八年级数学-上册数学优秀《因式分解课件PPT》
合集下载
最新人教版八年级上册数学公开课《因式分解课件PPT》幻灯片
痈疽肿毒。和血滋阴,除风润燥,化痰清肺,利 小便,调大肠,圣药也。张灿玾表示,阿胶因味 甘性平,主要归肺、肝及肾经,能补虚、滋阴润
肺,有补血养血、美容养颜、抗衰老、
抗疲劳、提高免疫力等功效。另外,阿胶还有行 血的作用。医书中就有“浚血之源清血之流”的记 载。这是因为阿胶既能养血又能补肝,肝为血源,
药材。什么是道地药材?就是每
种生物,它需要有特殊的气候、地理来培育它, 才具有独特作用。就如人参只有长在上,在那种 地理下,药效才更好。又如川穹是四川的最好,
广木香是广阿出的胶才叫阿胶。 当前正值冬季,活动趋向休止,人的身体也不例 外,阳气开始潜藏,阴气逐渐旺盛,这个时候可 以进行一些必要的滋补。而说到滋补,就不得不
小结:
1、什么叫因式分解? 2、确定公因式的方法:
(1)定系数 (2)定字母 (3)定指数 3、提公因式法分解因式的步骤(分两步):
第一步,找出公因式;
第二步,提取公因式;
4、提公因式法分解因式应注意的问题: (1)公因式要提尽; (2)某项提出莫漏1; (3)首项有负常提负,提出负号时要注意变
号
2 a a2 2(m+n)
3m -2xy
例1 把8a3b2 + 12ab3c 分解因式. 解:8a3b2+12ab3c =4ab2•2a2+4ab2•3bc =4ab2(2a2+3bc).
例2 把 2a(b+c) -3(b+c)分解因式.
分析:( b+c)是这个式子的公因式,可以直接提出.
解:2a(b+c) – 3(b+c) =(b+c)(2a-3).
腹痛,虚劳羸瘦,阴气不足,脚酸不
能久立,养肝气。”《本草纲目》中这样写道,阿 胶疗女人血痛血枯,经水不调,无子、崩中带下 ,胎前产后诸疾。男女一切风病,骨节疼痛,水
八年级数学上《因式分解》教学课件
因式分解要注意以下几点: 1.分解的对象必须是多项式. 2.分解的结果一定是几个整式的乘积的形式.
结束
(4)x2 2x 1 x(x 2) 1 否
(5)24a2bc 23 a2 3bc 否
课堂小结
1、对多项式分解因式与整式乘法是方向相反的 两种恒等变形. 2、整式的乘法运算是把几个整式的积变为多项 式的形式,特征是向着积化和差的形式发展; 3、多项式的分解因式是把一个多项式化为几个 整式乘积的形式,特征是向着和差化积的形式发 展
整式乘法 整式乘法
(4).x2+4x+4=(x+2)2
因式分解
(5).(a-3)(a+3)=a2-9
整式乘法
(6).m2-4=(m+2)(m-2)因式分解Fra bibliotek基础闯关2
下列各式从左到右的变形,是否为分解因式?
(1)a(a 2b) a2 2ab 否
(2)bx bx2 bx(1 x)
是
(3)a2 4 (a 2)(a 2) 是
思考:因式分解与整式乘法有什么关系?
左边式子的变形为整式乘法,右边式子的变形 为因式分解,两种变形互为逆运算变形过程.
基础闯关1
判断下列各式哪些是整式乘法?哪些是因式分解?
(1).x2-4y2=(x+2y)(x-2y) 因式分解
(2).2x(x-3y)=2x2-6xy (3).(5a-1)2=25a2-10a+1
第一章 因式分解
1.1 因式分解
993-99能被100整除吗?
小明是这样想的: 993-99=99×992-99 ×1
=99 ×(992-1) =99×9800 = 99×100×98 所以, 993-99能被100整除.
结束
(4)x2 2x 1 x(x 2) 1 否
(5)24a2bc 23 a2 3bc 否
课堂小结
1、对多项式分解因式与整式乘法是方向相反的 两种恒等变形. 2、整式的乘法运算是把几个整式的积变为多项 式的形式,特征是向着积化和差的形式发展; 3、多项式的分解因式是把一个多项式化为几个 整式乘积的形式,特征是向着和差化积的形式发 展
整式乘法 整式乘法
(4).x2+4x+4=(x+2)2
因式分解
(5).(a-3)(a+3)=a2-9
整式乘法
(6).m2-4=(m+2)(m-2)因式分解Fra bibliotek基础闯关2
下列各式从左到右的变形,是否为分解因式?
(1)a(a 2b) a2 2ab 否
(2)bx bx2 bx(1 x)
是
(3)a2 4 (a 2)(a 2) 是
思考:因式分解与整式乘法有什么关系?
左边式子的变形为整式乘法,右边式子的变形 为因式分解,两种变形互为逆运算变形过程.
基础闯关1
判断下列各式哪些是整式乘法?哪些是因式分解?
(1).x2-4y2=(x+2y)(x-2y) 因式分解
(2).2x(x-3y)=2x2-6xy (3).(5a-1)2=25a2-10a+1
第一章 因式分解
1.1 因式分解
993-99能被100整除吗?
小明是这样想的: 993-99=99×992-99 ×1
=99 ×(992-1) =99×9800 = 99×100×98 所以, 993-99能被100整除.
人教版八年级数学上册《公式法》整式的乘法与因式分解PPT精品课件
1
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)
-1
1
-2
1×(-2)+1×(-1)=-3
(2)
1
-2
1
5
1×5+1×(-2)=3
解:(1) x2-3x+2=(x-1)(x-2); (2) x2+3x-10=(x-2)(x+5).
随堂练习
x(x+2)(x+3)
1.(2019·淄博)分解因式:x3+5x2+6x=___________.
分析:x3+5x2+6x
(1)当多项式的各项有公因式时,应先提取公因式;当
多项式的各项没有公因式时(或提取公因式后),若
符合平方差公式或完全平方公式,就利用公式法分解
因式;
(2)当不能直接提取公因式或用公式法分解因式时,可
根据多项式的特点,把其变形为能提取公因式或能用
公式法的形式,再分解因式;
(3)当乘积中的每一个因式都不能再分解时,因式分解
一般地,如果多项式的各项有公因式,可以把这个公
因式提取出来,将多项式写成公因式与另外一个因式
的乘积的形式,这种分解因式的方法叫做提公因式法.
提公因式法一般步骤:
(1)确定公因式:先确定系数,再确定字母和字母的指
数;
(2)提公因式并确定另外一个因式:用多项式除以公因
式,所得的商就是提公因式后剩下的另一个因式;
1
2
=x(x2+5x+6)
1
3
=x(x+2)(x+3).
1×3+1×2=5
2.(2019·威海)分解因式:2x2-6x+4=__________.
2(x-1)(x-2)
八年级数学(上册)_因式分解的方法汇总.ppt
(3)原式=
9x2 6x 1 y2 4y 4 (3x 1)2 ( y 2)2 (3x y 1)(3x y 1)
(4)原式= (x 2)3 ( y 2)3 [(x 2)3 (y 2)3]
3(x y)(x 2)(y 2)
(5)原式=
x 2 x y 2 y 2xy (x y)2 (x y) ( x y)(x y 1)
方法五、分组分解法
(1)形如:
am+an+bm+bn=(am+an)+(bm+bn)
=a(m+n)+b(m+n)
=(a+b)(m+n)
(2)形如:
x2 y2 2x 1
(x2 2x 1) y 2
(x 1)2 y 2
(x y 1)(x y 1)
把多项式适当的分组,分组后能够有公因 式或能运用公式,这样的因式分解的方法
( y z)[x2 ( y z)x yz]
(y z)(x y)(x z)
例题2(重庆市竞赛题)分解因式:
4x2 4x y2 4y 3
解:原式= (4x2 4x 1) (y 2 4y 4) (2x 1)2 (y 2)2 (2x y 3)(2x y 1)
方法六、拆项、添项法
知识回顾 Knowledge Review
1.根据多项式次数关系,假设一个含待定系数的等式; 2.利用怛等式对应项系数相等,列出含有待定系数的方程; 3.解方程组,求出待定系数,再代入所设问题的结构中去,
得到需求问题的解。
例题1:如果 x3 ax2 bx 8 有两个因式x+1和
x+2,则a+b=
例题2:如果多项式 x2 (a 5)x 5a 1 能分解成两个 因式(x+b)、(x+c)的乘积(b、c 为整数),则a的值 是应为多少?(第17届江苏省竞赛题)
人教版八年级数学上册《14.3.因式分解》优质PPT课件
三、公式法
3、例题讲解
例3. 4a³- 4a 解:原式=4a(a²-1)
=4a(a+1)(a-1)
利用提取公因式法和平方差公式
三、公式法
3、例题讲解
例4. 5x3y(x-y)-10x4y3(y-x)2 解:原式=5x3y(x-y)-10x4y3(x-y)2
=5x3y(x-y)[1-2xy2(x-y)] =5x3y(x-y)(1-2x2y2+2xy3) 利用提取公因式法和平方差公式
14.3因式分解
情景导入
计算下列各式:
3x(x-2)=3x2-6x m(a+b+c)= ma+mb+mc (m+4)(m-4)= m2-16 (x-2)2= x2-4x+4 a(a+1)(a-1)= a3-a
3x2-6x=(3x)(x-2) ma+mb+mc=(m)(a+b+c) m2-16=(m+4)(m-4) x2-4x+4=(x-2)2 a3-a=(a)(a+1)(a-1)
多项式的第一项是系数为负数的项,一般地,应提出负系数的公 因式.但应注意,这时留在括号内的每一项的符号都要改变,且 最后一项“-x”提出时,应留有一项“+1”,而不能错解为- x(x2-x).
三、公式法
1、平方差公式
把整式乘法的平方差公式(a+b)(a-b)=a2-b2反过来,就得到 a2-b2= (a+b)(a-b),即两个数的平方差,等于这两个数的 和与这两个数的差的积.
左边一组的变形是什么运算?右边的变形与这种运算有什么不 同?右边变形的结果有什么共同的特点?
一、因式分解
1、定义
把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这 个多项式因式分解,也叫做把这个多项式分解因式.
课件《因式分解》精品PPT课件_人教版2
十字相乘法②随堂练习: 1)4a2–9a+2 a 24a 1
2)7a2–19a–6 7a 2a 3 3)2(x2+y2)+5xy 2x y x 2y
例 .将 2(6x2 +x) 2-11(6x2 +x) +5 分解因式 解:2(6x2 +x)2-11(6x2 +x) +5 = [(6x2 +x) -5][2(6x2 +x)-1] = (6x2 +x-5) (12x2 +2x-1 ) = (6x -5)(x +1) (12x2 +2x-1 )
x2 13x 42 x 6 x 7
对二次三项式x2+px+q用x2+(a+b)x+ab=(x+a)(x+b)进行因式分解, 应重点掌握以下问题:
1.适用范围:只有当q=ab,且p=a+b时 才能用十字相乘法进
我
行分解。
2.掌握方法:拆分常数项,验证一次项.
3.符号规律:
当q>0时,a、b同号,且a、b的符号与p的符号相同;
3.(x-2)(x+1)= x2-x-2
4.(x-2)(x-1)= x2-3x+2 5.(x+2)(x+3)= x2+5x+6 6.(x+2)(x-3)= x2-x-6 7.(x-2)(x+3)= x2+x-6 8.(x-2)(x-3)= x2-5x+6
(x+a)(x+b) =x2+(a+b)x+ab
2
-1
例1:2x2-7x+3
解:原式=(2x-1)(x-3) 1
-3
总结:
2 × (-3)+(-1) × 1=-7
八年级数学上册第十四章整式的乘法因式分解复习课件
式或完全平方公式的形式,
然后进行因式分解。
30% Option 3
56% Option 2
完全平方公式
$a^2 + 2ab + b^2 = (a + b)^2$ 和 $a^2 - 2ab + b^2 = (a - b)^2$,用于将 三项式因式分解。
分组分解法
概念
分组分解法是把多项式中的项 按照某种规则分成几组,然后 分别进行因式分解,最后再将 各组的结果整合起来。
乘法公式及其应用
80%
平方差公式
$(a+b)(a-b)=a^2-b^2$,用于 计算两个数的平方差。
100%
完全平方公式
$(a+b)^2=a^2+2ab+b^2$ 和 $(a-b)^2=a^2-2ab+b^2$,用 于计算一个二项式的平方。
80%
举例
利用平方差公式计算 $(x+3)(x3)=x^2-9$;利用完全平方公式计 算 $(x+2)^2=x^2+4x+4$。
05
课堂小结与知 识点梳理
单击此处添加正文,文字是您思想的提炼,为了演示发 布的良好效果,请言简意赅地阐述您的观点。
整章知识点回顾总结
掌握单项式与单项式、单项式与多项 式、多项式与多项式的乘法法则,并 能熟练进行运算。
整式的乘法
理解并掌握平方差公式和完全平方公 式,能运用公式进行简单的计算。
乘法公式
因式分解$a^2+2ab+b^2$和$a^2-2ab+b^2$, 并比较结果
综合应用典型例题
已知$a+b=5$,$ab=6$,求$a^2+b^2$和$(ab)^2$的值 例题1 例题2 例题3 已知多项式$f(x)=x^2+px+q$,且$f(1)=0$, $f(2)=0$,求$f(x)$的解析式 已知$x^2+y^2=10$,$xy=3$,求$(x+y)^2$和 $(x-y)^2$的值
然后进行因式分解。
30% Option 3
56% Option 2
完全平方公式
$a^2 + 2ab + b^2 = (a + b)^2$ 和 $a^2 - 2ab + b^2 = (a - b)^2$,用于将 三项式因式分解。
分组分解法
概念
分组分解法是把多项式中的项 按照某种规则分成几组,然后 分别进行因式分解,最后再将 各组的结果整合起来。
乘法公式及其应用
80%
平方差公式
$(a+b)(a-b)=a^2-b^2$,用于 计算两个数的平方差。
100%
完全平方公式
$(a+b)^2=a^2+2ab+b^2$ 和 $(a-b)^2=a^2-2ab+b^2$,用 于计算一个二项式的平方。
80%
举例
利用平方差公式计算 $(x+3)(x3)=x^2-9$;利用完全平方公式计 算 $(x+2)^2=x^2+4x+4$。
05
课堂小结与知 识点梳理
单击此处添加正文,文字是您思想的提炼,为了演示发 布的良好效果,请言简意赅地阐述您的观点。
整章知识点回顾总结
掌握单项式与单项式、单项式与多项 式、多项式与多项式的乘法法则,并 能熟练进行运算。
整式的乘法
理解并掌握平方差公式和完全平方公 式,能运用公式进行简单的计算。
乘法公式
因式分解$a^2+2ab+b^2$和$a^2-2ab+b^2$, 并比较结果
综合应用典型例题
已知$a+b=5$,$ab=6$,求$a^2+b^2$和$(ab)^2$的值 例题1 例题2 例题3 已知多项式$f(x)=x^2+px+q$,且$f(1)=0$, $f(2)=0$,求$f(x)$的解析式 已知$x^2+y^2=10$,$xy=3$,求$(x+y)^2$和 $(x-y)^2$的值
人教版八年级数学上册 14.3.1 因式分解(提取公因式) 课件(共15张PPT)
例2 把 2a(b+c) -3(b+c)分解因式.
分析:( b+c)是这个式子的公因式,可以直接提出.
解:2a(b+c) – 3(b+c) =(b+c)(2a-3).
练习一 理解概念
判断下列各式哪些是整式乘法?哪些是因式分解?
(1) x2-4y2=(x+2y)(x-2y); (2) 2x(x-3y)=2x2-6xy (3) (5a-1)2=25a2-10a+ ;
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。21.8.2421.8.2421:56:4021:56:40August 24, 2021 • 14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月24日星期二下午9时56分40秒21:56:4021.8.24 • 15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月下午9时56分21.8.2421:56August 24, 2021 • 16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021年8月24日星期二9时56分40秒21:56:4024 August 2021 • 17、儿童是中心,教育的措施便围绕他们而组织起来。下午9时56分40秒下午9时56分21:56:4021.8.24
(3)5y3+20y2 ; 5y2
(4)a2b-2ab2+ab . ab
注意:各项系数都是整数时,因式的 系数应取各项系数的最大公约数;字母取 各项的相同的字母,而且各字母的指数取 次数最低的.
练习:
人教版八年级上册数学优秀《因式分解课件》.ppt
2.先分解因式,再求值
4a2(x 7) 3(x 7), 其中a 5, x 3.
2021-1-1
x
12
思考 15.4.2 公式法(1)
你能将多项式x2-16 与多项式m 2-4n2分解 因式吗?这两个多项式有什么共同的特点吗?
(a+b)(a-b) = a2-b2
a2-b2 =(a+b)(a-b)
(5)(a b)2 12(a b) 36 .
归纳:
(1) 先提公因式(有的话); (2) 利用公式(可以的话); (3) 2021-1-1 分解因式时要x 分解到不能分解为止23.
2.证明:连续两个奇数的平方差可 以被8整除.
2021-1-1
x
24
今天你有什么收获? 你还有什么疑问吗?
作业:习题15.4,2、3、5.
2021-1-1 =3a(x+y)2 .
x =(a+b-6)2.
21
练习
1.下列多项式是不是完全平方式?为什么?
(1) a2-4a+4;
(2)1+4a2;
(3) 4b2+4b-1 ; 2.分解因式:
(4)a2+ab+b2.
(1) x2+12x+36;
(2) -2xy-x2-y2;
(3) a2+2a+1;
x
10
因式分解:
(1)24x3y-18x2y ;
(2)7ma+14ma2 ;
(3)-16x4+32x3-56x2 ; (4)- 7ab-14abx+49aby ; (5)2a(y-z)-3b(y-z) ; (6)p(a2+b2)-q(a2+b2).
4a2(x 7) 3(x 7), 其中a 5, x 3.
2021-1-1
x
12
思考 15.4.2 公式法(1)
你能将多项式x2-16 与多项式m 2-4n2分解 因式吗?这两个多项式有什么共同的特点吗?
(a+b)(a-b) = a2-b2
a2-b2 =(a+b)(a-b)
(5)(a b)2 12(a b) 36 .
归纳:
(1) 先提公因式(有的话); (2) 利用公式(可以的话); (3) 2021-1-1 分解因式时要x 分解到不能分解为止23.
2.证明:连续两个奇数的平方差可 以被8整除.
2021-1-1
x
24
今天你有什么收获? 你还有什么疑问吗?
作业:习题15.4,2、3、5.
2021-1-1 =3a(x+y)2 .
x =(a+b-6)2.
21
练习
1.下列多项式是不是完全平方式?为什么?
(1) a2-4a+4;
(2)1+4a2;
(3) 4b2+4b-1 ; 2.分解因式:
(4)a2+ab+b2.
(1) x2+12x+36;
(2) -2xy-x2-y2;
(3) a2+2a+1;
x
10
因式分解:
(1)24x3y-18x2y ;
(2)7ma+14ma2 ;
(3)-16x4+32x3-56x2 ; (4)- 7ab-14abx+49aby ; (5)2a(y-z)-3b(y-z) ; (6)p(a2+b2)-q(a2+b2).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
…… 把你发现的规律用含n的等式表示出来. 2. 对于任意的自然数n,(n+7)2- (n-5)2能被24 整除吗? 为什么?
15.4.2 公式法(2) 思考:
你能将多项式a2+2ab+b2 与a2-2ab+b2分解因 式吗?这两个多项式有什么特点?
(a+b)2=a2+2ab+b2,
a2+2ab+b2=(a+b)2
a2 + 2·a ·b +b2 解:(1)16x2+24x+9 = (4x)2+2·4x·3+32
=(4x+3)2.
例5 分解因式: (1) 16x2+24x+9; (2) –x2+4xy–4y2.
解:(2) -x2+4xy-4y2 = - (x2-4xy+4y2) = - [x2-2·x·2y+(2y)2] = - (x-2y)2 .
=3a(x2+2xy+y2)
=(a+b)2-2·(a+b)·6+62
=3a(x+y)2 .
=(a+b-6)2.
练习
1.下列多项式是不是完全平方式?为什么?
(1) a2-4a+4;
(2)1+4a2;
(3) 4b2+4b-1 ; 2.分解因式:
(4)a2+ab+b2.
(1) x2+12x+36;
(2) -2xy-x2-y2;
请把下列多项式写成整式乘积的形式.
(1)x2 x x(x 1)
(2)x2 1 (x 1)(x 1)
把一个多项式化成几个整式积的形式, 这种变形叫做把这个多项式因式分解(或 分解因式).
想一想:因式分解与整式乘法有何关系?
因式分解
x2-y2
(x+y)(x-y)
整式乘法
因式分解与整式乘法是互逆过程.
(a-b)2=a2-2ab+b2.
a2-2ab+b2=(a-b)2
两个数的平方和加上(或减去)这两 个数的积的2倍,等于这两个数的和(或 差)的平方.
例5 分解因式: (1) 16x2+24x+9; (2) –x2+4xy–4y2.
分析:在(1)中,16x2=(4x)2,9=32,24x= 2·4x·3,所以16x2+24x+9是一个完全平方式,即 16x2+24x+9=(4x)2+2·4x·3+32
再分解为止.
分析:(1)x4-y4写成(x2)2 - (y2)2的形式,
这样就可以利用平方差公式进行因式分解了.
(2)a3b-ab有公因式ab,应先提出公因式,
再进一步分b
= (x2+y2)(x2-y2)
=ab(a2- 1)
= (x2+y2)(x+y)(x-y). =ab(a+1)(a- 1).
1.20042+2004能被2005整除吗?
2.先分解因式,再求值
4a2(x 7) 3(x 7), 其中a 5, x 3.
思考 15.4.2 公式法(1)
你能将多项式x2-16 与多项式m 2-4n2分解 因式吗?这两个多项式有什么共同的特点吗?
(a+b)(a-b) = a2-b2
a2-b2 =(a+b)(a-b)
(1) 4x2 – 9 = (2x)2 – 3 2
= (2x+3)(2x – 3).
(2) (x+p)2 – (x+q) 2 = [ (x+p) +(x+q)] [(x+p) –(x+q)] =(2x+p+q)(p–q).
例4 分解因式:
分解因式必须
进行到每一个
(1)x4—y4; (2) a3b —ab多. 项式都不能
两个数的平方差,等于这两个数的和与 这两个数的差的积.
例3 分解因式:
(1) 4x2 – 9 ; (2) (x+p)2 – (x+q)2.
分析:在(1)中,4x2 = (2x)2,9=32,4x2-9 = (2x )2 –3 2,即可用平方差公式分解因式.
在(2)中,把(x+p)和 (x+q)各看成一个整体,设 x+p=m,x+q=n,则原式化为m2-n2.
练习一 理解概念
判断下列各式哪些是整式乘法?哪些是 因式分解?
(1) x2-4y2=(x+2y)(x-2y); 因式分解
(2) 2x(x-3y)=2x2-6xy 整式乘法
(3) (5a-1)2=25a2-10a+1 ;整式乘法
(4) x2+4x+4=(x+2)2 ;
因式分解
(5) (a-3)(a+3)=a2-9
例6 分解因式:
将a+b看作一个
(1) 3ax2+6axy+3ay2;
整体,设a+b=m, 则原式化为完全
平方式m2-
(2) (a+b)2-12(a+b)+36. 12m+36.
分析:在(1)中有公因式3a,应先提出公 因式,再进一步分解.
解:(1)3ax2+6axy+3ay2 (2)(a+b)2-12(a+b)+36
整式的乘除与因式分解
因式分解
:整式的乘法
计算下列各式:
x(x+1)= x2 + x ; (x+1)(x-1)= x2-1 .
讨论 630能被哪些数整除? 在小学我们知道,要解决这个问题, 需要把630分解成质数乘积的形式.
630 232 5 7
类似地,在式的变形中,有时需要将 一个多项式写成几个整式的乘积的形式.
分析:应先找出
与
的
公因式,再提公因式进行分解.
例 2 分解因式 2a(b c) 3(b c)
分析:(b+c)是这两个式子的公因式,
可以直接提出.
解:2a(b c) 3(b c)
(b c)(2a 3) .
因式分解:
(1)24x3y-18x2y ;
(2)7ma+14ma2 ;
(3)-16x4+32x3-56x2 ; (4)- 7ab-14abx+49aby ; (5)2a(y-z)-3b(y-z) ; (6)p(a2+b2)-q(a2+b2).
(5)(a b)2 12(a b) 36 .
归纳:
(1) 先提公因式(有的话); (2) 利用公式(可以的话); (3) 分解因式时要分解到不能分解为止.
2.证明:连续两个奇数的平方差可 以被8整除.
今天你有什么收获? 你还有什么疑问吗?
作业:习题15.4,2、3、5.
你学会了吗
整式乘法
(6) m2-4=(m+2)(m-2) ; 因式分解
(7) 2πR+ 2πr= 2π(R+r). 因式分解
怎样分解因式: ma mb mc .
公因式:多项式中各项都有的因式, 叫做这个多项式的公因式;
把多项式ma+mb+mc分解成m(a+b+c)的形 式,其中m是各项的公因式,另一个因式(a+b+c) 是ma+mb+mc 除以m的商,像这种分解因式的 方法,叫做提公因式法.
说出下列多项式各项的公因式:
(1)ma + mb ; m
(2)4kx- 8ky ; 4k
(3)5y3+20y2 ; 5y2
(4)a2b-2ab2+ab . ab
注意:各项系数都是整数时,因式的 系数应取各项系数的最大公约数;字母取 各项的相同的字母,而且各字母的指数取 次数最低的.
例1 把8a3b2 12ab3c分解因式
练习
1.下列多项式能否用平方差公式来分 解因式?为什么?
(1) x2+y2 ;
(2) x2-y2;
(3) -x2+y2;
(4) -x2-y2.
2.分解因式: (1)a2-215 b2; (3) x2y-4y ;
(2)9a2-4b2; (4) -a4 +16.
思维延伸
1. 观察下列各式: 32-12=8=8×1; 52-32=16=8×2; 72-52=24=8×3;
(3) a2+2a+1;
(4) 4x2-4x+1;
(5) ax2+2a2x+a3;
(6) -3x2+6xy-3y2.
应用提高、拓展创新
1.把下列多项式分解因式,从中你能 发现因式分解的一般步骤吗?
(1)x 4 y 4;
(2)a3b ab3;
(3)3ax2 6axy 3ay2 ;(4)(x p)2 (x q)2
15.4.2 公式法(2) 思考:
你能将多项式a2+2ab+b2 与a2-2ab+b2分解因 式吗?这两个多项式有什么特点?
(a+b)2=a2+2ab+b2,
a2+2ab+b2=(a+b)2
a2 + 2·a ·b +b2 解:(1)16x2+24x+9 = (4x)2+2·4x·3+32
=(4x+3)2.
例5 分解因式: (1) 16x2+24x+9; (2) –x2+4xy–4y2.
解:(2) -x2+4xy-4y2 = - (x2-4xy+4y2) = - [x2-2·x·2y+(2y)2] = - (x-2y)2 .
=3a(x2+2xy+y2)
=(a+b)2-2·(a+b)·6+62
=3a(x+y)2 .
=(a+b-6)2.
练习
1.下列多项式是不是完全平方式?为什么?
(1) a2-4a+4;
(2)1+4a2;
(3) 4b2+4b-1 ; 2.分解因式:
(4)a2+ab+b2.
(1) x2+12x+36;
(2) -2xy-x2-y2;
请把下列多项式写成整式乘积的形式.
(1)x2 x x(x 1)
(2)x2 1 (x 1)(x 1)
把一个多项式化成几个整式积的形式, 这种变形叫做把这个多项式因式分解(或 分解因式).
想一想:因式分解与整式乘法有何关系?
因式分解
x2-y2
(x+y)(x-y)
整式乘法
因式分解与整式乘法是互逆过程.
(a-b)2=a2-2ab+b2.
a2-2ab+b2=(a-b)2
两个数的平方和加上(或减去)这两 个数的积的2倍,等于这两个数的和(或 差)的平方.
例5 分解因式: (1) 16x2+24x+9; (2) –x2+4xy–4y2.
分析:在(1)中,16x2=(4x)2,9=32,24x= 2·4x·3,所以16x2+24x+9是一个完全平方式,即 16x2+24x+9=(4x)2+2·4x·3+32
再分解为止.
分析:(1)x4-y4写成(x2)2 - (y2)2的形式,
这样就可以利用平方差公式进行因式分解了.
(2)a3b-ab有公因式ab,应先提出公因式,
再进一步分b
= (x2+y2)(x2-y2)
=ab(a2- 1)
= (x2+y2)(x+y)(x-y). =ab(a+1)(a- 1).
1.20042+2004能被2005整除吗?
2.先分解因式,再求值
4a2(x 7) 3(x 7), 其中a 5, x 3.
思考 15.4.2 公式法(1)
你能将多项式x2-16 与多项式m 2-4n2分解 因式吗?这两个多项式有什么共同的特点吗?
(a+b)(a-b) = a2-b2
a2-b2 =(a+b)(a-b)
(1) 4x2 – 9 = (2x)2 – 3 2
= (2x+3)(2x – 3).
(2) (x+p)2 – (x+q) 2 = [ (x+p) +(x+q)] [(x+p) –(x+q)] =(2x+p+q)(p–q).
例4 分解因式:
分解因式必须
进行到每一个
(1)x4—y4; (2) a3b —ab多. 项式都不能
两个数的平方差,等于这两个数的和与 这两个数的差的积.
例3 分解因式:
(1) 4x2 – 9 ; (2) (x+p)2 – (x+q)2.
分析:在(1)中,4x2 = (2x)2,9=32,4x2-9 = (2x )2 –3 2,即可用平方差公式分解因式.
在(2)中,把(x+p)和 (x+q)各看成一个整体,设 x+p=m,x+q=n,则原式化为m2-n2.
练习一 理解概念
判断下列各式哪些是整式乘法?哪些是 因式分解?
(1) x2-4y2=(x+2y)(x-2y); 因式分解
(2) 2x(x-3y)=2x2-6xy 整式乘法
(3) (5a-1)2=25a2-10a+1 ;整式乘法
(4) x2+4x+4=(x+2)2 ;
因式分解
(5) (a-3)(a+3)=a2-9
例6 分解因式:
将a+b看作一个
(1) 3ax2+6axy+3ay2;
整体,设a+b=m, 则原式化为完全
平方式m2-
(2) (a+b)2-12(a+b)+36. 12m+36.
分析:在(1)中有公因式3a,应先提出公 因式,再进一步分解.
解:(1)3ax2+6axy+3ay2 (2)(a+b)2-12(a+b)+36
整式的乘除与因式分解
因式分解
:整式的乘法
计算下列各式:
x(x+1)= x2 + x ; (x+1)(x-1)= x2-1 .
讨论 630能被哪些数整除? 在小学我们知道,要解决这个问题, 需要把630分解成质数乘积的形式.
630 232 5 7
类似地,在式的变形中,有时需要将 一个多项式写成几个整式的乘积的形式.
分析:应先找出
与
的
公因式,再提公因式进行分解.
例 2 分解因式 2a(b c) 3(b c)
分析:(b+c)是这两个式子的公因式,
可以直接提出.
解:2a(b c) 3(b c)
(b c)(2a 3) .
因式分解:
(1)24x3y-18x2y ;
(2)7ma+14ma2 ;
(3)-16x4+32x3-56x2 ; (4)- 7ab-14abx+49aby ; (5)2a(y-z)-3b(y-z) ; (6)p(a2+b2)-q(a2+b2).
(5)(a b)2 12(a b) 36 .
归纳:
(1) 先提公因式(有的话); (2) 利用公式(可以的话); (3) 分解因式时要分解到不能分解为止.
2.证明:连续两个奇数的平方差可 以被8整除.
今天你有什么收获? 你还有什么疑问吗?
作业:习题15.4,2、3、5.
你学会了吗
整式乘法
(6) m2-4=(m+2)(m-2) ; 因式分解
(7) 2πR+ 2πr= 2π(R+r). 因式分解
怎样分解因式: ma mb mc .
公因式:多项式中各项都有的因式, 叫做这个多项式的公因式;
把多项式ma+mb+mc分解成m(a+b+c)的形 式,其中m是各项的公因式,另一个因式(a+b+c) 是ma+mb+mc 除以m的商,像这种分解因式的 方法,叫做提公因式法.
说出下列多项式各项的公因式:
(1)ma + mb ; m
(2)4kx- 8ky ; 4k
(3)5y3+20y2 ; 5y2
(4)a2b-2ab2+ab . ab
注意:各项系数都是整数时,因式的 系数应取各项系数的最大公约数;字母取 各项的相同的字母,而且各字母的指数取 次数最低的.
例1 把8a3b2 12ab3c分解因式
练习
1.下列多项式能否用平方差公式来分 解因式?为什么?
(1) x2+y2 ;
(2) x2-y2;
(3) -x2+y2;
(4) -x2-y2.
2.分解因式: (1)a2-215 b2; (3) x2y-4y ;
(2)9a2-4b2; (4) -a4 +16.
思维延伸
1. 观察下列各式: 32-12=8=8×1; 52-32=16=8×2; 72-52=24=8×3;
(3) a2+2a+1;
(4) 4x2-4x+1;
(5) ax2+2a2x+a3;
(6) -3x2+6xy-3y2.
应用提高、拓展创新
1.把下列多项式分解因式,从中你能 发现因式分解的一般步骤吗?
(1)x 4 y 4;
(2)a3b ab3;
(3)3ax2 6axy 3ay2 ;(4)(x p)2 (x q)2