煤层气排采技术ppt课件
合集下载
《煤层气开采技术》课件
传统开采技术
1 井巷开采法
通过在煤层上方开挖一系列的巷道,从而将天然气导入井眼,是煤层气开采最传统的方 法之一。
2 瓦斯抽采技术
瓦斯抽采技术是对煤层气资源进行有效开发的一种传统方法。
3 瓦斯点火技术
瓦斯点火技术是最早的开采煤层气的方法之一,利用煤层中的瓦采技术
煤层气的形成和分布
形成原理
煤层气是在煤层形成和演化过程中释放的天然气,是古代有机质的产物。
分布特点
煤层气广泛分布于世界各地,但受多种因素的影响,不同地区的煤层气储量和开采难度也不 同。
利用前景
煤层气开采能大大缓解全球能源短缺的现状,未来市场前景广阔。
煤层气开采技术的分类
1
加压注气技术
2
在煤层中注入高压天然气或液体,使煤
水平井开采技术可以有效地提高采气井的开采效 率,实现煤层气稳产高产。
煤层气水平井高效范采技术
结合泡沫化送排技术和水平井成键技术,提高高 压水的开采效果。
低渗透率井网合理开采技术
在不改变原有油层地质储层性质的基础上,对煤 层井网进行合理开采的方法。
局部多点钻井技术
采用局部多点钻井技术,做到多面、多点、多孔 同时钻井,提高钻探质量。
煤层气开采技术
煤层气是一种新兴的清洁能源,其开采技术是当今世界矿业技术的一个重要 分支。
煤层气概述
煤层结构
煤层气主要储存在含煤地层中, 煤层中各种特殊的结构控制着煤 层气的储集和运移。
煤的燃烧特性
煤层气的热值和燃烧特性对开采 和利用煤层气的经济效益和环境 贡献产生重要影响。
煤层气运输和使用
煤层气运输和使用需要建立完善 的输气管道、气化站等设施,以 满足市场需求。
煤层气开采技术的挑战
煤层气井排采理论与技术PPT课件
煤层在演化中逐步脱水、升温、增压
煤具有更强的吸附能力 有限的降压和极有限的基质孔隙空间
几乎是恒定的温度
影响因素
煤质、基质孔隙内表面积等
解吸为游离态的煤层气逸散速度等
煤层气产出机理
解吸与吸附的差异:
大量的实验研究表明,煤层气吸附/解吸具有一定的可逆性并且解吸 表现出一定的滞后性,这是一个问题的两个方面,是物理吸附客观本质 的体现。
煤层气产出机理
煤层气赋存状态:
证据有三: (2) 煤层气开发实践进一步证实,煤层气以吸附为主的赋存特点。
几乎所有煤层气井都是在排水降压之后才开始产气的,不具备游离气产 出的特征。
煤层气产出机理
煤层气赋存状态:
证据有三:
(3) 尽管煤层孔隙及裂隙中充满了水,但水溶甲烷量相对实测煤层 气含量值而言是微不足道的。
或接近测吸定附饱误和差状态,很少有吸附过实饱验和状误态差。
解吸是一个相对较快的过程
测试误差
误差
这一事实充分证明煤层气的赋存状态以吸附为主。
产液参数:动液面、CL、PH值、含砂、产水量;
煤层气井排采过程中产层伤害的3 5主要原因与伤害机理:
煤热演化生成的煤层气足以满足煤的吸附
而对常规天然气生产却恰恰相反3 0,井间干扰会导致常规天然气产量大幅度锐减。
煤层气产出机理
解吸动力学特征及解吸类型:
(3)扩散解吸 根据分子扩散理论,只要有浓度差存在,就有分子扩散运动,这是气
体分子热力学性质所决定的。研究表明,甲烷气体分子在煤的孔隙内表面 得以高度富集,这就与孔隙、裂隙内的流体构成了高梯度的浓度差,这种 浓度差迫使甲烷分子扩散,从而造成非常规解吸。基于扩散的普遍存在性, 因此扩散解吸也是煤层气开采过程中煤层气解吸的重要的一种作用类型。 鉴于扩散解吸的实质是由于浓度差造成的扩散而导致的“解吸”,因此这 种扩散的本身是偶于“解吸作用”之中的,是解吸作用与扩散作用的耦合。 从解吸的角度,称之为“扩散解吸”。
煤具有更强的吸附能力 有限的降压和极有限的基质孔隙空间
几乎是恒定的温度
影响因素
煤质、基质孔隙内表面积等
解吸为游离态的煤层气逸散速度等
煤层气产出机理
解吸与吸附的差异:
大量的实验研究表明,煤层气吸附/解吸具有一定的可逆性并且解吸 表现出一定的滞后性,这是一个问题的两个方面,是物理吸附客观本质 的体现。
煤层气产出机理
煤层气赋存状态:
证据有三: (2) 煤层气开发实践进一步证实,煤层气以吸附为主的赋存特点。
几乎所有煤层气井都是在排水降压之后才开始产气的,不具备游离气产 出的特征。
煤层气产出机理
煤层气赋存状态:
证据有三:
(3) 尽管煤层孔隙及裂隙中充满了水,但水溶甲烷量相对实测煤层 气含量值而言是微不足道的。
或接近测吸定附饱误和差状态,很少有吸附过实饱验和状误态差。
解吸是一个相对较快的过程
测试误差
误差
这一事实充分证明煤层气的赋存状态以吸附为主。
产液参数:动液面、CL、PH值、含砂、产水量;
煤层气井排采过程中产层伤害的3 5主要原因与伤害机理:
煤热演化生成的煤层气足以满足煤的吸附
而对常规天然气生产却恰恰相反3 0,井间干扰会导致常规天然气产量大幅度锐减。
煤层气产出机理
解吸动力学特征及解吸类型:
(3)扩散解吸 根据分子扩散理论,只要有浓度差存在,就有分子扩散运动,这是气
体分子热力学性质所决定的。研究表明,甲烷气体分子在煤的孔隙内表面 得以高度富集,这就与孔隙、裂隙内的流体构成了高梯度的浓度差,这种 浓度差迫使甲烷分子扩散,从而造成非常规解吸。基于扩散的普遍存在性, 因此扩散解吸也是煤层气开采过程中煤层气解吸的重要的一种作用类型。 鉴于扩散解吸的实质是由于浓度差造成的扩散而导致的“解吸”,因此这 种扩散的本身是偶于“解吸作用”之中的,是解吸作用与扩散作用的耦合。 从解吸的角度,称之为“扩散解吸”。
煤层气排采技术讲课文档
3.煤储层渗透性
煤储层的渗透率直接决定了孔—裂隙系统中流
体流动的快慢。当渗透率大时,在同样的排采
时间内,流量大,若补给水的能力相同,则压
力传递快;反之则亦然。
第十四页,共71页。
煤层气垂直井排采过程压力传递的影响因素
4.含水层
若含水层与煤储层水动力联系较强时,储层的供 液能力增强,排采难度增大;若含水层与煤储层
维护量小、 15.2-50 防砂、
煤粉能力强
换泵的价 格
较高
电潜泵
QYB101Q YB101-5050-500S
24-65
维护量小、 防砂、
煤粉能力强
换泵的价 格
较高
第二十五页,共71页。
排水采气方法
梁式泵法
煤 螺杆泵法 有杆泵
层
气 电潜泵法
排
水 气举法
采 水力喷射泵法 气 的 泡沫法 方
法 优选管柱法
产出机理:
第五页,共71页。
பைடு நூலகம் 产出各阶段特征:
第一阶段: 仅有压降传递,无水气流动阶段 压降幅度比较小,还不足以使煤层中的水产生流动,煤 层气无法解吸,处于静水阶段。
第二阶段: 饱和水单相流阶段
随着压降幅度的增大,煤层中的裂隙水开始流动, 极 少量游离气或溶解气在裂隙系统中将处于运移状态, 此阶段以饱和水单相流为表征。
若煤层富水性弱,则需根据围岩与煤层的连通状 况及围岩的含水性而定。煤层含水性影响煤储层
压力传递,但其影响程度需与其他条件综合考虑。
第十三页,共71页。
煤层气垂直井排采过程压力传递的影响因素
2.煤储层边界
煤储层边界是指煤层的不连续界面,可以是断层, 也可以是尖灭带或其他边界。它决定了在煤层气
煤储层的渗透率直接决定了孔—裂隙系统中流
体流动的快慢。当渗透率大时,在同样的排采
时间内,流量大,若补给水的能力相同,则压
力传递快;反之则亦然。
第十四页,共71页。
煤层气垂直井排采过程压力传递的影响因素
4.含水层
若含水层与煤储层水动力联系较强时,储层的供 液能力增强,排采难度增大;若含水层与煤储层
维护量小、 15.2-50 防砂、
煤粉能力强
换泵的价 格
较高
电潜泵
QYB101Q YB101-5050-500S
24-65
维护量小、 防砂、
煤粉能力强
换泵的价 格
较高
第二十五页,共71页。
排水采气方法
梁式泵法
煤 螺杆泵法 有杆泵
层
气 电潜泵法
排
水 气举法
采 水力喷射泵法 气 的 泡沫法 方
法 优选管柱法
产出机理:
第五页,共71页。
பைடு நூலகம் 产出各阶段特征:
第一阶段: 仅有压降传递,无水气流动阶段 压降幅度比较小,还不足以使煤层中的水产生流动,煤 层气无法解吸,处于静水阶段。
第二阶段: 饱和水单相流阶段
随着压降幅度的增大,煤层中的裂隙水开始流动, 极 少量游离气或溶解气在裂隙系统中将处于运移状态, 此阶段以饱和水单相流为表征。
若煤层富水性弱,则需根据围岩与煤层的连通状 况及围岩的含水性而定。煤层含水性影响煤储层
压力传递,但其影响程度需与其他条件综合考虑。
第十三页,共71页。
煤层气垂直井排采过程压力传递的影响因素
2.煤储层边界
煤储层边界是指煤层的不连续界面,可以是断层, 也可以是尖灭带或其他边界。它决定了在煤层气
煤层气排采工艺技术精品PPT课件
2006-1-5 2006-1-15 2006-1-25
2006-2-4 2006-2-14 2006-2-24
2006-3-6 2006-3-16 2006-3-26
2006-4-5 2006-4-15 2006-4-25
2006-5-5 2006-5-15 2006-5-25
2006-6-4 2006-6-14 2006-6-24
演讲人:XXXXXX 时 间:XX年XX月XX日
4煤层气排采新工艺、新技术应用
1)注入气体或泡沫,使气水产出; 2)柱塞举升工艺,依靠气井自身能量将液体排出; 3)超声旋流雾化排液技术,是根据雾化原理结合临界 流速理论,依靠气井自身能量,利用机械、气动、超声 波雾化的多重作用,使液体形成微细雾滴,在井筒内形 成雾状流产出。 这些技术的应用,在气田开发阶段可以大幅度降低生 产成本。
煤层气排采工艺技术
大纲
1 煤层气产出机理 2 煤层气排采工艺技术 3 煤层气排采设备 4 煤层气排采新工艺、新技术应用
1煤层气产出机理
(1) 煤层气的产出流动特点 煤层甲烷附存状态为:游离、吸附、溶解,主要以吸附
状态为主; 煤层甲烷要经历三个流动过程:解吸-扩散-渗流
从煤表面解吸
煤基质和微孔隙中的扩散
正常产气之后,相对渗透率起着非常关键的作用。
1煤层气产出机理
典型的相对渗透率曲线
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0 0
气相相渗曲线 水相相渗曲线
0.2
0.4
0.6
0.8
水相饱和度
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1
PH35-06井排采曲线图
2006-2-4 2006-2-14 2006-2-24
2006-3-6 2006-3-16 2006-3-26
2006-4-5 2006-4-15 2006-4-25
2006-5-5 2006-5-15 2006-5-25
2006-6-4 2006-6-14 2006-6-24
演讲人:XXXXXX 时 间:XX年XX月XX日
4煤层气排采新工艺、新技术应用
1)注入气体或泡沫,使气水产出; 2)柱塞举升工艺,依靠气井自身能量将液体排出; 3)超声旋流雾化排液技术,是根据雾化原理结合临界 流速理论,依靠气井自身能量,利用机械、气动、超声 波雾化的多重作用,使液体形成微细雾滴,在井筒内形 成雾状流产出。 这些技术的应用,在气田开发阶段可以大幅度降低生 产成本。
煤层气排采工艺技术
大纲
1 煤层气产出机理 2 煤层气排采工艺技术 3 煤层气排采设备 4 煤层气排采新工艺、新技术应用
1煤层气产出机理
(1) 煤层气的产出流动特点 煤层甲烷附存状态为:游离、吸附、溶解,主要以吸附
状态为主; 煤层甲烷要经历三个流动过程:解吸-扩散-渗流
从煤表面解吸
煤基质和微孔隙中的扩散
正常产气之后,相对渗透率起着非常关键的作用。
1煤层气产出机理
典型的相对渗透率曲线
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
0 0
气相相渗曲线 水相相渗曲线
0.2
0.4
0.6
0.8
水相饱和度
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1
PH35-06井排采曲线图
煤层气ppt课件
输入型:多位于构造高点。初期本井降压解吸气随降压漏斗从 本井产出,后期构造下倾部位解吸气又运移到本井产出。排采 井一般位于构造高点,日产气量呈上升—稳产—上升—递减四 个阶段。此类井一般高产、稳产期长。
成藏模式及开采特征
开采效果
煤层气的产出是一个“排水-降压-解吸-扩散-渗流”的 过程。有效应力效应、基质收缩效应和克林肯伯格效应三种 效应共同作用决定了煤储层渗透率的动态变化过程,而这一 过程对煤层气井的开发效果有直接的影响。根据渗透率及产 气量可以将煤层气的开采效果分为三类:
排采动态分析预测
产量递减法
产量递减法是使用递减曲线分析预测煤层气产量的方法。最 早是由Hanby(1991)在使用指数递减对美国黑勇士盆地的 煤层气井进行经济评估时提出来的。
该方法主要是通过研究煤层气井的产出规律、分析气井的生 产特性和历史资料来预测储量。假设一旦煤层气井达到了实 际高峰值,产气量就开始下降,持续呈典型的可预测的递减 趋势,并沿着一条拟定的递减率曲线变化,由此就可以利用 传统递减分析法及开采特征
开采特征
外输型:多位于构造翼部、非均质性强的地区。气产量一部分通 过本井降压解吸半径内从本井产出,大部分通过高渗通道或沿上 倾部位扩散到其他井内产出。排采井一般位于构造翼部、非均质 性较强的地区。日产气量呈不产—上升—缓慢递减三个阶段。此 类井多低产。
成藏模式及开采特征
开采特征
排采动态分析预测
因为缺乏科学的工具,早期对煤层气排采动态分析预测是很困 难的。大多数煤层气井初始排采时气、水产能较高,经过一段 时间(如数月)的抽排后,出现产量衰减甚至被迫关闭,对后 续产能缺乏系统的预测,极大地制约着煤层气产业的发展。通 过近几十年发展,国内外诸多学者对煤层气井的排采动态分析 预测进行了相应的研究和探讨。当前在国外对煤层气井煤层气 排采动态分析预测采用较多的方法主要是产量递减法及数值模 拟法。
成藏模式及开采特征
开采效果
煤层气的产出是一个“排水-降压-解吸-扩散-渗流”的 过程。有效应力效应、基质收缩效应和克林肯伯格效应三种 效应共同作用决定了煤储层渗透率的动态变化过程,而这一 过程对煤层气井的开发效果有直接的影响。根据渗透率及产 气量可以将煤层气的开采效果分为三类:
排采动态分析预测
产量递减法
产量递减法是使用递减曲线分析预测煤层气产量的方法。最 早是由Hanby(1991)在使用指数递减对美国黑勇士盆地的 煤层气井进行经济评估时提出来的。
该方法主要是通过研究煤层气井的产出规律、分析气井的生 产特性和历史资料来预测储量。假设一旦煤层气井达到了实 际高峰值,产气量就开始下降,持续呈典型的可预测的递减 趋势,并沿着一条拟定的递减率曲线变化,由此就可以利用 传统递减分析法及开采特征
开采特征
外输型:多位于构造翼部、非均质性强的地区。气产量一部分通 过本井降压解吸半径内从本井产出,大部分通过高渗通道或沿上 倾部位扩散到其他井内产出。排采井一般位于构造翼部、非均质 性较强的地区。日产气量呈不产—上升—缓慢递减三个阶段。此 类井多低产。
成藏模式及开采特征
开采特征
排采动态分析预测
因为缺乏科学的工具,早期对煤层气排采动态分析预测是很困 难的。大多数煤层气井初始排采时气、水产能较高,经过一段 时间(如数月)的抽排后,出现产量衰减甚至被迫关闭,对后 续产能缺乏系统的预测,极大地制约着煤层气产业的发展。通 过近几十年发展,国内外诸多学者对煤层气井的排采动态分析 预测进行了相应的研究和探讨。当前在国外对煤层气井煤层气 排采动态分析预测采用较多的方法主要是产量递减法及数值模 拟法。
煤层气产出机理与控制分析PPT课件
一、煤层气排采的内涵—排采方式
Xi’an University of Science & Technology
一、煤层气排采的内涵—过程原理
Xi’an University of Science & Technology
一、煤层气排采的内涵—增产技术
煤层气勘探技术的发展
3、定向水平井、羽状水平井 2、洞穴完井(空气钻井) 1、常规钻井、套管射孔(井组井群)
一、煤层气排采的内涵—现有实例
6、沁南地区水平井
山西某定向羽状水平井井生产曲线
井号
DNP02
埋深,m
180
煤层厚度,m 5.2
渗透率,mD
1
含气量,m3/t
14
分支数量,个 12
煤层段进尺,m 7600
单分支井控制面 积,km2
0.5
Xi’an University of Science & Technology
2001.3.1
2001.3.31 2001.4.30 2001.5.30
2001.6.29 2001.7.29 2001.8.28 2001.9.27 2001.10.27 2001.11.28 2001.12.28 2002.1.25
2002.2.24 2002.3.28
0
2002.4.25
Gas
二、煤层气排采的规律
潘庄地区10口井平均产量的分析
Xi’an University of Science & Technology
二、煤层气排采的规律
关井停排对煤层气产量影响很大。每关井、停排一段时间后 煤层气产量会大幅降低,恢复排采一个月之内的平均产量统计 表明,关井停排几乎无一例外会降低煤层气单井日产。
煤层气开采技术课件
煤层气开采技术在油气区的应用
伴生气回收利用
在油气区,煤层气作为伴生气资源丰富,煤层气开采 技术可用于伴生气回收利用,提高油气采收率。
提高采收率
在油气开采过程中,煤层气开采技术可以与油气开采 技术相结合,提高油气采收率。
降低生产成本
通过煤层气开采技术回收利用伴生气,可以降低油气 生产成本。
煤层气开采技术在非常规油气资源开发中的应用
随着全球能源结构的调整和清洁能源的推广应用,煤层气开采技术将促进能源结构的多 元化发展,为全球能源的可持续发展做出贡献。
THANKS FOR WATCHING
感谢Байду номын сангаас的观看
伴生气回收利用案例
介绍某油气田采用煤层气开采技术进行伴生气回收利用的成功案例, 包括技术方案、实施效果等方面的分析。
页岩气开发案例
介绍某页岩气田采用煤层气开采技术进行页岩气开发成功案例,包 括技术方案、实施效果等方面的分析。
05
煤层气开采技术发展趋 势与展望
煤层气开采技术的发展趋势
煤层气开采技术向高效、低成本发展
压裂工艺
压裂工艺包括水力压裂、酸压 裂等,根据煤层条件和开采需
求选择合适的工艺。
煤层气开采的排采技术
01
02
03
排采技术概述
排采是将开采出的煤层气 通过排水、排渣等方式进 行收集和处理,以便于输 送和利用。
排采设备
排采设备包括排水泵、排 渣泵、分离器等,用于将 煤层气与水、渣等杂质分 离。
排采工艺
04
煤层气开采技术应用与 案例分析
煤层气开采技术在煤矿区的应用
煤矿瓦斯治理
煤层气资源开发
在煤矿区,煤层气资源丰富,煤层气开采技术可用 于开发煤层气资源,提高能源利用效率。
地面抽采煤层气ppt课件
一般来说,上部煤层通常采用套管
射孔完井;下部煤层可选用裸眼完井或裸
眼洞穴完井,但更常用的是套管射孔完
井.
.
.
.
五完井技术五完井技术2m2m五完井技术五完井技术五完井技术五完井技术五完井技术五完井技术五完井技术五完井技术2m2m五完井技术五完井技术五完井技术五完井技术五完井技术五完井技术筛管完井筛管完井筛管完井是指在钻穿煤层后把带筛管的套管柱筛管完井是指在钻穿煤层后把带筛管的套管柱下入煤层部位然后注水泥封隔煤层顶部以上的环下入煤层部位然后注水泥封隔煤层顶部以上的环形空间完井形空间完井
.
五、完井技术
将套管鞋下 入顶板内,套 管鞋与煤层的 距离不要大于 2m,越靠近 煤层越好。
.
五、完井技术
后期裸眼完井的优点:
1.降低了固井作业对煤层的伤 害,同时也避免了射孔和压裂作 业对煤层的伤害;
2.完井施工工艺比射孔完井简 单,节约了固井、射孔和压裂作 业费用,完井成本较低。
.
五、完井技术
5.节约了固井、射孔和压裂作业费用,完
井成本低。
.
五、完井技术
先期裸眼完井的缺点: 1.井筒稳定性差 2.不利于修井、后期强化增产
和分层开采 3.在采气过程中对煤粉的控制
和清除比较困难.
.
五、完井技术
2 后期裸眼完井 后期裸眼完井是指在钻完全部设
计井深后,将生产套管下至煤层顶 部并固井的方法。
后期裸眼完井除要求具备先期裸 眼完井条件外,主要适用于对煤层 深度掌握不够准确的煤层气井。
筛管完井的局限性: 完井工艺相对复杂,与先期裸眼完井比较,完井作业实
施煤层保护的难度较大等。
.
五、完井技术
4 裸眼洞穴完井
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精选
煤层气垂直井排采过程压力传递的影响因素
2.煤储层边界
煤储层边界是指煤层的不连续界面,可以是断层, 也可以是尖灭带或其他边界。它决定了在煤层气 井排采影响范围内的水量,最终影响压力传递的 范围。 3.煤储层渗透性 煤储层的渗透率直接决定了孔—裂隙系统中流 体流动的快慢。当渗透率大时,在同样的排采 时间内,流量大,若补给水的能力相同,则压 力传递快;反之则亦然。
动液面
①抽油机泵抽系统设备主要有: 3 型抽油机、 Φ56mm二级整体筒管式泵、Φ73mm油管、音标、 Φ89mm金属绕丝筛管、管式泵柱塞、Φ19mm抽油杆、
Φ25.4mm光杆、丝堵、音标等;
尾管
沉砂管
②螺杆泵泵挂系统设备主要有:驱动头、24.5mm光
杆+24.5mm抽油杆+抽油杆扶正器+转子+定子+尾管+
第三阶段: 非饱和的单相流阶段
压力进一步下降,一定数量煤层气解吸出来,形成气泡,
阻碍水的流动,水的相对渗透率下降,处于非饱和单
相流阶段。
精选
第四阶段: 气水两相流阶段 储层压力进一步下降,解吸气、溶解气、游离气 开始在裂隙系统中扩散,气体渗透率逐渐增大, 气产量逐步增多, 水产量开始下降,直至气泡相 互连接,形成连续的流线,处于气-水两相流阶段, 但此阶段水的相对渗透率大于气体相对渗透率。
精选
排采阶段的划分
煤层气井的生产排采是一个长时间排水降压采气过 程,煤层气单井生产年限一般为15-20年。从煤层气 井生产过程中气、水产量的变化特征。
可把生产分为三个阶段
早期排水降压阶段:主要产水, 随着压力降到临界解吸压力以 下,气体开始解吸,并从井口产 出。 这一阶段所需的时间取决于 井点所处的构造位置、储层特征、 地层含水性、排水速度等因素, 持续时间可能是几天或精选数月。
第五阶段: 水气两相流阶段
压力进一步下降,吸附气体的大量解吸,处于以气 为主的水-气两相流阶段。
精选
2.排,压力 仅在煤层中传递阶段 (2)饱和水单相流,压力 仅在围岩中传递阶段 (3)饱和水单相流,压力 在围岩与煤层中共同传 递 (4)非饱和流阶段 (5)两相流阶段
精选
音标 100m 动液面
尾管 沉砂管
抽油杆 出水管线 出气管线
表层套管 Φ244.5mm 煤层套管 Φ139.7mm 水泥返高
油管 Φ73mm
煤层 泵 金属绕丝筛管 丝堵
人工井底
气井系统
井下泵挂结构
●泵一般下到筛管距煤层中部深度上下4~20m,
平均为煤层中部深度以上5.98m处。
音标
100m
● 所有井煤层均全部射开。
排水采气要求
煤层气排水采气要求求:: ①排液速度快,不怕井间干扰。 ②降低井底流压,排水设备的吸液口一般都要求下 到煤层以下。 ③要求有可靠的防煤屑、煤粉危害的措施。
精选
气井系统
排采系统
井下设备
动力系统设备 地面排采流程
精选
梁式泵 螺杆泵 电潜泵
发电机 控制柜 排液系统 采气系统
气井系统
井下泵挂结构: • 73mm抽油管 • 回音标 • 管式泵 • 尾管 • 筛管 • 沉砂管 • 丝堵
精选
随着排采的进行,围岩中压力 梯度逐渐大于煤层中的压力梯 度,压力传递轨迹从煤层过渡 到围岩中,压力将仅在围岩中 传递,开始排采围岩中的水, 此时,煤层中压力几乎不再发 生变化。
2.排采过程煤层有越流补给
随着围岩中影响半径 的增加,煤层中的压 力梯度小于围岩中的 压力梯度,在煤层中 形成很小的压降漏斗 后,压力将仅在围岩 中进行传递,进入第 二阶段。直到煤层中 的压力梯度大于围岩 中的压力梯度为止。
精选
煤层气储层精与选 常规天然气藏的特性比较
产出机理:
精选
产出各阶段特征:
第一阶段: 仅有压降传递,无水气流动阶段 压降幅度比较小,还不足以使煤层中的水产生流动,煤 层气无法解吸,处于静水阶段。
第二阶段: 饱和水单相流阶段 随着压降幅度的增大,煤层中的裂隙水开始流动, 极 少量游离气或溶解气在裂隙系统中将处于运移状态, 此阶段以饱和水单相流为表征。
排采阶段的划分
中期稳定生产阶段:随着排水 的继续,产气量逐渐上升并趋 于稳定,出现高峰产气,产水 量则逐渐下降。
该阶段持续时间的长短取决于 煤层气资源丰度(主要由煤层 厚度和含气量控制),以及储 层的渗透性。
精选
排采阶段的划分
后期气产量下降阶段:当大 量气体已经采出,煤基质中解 吸的气体开始逐渐减少,尽管 排水作业仍在继续,产气量下 降,产出少量或微量水。 该阶段延长的时间较长,可以 在10年以上。
精选
煤层气垂直井排采过程压力传递的影响因素
4.含水层
若含水层与煤储层水动力联系较强时,储层的供 液能力增强,排采难度增大;若含水层与煤储层 水动力联系较弱或无联系时,仅排采煤储层中的 水时,压力更容易传递。(越流补给;无越流补 给) 5.储层压力梯度
储层压力梯度是煤储层压力与煤层埋深的综合 反映。从某种程度上反映了地层能量的大小。 若储层压力梯度较大,说明地层原始能量较高, 在同样的排采强度、供液能力情况下,压力更 容易传递,更容易降精压选 。
精选
煤层气垂直井排采过程压力传递的影响因素
1.煤层含水性
煤层气井的生产是通过抽排煤层及相邻含水层中 的地下水来降低煤储层压力,使煤层中的甲烷释 放并向井口运移,排水是储层压力降低的根本途 径。 煤层富水性直接关系到压力降低的难易程度。富 水性过强,无疑将增加排采的强度,使煤储层压 力很难降低; 若煤层富水性弱,则需根据围岩与煤层的连通状 况及围岩的含水性而定。煤层含水性影响煤储层 压力传递,但其影响程度需与其他条件综合考虑。
煤层气排采技术
精选
煤层气排采
1.煤层气生产采出特点 2.排采方法 3.生产井排采特征分析
精选
煤层气藏具有3 3个方面的特点: 一是煤层气在煤中的储集是以吸附状态附在煤的表 面; 二是在进行大量开采之前,必须降低平均储层压力力; ; 三是储层中一般都有水,在采气的同时,必须进行 排水。 由于煤层的这些特点,在从事煤层气的开采时,涉及以 下几个方面 (1)最大限度地降低井口压力力;; (2)水、气的地面分离;; (3)采出气压缩到输送压力力;; (4)采出水的处置或处理。 常规油气生产方法用于煤层气开采时,需要改动。
煤层气垂直井排采过程压力传递的影响因素
2.煤储层边界
煤储层边界是指煤层的不连续界面,可以是断层, 也可以是尖灭带或其他边界。它决定了在煤层气 井排采影响范围内的水量,最终影响压力传递的 范围。 3.煤储层渗透性 煤储层的渗透率直接决定了孔—裂隙系统中流 体流动的快慢。当渗透率大时,在同样的排采 时间内,流量大,若补给水的能力相同,则压 力传递快;反之则亦然。
动液面
①抽油机泵抽系统设备主要有: 3 型抽油机、 Φ56mm二级整体筒管式泵、Φ73mm油管、音标、 Φ89mm金属绕丝筛管、管式泵柱塞、Φ19mm抽油杆、
Φ25.4mm光杆、丝堵、音标等;
尾管
沉砂管
②螺杆泵泵挂系统设备主要有:驱动头、24.5mm光
杆+24.5mm抽油杆+抽油杆扶正器+转子+定子+尾管+
第三阶段: 非饱和的单相流阶段
压力进一步下降,一定数量煤层气解吸出来,形成气泡,
阻碍水的流动,水的相对渗透率下降,处于非饱和单
相流阶段。
精选
第四阶段: 气水两相流阶段 储层压力进一步下降,解吸气、溶解气、游离气 开始在裂隙系统中扩散,气体渗透率逐渐增大, 气产量逐步增多, 水产量开始下降,直至气泡相 互连接,形成连续的流线,处于气-水两相流阶段, 但此阶段水的相对渗透率大于气体相对渗透率。
精选
排采阶段的划分
煤层气井的生产排采是一个长时间排水降压采气过 程,煤层气单井生产年限一般为15-20年。从煤层气 井生产过程中气、水产量的变化特征。
可把生产分为三个阶段
早期排水降压阶段:主要产水, 随着压力降到临界解吸压力以 下,气体开始解吸,并从井口产 出。 这一阶段所需的时间取决于 井点所处的构造位置、储层特征、 地层含水性、排水速度等因素, 持续时间可能是几天或精选数月。
第五阶段: 水气两相流阶段
压力进一步下降,吸附气体的大量解吸,处于以气 为主的水-气两相流阶段。
精选
2.排,压力 仅在煤层中传递阶段 (2)饱和水单相流,压力 仅在围岩中传递阶段 (3)饱和水单相流,压力 在围岩与煤层中共同传 递 (4)非饱和流阶段 (5)两相流阶段
精选
音标 100m 动液面
尾管 沉砂管
抽油杆 出水管线 出气管线
表层套管 Φ244.5mm 煤层套管 Φ139.7mm 水泥返高
油管 Φ73mm
煤层 泵 金属绕丝筛管 丝堵
人工井底
气井系统
井下泵挂结构
●泵一般下到筛管距煤层中部深度上下4~20m,
平均为煤层中部深度以上5.98m处。
音标
100m
● 所有井煤层均全部射开。
排水采气要求
煤层气排水采气要求求:: ①排液速度快,不怕井间干扰。 ②降低井底流压,排水设备的吸液口一般都要求下 到煤层以下。 ③要求有可靠的防煤屑、煤粉危害的措施。
精选
气井系统
排采系统
井下设备
动力系统设备 地面排采流程
精选
梁式泵 螺杆泵 电潜泵
发电机 控制柜 排液系统 采气系统
气井系统
井下泵挂结构: • 73mm抽油管 • 回音标 • 管式泵 • 尾管 • 筛管 • 沉砂管 • 丝堵
精选
随着排采的进行,围岩中压力 梯度逐渐大于煤层中的压力梯 度,压力传递轨迹从煤层过渡 到围岩中,压力将仅在围岩中 传递,开始排采围岩中的水, 此时,煤层中压力几乎不再发 生变化。
2.排采过程煤层有越流补给
随着围岩中影响半径 的增加,煤层中的压 力梯度小于围岩中的 压力梯度,在煤层中 形成很小的压降漏斗 后,压力将仅在围岩 中进行传递,进入第 二阶段。直到煤层中 的压力梯度大于围岩 中的压力梯度为止。
精选
煤层气储层精与选 常规天然气藏的特性比较
产出机理:
精选
产出各阶段特征:
第一阶段: 仅有压降传递,无水气流动阶段 压降幅度比较小,还不足以使煤层中的水产生流动,煤 层气无法解吸,处于静水阶段。
第二阶段: 饱和水单相流阶段 随着压降幅度的增大,煤层中的裂隙水开始流动, 极 少量游离气或溶解气在裂隙系统中将处于运移状态, 此阶段以饱和水单相流为表征。
排采阶段的划分
中期稳定生产阶段:随着排水 的继续,产气量逐渐上升并趋 于稳定,出现高峰产气,产水 量则逐渐下降。
该阶段持续时间的长短取决于 煤层气资源丰度(主要由煤层 厚度和含气量控制),以及储 层的渗透性。
精选
排采阶段的划分
后期气产量下降阶段:当大 量气体已经采出,煤基质中解 吸的气体开始逐渐减少,尽管 排水作业仍在继续,产气量下 降,产出少量或微量水。 该阶段延长的时间较长,可以 在10年以上。
精选
煤层气垂直井排采过程压力传递的影响因素
4.含水层
若含水层与煤储层水动力联系较强时,储层的供 液能力增强,排采难度增大;若含水层与煤储层 水动力联系较弱或无联系时,仅排采煤储层中的 水时,压力更容易传递。(越流补给;无越流补 给) 5.储层压力梯度
储层压力梯度是煤储层压力与煤层埋深的综合 反映。从某种程度上反映了地层能量的大小。 若储层压力梯度较大,说明地层原始能量较高, 在同样的排采强度、供液能力情况下,压力更 容易传递,更容易降精压选 。
精选
煤层气垂直井排采过程压力传递的影响因素
1.煤层含水性
煤层气井的生产是通过抽排煤层及相邻含水层中 的地下水来降低煤储层压力,使煤层中的甲烷释 放并向井口运移,排水是储层压力降低的根本途 径。 煤层富水性直接关系到压力降低的难易程度。富 水性过强,无疑将增加排采的强度,使煤储层压 力很难降低; 若煤层富水性弱,则需根据围岩与煤层的连通状 况及围岩的含水性而定。煤层含水性影响煤储层 压力传递,但其影响程度需与其他条件综合考虑。
煤层气排采技术
精选
煤层气排采
1.煤层气生产采出特点 2.排采方法 3.生产井排采特征分析
精选
煤层气藏具有3 3个方面的特点: 一是煤层气在煤中的储集是以吸附状态附在煤的表 面; 二是在进行大量开采之前,必须降低平均储层压力力; ; 三是储层中一般都有水,在采气的同时,必须进行 排水。 由于煤层的这些特点,在从事煤层气的开采时,涉及以 下几个方面 (1)最大限度地降低井口压力力;; (2)水、气的地面分离;; (3)采出气压缩到输送压力力;; (4)采出水的处置或处理。 常规油气生产方法用于煤层气开采时,需要改动。