称命题,所以p是∃x0∈R,+1<1,故选C.3.C函数y=cos x为偶函数,但是在(0,+∞)上不单调;y=-x2+1为偶函数,在(0,+∞)上为减函数;y=e x-e-x 为奇函数;只有函数y=log2|x|符合题意.4.C设x1,x2是方程两个根,则满足题意的充要条件是x1·x2=<0,则由选项知充分不必要条件是a<-1.5.B由f(x)=ln(ax-1)可得f'(x)=-,由f'(2)=2可得-=2,解之得a=.6.D由指数函数y=0.6x的图象可知,当x<0时,y>1,∴0.->1;由于函数y=sin x在(0,)上单调递增,又0<<<,∴sin <sin =;函数y=log2.5x在(0,+∞)上单调递增,又<1.7<2.5,∴=log2.5<log2.51.7<1,∴b<c<a.7.A f(x)=x+sin x,则f'(x)=1+cos x,则f'()=1,而f()=+1,故切线方程为y-(+1)=x-.令x=0,可得y=1;令y=0,可得x=-1.故切线与两坐标轴围成的三角形面积为×1×1=.8.A令f(x)=x3-()x-2,易得函数f(x)在R上单调递增.又函数y=x3与y=()x-2的图象的交点为(x0,y0),所以f(x0)=0,即x0为f(x)的零点.又f(1)=1-()1-2=-1<0,f(2)=8-()2-2=7>0,且函数f(x)在R上单调递增,所以x0∈(1,2),所以m=1.9.C f(x)=xln x的定义域为(0,+∞),且f'(x)=ln x+1,当0<x<时,f'(x)<0,故f(x)在定义域上不是单调递增函数,故p是真命题;命题q为“已知f(x),g(x)的定义域都是R,若f(x),g(x)不都是奇函数,则5y=f(x)+g(x)不是奇函数”,这是假命题,例如f(x)=x+x2,g(x)=x-x2都不是奇函数,但y=f(x)+g(x)=2x是奇函数,故正确的命题为p∧q.10.B依题意,当k=时,由a-|x|≤(0<a<1),得|x|≤1,此时f k(x)==a|x|∈[a,1];由a-|x|>(0<a<1),得|x|>1,此时f k(x)=f(x)=a-|x|∈(,+∞).因此,当k=时,函数f k(x)的值域为[a,1]∪(,+∞).11.C取a=0,可知(4)正确;取a<0,可知(3)正确;取a>0,可知(2)正确;无论a取何值都无法作出(1).12.B由题易知f(x)-log2x为常数,令f(x)-log2x=k(常数),则f(x)=log2x+k,由f[f(x)-log2x]=3得f(k)=3.又f(k)=log2k+k=3,所以k=2,所以f(x)=log2x+2.再用零点存在定理验证可知选B.13.2因为2≤2,所以f[f(2)]=f(4)==2.14.(e2+1) (x+)dx=(x2+ln x)=e2+ln e-=(e2+1).15.-由图象可知f(1)=0,即2a-a+c=0,即a+c=0,又f'(x)=4ax-a,由图可知a<0,故y=f'(x)的零点为m=,故-m a+c=(-m0=--1=()-2-1=3-2-1=-.16.①④对于①,由y=x3+ax可得y'=3x2+a,要使函数单调递增,只需y'=3x2+a≥0恒成立,故a≥-3x2,可得a≥0,故①正确;对于②,若p是q的充分必要条件,则p一定是q的充分必要条件,故②错误;对于③,根据图象平移的“左加右减”的规律可知,f(x+1)的图象是由f(x)的图象向左平移了一个单位长度,故对称中心为(-1,0);对于④,作出函数图象可知在x∈(0,5]上,f(x)与g(x)有4个交点,则④正确.17.解:(1)由已知可得A={x|-1<x≤5}.当m=3时,B={x|-1<x<3},则R B={x|x≤-1或x≥3},∴A∩(R B)={x|3≤x≤5}. .............................................................. 5分(2)∵A={x|-1<x≤5},A∩B={x|-1<x<4},故4是方程-x2+2x+m=0的一个根,∴-42+2×4+m=0,解得m=8.此时B={x|-2<x<4},符合题意,因此实数m的值为8. ....................................... 10分18.解:由f(x)=(x-2)e x,可得f'(x)=(x-1)e x.由f'(x)>0,可得x>1,即f(x)在(1,+∞)上单调递增;由f'(x)<0,可得x<1,即f(x)在(-∞,1)上单调递减.若p为真,则或解之得0<m≤或m≥1. .................................. 4分6若q为真,分m大于0与小于0,可得m≥或m≤-2. ........................................ 6分由p∨q为真,p∧q为假,可得p,q一真一假.若p假q真,则m∈(-∞,-2]∪[,+∞)且m∈(-∞,0]∪(,1),即实数m的取值范围是(-∞,-2]∪[,1);.................................................. 8分若p真q假,则m∈(-2,)且m∈(0,]∪[1,+∞),即实数m的取值范围是(0,]. ................... 10分综上可知,若p∨q为真,p∧q为假,则实数m的取值范围是(-∞,-2]∪(0,]∪[,1). .............. 12分19.解:(1)f(x)为“局部奇函数”等价于关于x的方程f(-x)+f(x)=0有解,即f(x)+f(-x)=0⇒2a(x2-4)=0,........................................................... 3分解得x=±2,∴f(x)为“局部奇函数”.................................................... 5分(2)当f(x)=2x+m时,f(x)+f(-x)=0可转化为2x+2-x+2m=0,∵f(x)的定义域为[-1,1],∴方程2x+2-x+2m=0在[-1,1]上有解,令t=2x∈[,2],则-2m=t+.∵g(t)=t+在[,1)上递减,在[1,2]上递增,∴g(t)∈[2,],∴-2m∈[2,],即m∈[-,-1]. ........................................................... 12分20.解:(1)f(x)的定义域为{x|x≠a}.当a=1时,f(x)=-,f'(x)=--,∴f(0)=-1,f'(0)=-2,∴曲线在(0,f(0))处的切线方程为2x+y+1=0. .............................................. 4分(2)f'(x)=--,令f'(x)=0,得x=a+1,∴f(x)在(-∞,a),(a,a+1)上递减,在(a+1,+∞)上递增. ........................................ 6分若存在实数x∈(a,2],使不等式f(x)≤e2成立,只需在x∈(a,2]上,f(x)min≤e2成立.①当a+1≤2,即0<a≤1时,f(x)min=f(a+1)=e a+1≤e2,∴0<a≤1符合条件.................................................................. 10分②当a+1>2,即1<a<2时,f(x)min=f(2)=-≤e2,解得a≤1,又1<a<2,∴a∈⌀.综上,a的取值范围是(0,1]. ........................................................... 12分721.解:(1)根据条件可设q=,由条件可知,当x=81时,q=200,即200=,k=1800,∴q=,∴生产这套“青奥会”纪念品每日可以获得的利润为y=(x-30-6)·=(60≤x≤100). ........ 4分(2)由(1)可知y=,∴y'=--=.显然,当x>0时,y'>0,∴函数在[60,100]上单调递增,∴当x=100时,每日获得的利润最大,且最大值为y=-=11520(元),........................................................... 8分∴每套纪念品的价格降低t元后,每套纪念品的价格为100-t元,可以获得的利润为y=-,由条件只需-≥9000,令-=m,则可得m2-5m-36≥0,结合m>0可解得m≥9,即-≥9,解之得t≤19,结合条件可知t 的取值范围是(0,19]. ................................................................ 12分22.解:(1)当b=2时,函数f(x)=ln x-ax2-2x,其定义域是(0,+∞),∴f'(x)=-2ax-2=--.∵函数f(x)存在单调递减区间,∴f'(x)=--≤0在x∈(0,+∞)上有无穷多个解.∴关于x的不等式2ax2+2x-1≥0在x∈(0,+∞)上有无穷多个解.①当a>0时,函数y=2ax2+2x-1的图象为开口向上的抛物线,关于x的不等式2ax2+2x-1≥0在x∈(0,+∞)上总有无穷多个解.②当a<0时,函数y=2ax2+2x-1的图象为开口向下的抛物线,其对称轴为x=->0.要使关于x的不等式2ax2+2x-1≥0在x∈(0,+∞)上有无穷多个解.必须Δ=4+8a>0,解得a>-,此时-<a<0.综上所述,a的取值范围为(-,0)∪(0,+∞). ............................................... 6分(2)当b=1-2a时,函数f(x)=ln x-ax2-(1-2a)x,其定义域是(0,+∞),∴f'(x)=-2ax-(1-2a)=---,令f'(x)=0,得8--=0,即2ax2+(1-2a)x-1=0,(x-1)(2ax+1)=0,∵x>0,a>0,则2ax+1>0,∴x=1,当0<x<1时,f'(x)>0;当x>1时,f'(x)<0.∴函数f(x)在区间(0,1)上单调递增,在区间(1,+∞)上单调递减.∴当x=1时,函数f(x)取得最大值,其值为f(1)=ln 1-a-b=-a-1+2a=a-1.①当a=1时,f(1)=0,若x≠1,则f(x)<f(1),即f(x)<0.此时,函数f(x)与x轴只有一个交点,故函数f(x)只有一个零点;②当a>1时,f(1)>0,又f()=ln-a·()2-(1-2a)×=-a(-1)2-<0,f(e)=ln e-ae2-(1-2a)e=1-ea(e-2)-e<0,函数f(x)与x轴有两个交点,故函数f(x)有两个零点;③当0<a<1时,f(1)<0,函数f(x)与x轴没有交点,故函数f(x)没有零点. ....................... 12分9。
安徽省合肥市2015届高三第四次三校联考数学文试题 Word版含答案
2015届高三第四次月考三校联考试卷文科数学时间:120分钟 满分:150分一、选择题(本大题共10小题,每小题5分,共50分,请将答案填涂在答题卡上) 1.集合{}{}1,0,1,,x A B y y e x A =-==∈,则A B ⋂=( ) A .{}0 B .{}1 C .{}0,1 D .{}1,0,1-2.已知命题:,cos p x R x a ∃∈≥,下列的取值能使“p ⌝”命题是真命题的是( ) A .R a ∈ B .2=a C .1=a D .0=a 3. 若x -=+===2,2),1,(),2,1(,且n m ⊥,则=x ( ) A .2 B .72 C .2-或72D .21或27-4. 直线1+=kx y 与曲线b ax x y ++=3相切于点)3,1(A ,则b a +2的值为( ) A .2B .1-C .1D .2-5. 已知函数)(x f y =的定义域为{}0|≠x x ,满足0)()(=-+x f x f ,当0>x 时,1ln )(+-=x x x f ,则函数)(x f y =的大致图象是( )6. 下列命题中错误..的是( ) A .如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC .如果平面α⊥平面γ,平面α⊥平面γ,l αβ⋂=,那么直线l ⊥平面γD .如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β7. 若正项数列{}n a 满足1111n n ga ga +=+,且2014201020022001=+++a a a ,则202020122011a a a +++ 的值为( )A .10102014⋅ B .11102014⋅ C .10102015⋅ D .11102015⋅8. 若函数)3sin()(πω+=x x f 的图象向右平移3π个单位后与原函数的图象关于x 轴对称,则ω的最小正值是( )A .12B .1C .2D .3 9. 已知函数c x x x f +-=2)(2,记))(()(),()(11x f f x f x f x f n n ==+(n ∈N *),若函数x x f y n -=)(不存在零点,则c 的取值范围是( )A .c <41 B .c ≥43 C .c > 49 D .c ≤4910.已知函数()x f x e =,对于曲线()y f x =上横坐标成等差数列的三个点A 、B 、C ,给出以下四个判断:①△ABC 一定是钝角三角形;②△ABC 可能是直角三角形;③△ABC 可能是等腰三角形;④△ABC 不可能是等腰三角形.其中正确的判断是( ) A .①③ B .①④ C .②③ D .②④二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卷相应位置) 11. 已知11{|2}82x A x -=<<,2{|log (2)1}B x x =-<,则A B =________________. 12. 已知锐角,αβ满足3tan tan()ααβ=+,则tan β的最大值为_______________.13. 正项数列{}n a 满足:()222*121171,2,2,2,n n n a a a a a n N n a +-===+∈≥=则________.14. 定义在R 上的偶函数()f x ,对任意实数x 都有(2)()f x f x +=,当[01]x ,∈时,2()f x x =,若在区间[]1,3-内,函数()()g x f x kx k =--有4个零点,则实数k 的取值范围是_______________.15. 一个几何体的三视图如图所示,则该几何体的体积为_______________.2015届高三第四次月考三校联考试卷文科数学答题卷时间:120分钟 满分:150分二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卷相应位置) 11. ________________. 12. ________________. 13. ________________. 14. ________________. 15. ________________.三、解答题:本大题共6小题,共75分16.(本题12分)已知函数2()22cos 1,f x x x x =--∈R .(Ⅰ) 求函数()f x 的最小正周期和最小值;(Ⅱ) 在ABC ∆中,,,A B C 的对边分别为,,a b c ,若()0,sin 2sin c f C B A ===,求,a b 的值.17. (本题12分)已知等差数列{}n a 满足:37a =,5726a a +=,{}n a 的前n 项和为n S . (Ⅰ) 求n a 及n S ; (Ⅱ) 求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T .18. (本题12分)已知函数32111)(xx x x f ++=(Ⅰ) 求)(x f y =在⎥⎦⎤⎢⎣⎡--214,上的最值; (Ⅱ) 若0≥a ,求3221)(x ax x x g ++=的极值点.19. (本题12分)如图所示,矩形ABCD 中,AD ⊥平面ABE ,2AE EB BC ===,F 为CE 上的点,且BF ⊥平面ACE (Ⅰ) 求证:AE ⊥平面BCE ;(Ⅱ) 求证://AE 平面BFD ; (Ⅲ) 求三棱锥C BGF -的体积.GBAD CFE20. (本题13分)已知函数x x a x f ln )1()(2++=. (Ⅰ) 讨论函数)(x f 的单调性;(Ⅱ) 若对任意)2,4(--∈a 及]3,1[∈x 时,恒有()2a x f ma >-成立,求实数m 的取值范围 .21. (本题14分)已知函数()21f x x =-,设曲线()y f x =在点(),n n x y 处的切线与x 轴的交点为()1,0n x +,其中1x 为正实数 (Ⅰ) 用n x 表示1n x +; (Ⅱ) 12x =,若1lg1n n n x a x +=-,试证明数列{}n a 为等比数列,并求数列{}n a 的通项公式; (Ⅲ) 若数列{}n b 的前n 项和()12n n n S +=,记数列{}n n b a ⋅的前n 项和为n T ,求n T .2015届高三第四次月考三校联考试卷(文科数学)答案二、填空题(本大题共5小题,每小题5分,共25分,请将答案填在答题卷相应位置) 11. {}41|<<x x 12.33 13. 19 14. ⎥⎦⎤ ⎝⎛41,0 15. 12三、解答题:本大题共6小题,共75分16.(本题12分) 解:(Ⅰ)2)62sin(21)12(cos 2sin 31cos 22sin 3)(2--=-+-=--=πx x x x x x f所以)(x f 的最小正周期ππ==22T ,最小值为4- (Ⅱ)因为02)62sin(2)(=--=πC C f ,所以1)62sin(=-πC又)611,6(62),,0(ππππ-∈-∈C C ,所以262ππ=-C ,得:3π=C 因为A B sin 2sin =,由正弦定理得:a b 2=由余弦定理得:2222222324cos 2a a a a C ab b a c =-+=-+= 又3=c ,所以2,1==b a17. (本题12分)解:(Ⅰ)设等差数列{}n a 的公差为d ,因为37a =,5726a a +=,所以有112721026a d a d +=⎧⎨+=⎩,解得13a =,2d =,所以32(1)21n a n n =+-=+;2(1)3222n n n S n n n -=+⨯=+. (Ⅱ)由(Ⅰ)可知,22n S n n =+,所以2111111()2(2)22n S n n n n n n ===-+++, 所以123111111n n nT S S S S S -=+++++L 1111111111(1)232435112n n n n =-+-+-++-+--++ 111112212n n ⎛⎫=+-- ⎪++⎝⎭31114212n n ⎛⎫=-+ ⎪++⎝⎭. 18. (本题12分)解:(Ⅰ)2423()0'x x f x x ++=-<恒成立,故()f x 在⎥⎦⎤⎢⎣⎡--214,递减令13,0)('-<<->x x f ;令+∞<<<<--<<-∞>x x x x f 0,01,3,0)(' 所以最大值为13(4)=64f --,最小值为1()=62f -- (Ⅱ) 2443()'x x a g x x ++=-,令a x x u 342++=,a 1216-=∆ 当34≥a 时,01216≤-=∆a ,0)('≤x g ,所以)(x g y =没有极值点; 当340<<a 时,a x 3421---=03422<-+-=a x减区间:)0,(),,(21x x -∞,增区间:),(21x x ,()g x 有极小值点1x ,极大值点2x 19. (本题12分)(Ⅰ)证明:∵AD ⊥平面ABE ,//AD BC ,∴BC ⊥平面ABE ,则AE BC ⊥ 又BF ⊥平面ACE ,则AE BF ⊥AE ∴⊥平面BCE(Ⅱ)由题意可得G 是AC 的中点,连接FGBF ⊥平面ACE ,则CE BF ⊥,而BC BE =,F ∴是EC 中点,在AEC ∆中,//FG AE ,//AE ∴平面BFD(Ⅲ)//AE 平面BFD ,//AE FG ∴,而AE ∴⊥平面BCE ,FG ∴⊥平面BCFG 是AC 中点,F 是CE 中点,//FG AE ∴且112FG AE ==, BF ⊥平面ACE ,BF CE ∴⊥,Rt BCE ∴∆中,12BF CE CF ===1CFB S ∆∴==1133C BG F G BC F CFB V V S FG --∆∴==⋅⋅=20.(本题13分)解: (Ⅰ))0(12212)(>+=+='x xax x ax x f ①当0≥a 时,恒有0)(>'x f ,则)(x f 在),0(+∞上是增函数;②当0<a 时,当a x 210-<<时,0)(>'x f ,则)(x f 在)21,0(a-上是增函数; GBAD CFE当a x 21->时,0)(<'x f ,则)(x f 在),21(+∞-a上是减函数 综上,当0≥a 时,)(x f 在),0(+∞上是增函数;当0<a 时,)(x f 在)21,0(a-上是增函数,)(x f 在),21(+∞-a上是减函数 (Ⅱ)由题意知对任意()2,4--∈a 及[]3,1∈x 时, 恒有()2a x f ma >-成立,等价于()max 2x f a ma >- 因为()2,4--∈a ,所以1212142<<-<a 由(Ⅰ)知:当()2,4--∈a 时,)(x f 在[]3,1上是减函数所以a f x f 2)1()(max == 所以a a ma 22>-,即 2+<a m因为()2,4--∈a ,所以022<+<-a 所以实数m 的取值范围为2-≤m21.(本题14分)解:(Ⅰ)由题可得()2f x x '=,所以在曲线上点()(),n n x f x 处的切线方程为()()()n n n y f x f x x x '-=-,即()()212n n n y x x x x --=-令0y =,得()()2112n n n n x x x x +--=-,即2112n n n x x x ++=由题意得0n x ≠,所以2112n n nx x x ++=(Ⅱ)因为2112n n n x x x ++=,所以2211221111221lg lg lg 112112n n n n n n n n n n nx x x x x a x x x x x ++++++++===+--+- ()()2211lg 2lg211nn n n n x x a x x ++===--即12n n a a +=,所以数列{}n a 为等比数列故11111112lg22lg31n n n n x a a x ---+==⋅=- (Ⅲ)当1n =时,111b S ==当2n ≥时,()()11122n n n n n n n b S S n -+-=-=-= 所以数列{}n b 的通项公式为n b n =,故数列{}n n b a ⋅的通项公式为3lg 21-⋅=⋅n n n n b a()21122322lg 3n n T n -∴=+⨯+⨯++⋅ ①①2⨯得:()2212322lg 3n n T n =⨯+⨯++⋅ ② ①-②得:()2112222lg 3n n n T n --=++++-⋅故 ()221lg 3n n n T n =⋅-+。
合肥工业大学近两年高数上试卷
2014-2015试卷 一、填空题1、极限2sin 0lim(13)x x x →+=. 2、设2arctan()y x x =,则y ′ . 3、设()f x 的一个原函数为2x e−,则()________xf x dx ′=∫.4、曲线xe y =过原点的切线方程为____________. 5、曲线2r e θ=从0=θ至2πθ=的一段弧长=l ____________.二、选择题 1、当1x →−时,31x+与3(1)x +为()(A) 高阶无穷小 (B) 低阶无穷小(C) 等价无穷小 (D) 同阶但不等价无穷小2、若()f x 的导函数为sin ,x 则()f x 的一个原函数是( )(A) 1sin x + (B) 1sin x − (C) 1cos x + (D) 1cos x −3、设()f x 在0x =处连续,且0()lim11cos x f x x→=−,则在点0x =处( ). (A) (0)f ′不存在 (B) (0)0f ′=,且(0)f 为()f x 的极小值 (C) (0)f ′存在,且(0)0f ′≠ (D) (0)0f ′=,且(0)f 为()f x 的极大值4、下列广义积分发散的是( )(A)1∫(B)111sin dx x −∫ (C)221ln dx x x+∞∫(D) 2x xe dx +∞−−∞∫5、曲线2211x x e y e−−+=−()(A) 没有渐近线 (B) 仅有水平渐近线 (C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线三、计算下列各题(每小题6分,共36分)1、222111lim ()2n n n n n n πππ→∞++++++ . 2、)cos 1)(1(1cossin 3lim 20x e x x x xx +−−−→.3、求sin (0)xy xx =>的导数()y x ′.4、已知()2ln 1,arctan ,x t y t =+ = 求22d d ,d d y y x x .5、2arctan x dx x∫. 6、设2ln(1)0()101x x f x x x+≥= < + ,求20(1)f x dx −∫. 四、(本题满分10分)设 ()()22021cos , 0, 1, 0,1cos d , 0,xx x x f x x t t x x −<== > ∫ 讨论()f x 在0x =处的连续性和可导性.五、(本题满分10分)设曲线2xe y =,切线2ey x =及y 轴围成的平面图形为D ,求D 绕y 轴旋转一周所得旋转体体积V .六、(本题满分8分)证明不等式:0>x 时,有11ln ≥+xx . 七、(本题满分6分)设函数)(x f 在]1,0[上连续,在)1,0(内可导,0)(≠x f (01x <<),且0)1()0(==f f ,证明:在)1,0(内至少存在一点ξ,使()2015()f f ξξ′=2013-2014高数试卷一、填空题 1、极限0_________x →=.2、曲线221x xy y −+=在点(1,1)处的切线方程为 .3、设曲线()y f x =过点(0,0),且当x 在0x =处取得增量x ∆时相应的函数值增量3()(0)y x o x x ∆=∆+∆∆→,则2lim ()________n nf n→∞=.4、设连续函数()f x 满足1()2()d f x x f x x =,则1()d __________f x x =∫.5、积分121[ln(]_________x x −+=∫.二、选择题1、设lim n n x →∞与lim n n y →∞均不存在,那么下列命题正确的是( ).(A )若lim()n n n x y →∞+不存在,则lim()n n n x y →∞−必也不存在(B )若lim()n n n x y →∞+存在,则lim()n n n x y →∞−必也存在(C )lim()n n n x y →∞+与lim()n n n x y →∞−均不存在(D )lim()n n n x y →∞+与lim()n n n x y →∞−中只要有一个存在,另一个必定不存在2、已知0x =是函数ln()()sin a x f x x bx+=−的可去间断点,则常数,a b 的取值情况为( ).(A )1,a b =为任意实数 (B )1,b a =为任意实数 (C )1,a b ≠为任意实数 (D )=1,1a b ≠3、设21sin ,0()0,0,x x f x xx ≠= = 那么()f x 在0x =处( ). (A) 不连续 (B) 连续但不可导 (C) 可导但()f x ′不连续 (D) 可导且()f x ′也连续 4、极限22212lim()12n nn n n n→∞++⋅⋅⋅+=+++( ). (A) 14 (B) 13 (C) 12(D) 15、设2sin 1x +为)(x f 的一个原函数,则()d x f x x ′=∫( ).(A) 22cos x x C + (B) 2222cos sin x x x C −+ (C) 2222sin cos x x x C −+ (D) 222cos sin x x x C ++三、计算下列各题(每小题5分,共30分)1、011lim()ln(1)x x x →−+.2、设,0,(),0,x e x f x x x ≤= >求()21sin 0lim()d xxx f t t+−∞→∫.3、设y =d y 及y ′′.4、设()y y x =由220ln(1),d 1,1u t x te y u u =+ −= +∫确定,求1d d t y x =.5、x .6、设20sin ()d 1cos xt f x t t=+∫,求220()d 1()f x x f x π′+∫. 四、(本题满分8分)已知0x →时,22cos sin ()x x A Bx Cx o x +=+++,其中2()o x 是2x 的高阶无穷小,求常数,,A B C 的值.五、(本题满分10分)设2()1xf x x x =+−,(1)求函数()f x 的单调区间,(2)求函数()f x 的极值.六、(本题满分10分)如图所示1D 是由抛物线22y x x =−与直线(0)y kx k =>围成的图形,2D 是由曲线22y x x =−与直线y kx =及x 轴围成的图形,设1D 的面积为1S ,2D 的面积为2S ,若12:1:7S S =. (1)求常数k 的值;(2)求1D 绕x 轴旋转一周所得到的旋转体的体积x V 及2D 绕y 轴旋转一周所得到的旋转体的体积y V . 七、(本题满分6分)证明:0x ≠时,2cos 12x x >−.八、(本题满分6分)设()f x 在[]0,1上连续,在()0,1内可导,且1(0)(1)0,(0)()02f f f f ><.证明:(1)在()0,1内存在两个不同的点,ξη,使得()()0f f ξη==成立;(2)(0,1)ζ∃∈使得()()0f f ζζζ′−=成立。
2014-2015第一学期五校联考高二理数试题
2014—2015学年度第一学期期末模块考试五校联考高二年级理科数学试题 2015年1月注意事项:1. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑。
2. 非选择题必须用黑色字迹的钢笔或者签字笔作答,答案必须写在答题卷各题目的指定区域内。
一、选择题(共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项正确) 1.设集合1122M x x ⎧⎫=-<<⎨⎬⎩⎭,{}2N x x x =≤,则M N = ( )A.1[0,)2B.1(,1]2-C.1[1,)2-D.1(,0]2-2.18cos22-π=( )A.21 B. 21- C. 22 D. 22- 3.已知等比数列}{n a 的通项公式为)(3*2N n a n n ∈=+,则该数列的公比是( ) A.91 B. 9 C. 31D. 34.“a b <”是“22log log a b <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件5. 如果一个几何体的三视图如图所示(长度单位: cm), 则此几何体的表面积是( )A. 2(20cm +B. 221cmC. 2(24cm +D. 224cm6. 圆0114822=+--+y x y x 与圆03222=-++y y x 的位置关系为( ) A .相交 B .外切 C . 内切 D .外离 7.下列有关命题的叙述错误的是 ( ) A .对于命题22:,10,10P x R x x P x ∃∈++<⌝∀∈++≥则为:x R,x B .若“P 且Q ”为假命题,则P ,Q 均为假命题C .“2x >”是2"320"x x -+>的充分不必要条件D .命题“若2320,1x x x -+==则”的逆否命题为“若21,320x x x ≠-+≠则”8.实数y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥--≤-+033012032y x y x y x ,则x y -的最大值为( )A. 1B.0C.-1D. -39.如图,在铁路建设中,需要确定隧道两端的距离(单位:百米),已测得隧道两端点B A ,到某一点C 的距离分别为5和8,060=∠ACB ,则B A ,之间的距离为( )A. 7B. 12910C. 6D. 810.阅读如图所示的程序框图,输出的结果S 的值为( )A .0BCD.二.填空题(共4小题,每小题5分,共20分,把答案填在答题卷相应位置.) 11. 如图所示,向量,,a b c 在由单位长度为1 的正方形组成的网格中则=+⋅)(c b a ▲ .12.双曲线191622=-y x 的两条渐近线的方程为 ▲ . 13.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是 ▲ .14. 已知等比数列}{n a 中,0>n a 且满足5672a a a +=,若存在两项n m a a ,12a =,则nm 91+的最小值为 ▲ .三.解答题(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤).15. (本小题满分12分)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos B =35.(Ⅰ)若b =4,求sin A 的值;(Ⅱ)若△ABC 的面积S △ABC =4,求b ,c 的值.16.(本小题满分13分)对某校高二年级学生参加社区服务次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:(Ⅰ)求出表中,M p 及图中a 的值;(Ⅱ)若该校高二学生有240人,试估计该校高二学生参加社区服务的次数在区间[10, 15) 内的人数; (Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25, 30)内的概率.17.(本小题满分13分)已知数列{}n a 的前n 项和为n S ,22n n S a =-. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设2log n n b a =, n c =11n n b b +,记数列{}n c 的前n 项和n T ,求 n T .18.(本小题满分14分)a在直角梯形ABCD 中,AD //BC ,22BC AD AB ===90ABC ∠=,如图(1).把ABD ∆沿BD 翻折,使得平面BCD ABD 平面⊥.(Ⅰ)求证:CD AB ⊥;(Ⅱ)若点M 为线段BC 中点,求点M 到平面ACD 的距离;(Ⅲ)在线段BC 上是否存在点N ,使得AN 与平面ACD 所成角为60?若存在,求出BCBN的值;若不存在,说明理由.19.(本小题满分14分)设动点(,)(0)P x y y ≥到定点F (0,1)的距离比它到x 轴的距离大1,记点P 的轨迹为曲线C . (Ⅰ)求点P 的轨迹方程;(Ⅱ)设圆M 过A (0,2),且圆心M 在曲线C 上,EG 是圆M 在x 轴上截得的弦,试探究当M 运动时,弦长EG 是否为定值?为什么?20.(本小题满分14分)设函数0,1)(,2)(2>--=-=a x ax x g a x x x f (Ⅰ)当8=a 时,求)(x f 在区间]5,3[上的值域;(Ⅱ)若21),2,1](5,3[],5,3[x x i x t i ≠=∈∃∈∀且,使)()(t g x f i =,求实数a 的取值范围.2014—2015学年度第一学期期末模块考试五校联考高二年级理科数学试题答案一、 选择题ACDBA BBBAA二、 11. 3 12. x y 43±= 13.3 14. 4三、 填空题15. (本小题满分12分)解:(1)∵cos B =35>0,且0<B <π,∴sin B =1-cos 2B =45 ……………2分由正弦定理得a sin A =bsin B , …………………4分∴sin A =a sin B b =2×454=25. …………………6分(2)∵S △ABC =12ac sin B =4,∴12×2×c ×45=4,∴c =5. …………………8分 由余弦定理得b 2=a 2+c 2-2ac cos B , …………………10分∴b =a 2+c 2-2ac cos B=22+52-2×2×5×35=17. …………………12分16.(本小题满分13分)解:(Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,100.25M=,所以40M =. ……2分 因为频数之和为40,所以1024240m +++=,4m =. ……………3分40.1040m p M ===. ……………………………………………………4分 因为a 是对应分组[15,20)的频率与组距的商,所以240.12405a ==⨯. ………6分 (Ⅱ)因为该校高二学生有240人,分组[10,15)内的频率是0.25,所以估计该校高二学生参加社区服务的次数在此区间内的人数为60人. ………8分 (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有26m +=人, ………9分 设在区间[20,25)内的人为{}1234,,,a a a a ,在区间[25,30)内的人为{}12,b b . 则任选2人共有1213141112232421(,),(,),(,),(,),(,),(,),(,),(,),a a a a a a a b a b a a a a a b2234(,),(,)a b a a ,3132414212(,),(,),(,),(,),(,)a b a b a b a b b b 15种情况, ……11分而两人都在[25,30)内只能是()12,b b 一种, ………………………12分所以所求概率为11411515P =-=. ………………………13分 17.(本小题满分13分)解:(1)当1=n 时,21=a , ………………………1分 当2≥n 时,)22(2211---=-=--n n n n n a a S S a ………………………3分 即:21=-n na a , ………………………5分 ∴数列{}n a 为以2为公比的等比数列 n n a 2=∴ ………………………7分(2)由b n =log 2a n 得b n =log 22n =n , ………………………9分则c n =11n n b b +=()11n n +=1n -11n +, ………………………11分 T n =1-12+12-13+…+1n -11n +=1-11n +=1n n +. ………………………13分 18、(本题满分14分)解:(Ⅰ)由已知条件可得2,2,BD CD ==BD CD ⊥.………………………………2分 ∵平面BCD ABD 平面⊥,BD BCD ABD =⋂平面平面. ∴BD A CD 平面⊥.……………………………………3分又∵ABD AB 平面⊂,∴CD AB ⊥.……………………………………4分 (Ⅱ)以点D 为原点,BD 所在的直线为x 轴,DC 所在的直线为y 轴,建立空间直角坐标系,如图.由已知可得(1,0,1),(2,0,0),(0,2,0),(0,0,0),A B C D (1,1,0)M .∴(0,2,0),(1,0,1)CD AD =-=--.……………6分 设平面ACD 的法向量为),,(z y x =, 则⊥⊥,∴0,0,y x z=⎧⎨+=⎩y2=4y令1x =,得平面ACD 的一个法向量为)1,0,1(-=n , …………8分 ∴点M 到平面ACD 的距离22||==n d .…………………………………10分 (Ⅲ)假设在线段BC 上存在点N ,使得AN 与平面ACD 所成角为60.………11分 设,01BN BC λλ=<<,则(22,2,0)N λλ-,∴(12,2,1)AN λλ=--, 又∵平面ACD 的法向量)1,0,1(-=且直线AN 与平面ACD 所成角为60, ∴03sin 602AN nAN n⋅==……………………………………………13分 可得01282=-+λλ,∴2141-==λλ或(舍去). 综上,在线段BC 上存在点N ,使AN 与平面ACD 所成角为60,此时41=BC BN .……14分 19.(本小题满分14分)解:(1)依题意知,动点P 到定点F (0,1)的距离等于P 到直线1y =-的距离,曲线C 是以原点为顶点,F (0,1)为焦点的抛物线………………………………2分∵12p= ∴2p =∴ 曲线C 方程是24x y =………4分(2)设圆的圆心为(,)M a b ,∵圆M 过A (0,2),∴圆的方程为 2222()()(2)x a y b a b -+-=+- ……………………………7分令0y =得:22440x ax b -+-=设圆与x 轴的两交点分别为1(,0)x ,2(,0)x方法1:不妨设12x x >,由求根公式得1x =,222a x =…………………………10分∴12x x -=又∵点(,)M a b 在抛物线24x y =上,∴24a b =,∴124x x -==,即EG =4-------------------------------------13分 ∴当M 运动时,弦长EG 为定值4…………………………………………………14分 〔方法2:∵122x x a +=,1244x x b ⋅=- ∴22121212()()4x x x x x x -=+-⋅22(2)4(44)41616a b a b =--=-+又∵点(,)M a b 在抛物线24x y =上,∴24a b =, ∴ 212()16x x -= 124x x -=∴当M 运动时,弦长EG 为定值4. 20. (本小题满分14分)……8分……9分。
广东省深圳市2015届高三上学期第一次五校联考数学(理)试卷及答案
2015届高三年级第一次五校联考理科数学试卷本试卷共4页,21小题,满分150分.考试用时120分钟注意事项:1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
2. 选择题每小题选出答案后,用2B 铅笔把答题卡对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.4. 作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效.5. 考生必须保持答题卡的整洁。
考试结束后,将试卷和答题卡一并交回.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,有且只有一项是符合题目要求的)1. 已知a b R ∈,,i 是虚数单位,若a i -与2bi +互为共轭复数,则()2a bi +=( )A .54i -B .54i +C .34i -D .34i +2. 设集合{} 12A x R x =∈-<,{}2,xB y R y x R =∈=∈,则AB =( )A .∅B .[)0 3,C .()0 3,D .()1 3-, 3. 函数()2ln =-f x x x的零点所在的区间为( ) A .()0 1, B .()1 2, C .()2 3, D .()3 4, 4. 已知m (),2a =-,n ()1,1a =-,则 “a =2”是“m //n ”的( ) A .充要条件 B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 5. 一个多面体的三视图如右图所示,则该多面体的体积为( )A .233 B .223C .6D . 76. 在《爸爸去哪儿》第二季第四期中,村长给6位“萌娃”布置一项搜寻空投食物的任务. 已知:①食物投掷地点有远、近两处; ②由于Grace 年纪尚小,所以要么不参与该项任务,但此时另需一位小孩在大本营陪同,要么参与搜寻近处投掷点的食物;③所有参与搜寻任务的小孩须被均分成两组,一组去远处,一组去近处。