清华大学大学物理——磁场的源

合集下载

12-1 磁场的源(2010年度)-46页PPT资料

12-1 磁场的源(2010年度)-46页PPT资料

第 十二 章
磁场和它的源
教学基本要求
第12章
一、理解毕奥-萨伐尔定律,能利用它计算一些 简单问题中的磁感强度。
二、理解稳恒磁场的高斯定理和安培环路定理; 理解用安培环路定理计算磁感强度的条件和方法。
12.1 磁力与电荷的运动
一、基本磁现象
第一次揭示了电现
NN
1820年
象和磁现象的联系
I
S
奥斯特
避免成为“蚁 族”一员的方法
“志、勤、识、恒、法、创”
有志则有为,志向远大,不甘为中下流,以献身科学为己任; 有勤则有才,业精于勤荒于嬉,“天才出自勤奋”,不能有一
日之懈惰; 有识则有求,知学问无尽,不以一得自足,虚心求实,力戒骄
傲自满; 有恒则有成,坚韧不拔,认定方向,不半途而废,则断无不成
大型电磁铁:1-2T
超导电磁铁:5-40T
电视机内偏转磁场:0.1T
磁通量Φ
等于通过该面积的磁感线的总条数,
SBdS 单位:韦(Wb),1 Wb = 1 T m2
磁感应强度方向还有各种定义方法,除上述方 法外,我们还可以右手螺旋定则来定义。
直线电流的磁场 环形电流的磁场 通电螺线管的磁场
许海军
()
2019-09-29
学好,难也!!
难!难!难!道 最 玄, 莫 把 金 丹 作 等 闲。 不 闻 至 人 传 妙 诀, 空 教 口 困 舌 头 干。
--《西游记》
三句词与大家共勉
古今之成大学问者,必经过三种之境界:
预 “昨夜西风凋碧树。独上高楼,望尽天涯路。”此第一境
3),考虑到Fm的方向总与B和v方向垂直,根 据Fm 和v的方向进一步规定B的指向;
4), 用α表示B和v方向之间夹角,根据Fm大 小和qvsinα成正比,得B的大小表示为:

清华大学《大学物理》题库(第二部分:电磁学)【题目】

清华大学《大学物理》题库(第二部分:电磁学)【题目】

第四章真空中的静电场4.1库仑定律4.1.1库仑定律1【1440】真空中有两个点电荷M、N,相互间作用力为⃗F,当另一点电荷Q移近这两个点电荷时,M、N两点电荷之间的作用力(A)大小不变,方向改变(B)大小改变,方向不变(C)大小和方向都不变(D)大小和方向都改变4.1.2电场力叠加原理第3题【5093】电荷Q(Q>0)均匀分布在长为L的细棒上,在细棒的延长线上距细棒中心O距离为a的P 点处放一电荷为q(q>0)的点电荷,求带电细棒对该点电荷的静电力。

4.2电场强度4.2.1电场强度的定义第4题【1003】下列几个说法中哪一个是正确的?(A)电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B)在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同电场叠加原理4.2.2点的电场强度。

【1262】用绝缘细线弯成的半圆环,半径为R,其上均匀地带有正电荷Q,试求圆心O第13题【1264】一半径为R的半球面,均匀地带有电荷,电荷面密度为σ,求球心O处的电场强度。

4.3电通量高斯定理电通量4.3.14.3.2高斯定理的理解第16题【1434】关于高斯定理的理解有下面几种说法,其中正确的是(A)如果高斯面上⃗E处处为零,则该面内必无电荷(B)如果高斯面内无电荷,则高斯面上⃗E处处为零(C)如果高斯面上⃗E处处不为零,则高斯面内必有电荷(D)如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零4.3.3利用高斯定理求电通量4.3.4利用高斯定理求电场强度37【1373】一半径为R的带电球体,其电荷体密度分布为:ρ=Ar(r⩽R),ρ=0(r>R),A为一常量。

试求球体内外的场强分布。

4.4电势能电势4.4.1电场力做功4.4.2电势差第47题【1266】在已知静电场分布的条件下,任意两点P1和P2之间的电势差决定于(A)P1和P2两点的位置(B)P1和P2两点处的电场强度的大小和方向(C)试验电荷所带电荷的正负(D)试验电荷的电荷大小4.4.3电势第48题【1016】静电场中某点电势的数值等于(A)试验电荷q0置于该点时具有的电势能(B)单位试验电荷置于该点时具有的电势能(C)单位正电荷置于该点时具有的电势能(D)把单位正电荷从该点移到电势零点外力所作的功第49题【1267】关于静电场中某点电势值的正负,下列说法中正确的是(A)电势值的正负取决于置于该点的试验电荷的正负(B)电势值的正负取决于电场力对试验电荷作功的正负(C)电势值的正负取决于电势零点的选取电势值的正负取决于产生电场的电荷的正负(D)第52题【1316】相距为r1的两个电子,在重力可忽略的情况下由静止开始运动到相距为r2,从相距r1到相距r2期间,两电子系统的下列哪一个量是不变的?(A)动能总和(B)电势能总和(C)动量总和(D)电相互作用力电势叠加原理求电势4.4.54.5静电场中的电偶极子第76题【1439】一电偶极子放在均匀电场中,当电偶极矩的方向与场强方向不一致时,其所受的合力⃗F和合力矩⃗M为(A)⃗F=0,⃗M=0(B)⃗F=0,⃗M=0(C)⃗F=0,⃗M=0(D)⃗F=0,⃗M=第五章静电场中的导体与电介质5.1静电场中的导体5.1.1静电平衡条件78【1480】当一个带电导体达到静电平衡时(A)表面上电荷密度较大处电势较高(B)表面曲率较大处电势较高(C)导体内部的电势比导体表面的电势高(D)导体内任一点与其表面上任一点的电势差等于零5.1.2静电平衡时的电荷分布5.1.3静电平衡时的电场分布5.1.4接地5.2电容器电容5.2.1平行板电容器5.2.2电容器的串并联第98题【1460】如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为(A)使电容减小,但与金属板相对极板的位置无关(B)使电容减小,且与金属板相对极板的位置有关(C)使电容增大,但与金属板相对极板的位置无关(D)使电容增大,且与金属板相对极板的位置有关5.3静电场中的电介质5.3.1电介质对电场、电容的影响102【1358】设有一个带正电的导体球壳。

大学物理7-2磁场的源

大学物理7-2磁场的源

q
+
r

v
B
q
r

v
B
例4 半径为 R 的带电薄圆盘的电荷面密度为 ,并 以角速度 绕通过盘心垂直于盘面的轴转动,求圆盘 中心的磁感应强度。
解法一 :圆电流的磁场
dq 2 rdr dI rdr T 2 / dB
R o r
0 dI
2r

0
2
dr
7.2
magnetic field and magnetic induction
磁力——电流和磁体之间的相互作用。 (1) 磁铁与磁铁之间的相互作用力 磁铁
同极相斥 异极相吸
注意:如果把一条磁铁折成数段,不论段数 多少或各段的长短如何,每一小段仍将形成 一个很小的磁铁,仍具有N、S两极,即 N 极与 S 极相互依存而不可分离。但是,正电 荷或负电荷却可以独立存在,这是磁现象和 电现象的基本区别。
(1) 将电流分解为无数个电流元 Idl (2) 由电流元求dB (据毕—萨定律)
(3) 将 dB 在坐标系中分解,并用磁场叠加原理做对称 性分析,以简化计算步骤 (4) 对 dB 积分求 B = dB
Bx dBx , B y dB y , Bz dBz
L L L
矢量合成: B B i B j B k x y z
2
x
C
o
0 I B (cos 1 cos 2 ) 4 r
方向:电流与磁感强度成 右手螺旋定则 注意:从直电流始端沿电 流方向积分到末端。 ◆ 无限长载流长直导线 的磁场
z
D
2
B
I
o
x
C
r

清华大学自用 大学物理一 教学课件第十五章 电磁感应

清华大学自用 大学物理一 教学课件第十五章 电磁感应

物理学
msint
iRmsintImsint
N
en
o
' B

交流电
ω
iR
o
第十五章 电磁感应
物理学
例 一长直导线通以电流 iIosint ,旁边有一
个共面的矩形线圈abcd。求:线圈中的感应电动势。
解:

BdS
rl1
S
r
2oixl2dx
b
l1
物理学
(方法二)
2R2

取一虚拟的闭和回路 MNOM
并取其绕向与B相同 .

M B
.R 1
o
N' d N B

E. .i o '
ΦB2ππ(R12R22)
1 2
B( R12
R22)
第十五章 电磁感应
物理学
设 t 0 时点 M与点 N 重合即 0
2R2

则 t 时刻 t Φ12B(R12R22)t

B


i
+
+
+

v


E fm Ek


自由电子受洛仑兹力


fm e(vB )
充Ek当非 静fm e电性v力,B 则
a

ibE K d lL b( av B )d l
此式为动生电动势公式,也是发电机发电的最 基本公式。
物理学
引起磁通量变化的原因
1)稳恒磁场中的导体运动 , 或者回路面积
变化、取向变化等
动生电动势
2)导体不动,磁场变化
感生电动势

大学物理第八章磁场的源

大学物理第八章磁场的源

磁场源的定义与分类
磁场源
能够产生磁场的物体或电流。
分类
天然磁场源(地球磁场、磁铁等)和人工磁场源(电流线圈、电磁铁等)。
磁场源的重要性
磁场源在物理学中具有重要地位,是研究电磁相互作用和电磁场 理论的基础。
磁场源的应用广泛,如磁力选矿、磁悬浮列车、核磁共振成像等 。
02
磁场源的基本性质
磁场强度与磁感应强度
磁场强度
描述磁场源的强弱程度,用符号H表示,单位为A/m 。
磁感应强度
描述磁场对通电导体的作用力,用符号B表示,单位为 T(特斯拉)。
磁场强度与磁感应强度之间的关系
H = B/μ0,其中μ0为真空磁导率,约等于4π×10^7H/m。
磁化强度与磁化电流
1 2
磁化强度
描述物质被磁化的程度,用符号M表示,单位为 A/m。
大学物理第八章磁场源

CONTENCT

• 磁场源概述 • 磁场源的基本性质 • 电流的磁场 • 磁场的源:永磁体 • 磁场的源:电磁铁 • 磁场源的测量与控制
01
磁场源概述
磁场与磁力
磁场
是由磁体或电流产生的空间场,对放入其中的磁体或电流产生力 的作用。
磁力
是磁场对放入其中的磁体或电流的作用力,表现为吸引或排斥。
在交通领域,永磁体被用于制造高速和高效 的交通工具,如高速列车和电动汽车等。
在医疗领域,永磁体被用于治疗疾病和 诊断,如磁共振成像和肿瘤治疗等。
05
磁场的源:电磁铁
电磁铁的工作原理
02
01
03
电磁铁由线圈和铁芯组成,当电流通过线圈时,线圈 产生磁场,磁场与铁芯相互作用产生磁力。
磁力的大小与电流强度、线圈匝数、铁芯材料等因素 有关。

清华大学《大学物理》习题库试题及答案____09_磁学习题

清华大学《大学物理》习题库试题及答案____09_磁学习题

一、选择题Image1.5566:在磁感强度为的均匀磁场中作一半径为r的半球面S,S边线所在平面的法线方向单位矢量与的夹角为a,则通过半球面S的磁通量(取弯面向外为正)为(A) p r2B . (B) 2 p r2B(C) -p r2B sin a (D) -p r2B cos a[]2.2020:边长为l的正方形线圈中通有电流I,此线圈在A点(见图)产生的磁感强度B为(A) (B) (C) (D) 以上均不对AII3.2353:如图所示,电流从a点分两路通过对称的圆环形分路,汇合于b点。

若ca、bd都沿环的径向,则在环形分路的环心处的磁感强度(A) 方向垂直环形分路所在平面且指向纸内(B) 方向垂直环形分路所在平面且指向纸外(C) 方向在环形分路所在平面,且指向b(D) 方向在环形分路所在平面内,且指向a (E) 为零[]Image4.2354:通有电流I的无限长直导线有如图三种形状,则P,Q,O各点磁感强度的大小B P,B Q,B O间的关系为:(A) B P > B Q > B O (B) B Q > B P > B O(C)B Q > B O > B P (D) B O > B Q > B P[]5.5468:Image电流I由长直导线1沿垂直bc边方向经a点流入由电阻均匀的导线构成的正三角形线框,再由b点流出,经长直导线2沿cb延长线方向返回电源(如图)。

若载流直导线1、2和三角形框中的电流在框中心O点产生的磁感强度分别用、和表示,则O点的磁感强度大小(A) B = 0,因为B1 = B2 = B3 = 0≠ 0、B2≠ 0,但,B3 = 0(B) B = 0,因为虽然B(C) B ≠ 0,因为虽然B3 = 0、B1= 0,但B2≠ 0(D) B ≠ 0,因为虽然,但≠ 0 []Image6.5470:电流由长直导线1沿半径方向经a点流入一电阻均匀的圆环,再由b点沿切向从圆环流出,经长导线2返回电源(如图)。

《大学物理磁场图》PPT课件(2024)

《大学物理磁场图》PPT课件(2024)

8
奥斯特实验与安培环路定理
01
奥斯特实验
首次揭示了电流能够产生磁场的现象,为电磁学的发展 奠定了基础。
2024/1/29
02
安培环路定理
描述了磁场与电流之间的关系,是电磁学的基本定律之 一。
03
磁场方向与电流方向的关系
根据右手定则,可以确定磁场方向与电流方向之间的关 系。
9
毕奥-萨伐尔定律及应用
电流密度对磁场的影响
电流密度越大,产生的磁场强度越强 。
电流方向对磁场的影响
电流形状对磁场的影响
不同形状的电流分布会产生不同的磁 场分布,例如直线电流、环形电流和 螺线管电流等。
电流方向改变时,产生的磁场方向也 会相应改变。
2024/1/29
12
03
磁场中物质性质
2024/1/29
13
铁磁性物质及其特点
方向
磁场中某点的磁感应强度的方向就是该点的磁场方向,即小 磁针N极所指的方向。
5
洛伦兹力与霍尔效应
洛伦兹力
运动电荷在磁场中所受到的力,称为洛伦兹力。其方向垂直于电荷运动方向和 磁场方向所构成的平面,并遵循左手定则。
霍尔效应
当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方 向会产生一附加电场,从而在半导体的两端产生电势差,这一现象称为霍尔效 应。
2024/1/29
6
磁化现象及分类
磁化现象
铁磁性物质在磁场作用下被磁化的现 象称为磁化现象。根据磁化后去磁的 难易程度可分为软磁材料和硬磁材料 。
分类
软磁材料容易磁化也容易去磁,如纯 铁、硅钢等;硬磁材料不容易去磁, 也称为永磁材料,如钴钢、铝镍钴等 。
2024/1/29

清华大学 大学物理 电磁学课件-08电

清华大学 大学物理 电磁学课件-08电
x E ( x,t ) E 0 cos ( t ) u H ( x,t ) H cos ( t x ) 0 u
即t 时刻在 x 处的 E1,经过时间间隔 t 后,
例如对 E1 ( t x ) , 令 u x 则有: u t x x E1 ( x x,t t ) E1 ( t t ) u x x E1 ( t t t ) E1 ( t ) E1 ( x,t ) u u
第十一章 电磁场
(Electromagnetic Field)
电磁辐射
1
本章目录
前 言
§11.1 位移电流(书17.7节) §11.2麦克斯韦方程组 (书21.1节) §11.3 电磁波 §11.4 电磁辐射
2
前 言
本章将全面介绍电磁场的基本规律 —— 麦克斯韦电磁场方程组,并阐明电磁波的性质 和电磁场的相对性。 为比较集中地和简洁地给出这些规律,我们 而是将有关材料重新 不按照书上的顺序和讲法, 加以组织。
F qE qv B
(5)
13
可以证明(自己证):
( 2 ) d 0 dV j0 d s dt V ( 3 ) S
这正是电荷守恒定律的积分形式。
对各向同性介质还有如下三个补充关系:
D E B H j0 E
的又一大贡献。 设空间既有自由电荷和传导电流, 又有变化 的电场和磁场,同时还有电介质和磁介质。
11
一. 麦克斯韦方程组的积分形式 E静 d l 0 B E d l d s (1) L B L S t E d l d s 感 t L S D d s 0 dV (2) D静 d s 0 dV S V S V H d l j d s D 静 0 (3) L S H d l ( j ) d s 0 D

清华大学自用 大学物理一 教学课件第十四章 磁场中的介质

清华大学自用 大学物理一 教学课件第十四章 磁场中的介质


m
· r·
-e
L
分子磁矩 m IS ev r 2 evr
2r
2
第十四章 磁场中的磁介质
物理学
分子圆电流和磁矩
m
I
B B0 B'
顺 磁
Is
B0




无外磁场
有外磁场
第十四章 磁场中的磁介质
物理学
无外磁场时抗磁质分子磁矩为零 m 0

B0

m'
B0

磁 质 的 磁 化
为 记该 为点M的磁化强度。
M


m
V
分子磁矩 的矢量和
体积元
第十四章 磁场中的磁介质
物理学
2. 磁化电流 以长直螺线管为例:
介质磁化以后,由于分子磁矩的有序排列,其 宏观效果是在介质横截面边缘出现环形电流,这
种电流称为“磁化电流”(Is )。
第十四章 磁场中的磁介质
物理学
介质表面出现磁化电流
物理积学 分关系 a
M
作闭合回路 abcda 求积分
b
M dl M dl M dl
L ab bc

c M dl M dl M dl
cd
da
ab
d
Mlab jSlab IS
磁化强度与磁化电流的关系:磁化强度 M在磁场
r <1
r >1
r >>1
r =0
种类
温度
相对磁导率
铋 汞 铜 氢(气)
293K 293K 293K
1-16.6×10-5 1-2.9×10-5 1-1.0×10-5 1-3.89×10-5

大学物理课件-第10章磁场和它的源1-5节

大学物理课件-第10章磁场和它的源1-5节
磁悬浮列车
10.1 磁力与电荷的运动 10.2 磁场与磁感应强度 10.3 毕奥-萨伐尔定律 10.4 安培环路定理 10.5 利用安培环路定理求磁场的分布 10.6 与变化电场相联系的磁场
10.1-10.2 磁力、磁场与磁感应强度
基本磁现象
磁性:具有能吸引铁磁物质(Fe、Co、Ni) 的一种特性。 磁体:具有磁性的物体。 磁极:磁性集中的区域。
I1
c o I2 D
R
B 矢量迭加。 o 点在直电流 IAE 与
B F
IFB 所在延长线上。 BAE BFB 0
又O点离IEF很远,此电流的磁场可不计。
I1电流在O点的磁场:
B1
L1
0
0 4
I1dl R2
0 I1L1 4R2
B方向:
I2电流在O点的磁场:
E
A
I1
c o I2 D
R
B F
B2
10.3 毕奥-萨伐尔定律
dB
Idl sin
r2
dB
k
Idl
sin r2
Idl P
r
k 10 7 T m A -1

k
0 4
真空中的磁导率
Idl P
r
0 4k
4 107 T m A-1
dB
0 4
Idl sin
r2
由矢量乘积法则:
| A B || A || B | sin
线密度为 的电荷,当回路以匀角速度
绕过 o 点垂直于回路平面的轴转动时,求圆 心o 点处的磁感强度的大小.
解: B=B1+B2+B3
b
B1、B2 分别为带电的大
o

磁场源 大学物理共47页

磁场源 大学物理共47页

6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
磁场源 大学物理
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根

大学物理 磁场的源

大学物理 磁场的源

dB
0
2 R l
2

R Indl
2 3/ 2
2

2 . P
l
换用角量:
L
2
l =Rcot , dl = Rcsc2 , R2+l2= R2 csc2
B
0
2
nI
1
0 sin d nI cos 2 cos 1 2 13
安培环路定理的应用(求B)
解题方法
1.场对称性分析; 2.选取环路;(技巧) 3.确定环路内电流的代数和 I ; 4.应用环路定理列方程求解。 应用环路定理求 B 要比毕萨定律简单,但只 适用于具有高度对称的场。
31
选取环路原则

L
B dl 0 I
1.利用安培环路定理计算磁场B ,要求磁场具有高度 的对称性 ; 2.要求环路上各点
本节主要内容:
3.1 毕奥-萨伐尔定律 3.2* 匀速运动点电荷的磁场
3.3
3.4
安培环路定理
利用安培环路定理求磁场的分布
3.5
平行电流间的相互作用力
本节学习要点
1.毕奥-萨伐尔定律 2.安培环路定理
6
3.1 毕奥 — 萨伐尔定律
电流是产生磁场的源,磁场满足叠加原理. 电流元的概念,电流元Idl产生的磁感应强度微元: 0 Idl r dB dB 3 4 r I P r 真空磁导率 dB 的方向如图 Idl 7 2 B 其中: 0 4 10 N / A I 对一定的载流导线L的磁场
原则上可解出粒子的运动情况.
2.霍尔效应
霍尔电势差
IB U1 U 2 RH d 1 RH nq

(大学物理ppt第 8 章 磁场的源

(大学物理ppt第 8 章 磁场的源

μ 0 Idl sinα (因为在 dB 中α 0 ) 2 4 π r
课堂练习 有一边长为L电阻均匀分布 o 的正三角形导线框abc,与电 I a 1 源相连的长直导线1和2彼此 c 平行并分别与导线框的a点和b点相连接,导线1和 线框的ac的延长线重合,导线1和2的电流为I,如图 所示,令长直导线1、2和导线框在线框中心O点产 生的磁感应强度分别为B1、B2和B3,则O点的磁感 应强度大小: ①B=0,因为B1= B2= B3=0。 ②B=0,因为B1+ B2=0,B3=0。 ③B 0,因为虽然B1+ B2=0,但B3 0。 ④B 0,因为虽然B3=0,但B1+ B2 0。 答案: (4 )
dl
I
0 IR2
2r 3
由对称性可知 每一对对称的电流元在P点 的磁场垂直分量相互抵消 所以
y
Id l r ˆ
I z
Idl r 组成的平面

R o
r

x .P dB x
dB dByz
x
B yz dB cos 0
I
结论:在P点的磁感强度 B Bx
0 Idl dB 4 πr 2
第三步:根据坐标 写分量式 y 组成的平面 I d l r
Id l r ˆ
R o

I z
r

x .P dB x
dB dByz
x
0 Idl dB 4 πr 2
dBx dB sin
dByz dB cos
i
一、比奥-萨伐尔定律
2. 磁通连续定理
磁场的磁感线都是闭合的曲线。 任何磁场中通过任意 封闭曲面的磁通量总

大学物理磁场和它的源

大学物理磁场和它的源

r
1
B

P
0 I B 4r
直线电流的磁感应线
I I B
例2 圆电流磁场。 设有圆形线圈L,半径为R,通以电流I 。求圆形导线轴线上的磁场分布 解: 取如图所示电流元 Idl y Idl dB Idl 在P点的磁感强度为: d B r 0 I d l r R dB d B// 3 4 r o p● 0 I d l x x I dB B 4 r 2 由圆电流的对称性可知: d B 0 2R I sin I d l 0 0 B dB// dB sin sin dl 2 2 L L 0 4 L r 4r
B dS 0
(S )
稳恒磁场是无源场!
静电场: E dl 0 静电场是保守场 磁 场: B dl ? L 一.磁场的安培环路定理 • 以无限长载流直导线为例

12.5 安培环路定理
I
r

l
B dr
0 I 2
B cos dr I Brd rd 2 r



2 2 I R 0 I sin IS 0 IR 0 0 2 2 R 2 3 2 2 3 3 4r 2 ( x R ) 2r 2r
0 m 0 IS B 3 2 2 2 2 2 2 r 2( R x ) (R x )
dB
P

Idl
dB
r2 方向: 满足右手螺旋法则。
4

r
r
I
Idl
0 I dl er
4π r2

任意载流导线在点 P 处的磁感强度

大学物理-磁场的源

大学物理-磁场的源

例8.1 直线电流磁场。设有长为 L 的载流直导线,通有 电流I。计算与导线垂直距离为r 的p点的磁感强度。 ' 解: I dl e
dB
所有dB 的方向均垂直板面向 0 I d l sin 里。 B d B L '2
L
4
0
r
r
'2
Idl
2

4
r 几何关系: r / sin
8.4
利用安培环路定理求磁场的分布
应用安培环路定理的解题步骤:
1、分析磁场的对称性;
2、过场点选择适当的闭合曲线并规定绕行方向,使
得 B 沿此环路的积分易于计算: B 的量值恒定, B 的夹角处处相等; 与 dr
3、用右手螺旋定则确定曲线所包围电流的正负,
4、由安培环路定理求出感应强度 B 。
2
(cos 2 cos 1 )
1 0 nI 端点处(半无限长): B 0n 2
I
0
R
0 I B0 ? B0 4R B0 ?
I
I
R 0
I
0
0 I 2 0 I 2 B0 ( ) ( ) 2 R 4R B0 ? B0 0 0 I1 l1 B1 2r 2 r I 0 I 2 l2 B2 2r 2 r I I1 l2
I2 l1
三. 高斯定理 (磁通量连续定理) 磁感线是闭合曲线! 通过任意闭合曲面的磁通量恒等于零。即
B dS 0
(S )
稳恒磁场是无源场!
静电场: E dl 0 静电场是保守场 磁 场: B dl ? L 一.磁场的安培环路定理 • 以无限长载流直导线为例

大学物理第12章

大学物理第12章


L
0
( L围)

1
I3
L
说明: 关于电流符号的规定: 当电流流向与回路 L 的绕向 成右手螺旋法则时,I > 0 ; 否则,I < 0 。
“L 所围”指闭合的恒定电 流与 L 的相套合。
( L围)
I 2I
I1 0 , I 2 0
1
I2
定理是 Boit-Savert 定律的推论,但证明过程比较复杂。 一般可以借助无限长直线电流产生的磁场,对定理加 以说明。 积分式中的 B 在路径 L 取值,它是所有电流(无论是否 被 L 所围)共同产生的场,只是积分的结果仅与被 L 所 围电流有关。 定理只适用于真空中恒定电流产生的磁场。
第十二章
磁场和它的源
运动电荷相互作用是靠磁场传递的,这意味着两方面含义:
运动电荷激发磁场;磁场对运动电荷作用——磁力。 恒定电流是运动电荷的最典型的例子。本章主要就是讨论恒
定电流所激发的磁场——恒定磁场的规律,并进一步讨论这种
磁场的性质。 对磁场性质的研究,运用的是研究静电场的方法,即研究: 场对闭合面的通量 B dS
磁感应线的特点: 1. 无头无尾的闭合曲线。 2. 任何两条磁感应线不相交; 3. 磁感应线的环绕方向与电流方向服从右手螺旋定则。
右手螺旋定则:(1)大拇指—电流方向,四指弯曲方向—磁感应线的 环绕方向;(2)四指弯曲方向—圆环电流方向,大拇指—圆环轴线上磁感 应线的方向。
4. 磁通量
磁通量:d m B dS m B dS
第十二章 磁场和它的源
Magnetic Field
本章主要内容
§12-1 磁力与电荷的运动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dB
0 4
I d l sin
r2
方向指 向里面
2
Idl rˆ l r
0r
I
B
dB
0 4
I r
cos
1
cos
2
1
无限长电流:1 0, 2 B 0I 2 r
Bp
6
I
无限长直线电流的磁场
B 0I 2 r
【例】平行直线电流单位长度线段间的作用力
F1
I1B2
I1
0 2
I2 d
F1
F2
0 I1 I 2 2 d
设绕N匝,关于对称 轴绕360º/N对称。
密 绕 , N , 管 内 、外的磁场轴对称: 在 共轴的圆周上B的数值 相等,方向沿切向。
.. . . ..
.
. .
. .
. .
.
R
.
. .
. .
. . . . ...
r .
.
.
.
......
Bin
0 NI 2r
0nI
Bout 0
I
I
26
【例】无限大平面电流的磁场分布 By 0
电磁学(第三册)
第8章 磁场的源
陈信义编
1
目录
§8.1 毕奥–萨伐定律 §8.2 匀速运动点电荷的磁场(在第7章已讲) §8.3 安培环路定理 §8.4 利用安培环路定律求磁场的分布 §8.5 与变化电场相联系的磁场 §8.6 平行电流间的相互作用
2
§8.1 毕奥—萨伐定律
一、毕—萨定律( 实验规律 1820 )
在恒定电流的磁场中,B 沿任何闭合路径的 线积分等于与路径所“铰链”的电流强度代数
和的 0 倍
L Bdl 0 Iin
Iin 取正值的方向与L成右手螺旋。
用毕–萨定律证明(教材 P255)。
【例】
LBdl 0 ( I1 I 2 )
I1
I2
L
16
关于安培环路定理的讨论
1、与L“铰链”的电流,可理解为: 穿过以L为边界的任意形状曲面的电流
19
3、安培环路定理是基本的规律,而毕—萨定律 只是磁场的定义。
4、包括非恒定情况的安培环路定理将在§8.5 介绍。
5、安培环路定理的微分形式—磁场的旋度
B 0 j
其中,j 为恒定电流的电流密度矢量。
L
Байду номын сангаас
Bdl
S
B
dS0
S
jdS
B 0 j
20
§8.4 利用安培环路定理求磁场的分布 【例】求密绕长直螺线管的磁场分布 n, I
n, I 内部轴线上的磁场
p
B 0nI
端口中心处的磁场
(教材P249例8.3)
B
1 2
0nI
12
通电螺线管的磁场
B
I
I
B 0nI
二、B 的高斯定理 (磁通连续方程)
在任意磁场中,通过任意封闭曲面的磁 通量总等于零
B d S 0
S
B 0
磁场是“无源场” 不存“磁荷”(磁单极子)
L
Bdl
0
jdS
S
曲面S 的 “正面” 与 L 成右手螺旋
17
例如
I
dS
I S
L j
曲面S 的正面与 L 成右手螺旋
L
Bdl 0
jdS
0I
S
18
2、对于恒定电流中的“一段”,安培环路 定理不适用。
I
S1
L S2
L
Bdl 0
jdS
0I
S1
LBdl 0
jdS 0

S2
原因:物理上,恒定电流一定闭合!
21
1、对称性 Bin 平行于轴线 关于MN 镜象反射 + 电流反向 体系复原 镜象反射 M 电流反向
Bin
Bin 平行于轴线
N
22
2、安培环路定理 Bin均匀分布
Bin 平行于轴线
L
均匀分布
Bdr0 L
Bin均匀分布
下面分析外部磁场 的分布,再求Bin.
23
3、外部磁场 如何分布?
n, I
0Idl sin 4r 2
0IR dl 4r 3
9
B
dB//
0 IR 4 r 3
dl
Idl
0IR2
2r 3
R
Io
0IR2
2(R2 x2 )3 2
r dB dB
x
dB//
圆电流中心的磁场 无限长直电流的磁场
B
0I
2R
B
0I 2 r
10
圆电流的磁场 I
【例】密绕长直螺线管轴线上的磁场 计算各匝圆电流在 p 点磁场的矢量积分
由B的高斯定理:By 0 由安培环路定理:
Bz与r无关
r ,螺线管长直电流
Bin 均匀分布
Bz 0
内部磁场:Bin 0nI 0 j
外部磁场:Bx
0I 2 r
r Bx
Bz0 By 0
Bin Bx
0nI
0I 2 nr 1, 2r
Bout 0
密绕情况
24
Bx
Bz
By
非密绕有漏磁
25
【例】环形密绕螺线管
恒定电流的电流元
Idl
I
dB
在 p点产 生的磁场:
d
B
0
4
I d l rˆ r2
p
Idl r
真空磁导率 0 4 107 N / A2
电流 I 在P点的磁场:B dB 3
运动点电荷磁场公式 毕—萨定律:
S
Idl

rP
dB
n,q dl
v
dl dl v v
点电荷q在p点的磁场(v<<c):
j -面电流密度矢量
Bx 0
B的高斯定理 By=0
Bz
j
平面电流由平行的直线
电流组成 Bx=0
安培环流定理:2lB 0 jl
B
0
2
j
l B
j
无限大均匀平面电流两侧的磁场是均匀磁场, 大小相等,方向相反。
27
§8.5 与变化电场相联系的磁场 一、位移电流—Maxwell的假设
Bdl
0
j dS
0 Ic
B0
0 q 4 r 2
v

电流元磁场 dB (n Sdl)B0
4
dB (nSdl )B0
(nSdl )
0q 4
v rˆ r2
(nqvS) 0 4
dl rˆ r2
0 4
Idl rˆ r2
证毕。
【思考】毕—萨定律的相对论形式。
5
【例】直线电流的磁场
dB
0 4
I d l rˆ r2
S1 Ic
L
S1
Bdl
0
j dS
0
?
L
S2
S2 L +q
E
jd
-q
Maxwell假设:在极板间流有位移电流jd
使得
Bdl
0
jd
dS
0
Ic
L
S2
28
求位移电流: S1
Ic
L
S2 +q
E -q
jd
jd
dS
S2
jd
S
Ic
dq dt
d dt
0ES
B2
I1
I2 B1
F1 F2
0 4 107N / A2
d
国际单位制“安培”的定义:
若 d 1m ,F1 F2 2107N/m ,则电流强度为
I1 I2 1 A
8
【例】圆电流轴线上的磁场
dB 0Idl 4r 2
dB 0
Idl
R
Io
r dB dB
x
dB//
B dB//
dB//
14
迪拉克(P. A. M. Dirac 1931)指出, 已有的量子理论允许存在磁单极子。如果 在实验中找到了磁单极子,磁场的高斯定 理和整个电磁理论就要作重大的修改。
寻找磁单极子的实验研究具有重要的的 理论意义。但至今还没发现磁单极子。
人们仍然认为:磁场是电流或变化的电 场产生的。
15
§8.3 安培环路定理
相关文档
最新文档