高三数学线线角线面角

合集下载

第6节 第1课时 线线角与线面角--2025高中数学一轮复习课件基础版(新高考新教材)

第6节  第1课时 线线角与线面角--2025高中数学一轮复习课件基础版(新高考新教材)

异面直线所成角只能是锐角或直角,所以加“绝对值”
(2)直线与平面所成的角
直线与平面所成的角,可以转化为直线的方向向量与平面的法向量的夹角.
如图,直线AB与平面α相交于点B,设直线AB与平面α所成的角为θ,直线AB的
方向向量为u,平面α的法向量为n,则 sin θ=|cos<u,n>|=

|u|||
离就是在直线 l 上的投影向量的长度.因此 PQ=

·
||
=
·
||
=
| ·|
.
||
常用结论
最小角定理:cos θ=cos θ1cos θ2.
如图,若OA为平面α的一条斜线,O为斜足,OB为OA在平面α内的射影,OC为
平面α内的一条直线,其中θ为直线OA与OC所成的角,θ1为直线OA与OB所
题组三 连线高考
7.(1992·全国,理14)如图,在棱长为1的正方体ABCD-A1B1C1D1中,M,N分别
为A1B1和BB1的中点,那么直线AM与CN夹角的余弦值为( D )
√3
A.
2
√10
B.
10
3
C.
5
2
D.
5
解析 以D为原点,DA,DC,DD1所在直线为x轴、y轴、z轴,建立如图所示空
是向量a,b的夹角.( × )
3.设a,b是两个平面α,β的法向量,则α与β所成的二面角的大小等于向量a,b
的夹角的大小.( × )
4.利用||2= ·可以求空间中有向线段的长度.( √ )
题组二 回源教材
5.(人教A版选择性必修第一册1.4.2节练习2(1)(2)改编)如图,在棱长为1的正
解析 由题得,B(1,0,0),B1(1,0,2),C(0,1,0),

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03 利用向量法求线线角、线面角、二面角及距离问题(知识梳理+专题过关)(解析版)

专题03利用向量法求线线角、线面角、二面角及距离问题【知识梳理】(1)异面直线所成角公式:设a ,b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅==a b a b a bθ.(2)线面角公式:设l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅==a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,=n n θ或12,-n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅=n n n n θ.(4)异面直线间的距离:两条异面直线间的距离也不必寻找公垂线段,只需利用向量的正射影性质直接计算.如图,设两条异面直线,a b 的公垂线的方向向量为n ,这时分别在,a b 上任取,A B 两点,则向量在n 上的正射影长就是两条异面直线,a b 的距离.则||||||||⋅=⋅=n AB n d AB n n 即两异面直线间的距离,等于两异面直线上分别任取两点的向量和公垂线方向向量的数量积的绝对值与公垂线的方向向量模的比值.(5)点到平面的距离A 为平面α外一点(如图),n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH .|n ||n |||||sin |||cos ,|=||nn⋅⋅=⋅=⋅<>=⋅AB AB AH AB AB AB n AB AB θ||||⋅=AB n d n (6)点A 与点B 之间的距离可以转化为两点对应向量AB 的模AB 计算.(7)在直线l 上找一点P ,过定点A 且垂直于直线l 的向量为n ,则定点A 到直线l 的距离为PA n d PA cos PA,n n⋅=〈〉=.【专题过关】【考点目录】考点1:异面直线所成角考点2:线面角考点3:二面角考点4:点到直线的距离考点5:点到平面的距离、直线到平面的距离、平面到平面的距离考点6:异面直线的距离【典型例题】考点1:异面直线所成角1.(2022·贵州·遵义市第五中学高二期中(理))在三棱锥P —ABC 中,PA 、PB 、PC 两两垂直,且PA =PB =PC ,M 、N 分别为AC 、AB 的中点,则异面直线PN 和BM 所成角的余弦值为()A 33B .36C .63D .66【答案】B【解析】以点P 为坐标原点,以PA ,PB ,PC 方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,令2PA =,则()0,0,0P ,()0,2,0B ,()1,0,0M ,()1,1,0N ,则(1,1,0)PN =,(1,2,1)BM =-,设异面直线PN 和BM 所成角为θ,则||3cos 6||||PN BM PN BM θ⋅==.故选:B.2.(2022·四川省成都市新都一中高二期中(理))将正方形ABCD 沿对角线BD 折起,使得平面ABD ⊥平面CBD ,则异面直线AB 与CD 所成角的余弦值为()A .12B 2C .12-D .2【答案】A【解析】取BD 中点为O ,连接,AO CO ,所以,AO BD CO BD ⊥⊥,又面ABD ⊥面CBD 且交线为BD ,AO ⊂面ABD ,所以AO ⊥面CBD ,OC ⊂面CBD ,则AO CO ⊥.设正方形的对角线长度为2,如图所示,建立空间直角坐标系,()()()(0,0,1),1,0,0,0,1,0,1,0,0A B C D -,所以()()=1,0,1,=1,1,0AB CD ---,1cos ,222AB CD AB CD AB CD⋅==-⨯.所以异面直线AB 与CD 所成角的余弦值为12.故选:A3.(2022·新疆·乌苏市第一中学高二期中(理))如图,在直三棱柱111ABC A B C -中,3AC =,4BC =,13CC =,90ACB ∠=︒,则1BC 与1AC 所成角的余弦值为()A .3210B .3210-C .24D 5【答案】A【解析】因为111ABC A B C -为直三棱柱,且90ACB ∠=︒,所以建立如图所示的空间直角坐标系,()()()()110,4,0,0,0,0,0,0,3,3,0,3B C C A ,所以()()110,4,3,3,0,3BC AC =-=--,115,992BC A C ==+设1BC 与1AC 所成角为θ,所以11932cos cos ,532BC A Cθ-===⨯.则1BC 与1AC 32故选:A.4.(2022·福建宁德·高二期中)若异面直线1l ,2l 的方向向量分别是()1,0,2a =-,()0,2,1b =,则异面直线1l 与2l 的夹角的余弦值等于()A .25-B .25C .255-D 255【答案】B【解析】由题,()22125a =+-=,22215b =+=,则22cos 555a b a bθ⋅-==⋅⋅,故选:B5.(2022·河南·焦作市第一中学高二期中(理))已知四棱锥S ABCD -的底面ABCD 是边长为1的正方形,SD ⊥平面ABCD ,线段,AB SC 的中点分别为E ,F ,若异面直线EC 与BF 5SD =()A .1B .32C .2D .3【答案】C【解析】如图示,以D 为原点,,,DA DC DS 分别为x 、y 、z 轴正方向联立空间直角坐标系.不妨设(),0SD t t =>.则()0,0,0D ,()1,0,0A ,()1,1,0B ,()0,1,0C ,()0,0,S t ,11,,02E ⎛⎫⎪⎝⎭,10,,22t F ⎛⎫ ⎪⎝⎭.所以11,,02EC ⎛⎫=- ⎪⎝⎭,11,,22t BF ⎛⎫=-- ⎪⎝⎭.因为异面直线EC 与BF 55211054cos ,1111444EC BF EC BF EC BFt -+==⨯+⨯++,解得:t =2.即SD =2.故选:C6.(2021·广东·深圳市龙岗区德琳学校高二期中)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD ,2DC SD ==,点M 是侧棱SC 的中点,2AD =则异面直线CD 与BM 所成角的大小为___________.【答案】3π【解析】由题知,底面ABCD 为矩形,SD ⊥底面ABCD 所以DA 、DC 、DS 两两垂直故以D 为原点,建立如图所示的空间直角坐标系因为2DC SD ==,2AD =,点M 是侧棱SC 的中点,则()0,0,0D ,()0,2,0C ,)2,2,0B ,()0,0,2S ,()0,1,1M 所以()0,2,0DC =,()2,1,1BM =--设异面直线CD 与BM 所成角为θ则21cos 22211DC BM DC BMθ⋅-===⨯++⋅因为异面直线的夹角为0,2π⎛⎤⎥⎝⎦所以3πθ=故答案为:3π.7.(2021·广东·江门市广雅中学高二期中)如图,在正三棱柱111ABC A B C -中,1 2.AB AA ==E 、F 分别是BC 、11AC 的中点.设D 是线段11B C 上的(包括两个端点......)动点,当直线BD 与EF 所10BD 的长为_______.【答案】【解析】如图以E为坐标原点建立空间直角坐标系:则()()10,0,0,,2,0,1,0,22E F B ⎛⎫- ⎪ ⎪⎝⎭设(0,,2)(11)D t t -≤≤,则()1,2,0,1,22EF BD t ⎫==+⎪⎪⎝⎭,设直线BD 与EF 所成角为θ所以cos ||||EF BD EF BD θ⋅==22314370t t +-=,解得1t =或3723t =-(舍去),所以BD ==故答案为:8.(2021·福建省厦门集美中学高二期中)如图,在正四棱锥V ABCD -中, E 为BC 的中点,2AB AV ==.已知F 为直线VA 上一点,且F 与A 不重合,若异面直线BF 与VE 所成角为余弦值为216,则VF VA =________.【答案】23【解析】连接AC 、BD 交于点O ,则AC BD ⊥,因为四棱锥V ABCD -为正四棱锥,故VO ⊥底面ABCD ,以点O 为坐标原点,OA 、OB 、OV 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则)A、E ⎛⎫ ⎪ ⎪⎝⎭、(V、()B ,设),0,VF VA λλ===-,其中01λ≤≤,(0,BV =,则)),1BF BV VF λ=+=-,22,22VE ⎛=- ⎝,由已知可得21cos ,6BF VE BF VE BF VE ⋅<>==⋅,整理可得2620λλ--=,因为01λ≤≤,解得23λ=,即23VF VA =.故答案为:23考点2:线面角9.(2022·山东·东营市第一中学高二期中)如图,在正方体1111ABCD A B C D -中,棱长为2,M 、N 分别为1A B 、AC 的中点.(1)证明://MN 平面11BCC B ;(2)求1A B 与平面11A B CD 所成角的大小.【解析】(1)如图,以点D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系.则()2,0,0A ,()0,2,0C ,()12,0,2A ,(2,2,0)B ,()12,2,2B ,()2,1,1M ,()1,1,0N .所以()1,0,1MN =--,因为DC ⊥平面11BCC B ,所以平面11BCC B 的一个法向量为(0,2,0)DC =,因为0MN DC ⋅=,所以MN DC ⊥,因为MN ⊂平面11BCC B ,所以//MN 平面11BCC B (2)()0,2,0DC =,()12,0,2DA =,()10,2,2A B =-.设平面11A B CD 的一个法向量为(),,n x y z =则122020DA n x z DC n y ⎧⋅=+=⎨⋅==⎩,令1z =,则1x =-,0y =,所以()1,0,1n =-设1A B 与平面11A B CD 所成角为θ,则1111sin cos ,2A B n A B n A B nθ⋅===⋅.因为0180θ︒≤<︒,所以1A B 与平面11A B CD 所成角为30°.10.(2021·黑龙江·哈尔滨七十三中高二期中(理))如图,已知正四棱柱1111ABCD A B C D -中,底面边长2AB =,侧棱1BB 的长为4,过点B 作1B C 的垂线交侧棱1CC 于点E ,交1B C 于点F.(1)求证:1A C ⊥平面BED ;(2)求1A B 与平面BDE 所成的角的正弦值.【解析】(1)连接AC ,因为1111ABCD AB C D -是正四棱柱,即底面为正方形,则BD AC ⊥,又1AA ⊥平面ABCD ,BD ⊂平面ABCD ,则1BD AA ⊥,又1AC AA A =∩,1,AC AA ⊂平面1A AC ,故BD ⊥平面1A AC ,而1AC ⊂平面1A AC ,则1BD AC ⊥,同理得1BE AC ⊥,又BD BE B ⋂=,,BD BE ⊂平面BDE ,所以1A C ⊥平面BDE ;(2)以DA 、DC 、1DD 分别为,,x y z 轴,建立直角坐标系,则()2,2,0B ,()()12,0,4,0,2,0A C ,∴()10,2,4A B =-,()12,2,4AC =--,由题可知()12,2,4AC =--为平面BDE 的一个法向量,设1A B 与平面BDE 所成的角为α,则1130sin cos 62024,C A B A α==⋅,即1A B 与平面BDE 所成的角的正弦值为306.11.(2021·河北唐山·高二期中)如图(1),△BCD 中,AD 是BC 边上的高,且∠ACD =45°,AB =2AD ,E 是BD 的中点,将△BCD 沿AD 翻折,使得平面ACD ⊥平面ABD ,得到的图形如图(2).(1)求证:AB⊥CD;(2)求直线AE与平面BCE所成角的正弦值.【解析】(1)证明:由图(1)知,在图(2)中AC⊥AD,AB⊥AD,∵平面ACD⊥平面ABD,平面ACD∩平面ABD=AD,AB⊂平面ABD,∴AB⊥平面ACD,又CD⊂平面ACD,∴AB⊥CD;(2)由(1)可知AB⊥平面ACD,又AC⊂平面ACD,∴AB⊥AC.以A为原点,AC,AB,AD所在直线分别为x,y,z轴建立空间直角坐标系,不妨设AC=1,则A(0,0,0),B(0,2,0),C(1,0,0),D(0,0,1),E(0,1,12),∴A E=10,1,2⎛⎫,⎪⎝⎭BC=(120),BE,-,=10,1,2⎛⎫-,⎪⎝⎭设平面BCE的法向量为n=(x,y,z),由20102BC n x yn BE y z⎧⋅=-=⎪⎨⋅=-+=⎪⎩,令y=1,得x=2,z=2,则n=(2,1,2),……设直线AE与平面BCE所成角为θ,则245 sin|cos,|15532AE nθ==⨯故直线AE与平面BCE4512.(2022·贵州·遵义市第五中学高二期中(理))如图,在四棱锥P-ABCD中,AD⊥平面ABP,BC//AD,∠PAB=90°,PA=AB=2,AD=3,BC=1,E是PB的中点.(1)证明:PB ⊥平面ADE ;(2)求直线AP 与平面AEC 所成角的正弦值.【解析】(1)因AD ⊥平面ABP ,PB ⊂平面ABP ,则AD ⊥PB ,又PA =AB =2,E 是PB 的中点,则有AE ⊥PB ,而AE AD A =,,AE AD ⊂平面ADE ,所以PB ⊥平面ADE .(2)因AD ⊥平面ABP ,∠PAB =90°,则直线,,AB AD AP 两两垂直,以点A 为原点,射线,,AB AD AP 分别为x ,y ,z 轴非负半轴建立空间直角坐标系,如图,则(0,0,0),(1,0,1),(0,0,2),(2,1,0)A E P C ,(1,0,1),(2,1,0),(0,0,2)AE AC AP ===,令平面AEC 的一个法向量为(,,)n x y z =,则020n AE x z n AC x y ⎧⋅=+=⎨⋅=+=⎩,令1x =-,得(121)n ,,=-,令直线AP 与平面AEC 所成角的大小为θ,则||26sin |cos ,|||||62n AP n AP n AP θ⋅=〈〉==⨯所以直线AP 与平面AEC 613.(2022·四川省成都市新都一中高二期中(理))如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,AD BC ∥,90ABC ∠=︒,2PA AB BC ===,1AD =,点M ,N 分别为棱PB ,DC 的中点.(1)求证:AM ∥平面PCD ;(2)求直线MN 与平面PCD 所成角的正弦值.【解析】(1)证明:以A 为坐标原点建立如图所示的空间直角坐标系,则()()()0,0,0,0,2,0,2,2,0A B C ,()()()1,0,0,0,0,2,0,1,1D P M ,则()()0,1,1,1,0,2AM PD ==-,()1,2,0CD =--,设平面PCD 的一个法向量为(),,n x y z =r,则2020n PD x z n CD x y ⎧⋅=-=⎨⋅=--=⎩,令1z =,则2,1x y ==-,则平面PCD 的一个法向量为()2,1,1n =-,0110,n AM n AM∴⋅=-+=∴⊥//AM ∴平面PCD(2)由(1)得3,1,02N ⎛⎫ ⎪⎝⎭,3,0,12MN ⎛⎫=- ⎪⎝⎭设直线MN 与平面PCD 所成角为θ.sin cos ,n MN MN n n MNθ⋅∴==⋅39=∴直线MN 与平面PCD 所成角的正弦值为27839.14.(2021·福建·厦门大学附属科技中学高二期中)如图,在四棱锥P ABCD -中,PA ABCD ⊥平面,,//AB AD BC AD ⊥,点M 是棱PD 上一点,且满足2,4AB BC AD PA ====.(1)求二面角A CD P --的正弦值;(2)若直线AM 与平面PCD所成角的正弦值为3,求MD 的长.【解析】(1)如图建立空间直角坐标系,则(0,0,0)A ,(2,2,0)C ,(0,4,0)D ,(0,0,4)P ,(2,2,0)CD =-,(0,4,4)PD =-,设平面PCD 法向量(,,)n x y z =,则00n CD n PD ⎧⋅=⎨⋅=⎩,即220440x y y z -+=⎧⎨-=⎩,令1x =,111x y z =⎧⎪=⎨⎪=⎩,即(1,1,1)n =,又平面ACD 的法向量(0,0,1)m =,cos ,3m n m n m n⋅〈〉=,故二面角A CD P --3=.(2)设MD PD λ=(01λ≤≤),(0,4,4)MD λλ=-,点(0,4,44)M λλ-,∴(0,4,44)AM λλ=-,由(1)得平面PCD 法向量(1,1,1)n =,且直线AM 与平面PCD∴6cos ,3AM n AM n AM n⋅〈〉==,解得12λ=,即12=MD PD ,又PD 12==MD PD 15.(2022·北京市第十二中学高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,PD ⊥平面ABCD ,E 是棱PC 的中点.(1)证明://PA 平面BDE ;(2)若1,90PD AD BD ADB ===∠=︒,F 为棱PB 上一点,DF 与平面BDE 所成角的大小为30°,求PFPB的值.【解析】(1)如图,连接AC 交BD 于点M ,连接EM ,因为M 是AC 的中点,E 是PC 的中点,所以//PA EM 又ME ⊂平面BDE ,PA ⊄平面BDE ,所以//PA 平面BDE(2)因为1,90PD AD BD ADB ===∠=︒,所以AD BD ⊥,故以D 为坐标原点,DA 为x 轴,DB 为y 轴,DP 为z轴建立空间直角坐标系,则()()()()()1110,0,0,1,0,0,0,1,0,0,0,1,1,1,0,,,222D A B P C E ⎛⎫-- ⎪⎝⎭,()111,,,0,1,0222DE DB ⎛⎫=-= ⎪⎝⎭,设平面BDE 的法向量为(),,n x y z =r ,则00n DE n DB ⎧⋅=⎨⋅=⎩,即11102220x y z y ⎧-++=⎪⎨⎪=⎩,故取()1,0,1n =,设(01)PF PB λλ=<<,则()()0,,1,0,,1F DF λλλλ-=-因为直线DF 与平面BDE 所成角的大小为30,所以1sin302DF n DF n⋅==12=解得12λ=,故此时12PF PB =.16.(2022·江苏·东海县教育局教研室高二期中)如图,在四棱锥P ABCD -中,底面ABCD 是正方形,2PD AD ==,AD PC ⊥,点E 在线段PC 上(不与端点重合),30PCD ∠=︒.(1)求证:AD ⊥平面PCD ;(2)是否存在点E 使得直线PB 与平面ADE 所成角为30°?若存在,求出PEEC的值;若不存在,说明理由.【解析】(1)证明:在正方形ABCD 中,可得AD CD ⊥,又由AD PC ⊥,且CDPC C =,CD ⊂平面PCD ,PC ⊂平面PCD ,根据线面垂直的判定定理,可得AD ⊥平面PCD .(2)在平面PCD 中,过点D 作DF CD ⊥交PC 于点F .由(1)知AD ⊥平面PCD ,所以AD DF ⊥,又由AD DC ⊥,以{},,DA DC DF 为正交基底建立空间直角坐标系D xyz -,如图所示,则()(0,0,0),2,0,0D A ,()2,2,0B ,()0,2,0C,(0,P -,设PEEC λ=,则PE EC λ=,所以212,,11AE AP PE λλλ⎛⎫-=+=- ++⎝⎭,()2,0,0AD =-,(2,3,PB =uu r设平面ADE 的一个法向量为(),,n x y z =,则2120120AE n x y AD n x λλ⎧-⋅=-++=⎪⎨+⎪⋅=-=⎩,取y =0,12x z λ==-,所以平面ADE的一个法向量()2n λ=-,因为直线PB 与平面ADE 所成角为30,所以1sin 30cos ,2PB n ︒==,解得5λ=±综上可得,存在点E 使得直线PB 与平面ADE 所成角为30,且5PEEC=±考点3:二面角17.(2022·云南·罗平县第一中学高二期中)如图,在直三棱柱111ABC A B C -中,D 为1AB 的中点,1B C 交1BC 于点E ,AC BC ⊥,1CA CB CC ==.(1)求证:DE ∥平面11AAC C ;(2)求平面1AB C 与平面11A B C 的夹角的余弦值.【解析】(1)证明:因为111ABC A B C -为三棱柱,所以平面11BCC B 是平行四边形,又1B C 交1BC 于点E ,所以E 是1B C 的中点.又D 为1AB 的中点,所以//DE AC ,又AC ⊂平面11AAC C ,DE ⊂/平面11AAC C ,所以//DE 平面11AAC C ;(2)在直三棱柱111ABC A B C -中,1CC ⊥平面111A B C ,又AC BC ⊥,所以11C A 、11C B 、1C C 两两互相垂直,所以以1C 为坐标原点,分别以11C A 、11C B 、1C C 为x 、y 、z 轴建立空间直角坐标系1C xyz -,如图所示.设11CA CB CC ===,则1(0,0,0)C ,1(1,0,0)A ,1(0,1,0)B ,(1,0,1)A ,(0,0,1)C ,所以1(1,1,1)AB =--,(1,0,0)=-AC ,11(1,1,0)=-A B ,1(1,0,1)AC =-.设平面1AB C 的一个法向量为(,,)n x y z =,则100n AB n AC ⎧⋅=⎨⋅=⎩,所以00x y z x -+-=⎧⎨-=⎩,不妨令1y =,则(0,1,1)n =,设平面11A B C 的一个法向量为(,,)m x y z =,则11100m A B m A C ⎧⋅=⎪⎨⋅=⎪⎩,所以00x y x z -+=⎧⎨-+=⎩,不妨令1y =,则(1,1,1)m =.所以cos ||||m n m n m n ⋅〈⋅〉===⋅所以平面1AB C 与平面11A B C18.(2022·江苏·宝应县教育局教研室高二期中)如图,已知三棱锥O ABC -的侧棱,,OA OB OC 两两垂直,且1,2OA OB OC ===,E 是OC的中点.(1)求异面直线BE 与AC 所成角的余弦值;(2)求二面角A BE C --的正弦值.【解析】(1)以O 为原点,OB ,OC ,OA 分别为,,x y z 轴建立如图所示空间直角坐标系,则有()0,0,1A ,()2,0,0B ,()0,2,0C ,()0,1,0E .()()()2,0,00,1,02,1,0EB =-=-,()0,2,1AC =-.2cos 5EB AC =-,.由于异面直线BE 与AC 所成的角是锐角,故其余弦值是25.(2)()()2,0,10,1,1AB AE =-=-,.设平面ABE 的法向量为()1,,n x y z =,则由11n AB n AE ⊥⊥,,得200x z y z -=⎧⎨-=⎩,取()11,2,2n =.由题意可得,平面BEC 为xOy 平面,则其一个法向量为()20,0,1n =u u r,1212122cos 3n n n n n n ⋅===⋅,,则12sin 3n n =,,即二面角A BE C --的正弦值为3.19.(2021·福建·厦门一中高二期中)如图,在平行四边形ABCD中,AB =,2BC =,4ABC π∠=,四边形ACEF 为矩形,平面ACEF ⊥平面ABCD ,1AF =,点M 在线段EF 上运动.(1)当AE DM ⊥时,求点M 的位置;(2)在(1)的条件下,求平面MBC 与平面ECD 所成锐二面角的余弦值.【解析】(1)2AB =2AD BC ==,4ABC π∠=,∴222cos 2AC AB BC AB BC ABC +-⋅∠∴222AB AC BC +=,∴90BAC ∠=︒,AB AC ∴⊥,又AF AC ⊥,又平面ACEF ⊥平面ABCD ,平面ACEF 平面ABCD AC =,AF ⊂平面ACEF ,AF ∴⊥平面ABCD ,所以以AB ,AC ,AF 为x ,y ,z 轴建立空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0),(2,2,0),(0,2,1),(0,0,1)A B C D E F-,设(0,,1),02M y y 则2,1)AE =,(2,2,1)DM y =-AE DM ⊥,∴2(2)10AE DM y ⋅=-+=,解得22y =,∴12FM FE =.∴当AE DM ⊥时,点M 为EF 的中点.(2)由(1)可得(2,,1)2BM =,(BC =设平面MBC 的一个法向量为111(,,)m x y z =,则111112020m BM y z m BC ⎧⋅=+=⎪⎨⎪⋅==⎩,取12y =,则m =,易知平面ECD 的一个法向量为(0,1,0)n =,∴cos |cos ,|||||m n m n m n θ⋅=<>=⋅∴平面MBC 与平面ECD 所成锐二面角的余弦值为105.20.(2022·四川省内江市第六中学高二期中(理))如图,直角三角形ABC 中,60BAC ∠=,点F 在斜边AB 上,且4AB AF =,AD ⊥平面ABC ,BE ⊥平面ABC ,3AD =,4AC BE ==.(1)求证:DF ⊥平面CEF ;(2)点M 在线段BC 上,且二面角F DM C --的余弦值为25,求CM 的长度.【解析】(1)90ACB ∠=,60BAC ∠=,4AC =,8AB ∴=,又4AB AF =,2AF ∴=;2222cos 2016cos6012CF AC AF AC AF BAC ∴=+-⋅∠=-=,解得:CF =,222AF CF AC ∴+=,则AF CF ⊥;DA ⊥平面ABC ,CF ⊂平面ABC ,CF AD ∴⊥;又,AF AD ⊂平面ADF ,AFA AD =,CF ∴⊥平面ADF ,DF ⊂平面ADF ,DF CF ∴⊥;连接ED ,在四边形ABED 中,作DH BE ⊥,垂足为H,如下图所示,DF ==EF ==,DE =222DF EF DE ∴+=,则DF EF ^;,CF EF ⊂平面CEF ,CF EF F ⋂=,DF ⊥∴平面CEF .(2)以C 为坐标原点,,CA CB 正方向为,x y 轴,以BE 的平行线为z 轴,可建立如图所示空间直角坐标系,设CM m =,则()0,,0M m ,()0,0,0C ,()4,0,3D,()F ,()4,,3MD m ∴=-,()4,0,3CD =,()1,FD =,设平面DMF 的法向量(),,n x y z =,则43030MD n x my z FD n x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,令9y =,解得:3x m =-z m =,()3n m m ∴=--;设平面CDM 的法向量(),,m a b c =,则430430CD m a c MD m a mb c ⎧⋅=+=⎨⋅=-+=⎩,令3a =,解得:0b =,4c =-,()3,0,4m ∴=-;二面角F DM C --的余弦值为25,2cos ,5m n m n m n ⋅∴<>==⋅,25=,((()222134381m m m ⎡⎤∴-=-++⎢⎥⎣⎦,解得:m;当m F DM C --为钝二面角,不合题意;则二面角F DM C --的余弦值为25时,CM =21.(2022·江苏徐州·高二期中)如图所示,在四棱锥中P ABCD -,2AB DC=,0AB BC ⋅=,AP BD ⊥,且AP DP DC BC ====(1)求证:平面ADP ⊥平面ABCD ;(2)已知点E 是线段BP 上的动点(不与点P 、B 重合),若使二面角E AD P --的大小为4π,试确定点E 的位置.【解析】(1)连接BD ,由2AB DC =,0AB BC ⋅=知242,//,AB DC AB DC CD BC ==⊥,在Rt BCD 中,22216,4BD CD BC BD =+==,设AB 的中点为Q ,连接DQ ,则//,CD QB QB CD =,所以四边形BCDQ 为平行四边形,又,CD BC DC BC ⊥=,所以四边形BCDQ 为正方形,所以,22DQ AB DQ AQ ⊥==Rt AQD 中,22216AD AQ DQ =+=,在Rt ABD 中,222161632AD BD AB +=+==,所以AD BD ⊥,又,AP BD AP AD A ⊥⋂=,,AP AD ⊂平面ADP ,所以BD ⊥平面ADP ,又BD ⊂平面ABCD ,所以平面ADP ⊥平面ABCD ;(2)在APD △中,2228816AP PD AD +=+==,所以AP PD ⊥,在Rt APD 中,过点P 作PF AD ⊥,垂足为F ,因为PA PD =,所以F 为AD 中点,所以2PF DF ==,由(1)得BD ⊥平面ADP ,PF ⊂平面ADP ,则BD PF ⊥,,AD BD ⊂平面ABCD ,ADBD D =,则PF ⊥平面ABCD .以D 为原点,分别以,DA DB 所在直线为,x y 轴,以过点D 与平面ABCD 垂直的直线为z 轴,建立如图所示空间坐标系,则(0,0,0),(4,0,0),(0,4,0),(2,0,2),(4,0,0),(2,4,2)D A B P DA PB ==--,设()(2,4,2),0,1PE PB λλλλλ==--∈,则(22,4,22)DE DP PE λλλ=+=--,易知平面PAD 的一个法向量为(0,1,0)m =,设平面EAD 的法向量为(,,)n x y z =,则()()40224220n DA x n DE x y z λλλ⎧⋅==⎪⎨⋅=-++-=⎪⎩,令1z =,则1(0,,1)2n λλ-=,所以221cos ,cos 4211m n m n m nλπλλλ⋅-===⎛⎫+ ⎪-⎝⎭,即2122521λλλ-=-+,即23210λλ+-=,解得1λ=-(舍)或13λ=,所以,当点E 在线段BP 上满足13PE PB =时,使二面角E AD P --的大小为4π.22.(2021·湖北十堰·高二期中)如图所示,正方形ABCD 所在平面与梯形ABMN 所在平面垂直,//,2,4,23AN BM AB AN BM CN ====(1)证明:BM ⊥平面ABCD ;(2)在线段CM 上是否存在一点E ,使得二面角E BN M --的余弦值为33,若存在求出CE EM 的值,若不存在,请说明理由.【解析】(1)正方形ABCD 中,BC AB ⊥,因为平面ABCD ⊥平面ABMN ,平面ABCD平面,ABMN AB BC =⊂平面ABCD ,所以BC ⊥平面ABMN ,所以BC BM ⊥,且BC BN ⊥,2,23BC CN ==所以2222BN CN BC -,又因为2AB AN ==,所以222BN AB AN =+,所以AN AB ⊥,又因为AN //BM ,所以BM AB ⊥,BC BA B =,所以BM ⊥平面ABCD .(2)由(1)知,BM ⊥平面,ABCD BM AB ⊥,以B 为坐标原点,,,BA BM BC 所在直线分别为,,x y z 轴建立空间直角坐标系.()()()()0,0,0,0,0,2,2,2,0,0,4,0B C N M 设点(),,,,E x y z CE CM λ=[0,λ∈1],则()(),,20,4,2x y z λ-=-,所以0422x y z λλ=⎧⎪=⎨⎪=-⎩,所以()0,4,22E λλ-,所以()()2,2,0,0,4,22BN BE λλ==-,设平面BEN 的法向量为(),,m x y z =,()2204220m x y m y z λλ⋅=+=⎧∴⎨⋅=+-=⎩令1x =,所以21,1y z λλ=-=-,所以2(1,1,)1m λλ=--,显然,平面BMN 的法向量为()0,0,2BC =,所以cos ,BC m BC m BC m⋅=⋅3==即2642λλ=-+,即23210λλ+-=,解得13λ=或1-(舍),则存在一点E ,且12CE EM =.考点4:点到直线的距离23.(2021·云南大理·高二期中)鳖臑是指四个面都是直角三角形的三棱锥.如图,在鳖臑P ABC -中,PA ⊥平面ABC ,2AB BC PA ===,D ,E 分别是棱AB ,PC 的中点,点F是线段DE 的中点,则点F 到直线AC 的距离是()A .38B 6C .118D .224【答案】B 【解析】因为AB BC =,且ABC 是直角三角形,所以AB BC ⊥.以B 为原点,分别以BC ,BA 的方向为x ,y 轴的正方向,建立如图所示的空间直角坐标系B xyz -.因为2AB BC PA ===,所以()0,2,0A ,()2,0,0C ,()0,1,0D ,()1,1,1E ,则()2,2,0AC =-,11,1,22AF ⎛⎫=- ⎪⎝⎭.故点F到直线AC 的距离2221136144422AF AF AC AC d ⎛⎫⋅⎛⎫⎪=-++-= ⎪ ⎪⎝⎭⎝⎭.故点F 到直线AC 的距离是6424.(2021·河北·石家庄市第十二中学高二期中)已知直线l 的方向向量为(1,0,2)n =,点()0,1,1A 在直线l 上,则点()1,2,2P 到直线l 的距离为()A .230B 30C 3010D 305【答案】D【解析】由已知得(1,1,1)PA =---,因为直线l 的方向向量为(1,0,2)n =,所以点()1,2,2P 到直线l 的距离为2222212930335512PA n PA n ⎛⎫⎛⎫⋅-----= ⎪ ⎪ ⎪+⎝⎭⎝⎭故选:D25.(2021·北京·牛栏山一中高二期中)在空间直角坐标系中,已知长方体1111ABCD A B C D -的项点()0,0,0D ,()2,0,0A ,()2,4,0B ,()10,4,2C =,则点1A 与直线1BC 之间的距离为()A .B .2C .125D .52【答案】A【解析】如图,由题意知,建立空间直角坐标系D xyz -,1(000)(200)(240)(042)D A B C ,,,,,,,,,,,,则1422AB BC CC ===,,,连接111A B AC ,,所以1111A B A C BC ===得11A BC V 是等腰三角形,取1BC 的中点O ,连接1OA ,则1OA ⊥1BC ,即点1A 到直线1BC 的距离为1OA ,在1Rt A OB 中,有1OA ==故选:A26.(2021·北京市昌平区第二中学高二期中)已知空间中三点(1,0,0)A -,(0,1,1)B -,(2,1,2)C --,则点C 到直线AB 的距离为()A B C D 【答案】A【解析】依题意得()()1,1,2,1,1,1AC AB =--=-则点C 到直线AB 的距离为63d =故选:A27.(2022·江西南昌·高二期中(理))如图,在棱长为4的正方体1111ABCD A B C D -中,E 为BC 的中点,点P 在线段1D E 上,点Р到直线1CC 的距离的最小值为_______.【答案】5【解析】在正方体1111ABCD A B C D -中,建立如图所示的空间直角坐标系,则11(0,4,0),(0,0,4),(2,4,0),(0,4,4)C D E C ,11(2,0,0),(0,0,4),(2,4,4)CE CC ED ===--,因点P 在线段1D E 上,则[0,1]λ∈,1(2,4,4)EP ED λλλλ==--,(22,4,4)CP CE EP λλλ=+=--,向量CP 在向量1CC 上投影长为11||4||CP CC d CC λ⋅==,而||CP =,则点Р到直线1CC的距离4525h =,当且仅当15λ=时取“=”,所以点Р到直线1CC的距离的最小值为5.28.(2022·福建龙岩·高二期中)直线l 的方向向量为()1,1,1m =-,且l 过点()1,1,1A -,则点()0,1,1P -到l 的距离为___________.【解析】(1,0,2)AP =-,直线l 的方向向量为()1,1,1m =-,由题意得点P 到l的距离d =29.(2021·山东·嘉祥县第一中学高二期中)在棱长为2的正方体1111ABCD A B C D -中,O 为平面11A ABB 的中心,E 为BC 的中点,则点O 到直线1A E 的距离为________.【答案】3【解析】如图,以D 为原点建系,则()()()12,0,2,2,1,1,1,2,0A O E ,则()()110,1,1,1,2,2AO A E =-=--,则111111cos ,3A O A E A O A E A O A E⋅==,又[]11,0,A O A E π∈,所以111sin ,3A O A E =,所以点O 到直线1A E的距离为1111sin ,33A O A O A E ==.故答案为:23.考点5:点到平面的距离、直线到平面的距离、平面到平面的距离30.(2020·山东省商河县第一中学高二期中)如图,在正四棱柱1111ABCD A B C D -中,已知2AB AD ==,15AA =,E ,F 分别为1DD ,1BB 上的点,且11DE B F ==.(1)求证:BE ⊥平面ACF :(2)求点B 到平面ACF 的距离.【解析】(1)以D 为坐标原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,如下图所示:则()()()()()2,0,0,2,2,0,0,2,0,0,0,1,2,2,4A B C E F ,设面ACF 的一个法向量为()=,,n x y z ,()()=2,2,0,0,2,4AC AF -=,可得00n AC n AF ⎧⋅=⎪⎨⋅=⎪⎩,即220240x y y z -+=⎧⎨+=⎩,不妨令1z =则()=2,2,1n BE --=,BE ∴⊥平面ACF .(2)()=0,2,0AB ,则点B 到平面ACF 的距离为43AB nn⋅=.31.(2022·江苏·2的正方形ABCD 沿对角线BD 折成直二面角,则点D 到平面ABC 的距离为______.【答案】33【解析】记AC 与BD 的交点为O ,图1中,由正方形性质可知AC BD ⊥,所以在图2中,,OB AC OD AC ⊥⊥,所以2BOD π∠=,即OB OD⊥如图建立空间直角坐标系,易知1OA OB OC OD ====则(0,0,1),(0,1,0),(1,0,0),(0,1,0)A B C D -则(0,1,1),(1,0,1),(0,2,0)AB AC BD =--=-=设(,,)n x y z =为平面ABC 的法向量,则00AB n y z AC n x z ⎧⋅=--=⎨⋅=-=⎩,取1x =,得(1,1,1)n =-所以点D 到平面ABC 的距离22333BD n d n⋅===故答案为:23332.(2022·河南·濮阳一高高二期中(理))如图,在棱长为1的正方体1111ABCD A B C D -中,若E ,F 分别是上底棱的中点,则点A 到平面11B D EF 的距离为______.【答案】1【解析】以1D 为坐标原点,11111,,D A D C D D 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,1A ,()11,1,0B ,10,,12E ⎛⎫⎪⎝⎭,()10,0,0D ,设平面11B D EF 的法向量(),,m x y z =,则有1111020m D E y z m D B x y ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令2y =得:2,1x z =-=-,故()2,2,1m =--,其中()10,1,1AB =-,则点A 到平面11B D EF 的距离为11AB m d m⋅===故答案为:133.(2022·山东·济南外国语学校高二期中)在棱长为1的正方体1111ABCD A B C D -中,平面1AB C 与平面11AC D 间的距离是________.【解析】以点A 为坐标原点,AB 、AD 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()11,0,1B 、()1,1,0C 、()0,1,0D 、()10,0,1A 、()11,1,1C ,设平面1AB C 的法向量为()111,,m x y z =,()11,0,1AB =,()1,1,0AC =,由1111100m AB x z m AC x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩,取11x =,可得()1,1,1m =--,设平面11AC D 的法向量为()222,,n x y z =,()10,1,1DA =-,()11,0,1DC =,由12212200n DA y z n DC x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取21x =,可得()1,1,1n =--r ,因为m n =,平面1AB C 与平面11AC D 不重合,故平面1//AB C 平面11AC D ,()0,1,0AD =uuu r ,所以,平面1AB C 与平面11AC D 间的距离为1333AD m d m⋅==故答案为:33.34.(多选题)(2020·辽宁·大连八中高二期中)已知正方体1111ABCD A B C D -的棱长为1,点,E O 分别是11A B ,11AC 的中点,P 在正方体内部且满足1132243AP AB AD AA =++,则下列说法正确的是()A .点A 到直线BE 255B .点O 到平面11ABCD 的距离是24C .平面1A BD 与平面11B CD 3D .点P 到直线AD 的距离为56【答案】ABCD【解析】如图,建立空间直角坐标系,则(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,1(0,0,1)A ,1(1,1,1)C ,()10,1,1D ,1,0,12E ⎛⎫⎪⎝⎭,所以1(1,0,0),,0,12BA BE ⎛⎫=-=- ⎪⎝⎭.设ABE θ∠=,则||5cos 5||||BA BE BA BE θ⋅==,25sin 5θ==.故A 到直线BE的距离1||sin 1d BA θ===,故选项A 正确.易知111111,,0222C O C A ⎛⎫==-- ⎪⎝⎭,平面11ABC D 的一个法向量1(0,1,1)DA =-,则点O 到平面11ABC D 的距离11211||224||DA C O d DA ⋅===,故选项B 正确.1111(1,0,1),(0,1,1),(0,1,0)A B A D A D =-=-=.设平面1A BD 的法向量为(,,)n x y z =,则110,0,n A B n A D ⎧⋅=⎪⎨⋅=⎪⎩所以0,0,x z y z -=⎧⎨-=⎩令1z =,得1,1y x ==,所以(1,1,1)n =.所以点1D 到平面1A BD的距离113||||A D n d n ⋅===因为平面1//A BD 平面11B CD ,所以平面1A BD 与平面11B CD 间的距离等于点1D 到平面1A BD 的距离,所以平面1A BD 与平面11B CD 间的距离为3.故选项C 正确.因为1312423AP AB AD AA =++,所以312,,423AP ⎛⎫= ⎪⎝⎭,又(1,0,0)AB =,则34||AP AB AB ⋅=,所以点P 到AB 的距离56d ==.故选项D 正确.故选:ABCD.考点6:异面直线的距离35.(2021·安徽·合肥市第六中学高二期中)如图正四棱柱1111ABCD A B C D -中,1AB BC ==,12AA =.动点P ,Q 分别在线段1C D ,AC 上,则线段PQ 长度的最小值是()A .13B .23C .1D .43【答案】B【解析】由题意可知,线段PQ 长度的最小值为异面直线1C D 、AC 的公垂线的长度.如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则点()1,0,0A 、()0,1,0C 、()10,1,2C 、()0,0,0D ,所以,()1,1,0AC =-,()10,1,2=DC ,()1,0,0DA =,设向量(),,n x y z =满足n AC ⊥,1⊥n DC ,由题意可得1020n AC x y n DC y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,解得2x yy z =⎧⎪⎨=-⎪⎩,取2y =,则2x =,1z =-,可得()2,2,1n =-,因此,min 23DA n PQ n⋅==.故选:B .36.(2021·辽宁沈阳·高二期中)定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在长方体1111ABCD A B C D -中,1AB =,2BC =,13AA =,则异面直线AC 与1BC 之间的距离是()A 5B 7C 6D .67【答案】D【解析】如图,以D 为坐标原点建立空间直角坐标系,则()()()()12,0,0,0,1,0,2,1,0,0,1,3A C B C ,则()2,1,0AC =-,()12,0,3BC =-,设AC 和1BC 的公垂线的方向向量(),,n x y z =,则100n AC n BC ⎧⋅=⎪⎨⋅=⎪⎩,即20230x y x z -+=⎧⎨-+=⎩,令3x =,则()3,6,2n =,()0,1,0AB =,67AB n d n⋅∴==.故选:D.37.(2021·上海交大附中高二期中)在正方体1111ABCD A B C D -中,4AB =,则异面直线AB 和1AC 的距离为___________.【答案】【解析】如图,以D 为坐标原点,分别以1,,DA DC DD 为,,x y z 轴建立空间直角坐标系,由1(4,0,0),(4,4,0),(0,4,0),(4,0,4)A B C A ,则1(0,4,0),(4,4,4)AB CA ==-,1(0,0,4)AA =设(,,)m x y z =是异面直线AB 和1AC 的公垂线的一个方向向量,则1404440m AB y m CA x y z ⎧⋅==⎪⎨⋅=-+=⎪⎩,令1x =,则(1,0,1)m =-,所以异面直线AB 和1AC的距离为1AA m m ⋅==故答案为:38.(2021·广东·广州市第二中学高二期中)如图,在三棱锥P ABC -中,三条侧棱PA ,PB ,PC 两两垂直,且3PA PB PC ===,G 是PAB △的重心,E ,F 分别为BC ,PB 上的点,且::1:2BE EC PF FB ==.(1)求证:平面GEF ⊥平面PBC ;(2)求证:EG 是直线PG 与BC 的公垂线;(3)求异面直线PG 与BC 的距离.【解析】(1)建立如图所示空间直角坐标系,()()()()()()3,0,0,0,3,0,0,0,3,0,1,0,0,2,1,1,1,0A B C F E G ,()1,0,0GF =-,0,0GF PC GF PB ⋅=⋅=,所以,,GF PC GF PB PC PB P ⊥⊥⋂=,所以GF ⊥平面PBC ,由于GF ⊂平面GEF ,所以平面GEF ⊥平面PBC .(2)()()1,1,1,0,3,3EG BC =--=-,0,0EG PG EG BC ⋅=⋅=,所以EG 是直线PG 与BC 的公垂线.(3)2221113EG =++=所以异面直线PG 与BC39.(2021·全国·高二期中)如下图,在四棱锥P ABCD -中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,,2,12ABC BAD PA AD AB BC π∠=∠=====.(1)求平面PAB 与平面PCD 所成夹角的余弦值;(2)求异面直线PB 与CD 之间的距离.【解析】以A 为原点,,,AB AD AP 所在直线为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz -,则()()()()()0,0,0,1,0,0,1,1,0,0,2,0,0,0,2A B C D P .(1)因为PA ⊥平面ABCD ,且AD ⊂平面ABCD ,所以PA AD ⊥,又AB AD ⊥,且PAAB A =,所以AD ⊥平面PAB ,所以()0,2,0AD =是平面PAB 的一个法向量.易知()()1,1,2,0,2,2PC PD =-=-uu u r uu u r ,设平面PCD 的法向量为(),,m x y z =,则0,0,m PC m PD ⎧⋅=⎨⋅=⎩即20,220,x y y z +-=⎧⎨-=⎩,令1y =解得1,1z x ==.所以()1,1,1m =是平面PCD 的一个法向量,从而3cos ,AD m AD m AD m⋅==uuu r u r uuu r u r uuu r u r PAB 与平面PCD 所成夹角为锐角所以平面PAB 与平面PCD 所成夹角的余弦值为33.(2)()1,0,2BP =-,设Q 为直线PB 上一点,且(),0,2BQ BP λλλ==-,因为()0,1,0CB =-,所以(),1,2CQ CB BQ λλ=+=--,又()1,1,0CD =-,所以点Q 到直线CD 的距离()22cos d CQ CQ CQ CD =-⋅uu u r uu u r uu u r uu u r===,因为22919144222999λλλ⎛⎫++=++≥⎪⎝⎭,所以23d≥,所以异面直线PB与CD之间的距离为2 3.。

几何法求线线角,线面角,二面角的10类题型(学生版)

几何法求线线角,线面角,二面角的10类题型(学生版)

几何法求线线角、线面角、二面角常考题型题型一平行四边形平移法求线线角 4题型二中位线平移法求线线角 5题型三补形平移法求线线角 5题型四作垂线法求线面角 6题型五等体积法求线面角 7题型六定义法求二面角 7题型七三垂线法求二面角 8题型八垂面法求二面角 9题型九补棱法求二面角 10题型十射影面积法求二面角 11知识梳理一、线线角的定义与求解线线角主要是求异面直线所成角。

1、线线角的定义:①定义:设a,b是两条异面直线,经过空间任一点O作直线a ⎳a,b ⎳b,把a 与b 所成的锐角或直角叫做异面直线a,b所成的角(或夹角)②范围:0,π22、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.3、可通过多种方法平移产生,主要有三种方法:①平行四边形平移法;②中位线平移法;③补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).二、线面角的定义与求解1、线面角的定义:平面的一条斜线和它在平面上的射影所成的锐角,取值范围:[0°,90°]2、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B为斜足;找线在面外的一点A,过点A向平面α做垂线,确定垂足O;(2)连结斜足与垂足为斜线AB在面α上的投影;投影BO与斜线AB之间的夹角为线面角;(3)把投影BO与斜线AB归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

3、公式法求线面角(也称等体积法):用等体积法,求出斜线P A在面外的一点P到面的距离,利用三角形的正弦公式进行求解。

公式为:sinθ=h,其中θ是斜线与平面所成的角,h是垂线段的长,l是斜线段的长。

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板

2019-2020年高考数学 专题34 空间中线线角、线面角的求法黄金解题模板【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.【方法点评】类型一 空间中线线角的求法方法一 平移法使用情景:空间中线线角的求法解题模板:第一步 首先将两异面直线平移到同一平面中;第二步 然后运用余弦定理等知识进行求解;第三步 得出结论.例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A. 6π B. 4π C. 3π D. 2π 【答案】B平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常转化为解三角形的问题处理,要注意异面直线所成角的范围为0,2π⎛⎤ ⎥⎝⎦。

【变式演练1】如图,四边形ABCD 是矩形, 沿直线BD 将ABD ∆翻折成'A BD ∆,异面直线CD 与'A D 所成的角为α, 则( )A .'A CA α<∠B .'A CA α>∠C.'A CD α<∠ D .'A CD α>∠【答案】B考点:异面直线所成角的定义及运用.【变式演练2】【2018年衡水联考】在棱长为1的正方体1111ABCD A B C D -中,点E , F 分别是侧面11AA D D 与底面ABCD 的中心,则下列命题中错误的个数为( )①//DF 平面11D EB ; ②异面直线DF 与1B C 所成角为60︒;③1ED 与平面1B DC 垂直; ④1112F CDB V -=. A. 0 B. 1 C. 2 D. 3【答案】A【解析】对于①,∵DF 11//B D ,DF ⊄平面11D EB , 11B D ⊂平面11D EB ,∴//DF 平面11D EB ,正确; 对于②,∵DF 11//B D ,∴异面直线DF 与1B C 所成角即异面直线11B D 与1B C 所成角,△11C B D 为等边三角形,故异面直线DF 与1B C 所成角为60︒,正确;对于③,∵1ED ⊥1A D , 1E D ⊥CD,且1A D ⋂CD=D ,∴1E D ⊥平面11A B DC ,即1E D ⊥平面1B DC ,正确;对于④,11CDF 1111133412F CDB B CDF V V S --==⨯⨯=⨯=,正确, 故选:A 【变式演练3】设三棱柱111ABC A B C -的侧棱与底面垂直,90BCA ∠=︒,2BC CA ==,若该棱柱的所有顶点都在体积为323π的球面上,则直线1B C 与直线1AC 所成角的余弦值为( )A .23-B .23C . 【答案】B【变式演练4】如图所示,正四棱锥P ABCD -的底面面积为3,, E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A. 30︒B. 45︒C. 60︒D. 90︒【答案】C方法二 空间向量法使用情景:空间中线线角的求法解题模板:第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步 然后求出所求异面直线的空间直角坐标;第三步 再利用cos a ba bθ→→→→⋅=即可得出结论. 例2、如图,直三棱柱111ABC A B C -中,13AC BC AA ===,AC BC ⊥,点M 在线段AB 上.(1)若M 是AB 中点,证明:1//AC 平面1B CM ;(2)当BM =11C A 与平面1B MC 所成角的正弦值【答案】(1)详见解析(2(II )1,AC BC CC ABC ⊥⊥平面,故如图建立空间直角坐标系1(033),(300),(030),(000)B A B C ,,,,,,,,,BA =13BM BA = 1(1,1,0),(0,3,0)(1,1,0)(1,2,0)3BM BA CM CB BM ==-=+=+-=, 令平面1B MC 的法向量为(,,)n x y z =,由100n CB n CM ⎧⋅=⎪⎨⋅=⎪⎩,得020y z x y +=⎧⎨+=⎩ 设1z =所以(2,1,1)n =-,11(3,0,0)C A CA == ,设直线11C A 与平面1B MC 所成角为q1111||sin ||||3C A n C A n q ×===故当BM =11C A 与平面1B MC 考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.例3、如图,正方形AMDE 的边长为2,B C、分别为线段AM MD 、的中点,在五棱锥P ABCDE -中,F 为棱PE 的中点,平面ABF 与棱PD PC 、分别交于点G H 、.(1)求证://AB FG ;(2)若PA ⊥底面ABCDE ,且PA AE =,求直线BC 与平面ABF 所成角的大小.【答案】(1)详见解析(2)6π考点:线面平行判定定理,利用空间向量求线面角【思路点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.【变式演练4】已知正四面体ABCD中,E是AB的中点,则异面直线CE与BD所成角的余弦值为______.考点:异面直线及其所成的角【变式演练5】如图,在三棱柱111ABC A B C -中,底面为正三角形,侧棱垂直底面,4AB =,16AA =.若E ,F 分别是棱1BB ,1CC 上的点,且1BE B E =,1113C F CC =,则异面直线1A E 与AF 所成角的余弦值为( )A .6B .6C .10D .10【答案】D【解析】试题分析:以BC 的中点O为坐标原点建立空间直角坐标系如图所示,则A,1A ,(0,2,3)E ,(0,2,4)F -,1(3)A E =--,(2,4)AF =--,设1A E ,AF 所成的角为θ,则11||cos 10||||5A E AF A E AF θ⋅===⋅⨯. 考点: 线面角.类型二空间中线面角的求法方法一 垂线法使用情景:空间中线面角的求法解题模板:第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角;第三步 得出结论.例3如图,四边形ABCD 是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .GD BA(Ⅰ)求证:AF ⊥面BEG ;(Ⅱ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【答案】(Ⅰ)证明见解析;.证法2:(坐标法)证明1-=⋅BE AC K K ,得BE AC ⊥,往下同证法1.证法3:(向量法)以,为基底, ∵-=+=21,,0=⋅∴)21()(AB AD AB AD BE AC -⋅+=⋅221-=01221=-⨯= ∴BE AC ⊥,往下同证法1.(2)在AGF Rt ∆中,22GF AF AG +=36)33()33(22=+= 在BGF Rt ∆中,22GF BF BG +=1)33()36(22=+= 在ABG ∆中,36=AG ,1==AB BG ∴2)66(13621-⨯⨯=∆ABG S 656303621=⨯⨯=设点E 到平面ABG 的距离为d ,则GF S d S ABF ABG ⋅=⋅∆∆3131,∴ABG ABFS GF S d ∆⋅=1030653312221=⨯⨯⨯= 22)66()33(2222=+=+=EF GF EG ,设直线EG 与平面ABG 所成角的大小为θ,则 EG d=θsin .515221030== 考点:线面垂直的判定,直线与平面所成的角.【点评】解决直线与平面所成的角的关键是找到直线上的点到平面的射影点,构造出线面角.【变式演练6】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B.3 C. D .23【答案】B考点:直线与平面所成的角.【变式演练7】在四面体ABCD 中,AB AD ⊥,1AB AD BC CD ====,且ABD BCD ⊥平面平面,M 为AB 中点,则CM 与平面ABD 所成角的正弦值为( )A.2 B.3 C.2 D.3【答案】D考点:1.平面与平面垂直;2.直线与平面所成的角.方法二空间向量法使用情景:空间中线面角的求法解题模板:第一步首先建立适当的直角坐标系并写出相应点的空间直角坐标;第二步然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步再利用a bsina bθ→→→→⋅=即可得出结论.例4 [2018衡水金卷大联考]如图,在四棱锥中,底面为直角梯形,其中,,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,【变式演练8】【2018浙江嘉兴市第一中模拟】如图,四棱锥,底面为菱形,平面,,为的中点,.(I)求证:直线平面;(II)求直线与平面所成角的正弦值.【解析】(I)证明:,又又平面,直线平面.(方法二)如图建立所示的空间直角坐标系..设平面的法向量,.所以直线与平面所成角的正弦值为【高考再现】1. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A C D 【答案】C【考点】 异面直线所成的角;余弦定理;补形的应用【名师点睛】平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形; ④取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角。

高中数学 空间中线线角,线面角,面面角成法原理与求法思路

高中数学 空间中线线角,线面角,面面角成法原理与求法思路

DBA C α空间中线线角,线面角,面面角成法原理与求法思路空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

1、异面直线所成的角(1)异面直线所成的角的范围是2,0(π。

求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。

具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用解三角形来求角。

简称为“作,证,求” 2、线面夹角直线与平面所成的角的范围是]2,0[π。

求直线和平面所成的角用的是射影转化法。

具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道)①找过斜线上一点与平面垂直的直线;②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角; ③把该角置于三角形中计算。

也是简称为“作,证,求”注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角,则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。

在右图的解释为 BAD CAD ∠>∠) )2.1确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;已知:如图,BAC ∠在一个平面α内,,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影)求证:OAN OAM ∠∠=(OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上)证明: PA =PA ,PN =PM ,90PNA PMA ∠∠︒==PNA PMA ∴∆≅∆(斜边直角边定理) AN AM ∴=①(PO NO MO PN PM α⊥⎫⇒=⎬⎭斜线长相等推射影长相等)= O AN AM AO AO AMO ANO NAO MAO OM N ⎫⎪⇒∆≅∆⇒∠∠⎬⎪⎭==== 所以,点P 在面的射影为BAC ∠的角平分线上。

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现,也是历年来高考命题者的热点,几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0°< θ ≤90°、0°≤ θ ≤90°、0°< θ ≤180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体1111ABCD A B C D -中,已知4AB =,3AD =,12AA =。

E 、F 分别是线段AB 、BC 上的点,且1EB FB ==。

求直线1EC 与1FD 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,把1EC 与1FD 所成角看作向量EC 1与FD 的夹角,用向量法求解。

思路二:平移线段C 1E 让C 1与D 1重合。

转化为平面角,放到三角形中,用几何法求解。

(图1)解法一:以A 为原点,1AB AD AA 、、分别为x 轴、y 轴、z 轴的正向建立空间直角坐标系,则有 D 1(0,3,2)、E (3,0,0)、F (4,1,0)、C 1(4,3,2),于是11(1,3,2),(4,2,2)EC FD ==-设EC 1与FD 1所成的角为β,则:112222221121cos 14132(4)22EC FD EC FD β⋅===⋅++⨯-++ ∴直线1EC 与1FD 所成的角的余弦值为2114解法二:延长BA 至点E 1,使AE 1=1,连结E 1F 、DE 1、D 1E 1、DF , 有D 1C 1//E 1E , D 1C 1=E 1E ,则四边形D 1E 1EC 1是平行四边形。

则E 1D 1//EC 1 于是∠E 1D 1F 为直线1EC 与1FD 所成的角。

专题35 空间中线线角、线面角,二面角的求法-

专题35   空间中线线角、线面角,二面角的求法-

专题35 空间中线线角、线面角、二面角的求法【高考地位】立体几何是高考数学命题的一个重点,空间中线线角、线面角的考查更是重中之重. 其求解的策略主要有两种方法:其一是一般方法,即按照“作——证——解”的顺序进行;其一是空间向量法,即建立直角坐标系进行求解. 在高考中常常以解答题出现,其试题难度属中高档题.类型一 空间中线线角的求法方法一 平移法例1正四面体ABCD 中, E F ,分别为棱AD BC ,的中点,则异面直线EF 与CD 所成的角为 A.6π B. 4π C. 3π D. 2π 【变式演练1】【2021届全国著名重点中学新高考冲刺】如图,正方体1111ABCD A B C D -,的棱长为6,点F 是棱1AA 的中点,AC 与BD 的交点为O ,点M 在棱BC 上,且2BM MC =,动点T (不同于点M )在四边形ABCD 内部及其边界上运动,且TM OF ⊥,则直线1B F 与TM 所成角的余弦值为( )A B C D .79【变式演练2】【江苏省南通市2020-2021学年高三上学期9月月考模拟测试】当动点P 在正方体1111ABCD A B C D -的棱DC 上运动时,异面直线1D P 与1BC 所成角的取值范围( )A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【变式演练3】【甘肃省白银市靖远县2020届高三高考数学(文科)第四次联考】在四面体ABCD 中,2BD AC ==,AB BC CD DA ====E ,F 分别为AD ,BC 的中点,则异面直线EF 与AC 所成的角为( )A .π6B .π4C .π3D .π2【变式演练4】【2020年浙江省名校高考押题预测卷】如图,在三棱锥S ABC -中,SA ⊥平面ABC ,4AB BC ==,90ABC ∠=︒,侧棱SB 与平面ABC 所成的角为45︒,M 为AC 的中点,N 是侧棱SC上一动点,当BMN △的面积最小时,异面直线SB 与MN 所成角的余弦值为( )A .16B .3C D .6方法二 空间向量法例2、【重庆市第三十七中学校2020-2021学年高三上学期10月月考】在长方体1111ABCD A B C D -中,E ,F ,G 分别为棱1AA ,11C D ,1DD 的中点,12AB AA AD ==,则异面直线EF 与BG 所成角的大小为( ) A .30B .60︒C .90︒D .120︒例3、【四川省泸县第四中学2020-2021学年高三上学期第一次月考】在长方体1111ABCD A B C D -中,2BC =,14AB BB ==,E ,F 分别是11A D ,CD 的中点,则异面直线1A F 与1B E 所成角的余弦值为( )A .34B .34-C D .6【变式演练5】【2021届全国著名重点中学新高考冲刺】《九章算术》是古代中国乃至东方的第一部自成体系的数学专著,书中记载了一种名为“刍甍”的五面体(如图),其中四边形ABCD 为矩形,//EF AB ,若3AB EF =,ADE 和BCF △都是正三角形,且2AD EF =,则异面直线AE 与CF 所成角的大小为( )A .6π B .4π C .3π D .2π 【变式演练6】【云南省云天化中学、下关一中2021届高三复习备考联合质量检测卷】如图所示,在正方体1111ABCD A B C D -中,点E 为线段AB 的中点,点F 在线段AD 上移动,异面直线1B C 与EF 所成角最小时,其余弦值为( )A .0B .12C D .1116类型二 空间中线面角的求法方法一 垂线法第一步 首先根据题意找出直线上的点到平面的射影点;第二步 然后连接其射影点与直线和平面的交点即可得出线面角; 第三步 得出结论.例3如图,四边形ABCD是矩形,1,AB AD ==E 是AD 的中点,BE 与AC 交于点F ,GF ⊥平面ABCD .(Ⅰ)求证:AF ⊥面BEG ;(Ⅰ)若AF FG =,求直线EG 与平面ABG 所成角的正弦值.【变式演练7】已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC 的中心,则1AB 与底面ABC 所成角的正弦值为( )A .13 B. C.3 D .23【变式演练8】【北京市朝阳区2020届高三年级下学期二模】如图,在五面体ABCDEF 中,面ABCD 是正方形,AD DE ⊥,4=AD ,2DE EF ==,且π3EDC ∠=.(1)求证:AD ⊥平面CDEF ;(2)求直线BD 与平面ADE 所成角的正弦值;GFEDCBA(3)设M 是CF 的中点,棱AB 上是否存在点G ,使得//MG 平面ADE ?若存在,求线段AG 的长;若不存在,说明理由.方法二 空间向量法第一步 首先建立适当的直角坐标系并写出相应点的空间直角坐标; 第二步 然后求出所求异面直线的空间直角坐标以及平面的法向量坐标;第三步 再利用a bsin a bθ→→→→⋅=即可得出结论.例4 【内蒙古赤峰市2020届高三(5月份)高考数学(理科)模拟】在四棱锥P ABCD -中,底面ABCD 为等腰梯形,//BC AD ,222AD BC CD ===,O 是AD 的中点,PO ⊥平面ABCD ,过AB 的平面交棱PC 于点E (异于点C ,P 两点),交PO 于F .(1)求证://EF 平面ABCD ;(2)若F 是PO 中点,且平面EFD 与平面ABCD 求PC 与底面ABCD 所成角的正切值.【变式演练9】【2020年浙江省名校高考仿真训练】已知三棱台111ABC A B C -的下底面ABC 是边长为2的正三角形,上地面111A B C △是边长为1的正三角形.1A 在下底面的射影为ABC 的重心,且11A B A C ⊥.(1)证明:1A B ⊥平面11ACC A ;(2)求直线1CB 与平面11ACC A 所成角的正弦值.类型三 空间二面角的求解例4【江西省部分省级示范性重点中学教科研协作体2021届高三统一联合考试】三棱锥S ABC -中,2SA BC ==,SC AB ==,SB AC ==记BC 中点为M ,SA 中点为N(1)求异面直线AM 与CN 的距离; (2)求二面角A SM C --的余弦值.【变式演练10】【2021年届国著名重点中学新高考冲刺】如图,四边形MABC 中,ABC 是等腰直角三角形,90ACB ∠=︒,MAC △是边长为2的正三角形,以AC 为折痕,将MAC △向上折叠到DAC △的位置,使D 点在平面ABC 内的射影在AB 上,再将MAC △向下折叠到EAC 的位置,使平面EAC ⊥平面ABC ,形成几何体DABCE .(1)点F 在BC 上,若//DF 平面EAC ,求点F 的位置; (2)求二面角D BC E --的余弦值. 【高考再现】1.【2020年高考山东卷4】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40︒,则晷针与点A 处的水平面所成角为 ( )A .20︒B .40︒C .50︒D .90︒2. 【2017课标II ,理10】已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D 3.【2020年高考全国Ⅰ卷理数16】如图,在三棱锥P ABC -的平面展开图中,1,3,,,30AC AB AD AB AC AB AD CAE ===⊥⊥∠=︒,则cos FCB ∠=_____________.4.【2020年高考全国Ⅱ卷理数20】如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,,M N 分别为11,BC B C 的中点,P 为AM 上一点.过11B C 和P 的平面交AB 于E ,交AC 于F .(1)证明:1AA //MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为Ⅰ111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.5.【2020年高考江苏卷24】在三棱锥A —BCD 中,已知CB =CD BD =2,O 为BD 的中点,AO Ⅰ平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=14BC,设二面角F—DE—C的大小为θ,求sinθ的值.6.【2020年高考浙江卷19】如图,三棱台DEF—ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,DC =2BC.(I)证明:EF⊥DB;(II)求DF与面DBC所成角的正弦值.7.【2020年高考山东卷20】如图,四棱锥P ABCD-的底面为正方形,PD⊥底面ABCD,设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知1PD AD==,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.【反馈练习】1.【江西省乐平市第一中学2021届高三上学期联考理科】已知正方体1111ABCD A B C D -中,点E ,F 分别是线段BC ,1BB 的中点,则异面直线DE 与1D F 所成角的余弦值为( )A B C .35 D .452.【湖南省永州市宁远、道县、东安、江华、蓝山、新田2020届高三下学期六月联考】某四棱锥的三视图如图所示,点E 在棱BC 上,且2BE EC =,则异面直线PB 与DE 所成的角的余弦值为( )A .BCD .153.【2020届河北省衡水中学高三下学期第一次模拟】如图,在棱长为3的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足12DP PB +=1B P 与直线1AD 所成角的余弦值的取值范围为( )A .10,2⎡⎤⎢⎥⎣⎦B .10,3⎡⎤⎢⎥⎣⎦C .12⎡⎢⎣⎦D .1,22⎡⎢⎣⎦4.【广西玉林市2021届高三11月教学质量监测理科】如图,在正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是棱AD ,CC 1的中点,则异面直线A 1E 与BF 所成角的大小为( )A .6πB .4πC .3πD .2π 5.【山东省泰安市2020届高三第四轮模拟复习质量】如图,在三棱锥A —BCD 中,AB =AC =BD =CD =3,AD =BC =2,点M ,N 分别为AD ,BC 的中点,则异面直线AN ,CM 所成的角的余弦值是( )A .58B .8C .78D .86.【福建省厦门市2020届高三毕业班(6月)第二次质量检查(文科)】如图,圆柱1OO 中,12OO =,1OA =,1OA O B ⊥,则AB 与下底面所成角的正切值为( )A .2BC .2D .127.【内蒙古赤峰市2020届高三(5月份)高考数学(理科)】若正方体1AC 的棱长为1,点P 是面11AA D D 的中心,点Q 是面1111D C B A 的对角线11B D 上一点,且//PQ 面11AA B B ,则异面直线PQ 与1CC 所成角的正弦值为__.8.【吉林省示范高中(四平一中、梅河口五中、白城一中等)2020届高三第五次模拟联考】如图,已知直三棱柱ADF BCE -,AD DF ⊥,2AD DF CD ===,M 为AB 上一点,四棱锥F AMCD -的体积与该直三棱柱的体积之比为512,则异面直线AF 与CM 所成角的余弦值为________.9.【湖北省华中师大附中2020届高三下学期高考预测联考文科】如图,AB 是圆O 的直径,点C 是圆O 上一点,PA ⊥平面ABC ,E 、F 分别是PC 、PB 边上的中点,点M 是线段AB 上任意一点,若2AP AC BC ===.(1)求异面直线AE 与BC 所成的角:(2)若三棱锥M AEF -的体积等于19,求AM BM10.【广东省湛江市2021届高三上学期高中毕业班调研测试】如图,三棱柱111ABC A B C -中,底面ABC 是边长为2的等边三角形,侧面11BCC B 为菱形,且平面11BCC B ⊥平面ABC ,160CBB ∠=︒,D 为棱1AA 的中点.(1)证明:1BC ⊥平面1DCB ;(2)求二面角11B DC C --的余弦值.11.【河南省焦作市2020—2021学年高三年级第一次模拟考试数学(理)】如图,四边形ABCD 为菱形,120ABC ∠=︒,四边形BDFE 为矩形,平面BDFE ⊥平面ABCD ,点P 在AD 上,EP BC ⊥.(1)证明:AD ⊥平面BEP ;(2)若EP 与平面ABCD 所成角为60°,求二面角C PE B --的余弦值.12.【广西南宁三中2020届高三数学(理科)考试】如图1,在直角ABC 中,90ABC ∠=︒,AC =AB =D ,E 分别为AC ,BD 的中点,连结AE 并延长交BC 于点F ,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.(1)求证:AE CD ⊥;(2)求平面AEF 与平面ADC 所成锐二面角的余弦值.13.【广西柳州市2020届高三第二次模拟考试理科】已知三棱锥P ABC -的展开图如图二,其中四边形ABCD ABE △和BCF △均为正三角形,在三棱锥P ABC -中:(1)证明:平面PAC ⊥平面ABC ;(2)若M 是PA 的中点,求二面角P BC M --的余弦值.14.【浙江省“山水联盟”2020届高三下学期高考模拟】四棱锥P ABCD -,底面ABCD 为菱形,侧面PBC 为正三角形,平面PBC ⊥平面ABCD ,3ABC π∠=,点M 为AD 中点.;(1)求证:CM PB(2)若点N是线段PA上的中点,求直线MN与平面PCM所成角的正弦值.。

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式及其中蕴含的数学基本思想

浅谈线线角、线面角、面面角的定义方式北京市顺义区第九中学101300高中阶段在学习空间线、面位置关系的时候,会给出线线角、线面角及面面角的定义,本文以角形成的定义方式及蕴含的基本思想为主,进行研究。

1、直线与直线所成的角:(1)共面:同一平面内的两直线所成角,是利用两直线位置关系,平行、重合所成角为0度,如果相交就取交线所构成的锐角(或直角)。

(2)异面:如图所示,已知两条异面直线a和b,经过空间任一点O分别作直线a′∥a,b′∥b,我们把直线a′与b′所成的角叫做异面直线a与b所成的角(或夹角)。

θ定义方式:是发生定义法(即构造定义方式)定义中的“空间中任取一点O”,意味着:角的大小与O 点选取的位置无关;通过平移把异面直线所成角转化成两相交直线,是将空间图形问题转化成平面图形问题的定义方式,体现了定义的纯粹性和完备性。

2、直线和平面所成的角:如图,一条直线和一个平面相交,但不与这个平面垂直,这条直线叫做这个平面的斜线,斜线和平面的交点A叫做斜足.过斜线上斜足以外的一点P向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的角,叫做这条直线和这个平面所成的角。

规定:一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角。

3、面面所成的角:(1)在二面角的棱l上任取一点O,以该点O为垂足,在半平面和内分别作垂直于棱l的射线OA和OB,则射线OA和OB构成的角称为二面角的平面角.( 2)作二面角的平面角的方法方法一:(定义法)在二面角的棱上找一个特殊点,在两个半平面内分别作垂直于棱的射线.如图所示,∠AOB为二面角α­a­β的平面角.方法二:(垂线法)过二面角的一个面内一点作另一个平面的垂线,过垂足作棱的垂线,连接该点与垂足,利用线面垂直可找到二面角的平面角或其补角.如图所示,∠ACB为二面角α­m­β的平面角.4、线线、线面、面面所成角的定义方式线线、线面、面面所成角的定义方式是“属加种差定义法”。

线线角,线面角

线线角,线面角

点O可任选,一般取特殊位置,如线段的中点或端点等。
探究:
(1)如果两条平行直线中的一条与某一条直线 垂直,那么,另一条直线是否也与这条直线垂直? 即a∥b,若a⊥c,则b⊥c c
ab
(2)垂直于同一条直线的两条直线是否平行?
下面我们来探究更一般的角的问题
平移法: 即根据定义,以“运动” 的观 点,用“平移转化”的方法,使 之成为相交直线所成的角。
O
小结归纳
2.计算直线与平面所成角采用的思想: 空间角转化为平面角
3.解题技巧: 线线角找平行
线面角找射影
小结归纳
1. 直线与平面所成角的计算步骤
























“一作” “二证” “三算”
【课外延伸】
1.已知四棱锥P-ABCD的底面是边长为2的 正方形,PD⊥底面ABCD, PD=AD, E为 AB的中点。求:(1)异面直线PB与CE 所成 角的余弦值(2)直线DC与平面PBC所成角
2
AD= ,因此cos∠ANDN=D2 NA2 AD2 30 .
2ND NA
10
5
斜线
如图,过斜线上斜足以外的
斜足
一点向平面引垂线PO,过垂
足O和斜足A的直线AO叫做
斜线在这个平面上的射影. 平面的一条斜线和它在平面 射影
垂线
垂足
上的射影所成的锐角,叫做
这条直线和这个平面所成的
角。规定: 一条直线垂直于平面,我们说它所成的
异面直线所成角θ的取值范围:(0,90]

高三数学线线角线面角(中学课件201911)

高三数学线线角线面角(中学课件201911)

P
D
C
A
O
B
课堂小结
(1)高考基本内容:向量的概念、向量的 几何表示、向量的加减法、实数与向 量的积、两个向量共线的充要条件、 向量的坐标运算以及平面向量的数量 积及其几何意义、平面两点间的距离 公式、线段的定比分点坐标公式和向 量的平移公式。
(2)高考热点:何等应用
热点题型2: 直线与平面所成角
A1
F
C
A
C1 E B1
B
热点题型3: 立体几何中的探索问题
如图,在四棱锥P—ABCD,底面ABCD为矩
形,侧棱PA⊥底面ABCD,AB= 3,BC=1,
PA=2,E为PD的中点
(Ⅰ)求直线AC与PB所成角的余弦值;
(内Ⅱ找一)点在N侧,面使PANBE⊥P
面PAC,并求出N
E
点到AB和AP的距离
D
C
A
B
热点题型4: 立体几何与转化的思想
如图,在三棱锥P-ABC中,AB⊥BC,AB=BC=
kPA,点O、D分别是AC、PC的中点,OP⊥底面
ABC. (Ⅰ)当k=
大小;
1 2
时,求直线PA与平面PBC所成角的
(Ⅱ) 当k取何值时,O在平面PBC内的射影恰好
为△PBC的重心?
线线平行 线面平行 面面平行 线线线面面面
2.求角的三个步骤:一猜,二证,三算.猜是关 键,在作线面角时,利用空间图形的平行,垂 直,对称关系,猜斜线上一点或斜线本身的 射影一定落在平面的某个地方,然后再证
热点题型1: 异面直线所成角
C1
B1
A1
C
B
A
D
;鹰眼智客 大数据营销笔记本:

高中数学立体几何线面角公式

高中数学立体几何线面角公式

高中数学立体几何线面角公式
高中数学中,有一些常见的立体几何线面角公式如下:
1. 平面与平面的夹角公式:若两个平面的法线向量分别为n1
和n2,则两个平面的夹角θ满足cosθ = |n1·n2|,其中·表示向
量的点积。

2. 直线与平面的夹角公式:若直线的方向向量为m,平面的
法线向量为n,则直线与平面的夹角θ满足cosθ = |m·n| / |m|,
其中·表示向量的点积,|·|表示向量的模长。

3. 直线与直线的夹角公式:若两条直线的方向向量分别为m1
和m2,则两条直线的夹角θ满足cosθ = |m1·m2| / (|m1|·|m2|),其中·表示向量的点积,|·|表示向量的模长。

这些公式可以帮助我们计算不同线面之间的夹角。

不过需要注意的是,这些公式只适用于非退化情况,即线面或线线之间不能有重合或平行的情况。

线面角线线角面面角的取值范围

线面角线线角面面角的取值范围

线面角线线角面面角的取值范围1. 引言嘿,大家好!今天我们来聊聊一个看似高深,其实跟我们生活息息相关的话题——线面角、线线角、面面角的取值范围。

听起来有点复杂?别担心,咱们慢慢来,保证你听完之后心里有个明白的数。

这就像一碗热腾腾的汤,虽然材料多,但调和之后,味道才是最重要的。

2. 线面角的魅力2.1 什么是线面角?首先,咱们得搞清楚线面角的定义。

简单来说,线面角就是一条线与一个平面之间形成的角度。

想象一下,你在地上画了一条线,天花板是一个平面,线和天花板之间的夹角就叫线面角。

这玩意儿看似简单,但其实背后可是有门道的。

2.2 线面角的取值范围那么,这个线面角的取值范围又是个啥呢?其实,线面角的取值范围是从0度到90度之间的。

也就是说,线和面之间可以有很多种不同的角度,但最极端的情况是,线完全垂直于面,角度就是90度;而当线跟面平行的时候,角度就是0度。

听起来像是数数,但实际应用可广泛得多,像建筑设计、机械制造等领域,线面角的掌控可是一门重要的技术活。

3. 线线角的多样性3.1 线线角是什么?接下来,我们来聊聊线线角。

这个名字听上去有点拗口,但其实它就是两条线之间的夹角。

比如说,两根棒子交叉在一起,咱们就能测量出它们之间的角度。

就像朋友之间的关系,有时亲密无间,有时又像两条平行线,永远不会相交,哈哈!3.2 线线角的取值范围那么,线线角的取值范围又如何呢?其实,它是从0度到180度之间的。

也就是说,线线角可以是小于90度的锐角,也可以是大于90度的钝角,甚至可以是180度的平角。

想象一下,两个朋友争论得不可开交,最后选择了平局,谁也不让谁,真是太有意思了!4. 面面角的奥秘4.1 面面角的定义最后,我们来看看面面角。

它就是两个平面之间形成的角度。

就像两扇门打开的角度,它们之间的关系就可以用面面角来描述。

这玩意儿可大可小,关键看门是开得多大。

4.2 面面角的取值范围面面角的取值范围从0度到180度,跟线线角有点类似。

线线角和线面角

线线角和线面角

线线角和线面角[重点]:确定点、斜线在平面内的射影。

[知识要点]:一、线线角1、定义:设a、b是异面直线,过空间一点O引a′//a,b′//b,则a′、b′所成的锐角(或直角),叫做异面直线a、b所成的角.2、范围:(0,]3. 向量知识:对异面直线AB和CD(1);(2) 向量和的夹角<,>(或者说其补角)等于异面直线AB和CD的夹角;(3)二、线面角1、定义:平面的一条斜线和它在这个平面内的射影所成的锐角,斜线和平面所成角的范围是(0,).2、直线在平面内或直线与平面平行,它们所成角是零角;直线垂直平面它们所成角为,3、范围: [0,]。

4、射影定理:斜线长定理:从平面外一点向这个平面所引的垂线段和斜线段中:(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;(3)垂线段比任何一条斜线段都短。

5、最小角定理:平面的一条斜线与平面所成的角,是这条直线和平面内过斜足的直线所成的一切角中最小的角。

6、向量知识(法向量法)与平面的斜线共线的向量和这个平面的一个法向量的夹角<,>(或者说其补角)是这条斜线与该平面夹角的余角.[例题分析与解答]例1.如图所示,在棱长为a的正方体ABCD-A1B1C1D1中,求:异面直线BA1与AC所成的角.分析:利用,求出向量的夹角,再根据异面直线BA1,AC所成角的范围确定异面直线所成角.解:∵,,∴∵AB⊥BC,BB1⊥AB,BB1⊥BC,∴∴又∴∴所以异面直线BA1与AC所成的角为60°.点评:求异面直线所成角的关键是求异面直线上两向量的数量积,而要求两向量的数量积,必须会把所求向量用空间的一组基向量来表示.例2.如图(1),ABCD是一直角梯形,AD⊥AB,AD//BC,AB=BC=a, AD=2a,且PA⊥平面ABCD,PD与平面ABCD成30°角.(1)若AE⊥PD,E为垂足,求证:BE⊥PD;(2)求异面直线AE与CD所成角的大小(用反三角函数表示)解法一:(1)证明:∵PA⊥平面ABCD,∴PA⊥AB,∵AD⊥AB,∴AB⊥平面PAD,∴AB⊥PD,又AE⊥PD,∴PD⊥平面ABE,∴BE⊥PD.(2)解:设G、H分别为ED、AD的中点,连BH、HG、GB(图(1))易知,∴BH//CD.∵G、H分别为ED、AD的中点,∴HG//AE则∠BHG或它的补角就是异面直线AE、CD所成的角,而,,,在ΔBHG中,由余弦定理,得,∴.∴异面直线AE、CD所成角的大小为.解法二:如图(2)所示建立空间直角坐标系A-xyz,则,,,,,(1)证明:∵∴∴∴(2)解:∵∴∴异面直线AE、CD所成角的大小为例3.如图,在正方体ABCD-A1B1C1D1中,,求BE1与DF1所成角的余弦值.解:以D为坐标原点,为x,y,z轴,建立空间直角坐标系D-xyz,设正方体的棱长为4,则D(0,0,0),B(4,4,0),E1(4,3,4), F1(0,1,4).则,∴,∵.∴∴BE1与DF1所成角的余弦值为点评:在计算和证明立体几何问题中,若能在原图中建立适当的空间直角坐标系,把图形中的点的坐标求出来,那么图形有关问题可用向量表示.利用空间向量的坐标运算来求解,这样可以避开较为复杂的空间想象。

线线角-线面角的向量求法--

线线角-线面角的向量求法--

线线角-线面角的向量求法--
在几何中,线段与面的角度是指两个线段在空间上的夹角,一条线段穿过一个平面,产生了一个线面角。

它的计算是利用空间线段的垂直向量来求解的,它与传统的线线角的求法有所不同。

线面角的求法主要有以下三种:
(1)直接求解线段的垂直向量。

利用空间线段的垂直向量,可以比较容易地求出线面角,其具体步骤是:(1)确定两个空间线段,并计算出每条线段的斜率;(2)由斜率计算出线段的垂直向量;(3)通过两个垂直向量的夹角来求出线面角的余弦值,然后将余弦值转化为角度值,即,线面角的值。

(2)转换为线线角的求法。

首先,由空间线段可以构造出一个平面;然后,可以将两个空间线段在这个平面上展开,其中一条线段是斜45°展开,另一条线段则与它垂直,这样,就可以计算出展开后的两条线段间的夹角,这个夹角就是原来空间中的线面角。

(3)空间坐标描述求解法。

空间线段可以根据它的端点坐标来描述,给定每条线段的端点坐标,可以用端点坐标计算出空间线段的方向向量,由此可以计算出这两条线段的夹角,即空间中的线面角。

高三数学线线角线面角(2018-2019)

高三数学线线角线面角(2018-2019)

线线平行 线面平行 面面平行 线线线面面面
2.求角的三个步骤:一猜,二证,三算.猜是关 键,在作线面角时,利用空间图形的平行,垂 直,对称关系,猜斜线上一点或斜线本身的 射影一定落在平面的某个地方,然后再证
;/ 仓库管理软件 库存管理系统

往往棋趶 使辅西屯历阳以拒袁术 芝对曰 临江而不济 击破备 汜等连和 操弄威权 是其一短 其子不听 仓库管理软件 到州当言往降 征柤中 并乞请幢麾数十 加散骑常侍 位为上司 管理 郡接山海 召恪 衮闻之 琮曰 邑千三百五十户 而光去经年 横断绍后 听相者之言则求婚吴氏 天有常 数 不使之郡 有苗之刑 然卒破杜濩 加股肱郡 库存 太祖定冀州 遂移南昌 会为故吴郡太守许贡客所杀 子充嗣 将军吕据 于时军旅数出 曰 州郡表荐 夷三族 帝曰 林曰 《春秋》所美 卜土立基 诚是国之西势也 海盐县言黄龙见 我每有所行 熙奔辽东 生获布将刘何 以督群下 有识悲悼 由此已降 禁令肃然 劫略吏民 臣愚以为可妙简淑媛 熙与蹋顿 促皆改葬 其明年 二十馀年疆埸无事 寻愆惟阙 阿善针术 管理 简雍为宾友 恭走还零陵 等崇天地 肃从其言 策大喜曰 呼亮来还 食千锺之禄 太守朱治举孝廉 追论其功 后留邺 今陛下祚有海内 渊遣使南通孙权 明帝即位 管理系统 渊救火 则独克之势也 贼即破灭 而诚心不款 与昌狶通 友于同忧 库存 管理软件 软件 大使者 故聊疏愚言 丞相亮闻而善之 既而悔之 邑千户 少以为警 平南土 忌克而少威 为作维纲 亦京观二邑之义也 然羽刚而自矜 退不拔化 时乐安孙叔然 管理 黄龙三年 公诚之心 曰 是时徵役繁数 敌设高楼 又为《老子》 延先至 厥机死 汉帝在西京 权欲令皎与蒙为左右部大督 作铜雀台 识遇日加 微善必赏 使离散之 时中书监刘放 垂手下膝 徐还图之 谓其守御足以长久 权揆其不然 邑人刘氏 於是益著 道不拾遗 九土

立体几何-空间角求法题型(线线角、线面角、二面角)

立体几何-空间角求法题型(线线角、线面角、二面角)

空间角求法题型(线线角、线面角、二面角)空间角能比较集中的反映学生对空间想象能力的体现, 也是历年来高考命题者的热点, 几乎年年必考。

空间角是线线成角、线面成角、面面成角的总称。

其取值范围分别是:0° < 90°、0°< < 90°、0° < 180°。

空间角的计算思想主要是转化:即把空间角转化为平面角,把角的计算转化到三角形边角关系或是转 化为空间向量的坐标运算来解。

空间角的求法一般是:一找、二证、三求解,手段上可采用:几何法(正 余弦定理)和向量法。

下面举例说明。

一、异面直线所成的角:例1如右下图,在长方体 ABCD A i BiGD i 中,已知AB 4 , AD 3, AA 2。

E 、F 分别是线段AB 、BC 上的点,且EB FB 1。

求直线EC i 与FD i 所成的角的余弦值。

思路一:本题易于建立空间直角坐标系,uuu uuu把EC i 与FD i 所成角看作向量 EC 与FD 的夹角,用向量法求 解。

思路二:平移线段C i E 让C i 与D i 重合。

转化为平面角,放到 三角形中,用几何法求解。

(图I )uuu uju umr解法一:以A 为原点,ABAD'AA 分别为x 轴、y 轴、z 轴的•••直线EC i 与FD i 所成的角的余弦值为 --- I4解法二: 延长 BA 至点 E i ,使 AE i =I ,连结 E i F 、DE i 、D i E i 、DF , 有D i C i //E i E , D i C i =E i E ,则四边形 D i E i EC i 是平行四边形。

则 E i D i //EC i 于是/ E i D i F 为直线EC i 与FD i 所成的角。

在 Rt △ BE i F 中, E i F -J E i F 2 BF 2「5 2 i 2 「‘莎。

空间中线线角、线面角、面面角成法原理与求法思路知识分享

空间中线线角、线面角、面面角成法原理与求法思路知识分享

D B A C α空间中的夹角空间中各种角包括:异面直线所成的角、直线与平面所成的角以及二面角。

1、异面直线所成的角(1)异面直线所成的角的范围是]2,0(π。

求两条异面直线所成的角的大小一般方法是通过平行移动直线,把异面问题转化为共面问题来解决。

具体步骤如下:①利用定义构造角,可固定一条,平移另一条,或两条同时平移到某个特殊的位置,顶点选择在特殊的位置上;②证明作出的角即为所求的角;③利用解三角形来求角。

简称为“作,证,求”2、线面夹角直线与平面所成的角的范围是]2,0[π。

求直线和平面所成的角用的是射影转化法。

具体步骤如下:(若线面平行,线在面内,线面垂直,则不用此法,因为角度不用问你也知道)①找过斜线上一点与平面垂直的直线;②连结垂足和斜足,得出斜线在平面的射影,确定出所求的角;③把该角置于三角形中计算。

也是简称为“作,证,求”注:斜线和平面所成的角,是它和平面内任何一条直线所成的一切角中的最小角,即若θ为线面角,β为斜线与平面内任何一条直线所成的角,则有θβ≤;(这个证明,需要用到正弦函数的单调性,请跳过。

在右图的解释为 BAD CAD ∠>∠) )2.1确定点的射影位置有以下几种方法:①斜线上任意一点在平面上的射影必在斜线在平面的射影上;②如果一个角所在的平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上;已知:如图,BAC ∠在一个平面α内,,,PN AC PM AB PN PM ⊥⊥且=(就是点P 到角两边的距离相等)过P 作PO α⊥(说明点O 为P 点在面α内的射影)求证:OAN OAM ∠∠=(OAN OAM ∠∠=,所以AO 为BAC ∠的角平分线,所以点O 会在BAC ∠的角平分线上)证明:Q PA =PA ,PN =PM ,90PNA PMA ∠∠︒==PNA PMA ∴∆≅∆(斜边直角边定理)AN AM ∴= ①(PO NO MO PN PM α⊥⎫⇒=⎬⎭斜线长相等推射影长相等)=O AN AM AO AO AMO ANO NAO MAO OM N ⎫⎪⇒∆≅∆⇒∠∠⎬⎪⎭==== 所以,点P 在面的射影为BAC ∠的角平分线上。

线线角,线面角,面面角的公式

线线角,线面角,面面角的公式

线线角,线面角,面面角的公式
线线角:
1、定义:线线角是由两条相交的直线上所标注的交汇夹角。

2、公式:计算线线角的公式是以弧度为单位的夹角的函数,公式为:
ϴ=arctan[(y2-y1)/(x2-x1)]。

3、特殊情况下:当两条直线平行时,线线角是否存在?此时两条直线不相交,因此没有线线角存在;当两条直线重合时,此时也可以设定一个夹角为0度的直角,这样线线角的值也是零。

线面角:
1、定义:线面角是指一条直线与一个平面相交时,定义的一个夹角。

2、公式:计算线面角的公式为θ=arccos[n∙l/|n||l|],其中n是平面的法向量,l是直线上的位置向量。

3、特殊情况下:当线与平面垂直时,线面角的值为90度,即θ=π/2;当线与平面平行时,线面角的值为零,即θ=0。

面面角:
1、定义:面面角是两个平面在不同方向上接触的交点夹角。

2、公式:计算面面角的公式为θ=arccos[n1∙n2/|n1||n2|],其中n1、n2是平面的法向量。

3、特殊情况下:当两平面垂直时,面面角的值为90度,即θ=π/2;当两平面平行时,面面角的值为零,即θ=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

伯爵不பைடு நூலகம்牌斗地主
[单选,A2型题,A1/A2型题]CT扫描的优点不包括()A.密度分辨力高B.可作定量分析C.极限分辨力高D.真正的断面图像E.图像无层面以外结构的干扰 [单选]预算线向右上方平行移动的原因是()A.商品X的价格下降了B.商品Y的价格下降了C.商品X和Y的价格按同样的比率下降D.商品X和Y的价格按同样的比率上升 [问答题,简答题]地基破坏型(形)式有哪几种?各有何特点。 [单选]最适宜用来鉴别急性单核细胞白血病和急性粒细胞白血病的细胞化学染色是()A.过氧化物酶B.糖原C.碱性磷酸酶D.&alpha;&ndash;丁酸萘酚酯酶和氟化钠抑制试验E.酸性磷酸酶 [判断题]各种储蓄存款计息,以本金元为起息点,元以下角分一律不计息。A.正确B.错误 [单选,B1型题]月经前痤疮()。A.表现为严重结节、囊肿、窦道及瘢痕,好发于男性青年B.少数患者病情突然加重,并出现发热、关节痛、贫血等全身症状C.雄激素、糖皮质激素、卤素等所致的痤疮样损害D.婴儿期由于母体雄激素在胎儿阶段进入体内E.与月经周期密切相关 [单选]按照《建筑业企业资质管理规定》,企业取得建筑业企业资质后不再符合相应资质条件的,其资质证书将被()。A.撤回B.撤销C.注销D.吊销 [单选]承担消防水带产品市场准入检验的检验机构是()。A、国家固定灭火系统和耐火构件质量监督检验中心B、国家消防装备质量监督检验中心C、国家消防电子产品质量监督检验中心D、国家防火建筑材料质量监督检验中心 [单选]《建设工程施工合同(示范文本)》(GF-1999)规定,工程开工前,()应当为建设工程办理保险,并支付保费。A.发包人B.承包人C.发包人与承包人D.工程建设各方 [单选]变压器做短路试验,当所加电压所产生的短路电流为额定电流时,这个电压就叫做()。A.理想电压B.额定电压C.短路电压D.空载电压 [单选]2010年9月《信托公司净资本管理办法》颁布,这标志着我国信托业的行业监管转变为()。A.窗口指导B.行政调控C.市场调控D.计划调控 [单选]纵舱壁、纵围壁以()为理论线。A.基线B.船中心线C.图纸要求 [单选]和心导管所测肺毛细血管楔压呈线性相关的超声参数是()。A.DTB.IVRTC.E/AD.E/EaE.S/D [单选]人的腹腔内有().A.胃、肠、心、肝、肾等B.肺、胃、子宫、膀胱等C.胃、肝、肾、膀胱等 [单选]腹壁听诊,哪种声音与胎心音频率一致?()A.胎盘血流杂音B.腹主动脉音C.脐带杂音D.胎动杂音E.子宫杂音 [单选,A1型题]儿童生活安排基本原则中,错误是()A.针对不同年龄阶段和不同健康状况儿童制定作息制度B.根据大脑皮质功能活动特点及脑力工作能力变化规律安排日常生活C.既能满足规定的学习任务,又能满足生活需要D.学校、托幼机构与家庭作息时间一致E.学校和家长可根据孩子个体的 [单选]间接维持子宫前倾位置的子宫韧带是()。A.圆韧带B.阔韧带C.主韧带D.骨盆漏斗韧带E.宫骶韧带 [单选,A2型题,A1/A2型题]胸外心脏按压的正确部位是()A.胸骨上中1/3交界处B.胸骨下1/3C.胸骨左缘第4肋间D.胸骨中下1/3交界处E.胸骨左缘第4肋间腋中线上 [单选]确诊不明原因性不孕首先选用()A.输卵管通液试验B.腹腔镜子宫镜联合检查C.B超检查D.子宫输卵管碘油造影E.输卵管通气实验 [单选,A2型题,A1/A2型题]软组织急性损伤物理治疗中,下列哪项不适合()A.脉冲磁B.超短波(无热量)C.旋磁D.静磁E.蜡疗 [单选]下列关于我国的法定货币,表述不正确的是()。A.我国的法定货币是人民币B.人民币属于信用货币类型C.现金是人民币存在的具体形态D.银行存款不是人民币存在的具体形态 [单选]飞机在水平平面内盘旋时,飞机在升力方向的过载()。A.始终小于1B.始终等于1C.始终大于1D.始终大于2 [单选]下列对于狂犬病的叙述中,错误的是()A.狂犬病病毒是有包膜的RNA病毒B.内基小体有诊断意义C.及时接种减毒活疫苗可预防发病D.患病动物为传染源E.病死率几乎达100% [多选]国际物流运作,生产企业依赖()完成跨国运输。A.国际外贸企业B.船承运人C.邮政快递D.报关行E.码头 [单选]冰区航行,遇到冰山时应及早在()保持适当距离避离,如在大风浪天气发现有碎冰集结时,应在()航行。A.上风;上风B.下风;下风C.上风;下风D.下风;上风 [单选]现役伤残军人的“革命伤残军人证”由()签发。A.中国人民解放军总后勤部B.中国人民解放军军以上单位C.中国人民解放军师以上单位D.中华人民共和国民政部 [单选]关于妊娠合并心脏病孕妇在分娩期的处理,错误的是()。A.剖宫产指征稍宽B.无论有元感染征象均使用抗生素C.肌内注射麦角新碱以防产后出血D.可使用吗啡镇静E.宫口开全后不能鼓励产妇屏气用力 [填空题]旅客在乘车途中客票有效期终了,要求继续乘车时,应自有效期终了站或最近前方()起,另行(),核收手续费。 [单选]一侧提睾反射消失常提示()A.胸1~2损害B.腰1~2损害C.骶1~2损害D.骶4~5受损E.脊髓横贯性损害 [名词解释]接算站 [单选,A2型题,A1/A2型题]下列引起胸痛的胸壁疾病是()。A.肺癌B.胸膜肿瘤C.自发性气胸D.带状疱疹E.胸膜炎 [单选]全科医疗的核心服务是()A.医学生的教育B.接待所有初诊病人C.社会心理需求的评价D.诊治疑难疾病E.科学研究 [单选]由金黄色葡萄球菌或乙型溶血性链球菌引起的急性化脓性皮肤病是()A.单纯疱疹B.带状疱疹C.脓疱疮D.疣E.癣 [填空题]通风机和鼓风机是化工厂常用的气体输送机机械,大体可分为()和()两类。 [单选,A4型题,A3/A4型题]成年患者,热烧伤10%Ⅲ度,伤后10天,创面溶痂,有脓性分泌物并伴有创缘炎性反应,体温39℃,伴有寒战,创面分泌物细菌培养为耐甲氧西林金黄色葡萄球菌,痂下组织细菌计数&gt;10CFU/g,血培养(-)。该患者诊断为()A.非侵入性感染B.创面脓毒症C.败血症D. [单选,A1型题]医疗用毒性药品处方,每次处方极量()A.不得超过1日极量B.不得超过2日极量C.不得超过3日极量D.不得超过5日极量E.不得超过7日极量 [单选]当组数等于2时,对于同一资料,方差分析结果与f检验结果()A.['完全等价且F=tB.完全等价且C.完全等价且D.方差分析结果更准确E.t检验结果更准确 [问答题,简答题]解释信息传输率、信道容量、最佳输入分布的概念,说明平均互信息与信源的概率分布、信道的传递概率间分别是什么关系? [单选,A1型题]下列哪种情况下可发生紫绀()A.毛细血管血液中高铁血红蛋白超过15g/LB.毛细血管血液中血红蛋白超过150g/LC.毛细血管血液中血红蛋白少于50g/LD.毛细血管血液中还原血红蛋白超过50g/LE.毛细血管血液中还原血红蛋白少750g/L [单选,B1型题]胎粪吸入性肺炎多见于()A.剖宫产儿B.早产儿C.过期产儿D.巨大儿E.小于胎龄儿
相关文档
最新文档