关于幂函数的性质知识点总结-word
(word完整版)幂函数的性质
教学过程: 一、幂函数1.幂函数的定义⑴一般地,形如y x α=(x ∈R )的函数称为幂函数,其中x 是自变量,α是常数; ⑵11234,,y x y x y x -===等都是幂函数,在中学里我们只研究α为有理数的情形; ⑶幂函数与一、二次函数,正、反比例函数及指、对数函数一样,都是基本初等函数. 2.幂函数的图像⑵归纳幂函数的性质:① 当0α>时:ⅰ)图象都过()()0,0,1,1点。
ⅱ)在第一象限内图象逐渐上升,都是增函数,且α越大,上升速度越快。
ⅲ)当1α>时,图象下凸;当01α<<时,图象上凸。
21x1-=x② 当0α<时:ⅰ)图象都过()1,1点。
ⅱ)在第一象限内图象逐渐下降,都是减函数,且α越小,下降速度越快。
思考1:如何判断一个幂函数在其他象限内是否有图象? 思考2:如何作出一个幂函数在其他象限内是否有图象? 例题讲解:例1 写出下列函数的定义域和奇偶性(1)4y x = (2)14y x = (3)3y x -= (4)2y x -=例2 比较下列各组中两个值的大小: (1)11662,3 ;(2)4314.3-与43-π;(3)35)88.0(-与53(0.89)-.思考:.比较下列各数的大小:(1)2333441.1,1.4,1.1; (2) 3338420.16,0.5,6.25.--例3 已知函数()()2212.m m f x m m x +-=+则当m 为何值时,()f x 是(1)正比例函数;(2)反比例函数;(3)幂函数?例4 已知函数画出23y x -=的大致图象。
⑴求其定义域、值域;⑵判断奇偶性和单调性;⑶画出23y x -=的大致图象。
二、方程的根与函数的零点 1、函数零点的概念对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点(zero point)。
方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点连续函数在某个区间上存在零点的判别方法:如果函数y=f(x)在区间[a,b]上的图象是连续不断一条曲线,并且有f(a)·f(b)〈0,那么,函数y=f(x)在区间(a,b)内有零点.即存在c∈(a,b),使得f(c )=0,这个c也就是方程f(x)=0的根。
幂函数的性质知识点总结
幂函数的性质知识点总结幂函数的性质知识点总结形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x0,函数的定义域是(-,0)(0,+).因此可以看到x所受到的限制两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x0,则a可以是任意实数;排除了为0这种可能,即对于x0和x0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0的所有实数。
在x大于0时,函数的值域总是大于0的实数。
幂函数知识点四个性质大一
幂函数知识点四个性质大一幂函数作为高中数学重要的一部分,其性质的理解对于学习和应用都具有重要意义。
在这篇文章中,我将向大家介绍幂函数的四个性质,帮助大家更好地掌握这一知识点。
第一个性质是幂函数的定义域和值域。
幂函数的定义域通常为正实数集,即x大于零。
当幂函数中的指数为整数时,幂函数的值域为正实数。
而当幂函数中的指数为分数时,幂函数的值域则会发生改变。
例如,当指数为1/2时,幂函数的值域是非负实数集。
接下来是幂函数的单调性。
当幂函数中的指数大于1时,幂函数是递增的。
这是因为当x逐渐增大时,由于指数大于1,幂函数的值也会逐渐增大。
而当幂函数中的指数小于1时,幂函数则是递减的。
这是因为当x逐渐增大时,由于指数小于1,幂函数的值会逐渐减小。
但需要注意的是,当幂函数中的指数为1时,幂函数是严格递增的。
第三个性质是幂函数的奇偶性。
当幂函数中的指数为偶数时,幂函数是偶函数。
这是因为当x取正值和负值时,都会得到相同的函数值。
而当幂函数中的指数为奇数时,幂函数是奇函数。
这是因为当x取正值和负值时,得到的函数值互为相反数。
最后一个性质是幂函数的图像特征。
幂函数的图像通常呈现出一条平滑的曲线,在x轴的正方向上逐渐向上增长或逐渐向下减小。
当幂函数中的指数大于1时,曲线在y轴的正方向上逐渐向上增长。
而当幂函数中的指数小于1时,曲线在y轴的正方向上逐渐向下减小。
此外,当指数为正偶数时,曲线在原点处取得最小值;当指数为正奇数时,曲线则在原点处取得最小值。
总结一下,幂函数具有四个重要的性质:定义域和值域、单调性、奇偶性和图像特征。
掌握这些性质,有助于我们更好地理解和应用幂函数。
在解决相关问题时,我们可以通过这些性质来简化计算,提高解题的效率。
因此,对于学习和应用幂函数来说,这些性质的理解是非常关键的。
幂函数是数学中重要的一部分,它在实际生活中有着广泛的应用。
例如,在经济学中,幂函数可以用于描述某些指数增长的情况。
在物理学中,幂函数可以用于描述某些物理量的变化规律。
幂函数——知识点、考点总结
精品PPT
求f x的解析式.
2.若幂函数y m2 3m 17 x4mm2的图象不过原点,求实数m的取值范围. 3.幂函数y m2 m 1 xm22m3,当x 0, 时为减函数,则实数m的值为
. A m 2; B m 1;C m 1或2;D m 1 5 .
2
精品PPT
题型三——幂函数的图象与性质的应用
-
2 3
-2
3
和
-
6
-2
3
的大小
练习:
7
例2.比较下列各组数的大小
5
5
1.32 和3.12;
7
2
.
8
7 8
和-
1 9
8
;
3.
2 3
2 3
和
-
6
-2 3
.
1.比较下列各组数的大小:1
-
.3
5 2
和3.1
5 2
;
2
.
8
7 8
和
1 9
பைடு நூலகம்
8
;
已知幂函数f
x
3 k 1 k2 x2 2
k
Z
Y=x
R
值域 R
奇偶性 奇
Y=x2 Y=x3 Y=x1/2 Y=x-1
R
〔0,+∞) 偶
R
R
〔0,+∞)
(-∞,0)∪(0,+∞)
奇
精非品P奇PT非偶 奇
单调性
过定点
(-∞,0〕 〔0,+∞)
〔0,+∞)
(1,1)
(-∞,0) (0,+∞)
6.高考中的题型: 题型一——幂函数值的大小比较
幂对函数知识点总结
幂对函数知识点总结幂函数的图像是以原点为中心的曲线,其变化方式随着a和n的取值不同而不同。
幂函数的性质、图像和应用都是数学中的重要内容。
一、幂函数的性质1. 幂函数的定义域和值域:幂函数的定义域为全体实数,其值域的范围取决于a和n的取值。
2. 幂函数的奇偶性:当n为偶数时,幂函数关于y轴对称;当n为奇数时,幂函数关于原点对称。
3. 幂函数的增减性:当n>0时,幂函数在定义域上是增函数;当n<0时,幂函数在定义域上是减函数。
4. 幂函数的特殊性质:当n=1时,幂函数为线性函数;当n=2时,幂函数为二次函数;当n=3时,幂函数为三次函数。
二、幂函数的图像1. 幂函数的图像特点:当n>1时,幂函数的图像是上凸的,并且随着n的增大而变得越来越陡;当0<n<1时,幂函数的图像是下凹的,并且随着n的增大而变得越来越平缓。
2. 幂函数的变化规律:当a>1时,幂函数的图像在x轴的右侧上升;当0<a<1时,幂函数的图像在x轴的右侧下降。
三、幂函数的运算1. 幂函数的加法和减法:两个幂函数相加或相减时,只需将其对应项相加或相减即可。
2. 幂函数的乘法和除法:两个幂函数相乘时,可以将它们的底数乘在一起,并将指数相加;两个幂函数相除时,可以将它们的底数相除,并将指数相减。
四、幂函数的应用1. 经济学中的应用:幂函数可以用来描述供求关系、成本与产量关系等经济学中的重要问题。
2. 物理学中的应用:幂函数可以用来描述速度与时间的关系、力与位移的关系等物理学中的重要问题。
3. 生物学中的应用:幂函数可以用来描述生物体的生长规律、物种的数量变化规律等生物学中的重要问题。
总之,幂函数是数学中的重要内容,它具有丰富的性质和应用。
通过学习幂函数,我们不仅可以更深入地理解数学的基本概念,还可以更好地应用数学知识解决实际问题。
因此,幂函数的学习具有重要的意义,也是数学学习中不可或缺的一部分。
高一必修一幂函数的知识点
高一必修一幂函数的知识点高一必修一:幂函数的知识点高一数学课程中,幂函数是一个重要的学习内容。
幂函数是一种常见的函数形式,在生活和工作中有广泛的应用。
幂函数的研究是数学中的重要课题,掌握了幂函数的知识,对于理解数学的其他分支,如微积分等,具有重要的意义。
本文将重点介绍高一必修一中幂函数的知识点,帮助同学们更好地理解和应用幂函数。
一、幂函数的定义和性质幂函数是形如y = ax^n (a ≠ 0, n为整数)的函数,其中a称为底数,n称为指数。
幂函数的图象一般呈现出曲线的形式,其性质包括:1. 定义域和值域:当指数n为正整数时,定义域为全体实数集,值域为(0, +∞);当指数n为负整数时,定义域为非零实数集,值域为(0, +∞)与(-∞, 0)的并集,并具有一至多个零点;当指数n为零时,定义域为整个实数集,值域为{1}。
2. 奇偶性:当指数n为奇数时,幂函数关于y轴对称;当指数n为偶数时,幂函数关于原点对称。
3. 单调性:当指数n为正数时,幂函数在整个定义域上是递增的;当指数n为负数时,幂函数在定义域的两侧是递减的。
4. 极限性质:当x无限趋近于正无穷时,幂函数的值也趋近于正无穷;当x无限趋近于负无穷时,幂函数的值的符号取决于指数的奇偶性。
二、幂函数与图像的关系幂函数的图像是通过对幂函数的底数进行相同倍数的拉伸或压缩得到的。
具体来说,我们可以通过以下几个方面了解幂函数与图像的关系。
1. 底数a的变化对图像的影响:当底数a大于1时,幂函数的图像被压缩,曲线变得更陡峭;当底数a小于1时,幂函数的图像被拉伸,曲线变得更平缓。
2. 指数n的变化对图像的影响:当指数n为正数时,幂函数的图像在y轴上方增长,形成上升的曲线;当指数n为负数时,幂函数的图像在y轴下方增长,形成下降的曲线。
3. 圆形与直线的比较:幂函数的图像与圆的曲线相似,但在其特定区间内,幂函数的图像会出现与直线相切的情况,这时幂函数的曲线呈现出直线的性质。
高考数学幂函数知识点总结
高考数学幂函数知识点总结一、幂函数的定义和性质幂函数是数学中一种常见的函数形式,它的定义形式为y = ax^n,其中a和n都为实数,x为自变量,y为因变量。
幂函数在数学中扮演着重要的角色,广泛应用于自然科学和工程技术领域。
下面我们来总结一些幂函数的重要性质和应用。
1. 幂函数的定义域和值域:幂函数y = ax^n的定义域为实数集R,值域则取决于a和n 的取值范围。
当a>0时,n为整数时,函数的值域为正实数集R+;当a<0时,n为奇数时,函数的值域为负实数集R-。
2. 幂函数的奇偶性:当n为偶数时,函数为偶函数;当n为奇数时,函数为奇函数。
具体而言,当n为偶数时,对于任意x,有f(-x)=f(x);当n为奇数时,对于任意x,有f(-x)=-f(x)。
3. 幂函数的图像变换:幂函数y = ax^n在平面直角坐标系中的图像变换与参数a和n的取值相关。
当a>1时,函数图像沿y轴方向压缩,当0<a<1时,函数图像沿y轴方向拉伸;当n>1时,函数图像在原点左侧上升,当0<n<1时,函数图像在原点右侧上升。
4. 幂函数的极限:当a>1时,幂函数在正无穷大时趋于正无穷大;当0<a<1时,幂函数在正无穷大时趋于0。
若n>0,幂函数在负无穷大时趋于正无穷大;若n<0,幂函数在负无穷大时趋于0。
二、幂函数的常见应用幂函数因为其特殊的形式和性质,在科学和工程中有广泛的应用。
以下是幂函数在一些具体问题中的运用。
1. 物质的增长和衰减:在生物学和经济学中,常常需要研究物质的增长和衰减过程。
幂函数可用来描述这种过程。
例如,生物种群的增长可以用幂函数进行建模,其中a表示种群的初始数量,n表示增长率。
同样,经济学中的人口增长、环境污染以及经济发展等问题也可以利用幂函数进行分析。
2. 各种规律的描述:幂函数可以应用于描述一些规律和现象。
例如,光的强度随距离的关系、金融领域中财富分布的不平等系数、能量消耗与功率之间的关系等都可以用幂函数来表达。
幂函数的性质知识点总结
幂函数的性质知识点总结幂函数是一种常见的函数形式,其形式为$f(x)=x^a$,其中$a$为实数,$x$为正实数。
在初等数学中,我们常常使用幂函数来描述各种各样的问题。
因此,本文将全面总结幂函数的性质,包括定义域、值域、单调性、奇偶性、最值等等。
一、定义域对于幂函数$f(x)=x^a$,其定义域为$x>0$。
这是因为,对于$x\leq 0$的情况,幂函数的值可能会在实数范围内无限制地扩大或缩小,从而变成无意义的虚数或复数。
因此,为了确保$f(x)$在实数范围内有意义,必须限定$x>0$。
二、值域当$a>0$时,$f(x)$的值域为$[0,+\infty)$。
这是因为,对于$x=0$时,$f(x)=0$;而对于$x>0$时,$f(x)$的值随着$x$的增大而增大,趋近于无穷大。
因此,$f(x)$的值域为$[0,+\infty)$。
当$a<0$时,$f(x)$的值域为$(0,+\infty)$。
这是因为,对于$x\neq 0$时,$f(x)>0$;而对于$x=0$时,$f(x)=0$。
因此,$f(x)$的值域为$(0,+\infty)$。
三、单调性当$a>0$时,$f(x)$在定义域内单调递增。
这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。
由于$x_2>x_1$且$a>0$,因此$x_2^a>x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。
因此,$f(x)$在定义域内单调递增。
当$a<0$时,$f(x)$在定义域内单调递减。
这是因为,对于$x_1<x_2$的情况,$f(x_2)-f(x_1)=(x_2^a-x_1^a)$。
由于$x_2>x_1$且$a<0$,因此$x_2^a<x_1^a$,仅需考虑到$x_2^a$与$x_1^a$的差异即可。
幂函数 知识点总结
幂函数知识点总结一、幂函数的基本概念1.1 定义幂函数是指以自变量 x 为底数的常数次幂,形式为 y = ax^n,其中 a 为非零实数,n 为实数。
其中,底数 a 称为幂函数的底数,指数 n 称为幂函数的指数。
1.2 定义域和值域幂函数的定义域为全体实数集 R,即 x 可以取任意实数值;而值域则受底数 a 和指数 n 的影响而不同。
当 n 为正数时,值域为全体正实数集 R^+;当 n 为负数时,值域为正实数集R^+,并且x ≠ 0;当 n 为零时,值域为全体实数集 R。
1.3 奇偶性当指数 n 为偶数时,幂函数关于 y 轴对称;当指数 n 为奇数时,幂函数关于原点对称。
1.4 增减性当指数 n 大于 1 时,幂函数在定义域上是增函数;当指数 n 大于 0 且小于 1 时,幂函数在定义域上是减函数。
二、幂函数图像的特点2.1 当底数 a 大于 1 时当底数 a 大于 1 时,幂函数的值域为正实数集 R^+。
图像呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势。
2.2 当底数 0 < a < 1 时当底数 0 < a < 1 时,幂函数的值域同样为正实数集 R^+。
图像呈现出从左下方无穷趋近于x 轴,经过原点后逐渐下降并趋近于 0 的趋势。
2.3 当底数 a 小于 0 时当底数 a 小于 0 时,则根据指数 n 的奇偶性和正负性来确定图像的性质。
当指数 n 为正偶数时,图像同样呈现出从左下方无穷趋近于 x 轴,经过原点后逐渐上升并趋近于正无穷的趋势;当指数 n 为正奇数时,图像同样呈现从左上方无穷趋近于 x 轴,经过原点后逐渐下降并趋近于负无穷的趋势。
2.4 特殊情况当底数 a 等于 1 时,幂函数的图像表现为一条平行于 x 轴的直线 y = 1;当底数 a 等于 -1 时,根据指数 n 的奇偶性不同,图像分别为一条平行于 x 轴的直线 y = -1 和关于 y 轴对称的抛物线。
根据幂函数的图像性质知识点及题型归纳总结
根据幂函数的图像性质知识点及题型归纳
总结
一、幂函数的定义和性质
幂函数是指形如y = x^n的函数,其中n为实数且n≠0.
幂函数的图像性质包括:
- 当n为正数时,函数的图像呈现单调递增或单调递减的曲线,取决于n的奇偶性。
- 当n为负数时,函数的图像在第一象限和第三象限中单调递减,而在第二象限和第四象限中单调递增。
- 当n为正偶数时,函数的图像在第一象限中单调递增,而在
第二、三、四象限中单调递减。
- 当n为正奇数时,函数的图像在第一、二象限中单调递增,
而在第三、四象限中单调递减。
二、幂函数的题型归纳
1.求函数的定义域和值域。
2.求函数的单调性和极值点。
3.求函数的图像关于坐标轴的对称性。
4.求函数在某个区间上的最值。
5.根据函数的图像绘制函数的对称轴、渐近线等特征。
6.解方程和不等式中涉及到的幂函数。
以上是根据幂函数的图像性质所归纳总结的知识点和题型。
请在研究和解题过程中注意相关的特性和规律,并灵活运用于实际问题的解决中。
幂函数的性质知识点总结
幂函数的性质知识点总结定义:形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q 为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
幂函数图像及性质知识点总结(最新)
幂函数图像及性质知识点总结
一、幂函数图像及性质
1、正值性质
当α>0时,幂函数y=xα有下列性质:
(1)图像都经过点(1,1)(0,0);
(2)函数的图像在区间[0,+∞)上是增函数;
(3)在第一象限内,α>1时,导数值逐渐增大;α=1时,导数为常数;0<α<1时,导数值逐渐减小,趋近于0。
2、负值性质
当α<0时,幂函数y=xα有下列性质:
(1)图像都通过点(1,1);
(2)图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。
利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。
其余偶函数亦是如此)。
(3)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
3、零值性质
当α=0时,幂函数y=xa有下列性质:
1、y=x0的图像是直线y=1去掉一点(0,1)。
它的图像不是直线。
二、什么是幂函数
幂函数属于基本初等函数之一,一般y=xα(α为有理数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x、y=x0时x≠0)等都是幂函数。
【幂函数图像及性质知识点总结】
1。
幂函数知识点
幂函数知识点1. 幂函数定义幂函数是形如 \(y = x^n\) 的函数,其中 \(n\) 是实数。
当 \(n\) 为正整数时,幂函数的图像是一系列经过原点的点,且随着 \(n\) 的增加,曲线逐渐趋于平坦。
2. 幂函数的图像特征- 当 \(n > 1\) 时,幂函数在 \(x > 0\) 区域内单调递增。
- 当 \(0 < n < 1\) 时,幂函数在 \(x > 0\) 区域内单调递减。
- 当 \(n\) 为负整数时,幂函数在 \(x > 0\) 区域内表现为周期函数,周期为 \(4\pi\)。
- 当 \(n = 0\) 时,函数退化为常数函数 \(y = 1\)。
3. 幂函数的性质- 奇次幂函数是奇函数,即 \(y(-x) = -y(x)\)。
- 偶次幂函数是偶函数,即 \(y(-x) = y(x)\)。
- 幂函数的导数是 \(y' = n \cdot x^{n-1}\)。
- 幂函数的积分是 \(\int x^n dx = \frac{x^{n+1}}{n+1} + C\),其中 \(C\) 是积分常数。
4. 幂函数的应用- 在物理学中,幂函数常用于描述物体的速度与加速度的关系。
- 在经济学中,幂函数可以用来模拟市场需求与价格的关系。
- 在工程学中,幂函数用于描述材料的强度与应力的关系。
5. 特殊幂函数- 指数函数 \(y = a^x\) 是幂函数的一种特殊形式,其中 \(a\) 是正实数且 \(a \neq 1\)。
- 对数函数 \(y = \log_a x\) 也是幂函数的一种特殊形式,其中\(a\) 是正实数且 \(a \neq 1\)。
6. 幂函数的运算法则- 幂的乘法:\(x^m \cdot x^n = x^{m+n}\)- 幂的除法:\(x^m / x^n = x^{m-n}\)- 幂的幂:\((x^m)^n = x^{m \cdot n}\)7. 幂函数的极限- 当 \(x \to 0\) 时,\(x^n\) 的极限取决于 \(n\) 的值。
高一数学知识点:幂函数知识点_知识点总结
高一数学知识点:幂函数知识点_知识点总结幂函数是高中数学中的重要概念之一,在高一数学学习中也占据了重要的地位。
掌握幂函数的知识点对于高中数学学习的深入理解和解题能力的提升都具有重要意义。
本文将对高一数学中的幂函数知识点进行总结,并提供相关示例和解题思路,以帮助读者更好地掌握这一知识点。
一、幂函数的定义和基本性质1. 定义:幂函数是指形如y = x^a(其中a表示常数)的函数,这里x是自变量,y是因变量。
幂函数中,指数a可以是正数、负数或零。
2. 基本性质:- 当a>0时,函数是增函数;- 当a<0时,函数是减函数;- 当a=0时,函数是常数函数;- 当x>1时,函数值增大较快;当0<x<1时,函数值减小较快;- 函数图像关于y轴对称(当指数为偶数)或者关于原点对称(当指数为奇数)。
二、幂函数的图像和特殊情况1. 幂函数的图像:不同指数a对应的幂函数图像有所不同,可以通过绘制函数图像来直观地理解幂函数的特点。
2. 特殊情况:- 当a>1时,可以看到幂函数的图像在原点处有一个变化方向的拐点;- 当0<a<1时,幂函数的图像在原点处有一个极值点,对称轴为y 轴;- 当a=1时,幂函数为y=x,即一次函数;- 当a=0时,幂函数为y=1,即常数函数;- 当a<0时,幂函数的图像会经过y轴正半轴和负半轴两个点,形状类似于倒置的U型。
三、幂函数的图像变换和平移1. 横向压缩和拉伸:幂函数图像可以通过调整指数a的大小来实现横向的压缩和拉伸。
当a>1时,图像会被压缩;当0<a<1时,图像会被拉伸。
2. 纵向压缩和拉伸:幂函数图像可以通过调整函数的整体乘积常数k来实现纵向的压缩和拉伸。
当k>1时,图像会被压缩;当0<k<1时,图像会被拉伸。
3. 平移操作:幂函数图像可以通过横向和纵向平移来实现整体位置的调整。
横向平移可以通过修改自变量x的值来实现;纵向平移可以通过修改常数项b来实现。
(完整word版)幂函数的图像性质和应用
幂函数分数指数幂正分数指数幂的意义是:m na =0a >,m 、n N ∈,且1n >)负分数指数幂的意义是:mn a-=(0a >,m 、n N ∈,且1n >)1、 幂函数的图像与性质幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当112,1,,,323n =±±±的图像和性质,列表如下.从中可以归纳出以下结论:① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.② 11,,1,2,332a =时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数.④ 任何两个幂函数最多有三个公共点.0n <幂函数基本性质(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数(3)α<0时,幂函数的图象在区间(0,+∞)上是减函数.规律总结1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论;2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横",即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型.2、 幂函数的应用OxyOx yOxy例1、 幂函数n my x =(m 、n N ∈,且m 、n 互质)的图象在第一,二象限,且不经过原点,则有( ) ()A m 、n 为奇数且1mn<()B m 为偶数,n 为奇数,且1m n > ()C m 为偶数,n 为奇数,且1mn <()D m 奇数,n 为偶数,且1mn>例2、 右图为幂函数y x α=,,,a b c d 的大小关系是 ( )()A a b c d >>> ()B b a d c >>> ()C a b d c >>>()D a d c b >>>解:取12x =, 由图像可知:11112222cdba⎛⎫⎛⎫⎛⎫⎛⎫>>> ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,a b d c ⇒>>>,应选()C .例3、 比较下列各组数的大小:(1)131.5,131.7,1;(2)()37,(37,()37;(3)23-⎛ ⎝⎭,23107-⎛⎫- ⎪⎝⎭,()431.1--.解:(1)底数不同,指数相同的数比大小, 可以转化为同一幂函数,不同函数值的大小问题. ∵13y x =在()0,+∞上单调递增,且1.7 1.51>>,∴11331.7 1.51>>.(2)底数均为负数,可以将其转化为()3377=-,()3377=-,()3377=-.∵37y x =在()0,+∞上单调递增,且>b c∴)333777>>,即))333777-<-<-,∴(()()333777<<.(3)先将指数统一,底数化成正数.2233--⎛= ⎝⎭⎝⎭,2233101077--⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,()()42331.1 1.21---=. ∵23y x -=在()0,+∞上单调递减,且7 1.21102<<,∴()2232337 1.21102---⎛⎛⎫>> ⎪ ⎝⎭⎝⎭,即:()2234337 1.1102---⎛⎫⎛⎫->>- ⎪ ⎪⎪⎝⎭⎝⎭.点评:比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.例4、 若()()1133132a a --+<-,求实数a 的取值范围.分析:若1133x y --<,则有三种情况0x y <<,0y x <<或0y x <<. 解:根据幂函数的性质,有三种可能:10320a a +<⎧⎨->⎩或10320132a a a a +<⎧⎪-<⎨⎪+>-⎩或10320132a a a a+>⎧⎪->⎨⎪+>-⎩,解得:()23,1,32a ⎛⎫-∞- ⎪⎝∈⎭.例3.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.解:∵幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点, ∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称, ∴223m m --是奇数,∴0m =或2m =.f (x )=x 3, (1)求它的反函数;(2)分别求出f -1(x )=f (x ),f -1(x )>f (x ),f -1(x )<f (x )的实数x 的范围. 解析:(1)由y =x 3两边同时开三次方得x =3y ,∴f -1(x )=x 31. (2)∵函数f (x )=x 3和f -1(x )=x 31的图象都经过点(0,0)和(1,1). ∴f -1(x )=f (x )时,x =±1及0;在同一个坐标系中画出两个函数图象,由图可知 f -1(x )>f (x )时,x <-1或0<x <1; f -1(x )<f (x )时,x >1或-1<x <0.点评:本题在确定x 的范围时,采用了数形结合的方法,若采用解不等式或方程则较为麻烦.y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法. 【同步练习】1. 下列函数中不是幂函数的是( )A.y = B.3y x = C.2y x = D.1y x -= 答案:C2. 下列函数在(),0-∞上为减函数的是( )A.13y x = B.2y x = C.3y x = D.2y x -= 答案:B3. 下列幂函数中定义域为{}0x x >的是( )A.23y x = B.32y x = C.23y x -= D.32y x -= 答案:D4.函数y =(x 2-2x )21-的定义域是( )A .{x |x ≠0或x ≠2}B .(-∞,0) (2,+∞)C .(-∞,0)] [2,+∞]D .(0,2)解析:函数可化为根式形式,即可得定义域. 答案:B5.函数y =(1-x 2)21的值域是( )A .[0,+∞]B .(0,1)C .(0,1)D .[0,1] 解析:这是复合函数求值域问题,利用换元法,令t =1-x 2,则y =t . ∵-1≤x ≤1,∴0≤t ≤1,∴0≤y ≤1. 答案:D6.函数y =52x 的单调递减区间为( )A .(-∞,1)B .(-∞,0)C .[0,+∞]D .(-∞,+∞) 解析:函数y =52x 是偶函数,且在[0,+∞)上单调递增,由对称性可知选B . 答案:B 7.若a 21<a21-,则a 的取值范围是( )A .a ≥1B .a >0C .1>a >0D .1≥a ≥0 解析:运用指数函数的性质,选C .答案:C8.函数y =32)215(x x -+的定义域是 。
最全幂函数概念的图像与性质完整版.doc
【知识结构】1.有理数指数幂 (1)幂的有关概念①正数的正分数指数幂:(0,,1)m n m na a a m n N n *=>∈>、且; ②正数的负分数指数幂: 11(0,,1)m n m nmnaa m n N n a a-*==>∈>、且③0的正分数指数幂等于0,0的负分数指数幂没有意义.注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。
(2)有理数指数幂的性质①a r a s =a r+s (a>0,r 、s ∈Q );②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );.例2 (1)计算:25.02121325.0320625.0])32.0()02.0()008.0()945()833[(÷⨯÷+---;(2)化简:5332332323323134)2(248aa a a ab aaab b ba a ⋅⋅⨯-÷++--变式:(2007执信A )化简下列各式(其中各字母均为正数):(1);)(65312121132b a ba b a ⋅⋅⋅⋅--(2).)4()3(6521332121231----⋅÷-⋅⋅b a b a b a(3)1200.2563433721.5()82(23)()63-⨯-+⨯+⨯-(三)幂函数 1、幂函数的定义形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。
例1.下列函数中不是幂函数的是( )A .y x =B .3y x =C .2y x =D .1y x -=例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数;变式 已知幂函数2223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数y =_______.2.幂函数的图像幂函数y =x α的图象由于α的值不同而不同.α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立;3、幂函数的性质y=xy=x 2 y=x 312y x =y=x -1定义域 R R R [0,+∞) {}|0x x R x ∈≠且值域 R [0,+∞)R[0,+∞) {}|0y y R y ∈≠且奇偶性 奇 偶 奇非奇非偶 奇单调性增x ∈[0,+∞)时,增;x ∈(,0]-∞时,减增 增x ∈(0,+∞)时,减;x ∈(-∞,0)时,减定点(1,1)例3.比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.530.5,3,log 0.54.幂函数的性质及其应用 幂函数y =x α有下列性质:(1) 单调性:当α>0时,函数在(0,+∞)上单调递增;当α<0时,函数在(0,+∞)上单调递减.(2)奇偶性:幂函数中既有奇函数,又有偶函数,也有非奇非偶函数,可以用函数奇偶性的定义进行判断.例4.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值.例5.已知幂函数2()m y x m -=∈N 的图象与x y ,轴都无交点,且关于y 轴对称,求m 的值,并画出它的图象.变式:已知幂函数f(x)=x 322--m m (m ∈Z )为偶函数,且在区间(0,+∞)上是单调减函数.(1)求函数f(x);(2)讨论F (x )=a)()(x xf bx f -的奇偶性.5.规律方法(1).幂函数y =x α(α=0,1)的图象(2).幂函数(,,,a q qy x a p q N p p*==∈为最简分式)的图象6.性质:(1)幂函数的图象都过点 ;任何幂函数都不过 象限; (2)当0a >时,幂函数在[0,)+∞上 ;当0a <时,幂函数在(0,)+∞上 ;(3)当2,2a =-时,幂函数是 ;当11,1,3,3a =-时,幂函数是 .例6右图为幂函数y x α=在第一象限的图像,则,,,a b c d 的大小关系是 ( )()A a b c d >>> ()B b a d c >>> ()C a b d c >>>()D a d c b >>>例7 若点错误!未找到引用源。
幂函数的性质总结
幂函数的性质总结
1.可导性:
a.可以在实数域上定义,也可以在复数域上定义。
b.其一阶导数是可导函数且不视x的取值而不变。
2.连续性:
a.对于实数域而言,多项式的指数是连续的;
b.对于复数域而言,多项式的角度是连续的。
3.对称性:
a.多项式的指数是存在一个对称点的。
b.多项式的角度是存在多个对称轴的。
4.增函数的性质:
a.在任意闭区间上,一阶导数总是大于等于零。
b.在实数域上,多项式的指数也是增函数的。
5.正负性:
a.多项式在实数域上,是正或者负有符号函数。
b.在复数域上,多项式的角度可能会变得更加复杂。
6.封闭性:
a.多项式在实数域上,其参数和根一定会封闭。
b.在复平面上,多项式有封闭的曲线。
7.稠密性:
a.多项式在实数域上,参数和根都具有紧密的性质。
b.在复平面上,多项式的角度的紧密性由其参数以及根的复杂程度来决定。
8.单调性:
a.多项式在实数域上,参数和根都具有单调性;
b.在复平面上,多项式的角度可能存在非单调性。
9.单峰性:
a.多项式在实数域上,参数和根都具有单峰性;
b.在复平面上,多项式的角度可能会变成多峰函数。
10.分段性:
a.多项式在实数域上,一般是分段函数。
b.在复平面上,多项式的角度可能是一个连续的函数或分段函数。
高考数学知识点:幂函数的性质
2021年高考数学知识点:幂函数的性质?形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a 为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的定义域是(-∞,0)∪(0,+∞)。
因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:排除了为0与负数两种可能,即对于x>;0,则a可以是任意实数;排除了为0这种可能,即对于x;0的所有实数,q不能是偶数;排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
高一数学幂函数知识点总结
高一数学幂函数知识点总结形如y=*^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a 为任意实数,那么函数的定义域为大于0的全部实数;假如a为负数,那么*确定不能为0,不过这时函数的定义域还需要根[据q的奇偶性来确定,即假如同时q为偶数,那么*不能小于0,这时函数的.定义域为大于0的全部实数;假如同时q为奇数,那么函数的定义域为不等于0的全部实数。
当*为不同的数值时,幂函数的值域的不怜悯况如下:在*大于0时,函数的值域总是大于0的实数。
在*小于0时,那么只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域性质:对于a的取值为非零有理数,有须要分成几种状况来争论各自的特性:首先我们知道假如a=p/q,q和p都是整数,那么*^(p/q)=q次根号(*的p次方),假如q是奇数,函数的定义域是r,假如q是偶数,函数的定义域是[0,+∞)。
当指数n是负整数时,设a=-k,那么*=1/(*^k),显着*≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到*所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:摒除了为0与负数两种可能,即对于*0,那么a可以是任意实数;摒除了为0这种可能,即对于*0和*0的全部实数,q不能是偶数;摒除了为负数这种可能,即对于*为大于且等于0的全部实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,那么函数的定义域为大于0的全部实数;假如a为负数,那么*确定不能为0,不过这时函数的定义域还需要依据q的奇偶性来确定,即假如同时q为偶数,那么*不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,那么函数的定义域为不等于0的全部实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于幂函数的性质知识点总结
定义:
形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根[据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
当x为不同的数值时,幂函数的值域的不同情况如下:在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a 为正数,0才进入函数的值域
性质:
对于a的取值为非零有理数,有必要分成几种情况来讨论各自的特性:
首先我们知道如果a=p/q,q和p都是整数,则x^(p/q)=q 次根号(x的p次方),如果q是奇数,函数的定义域是R,如果q是偶数,函数的定义域是[0,+∞)。
当指数n 是负整数时,设a=-k,则x=1/(x^k),显然x≠0,函数的
定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:
排除了为0与负数两种可能,即对于x>0,则a可以是任意实数;
排除了为0这种可能,即对于x<0和x>0的所有实数,q不能是偶数;
排除了为负数这种可能,即对于x为大于且等于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x 不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出
幂函数在第一象限的各自情况.
可以看到:
(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。