雷达原理及系统复习(课堂PPT)
合集下载
雷达基本工作原理课件-新版.ppt
微波传输线 发射脉冲
发射机
T/R 触发器
天线 回波
接收机
电源
船电
显示器
Fig1-2 (2)
回波 船首线 方位
精品
T/R
Receiver
Transmitter
第二节 雷达的基本组成、作用
一、基本组成七部分及作用:
1、定时器(触发电路、同步电路等): 是雷达的指挥中心,产生周期性的窄脉冲——触发脉冲 送:1)发射机:控制发射开始 2)接收机:控制近距离增益 3)显示器:控制计时开始
船舶导航雷达
精品
第一章 雷达基本工作原理
引言
Radar —Radio detection and ranging
—无线电探测和测距
雷达:发射微波并接收目标反射回波,对目标进行探测 和测定目标信息
现代雷达 IBS的重要组成部分 定位、导航、避碰
主要传感器
精品
雷达 罗经 计程仪 GNSS AIS ECDIS
二、船用雷达单元构成:
1、三单元雷达: 收发机(触发电路、发射机、接收机、收发开关) 显示器、天线、中频电源
2、二单元雷达: 天线收发机、显示器、精中品频电源
荧光屏的单位长度:在不同量程代表不同的距离
二. 雷达测方位原理
1、利用收发定向天线 ,只向一个方向发射雷达波且 只接收此方向上的目标的反射回波
2、天线旋转依次向四周发射雷达波,则可探知周围 物标的方位——天线的精品方向即目标的方向
触发器
天线
方位与 船首线
收发机 回波
显示器
ARPA
Fig1-2(1)
第二节 雷达的基本组成、作用
5、接收机:超外差式,将微弱回波信号放大千万倍以符合
《雷达原理与系统》课件
气象观测
雷达在气象领域用于降水监测 、风场测量等方面,为气象预 报和灾害预警提供重要数据支
持。
CHAPTER 02
雷达系统组成
发射机
功能
产生射频信号,通过天线 辐射到空间。
组成
振荡器、放大器、调制器 等。
关键技术
高频率、大功率、低噪声 。
接收机
功能
01
接收空间反射回来的回波信号,并进行放大、混频、滤波等处
CHAPTER 04
雷达系统性能参数
雷达的主要性能参数
探测距离
雷达能够探测到的最远距离,通常由发射功 率、天线增益和接收机灵敏度决定。
速度分辨率
雷达区分不同速度目标的能力,通常由信号 处理算法决定。
分辨率
雷达区分两个相邻目标的能力,通常由发射 信号的波形和接收机处理决定。
角度分辨率
雷达区分不同方向目标的能力,通常由天线 设计和接收机处理决定。
距离分辨率
雷达的距离分辨率决定了雷达能够区 分相邻目标的能力,主要受发射信号 的带宽和脉冲宽度等因素影响。
多普勒效应与速度分辨率
多普勒效应
当发射信号与目标之间存在相对运动时,回波信号会产生多 普勒频移,通过测量多普勒频移可以推算出目标的运动速度 。
速度分辨率
雷达的速度分辨率决定了雷达能够区分相邻速度目标详细描述
相控阵雷达利用相位控制方法来改变雷达波束的方向,从而实现快速扫描和跟踪 目标。相比传统机械扫描雷达,相控阵雷达具有更高的扫描速度和抗干扰能力, 能够更好地适应现代战争中高速、高机动目标作战环境。
合成孔径雷达(SAR)
总结词
合成孔径雷达通过在飞行过程中对地面进行多次成像,将各个成像点的信息进 行合成处理,获得高分辨率的地面图像。
雷达在气象领域用于降水监测 、风场测量等方面,为气象预 报和灾害预警提供重要数据支
持。
CHAPTER 02
雷达系统组成
发射机
功能
产生射频信号,通过天线 辐射到空间。
组成
振荡器、放大器、调制器 等。
关键技术
高频率、大功率、低噪声 。
接收机
功能
01
接收空间反射回来的回波信号,并进行放大、混频、滤波等处
CHAPTER 04
雷达系统性能参数
雷达的主要性能参数
探测距离
雷达能够探测到的最远距离,通常由发射功 率、天线增益和接收机灵敏度决定。
速度分辨率
雷达区分不同速度目标的能力,通常由信号 处理算法决定。
分辨率
雷达区分两个相邻目标的能力,通常由发射 信号的波形和接收机处理决定。
角度分辨率
雷达区分不同方向目标的能力,通常由天线 设计和接收机处理决定。
距离分辨率
雷达的距离分辨率决定了雷达能够区 分相邻目标的能力,主要受发射信号 的带宽和脉冲宽度等因素影响。
多普勒效应与速度分辨率
多普勒效应
当发射信号与目标之间存在相对运动时,回波信号会产生多 普勒频移,通过测量多普勒频移可以推算出目标的运动速度 。
速度分辨率
雷达的速度分辨率决定了雷达能够区分相邻速度目标详细描述
相控阵雷达利用相位控制方法来改变雷达波束的方向,从而实现快速扫描和跟踪 目标。相比传统机械扫描雷达,相控阵雷达具有更高的扫描速度和抗干扰能力, 能够更好地适应现代战争中高速、高机动目标作战环境。
合成孔径雷达(SAR)
总结词
合成孔径雷达通过在飞行过程中对地面进行多次成像,将各个成像点的信息进 行合成处理,获得高分辨率的地面图像。
雷达原理及系统课件:hotz-雷达系统-第一章
发射脉冲串波形时可能产生距离模糊
脉冲雷达的最大无模糊距离:Rmax=cTr/2
发射脉冲串波形时可能产生速度模糊 脉冲雷达的最大无模糊多普勒:fdmax=fr/2
10
2020/4/29
常见雷达波形介绍
两大类脉冲串波形:相参脉冲串和非相参脉冲串
A.源正弦波 B.相参脉冲串 C.非相参脉冲串
11
2020/4/29
第一章 雷达系统基础
1.1 常见雷达波形 1.2 雷达信号模糊函数
1
2020/4/29
背景
发射机 收发开关
天线
目标
终端 显示
信号 处理
接收机
R
雷达依赖天线向空间辐射电磁波,并接收由目标散 射的电磁波,以确定目标的存在。
雷达发射的电磁波具有一定的形式:连续波或脉冲 串,单频的或调频、调幅或相位编码的
27
分辨力
2020/4/29
距离模糊函数与距离分辨率
时延分辨常数 的频域形式
的自相关函数
:信号的自相关函数和功率谱是一对傅立叶变换对 :帕斯瓦尔关系式
频域形式为:
28
2020/4/29
距离模糊函数与距离分辨率
有效相关带宽定义:
★有效域 : 反映了
的能力
频域 :反映了
1(均匀谱)
宽的有效相关带宽反映高距离分辨力
30
2020/4/29
速度模糊函数与速度分辨率
速度分辨问题描述
A、B相对雷达距离相同
fd
fd'
fd
f
' d
fd
只有径向速度差vr 多普勒频移
A
以目标A为基准,则:
fd
2vr
B
脉冲雷达的最大无模糊距离:Rmax=cTr/2
发射脉冲串波形时可能产生速度模糊 脉冲雷达的最大无模糊多普勒:fdmax=fr/2
10
2020/4/29
常见雷达波形介绍
两大类脉冲串波形:相参脉冲串和非相参脉冲串
A.源正弦波 B.相参脉冲串 C.非相参脉冲串
11
2020/4/29
第一章 雷达系统基础
1.1 常见雷达波形 1.2 雷达信号模糊函数
1
2020/4/29
背景
发射机 收发开关
天线
目标
终端 显示
信号 处理
接收机
R
雷达依赖天线向空间辐射电磁波,并接收由目标散 射的电磁波,以确定目标的存在。
雷达发射的电磁波具有一定的形式:连续波或脉冲 串,单频的或调频、调幅或相位编码的
27
分辨力
2020/4/29
距离模糊函数与距离分辨率
时延分辨常数 的频域形式
的自相关函数
:信号的自相关函数和功率谱是一对傅立叶变换对 :帕斯瓦尔关系式
频域形式为:
28
2020/4/29
距离模糊函数与距离分辨率
有效相关带宽定义:
★有效域 : 反映了
的能力
频域 :反映了
1(均匀谱)
宽的有效相关带宽反映高距离分辨力
30
2020/4/29
速度模糊函数与速度分辨率
速度分辨问题描述
A、B相对雷达距离相同
fd
fd'
fd
f
' d
fd
只有径向速度差vr 多普勒频移
A
以目标A为基准,则:
fd
2vr
B
《雷达原理与系统》课件
4 雷达抗干扰性能
指雷达系统对外部干扰源的抵抗和抑制能力。
主流雷达系统
雷达系统分类
根据工作原理和应用 领域,雷达系统可以 分为多种不同类型, 如从空中、地面和舰 船上操作的雷达系统。
机载雷达
机载雷达系统是安装 于航空器上的雷达设 备,用于探测和追踪 空中和地面目标。
地面雷达
地面雷达系统用于检 测和追踪来自空中和 地面的目标,广泛应 用于军事和民用领域。
天线用于发射和接收雷达信号,负责探测目标 并获取返回的信息。
信号处理器
信号处理器对接收到的雷达信号进行处理和分 析,提取出目标信息。
雷达系统技术指标
1 雷达探测距离
指雷达系统能够探测到目标的最远距离。
2 雷达探测范围
指雷达系统能够探测到目标的最大半径。
3 雷达精度
指雷达系统对目标位置和属性的测量精度。
4 地质勘探
雷达系统通过地下目标的探测和分析,可用 于地质勘探和资源调查。
雷达系统的未来
1
雷达系统发展趋势
雷达系统将继续朝着更高的探测距离、更快的信号处理和更强的抗干扰性能方向 发展。
2
雷达系统应用前景
随着技术的不断进步,雷达系统将在更多领域得到应用,如自动驾驶、安防和环 境监测。
《雷达原理与系统》PPT 课件
雷达原理与系统的概述。包括雷达系统的简介、应用以及雷达原理的电磁波 与反射、测距原理和信号处理过程。
雷达系统的组成
发射器与接收器
发射器负责发射雷达脉冲信号,接收器接收经 过目标反射回来的信号。
接收机
接收机用于接收和放大从天线接收到的雷达信 号,以供后续的信号处理。
天线系统
舰载雷达
舰载雷达系统安装在 舰船上,用于探测和 追踪海上和空中目标, 具有强大的远程探测 能力。
雷达系统原理PPT课件
双重目标图像
• 当本船附近有一个大的反射面并处于与本船接近垂直的距离时 (如,本船正从一 艘大船旁边经过,等),雷达电波在本船与其 他船之间反弹。因此,2 到 4 个图 像可能会等距离的出现在目标 的方向上。由于多重反射造成的假图像被称为“双 重目标” 。 出现这种情况时,离本船最近的回波图像为真正的目标。 可以注 意到,当本船与相关目标的距离和方位发生变化时,双重目标也 会消失。 因此,这种假回波图像很容易就能区分出来。
脉冲(波束)宽度
• 脉冲宽度是指在主瓣中辐射功率密度为最大辐射功率密度(-3dB) 的一半的角(也 被称为“半值宽度”
雷达无线电波特性
• 雷达的无线电波略沿地表方向传播(主要视线)。这一特性的变 化取决于ቤተ መጻሕፍቲ ባይዱ气的 密度,其一般的计算公式如下所示,总之,雷达 的视线距离 D 比光学视距要长 约 6%。
携带 SART 船的实际位置
• 若本船位于 SART 位置的 1 海里以外, • 第一道显示的回波位置为距 SART0.64 海里 • 第 12 道回波为 SART 的实际位置。 • 若本船进入 SART 1 海里以内范围, • 显 示的扫描速度加快, • 该回波的长度为距 SART 实际位置 150 米。
雷达系统原理
什么是雷达系统?
• 雷达是从天线发射称为微波的甚高频无线电波的导航设备。发射 的无线电波经过 目标(如其他船,浮标,小岛等)反射回来,并 通过相同的天线接受后转换为电 信号。再将这些电信号发送给显 示单元进行显示。雷达使在夜晚或大雾的情况下 发现视线以外的 目标成为可能,并可以使船避免一些潜在的危险。 由于天线发射 的同时在旋转,这样就使本船周边的情况便一目了然。 雷达发射 的微波信号被称为脉冲信号,发射和接收这些信号是交替进行的。 一次 360 度的旋转就有上千的脉冲信号被发射和接收。
雷达原理ppt课件68页PPT知识讲解
雷达对抗的重要性
取得军事优势的重要手段和保证
典型战例1:二次世界大战的诺曼地登陆,盟军 完全掌握了德军德40多不雷达的参数何配置, 通过干扰何轰炸,使德军雷达完全瘫痪。盟军 参战的2127艘舰船,只损失了6艘。 海湾战争:多国部队凭借高技术优势,在战争 的整个过程中使用了各种电子对抗手段,使伊 军的雷达无法工作、通信中断、指挥失灵。双 方人员损失为百人比数十万人。
电子战(EW)的含义
电子战是敌我双方利用电磁能和定向能破 坏敌方武器装备对电磁频谱、电磁信息 的利用或对敌方武器装备和人员进行攻 击、杀伤,同时保障己方武器装备效能 的正常发挥和人员的安全而采取的军事 行动。
电子战(EW)的含义
传统的电子战: 电子对抗(ECM),包括电子侦察、干扰、
隐身、摧毁。 电子反对抗(ECCM),包括电子反侦察、
先看几个著名的电子战经典战例:
——1982年6月9日,叙以贝卡谷地之战,以军一方面用 RC-707电子战飞机施放强烈电子干扰,同时用E-2"鹰眼" 空中预警机掩护导航,用"标准"和"狼"式反辐射导弹将叙 军苦心经营10年的19个导弹基地全部摧毁。
——1986年4月美军空袭利比亚。"软杀伤"与"硬摧 毁"手段紧密结合,双管齐下,仅仅12分钟就完成了代号 为"黄金峡谷"的军事行动,被称为"外科手术式"的攻击战, 使利比亚的防空体系毁于一旦。
处于抗干扰和反侦察地需要,许多雷达具有改变发射 信号的载波频率、脉冲重复频率、脉冲波形或者其它调 制参数,变化的时间可能在秒、毫秒甚至脉间。 信号威胁程度高、反应时间短
2)近年的分类方法
电子干扰
雷达原理介绍ppt课件
的射频信号进行下变频以转化为视频信号(即中心频率等
于0)。正交解调接收机即可完成这样的下变频处理:
sm(t) = s(t) exp(-j2 f0t) 可见,正交解调处理将信号的中心频率降低了 f0 。
|s( f )|
s(t)
sm(t)
正交解 调前
exp(-j2 f0t)
0 |sm( f )|
f0
f
正交解
基本原理
发射系统 接收系统
目标
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp
t
Tr
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有:
SNR = Ps / Pn 显然SNR越高,目标回波就越显著,就越有利于信号分析。
发射功率
不考虑各种损耗,影响目标回波峰值功率Ps的因素有:
雷达发射峰值功率Pt、目标的雷达截面积(RCS) 、目
标与雷达的相对距离R。它们之间存在关系:
Ps= Pt /R4 是与雷达系统及环境有关的常数。若 过小或R过大,则
Tp
t
响应的 3dB宽度称为雷 达距离分辨率,它表征 了雷达将相邻目标区分 开的能力。若接收机没 有脉冲压缩,可用发射
与雷达相距r的目标回波相对于发射脉冲 脉宽Tp近似距离分辨率;
的延时 = 2r / c,c为电磁波的传播速度。 若有脉冲压缩,分辨率
那么,与雷达的相对距离差为r的两个
《雷达原理与系统》PPT课件
W
G 发射天线增益
倍
Ar 接收天线有效面积(孔径)m2
工作波长 m
目标的雷达截面积 m2
R 雷达与目标之间的距离 m
Pr min 接收机灵敏度 W
未考虑因素:大气衰减与路径(多精径选,课件曲p率pt),目标特性与起伏
9
1.1 雷达的任务
举例:
某雷达发射脉冲功率为200KW,收发天线增益为30dB,波长0.1m,抗研究所 2014年2月
精选课件ppt
1
主要内容
1、绪论
2、雷达发射机
3、雷达接收机
4、雷达终端显示器与录取设备
5、雷达作用距离
6、目标距离的测量
7、目标角度的测量
8、目标速度的测量
精选课件ppt
2
主要内容
9、连续波雷达 10、脉冲多普勒雷达 11、相控阵雷达 12、数字阵列雷达 13、脉冲压缩雷达 14、双基地雷达 15、合成孔径雷达
收发信号载波频率的差(多卜勒频率)
举例:
fd
ttrt2Vr
2t
tr 2R0Vrt c
频率为10GHz的雷达,当目标径向速度为300m/s时,其多卜勒频率为
c f3 1 1 18 0 H m 0 0/s z0 .0m 3 ,fd2 0 3 .0m m 0 3 /s 0 2K 0Hz
精选课件ppt
8
灵敏度为-110dBm,不考虑大气损耗等,试求其对=1m2目标的最大作用
距离
1
Rm
ax
2
105 1032 0.12
4 3 1014
1
4
1
2 1023
4 3
4
100.786km
精选课件ppt
雷达原理及系统课件:hotz-雷达系统-第一章
目标的连续跟踪。
PART 06
Hotz-雷达系统的性能评 估
雷达系统性能指标
探测距离
指雷达能够探测到的 最远距离,通常以千 米为单位。
分辨率
指雷达区分两个相邻 目标的能力,通常以 角度、距离和速度来 表示。
精度
指雷达测量目标参数 的准确性,包括位置、 速度和姿态等。
抗干扰能力
指雷达在面对各种干 扰信号时的性能表现, 包括压制式干扰和欺 骗式干扰。
系统集成
将多个雷达系统集成在一起,实现信息共享和协同探测 ,提高整体性能。
ABCD
软件优化
通过改进雷达系统的信号处理算法,提高其抗干扰能力 和可靠性。
应用拓展
将Hotz-雷达系统应用于更多领域,如无人驾驶、无人机 侦察等,以满足不同需求。
WENKU DESIGN
WENKU DESIGN
2023-2026
目标跟踪与定位
目标跟踪算法
采用跟踪算法对检测到的目标进行连续跟踪,记录目标的运动轨迹。
数据关联与滤波
利用数据关联算法和滤波算法,对跟踪数据进行处理,减小测量误差 和干扰因素的影响。
目标定位
根据多个接收站接收到的信号,采用定位算法计算出目标的精确位置。
系统性能评估
根据实际应用需求,对Hotz-雷达系统的性能进行评估,包括探测距 离、定位精度、跟踪稳定性等指标。
天线
定向发送和接收电 磁波。
控制单元
控制雷达系统的运 行和操作。
Hotz-雷达系统的特点与优势
高精度测距和测速
利用电磁波的往返时间,计算 出目标物体的距离和速度。
抗干扰能力强
采用特定的编码和调制方式, 有效降低干扰的影响。
实时性强
PART 06
Hotz-雷达系统的性能评 估
雷达系统性能指标
探测距离
指雷达能够探测到的 最远距离,通常以千 米为单位。
分辨率
指雷达区分两个相邻 目标的能力,通常以 角度、距离和速度来 表示。
精度
指雷达测量目标参数 的准确性,包括位置、 速度和姿态等。
抗干扰能力
指雷达在面对各种干 扰信号时的性能表现, 包括压制式干扰和欺 骗式干扰。
系统集成
将多个雷达系统集成在一起,实现信息共享和协同探测 ,提高整体性能。
ABCD
软件优化
通过改进雷达系统的信号处理算法,提高其抗干扰能力 和可靠性。
应用拓展
将Hotz-雷达系统应用于更多领域,如无人驾驶、无人机 侦察等,以满足不同需求。
WENKU DESIGN
WENKU DESIGN
2023-2026
目标跟踪与定位
目标跟踪算法
采用跟踪算法对检测到的目标进行连续跟踪,记录目标的运动轨迹。
数据关联与滤波
利用数据关联算法和滤波算法,对跟踪数据进行处理,减小测量误差 和干扰因素的影响。
目标定位
根据多个接收站接收到的信号,采用定位算法计算出目标的精确位置。
系统性能评估
根据实际应用需求,对Hotz-雷达系统的性能进行评估,包括探测距 离、定位精度、跟踪稳定性等指标。
天线
定向发送和接收电 磁波。
控制单元
控制雷达系统的运 行和操作。
Hotz-雷达系统的特点与优势
高精度测距和测速
利用电磁波的往返时间,计算 出目标物体的距离和速度。
抗干扰能力强
采用特定的编码和调制方式, 有效降低干扰的影响。
实时性强
雷达基本工作原理ppt课件
3 对方位分辨率和测方位精度的关系
工作波长越短,天线水平波束宽度越窄,方位分辨率和测方位进 度越高
4 抗杂波干扰能力的关系
工作波长越短,雨雪海浪等对雷达波德反射越强,干扰越大
29
5.2 脉冲宽度对使用性能影响
1 对最大作用距离的影响
脉冲宽度越大,能量越大,作用距离越大
2 对最小作用距离的关系
固定距标圈 荧光屏边缘
10
1.4 雷达的测距与测向原理
1. 雷达测距原理 Δ t: 往返于天线与目标的时间, C: 电磁波在空间传播速度3×108m/s。
R
=
1 C
×Δ
t
2
2. 雷达测向原理 借助于定向天线 - 扫描.
11
2 雷达基本组成
微波传输线 发射脉冲
发射机
天线
回波 T/R
触发器
接收机
电源
测 (2)
无视线限制
测量目标参数 距离,方位,速度,航向...
导航 (1) 避碰
(2) 定位
7
雷达/ARPA, ECDIS, GPS/DGPS和自动舵构成的自动 船桥系统是未来主要的导航系统
8
1.3雷达考核内容
雷达结构及其工作原理 雷达影像失真的特点及其产生原因 影响雷达正常观测的诸要素 雷达测距/测方位 雷达定位与导航 雷达航标
28
5.1 工作波长对使用性能影响
1 对最大作用距离的影响
正常天气观测较小的物标时,3cm雷达的rmax要比10cm的大 雨雪天,则10cm雷达的rmax要比3cm雷达的大得多
2 对距离分辨率和测距精度的关系
工作波长越短,脉冲前沿越短,测距精度高;脉冲前沿越短,有 利于缩短脉冲宽度,提高距离分辨率
工作波长越短,天线水平波束宽度越窄,方位分辨率和测方位进 度越高
4 抗杂波干扰能力的关系
工作波长越短,雨雪海浪等对雷达波德反射越强,干扰越大
29
5.2 脉冲宽度对使用性能影响
1 对最大作用距离的影响
脉冲宽度越大,能量越大,作用距离越大
2 对最小作用距离的关系
固定距标圈 荧光屏边缘
10
1.4 雷达的测距与测向原理
1. 雷达测距原理 Δ t: 往返于天线与目标的时间, C: 电磁波在空间传播速度3×108m/s。
R
=
1 C
×Δ
t
2
2. 雷达测向原理 借助于定向天线 - 扫描.
11
2 雷达基本组成
微波传输线 发射脉冲
发射机
天线
回波 T/R
触发器
接收机
电源
测 (2)
无视线限制
测量目标参数 距离,方位,速度,航向...
导航 (1) 避碰
(2) 定位
7
雷达/ARPA, ECDIS, GPS/DGPS和自动舵构成的自动 船桥系统是未来主要的导航系统
8
1.3雷达考核内容
雷达结构及其工作原理 雷达影像失真的特点及其产生原因 影响雷达正常观测的诸要素 雷达测距/测方位 雷达定位与导航 雷达航标
28
5.1 工作波长对使用性能影响
1 对最大作用距离的影响
正常天气观测较小的物标时,3cm雷达的rmax要比10cm的大 雨雪天,则10cm雷达的rmax要比3cm雷达的大得多
2 对距离分辨率和测距精度的关系
工作波长越短,脉冲前沿越短,测距精度高;脉冲前沿越短,有 利于缩短脉冲宽度,提高距离分辨率
《雷达基本工作原理》PPT课件(2024)
雷达抗干扰与隐身技术探讨
2024/1/28
15
常见干扰类型及抗干扰措施
有源干扰
通过发射与雷达信号相似的干扰信号,使雷达难以区分目标 回波和干扰信号。
2024/1/28
无源干扰
利用反射、散射等方式,使雷达信号偏离目标或产生虚假目 标。
16
常见干扰类型及抗干扰措施
01
02
03
信号处理技术
采用先进的信号处理技术 ,如脉冲压缩、动目标检 测等,提高雷达抗干扰能 力。
2024/1/28
雷达定义
利用电磁波的反射原理进行目标 探测和定位的电子设备。
发展历程
从20世纪初的萌芽阶段到二战期 间的广泛应用,再到现代雷达技 术的不断创新和发展。
4
雷达应用领域及重要性
应用领域
军事、民用航空、气象、海洋监测、 地质勘探等。
重要性
在各个领域发挥着不可替代的作用, 如保障国家安全、提高航空安全、预 测天气变化等。
强化信号处理部分
信号处理是雷达技术的核心,建议增加相关 课时和实验,深入讲解信号处理技术。
2024/1/28
33
课程安排建议和拓展学习资源推荐
• 引入新技术:随着科技的发展,新型雷达技术不断涌现,建议课程中加入新型雷达技术的介绍和 讨论。
2024/1/28
34
课程安排建议和拓展学习资源推荐
2024/1/28
02
在安检、反恐、生物医学等领域 具有潜在应用价值。
2024/1/28
30
06
总结回顾与课程安排建议
2024/1/28
31
关键知识点总结回顾
雷达基本概念
雷达是一种利用电磁波进行探测和测 距的电子设备,广泛应用于军事、民 用等领域。
雷达原理ppt课件68页PPT知识讲解70页PPT
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
雷达原理ppt课件68页PPT知识讲解
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
1、最灵繁的人也看不见自己的背脊。——非洲 2、最困难的事情就是认识自己。——希腊 3、有勇气承担命运这才是英雄好汉。——黑塞 4、与肝胆人共事,无字句处读书。——周恩来 5、阅读使人充实,会谈使人敏捷,写作使人精确。——培根
雷达原理及系统复习(课堂PPT)
• 测角的方法:相位法,振幅法。
利用相位响应进行测角
.
利用振幅响应进行测角
40
• 相位法测角原理
利用多个天线所接收到的回波信号间的相位差测角
实现方法:将两天线收到的高频信号与同一本振差 频后在中频上比相。
.
Hale Waihona Puke 41• 测角误差与多值性问题
测角误差
当 ,此时 , 可能超出2π, 解决方法 三天线测角
实际读数
.
13
雷达发射机的任务和基本组成
• 任务 产生大功率的特定调制的电磁振荡即射频信号
• 组成
单级振荡式 大功率电磁振荡产生与调制在一个器件中同时完成 主振放大式 先产生小功率的CW 振荡,再分多级调制和放大
.
14
雷达发射机的性能指标
• 输出功率
输出信号功率
平均功率 峰值功率
单位时间内发出的功率能量Pav ,脉冲重复周 期内的输出平均功率。
v
vr
R ctr 2
fd
2vr
vr vcos
.
10
雷达的工作频率
f =c /λ
只要是通过辐射电磁能量,利用从目标反射回来的回波 对目标探测和定位,都属于雷达系统的工作范畴。
常用雷达工作频率范围:220MHz~35GHz 天波超视距雷达(OTHR):4MHz~5MHz 地波超视距雷达:2MHz 毫米波雷达:94GHz 雷达频段划分和对应频率-- 书P7,表1.1
虚警概率一定时,发现概率Pd才随信噪比的增加 而增加,因此检测系统要求虚警保持一个恒定的 值;但随着噪声电压的变化,其包络振幅的概率 密度可能会发生变化,导致一定门限值的虚警概 率Pfa发生变化,从而使得在给定信噪比下得不到 所需的发现概率。所以,噪声电平变化时,系统 门限电平应相应变化以获得恒虚警。
雷达一些基本原理ppt课件
雷达方程的推导过程
通过电磁波传播、目标反射、接收处理等过程,推导出雷达方程的 具体形式。
雷达方程的意义
为雷达系统设计、性能分析和优化提供了理论依据,有助于指导雷 达系统的实际应用。
最小可检测信号计算
最小可检测信号的定义
在给定虚警概率和检测概率条件下,雷达系统能够检测到的最小 目标回波信号。
最小可检测信号的计算方法
根据雷达方程和噪声特性,通过理论计算或仿真实验确定最小可检 测信号的大小。
影响最小可检测信号的因素
包括雷达系统参数、目标特性、传播环境等,需要综合考虑各种因 素进行优化设计。
系统性能评估指标
探测距离
衡量雷达系统对远距离目标的 探测能力,与发射功率、天线 增益、目标反射截面等因素有
关。
分辨率
表征雷达系统区分相邻目标的 能力,包括距离分辨率、方位 分辨率和俯仰分辨率等。
02
电磁波与天线
电磁波特性与传播方式
电磁波基本特性
电磁波是一种横波,具有电场和 磁场分量,可以在真空中传播,
速度等于光速。
电磁波谱
电磁波谱包括无线电波、微波、红 外线、可见光、紫外线、X射线和 伽马射线等,不同波段的电磁波具 有不同的特性。
电磁波传播方式
电磁波传播方式包括直射、反射、 折射、衍射和散射等,这些传播方 式决定了雷达探测的基本原理。
雷达一些基本原理ppt课件
目录
பைடு நூலகம்
• 雷达概述 • 电磁波与天线 • 雷达信号处理 • 雷达测距测速原理 • 雷达方程与性能分析 • 现代雷达技术发展趋势
01
雷达概述
雷达定义与发展历程
雷达定义
利用电磁波的反射特性来探测目 标的位置、速度等信息的电子设 备。
通过电磁波传播、目标反射、接收处理等过程,推导出雷达方程的 具体形式。
雷达方程的意义
为雷达系统设计、性能分析和优化提供了理论依据,有助于指导雷 达系统的实际应用。
最小可检测信号计算
最小可检测信号的定义
在给定虚警概率和检测概率条件下,雷达系统能够检测到的最小 目标回波信号。
最小可检测信号的计算方法
根据雷达方程和噪声特性,通过理论计算或仿真实验确定最小可检 测信号的大小。
影响最小可检测信号的因素
包括雷达系统参数、目标特性、传播环境等,需要综合考虑各种因 素进行优化设计。
系统性能评估指标
探测距离
衡量雷达系统对远距离目标的 探测能力,与发射功率、天线 增益、目标反射截面等因素有
关。
分辨率
表征雷达系统区分相邻目标的 能力,包括距离分辨率、方位 分辨率和俯仰分辨率等。
02
电磁波与天线
电磁波特性与传播方式
电磁波基本特性
电磁波是一种横波,具有电场和 磁场分量,可以在真空中传播,
速度等于光速。
电磁波谱
电磁波谱包括无线电波、微波、红 外线、可见光、紫外线、X射线和 伽马射线等,不同波段的电磁波具 有不同的特性。
电磁波传播方式
电磁波传播方式包括直射、反射、 折射、衍射和散射等,这些传播方 式决定了雷达探测的基本原理。
雷达一些基本原理ppt课件
目录
பைடு நூலகம்
• 雷达概述 • 电磁波与天线 • 雷达信号处理 • 雷达测距测速原理 • 雷达方程与性能分析 • 现代雷达技术发展趋势
01
雷达概述
雷达定义与发展历程
雷达定义
利用电磁波的反射特性来探测目 标的位置、速度等信息的电子设 备。
《雷达原理复习》幻灯片
练习题:某雷达用的发射机,要求输出脉冲功率为20MW,现主振放大式发射机的主振器〔固 体微波源〕的输出功率为20mw,那么此微波放大链的功率增益为多大才能满足要求? 解:G=10lg(20*10^6)/(20*10^(-3))=90dB 离散型的寄生谱:
分布型的寄生谱:
• 2、请写出数字3的顺序点阵法和程控法的相应表格。〔5*7点阵〕
系数 天线角度:A增大天线尺寸B减小波束宽度C提高天线高度D增加天线发射仰角 7.根据接收机的总噪声系数公式,分析对接收机前端性能的要求。 〔10分〕
8.接收机的灵敏度、动态范围和噪声系数分别表达了接收机的什么性能? 〔10分〕 接收机的灵敏度表达接收机的接收微弱信号的能力 灵敏度的物理意义:表示接收机可接收到最小可测信号功率的能力 动态范围:表达接收机的抗过载性能 噪声系数:表达接收机的噪声性能
《雷达原理复习》幻灯片
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
• 1 请简述要提高雷达的探测距离,有哪些方法?(第三章)〔分别从发射机、接收机和天 线角度进展说明〕
• 门限电平过低,只有噪声存在时,其峰值超过门限电平的概率也增大了,增大了虚警概率,降低了正确不发 现概率。
• 7、设要求虚警时间大于10min,中频带宽为0.16 MHz,那么对于50%的发现概率所需要的最小信噪比应 为多少?
• Pfa=1/(Tfa*B)=1/(10*60*0.16*10)=1*10查图5-7得:对于50%的发现概率,所需要的最小信噪比为 11.4.
超外差式雷达接收机的Simin=-120~-140dBw,保证这个灵敏所需接收机的增益 gain =120~160dB ,主要由中频放大器来完成。 • 噪声系数:接收机输入端信号噪声比与输出端信号噪声比的比值 • 3 接收机的噪声系数主要取决于接收机的前几级还是后几级?为什么?要使接收机的总 噪声系数Fo减小,需减小Fi,增大Gi,而各级内部噪声的影响并不一样,级数越靠前, 对Fo影响越大,所以Fo 取决于最前几级,所以接收机要采用高增益低噪声高放。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超外差技术
无线电波 选频滤波
fRF
fIF
混频器
滤波
解调
解调输出 滤波
fL 本振
如图所示,当接收的电波频率fRF变化时,本振频率fL和选频滤
波器的中心频率f0= fRF能够同步改变,从而使输出的fIF固定不
变,这种技术称为外差技术,当fIF低于fRF而高于信号带宽B时
就称为超外差技术。超外差技术具有灵敏度高、选择性好、
.
20
基本雷达方程推导
距离R 处任一点的雷达发射信号功率密度:
测距精度与发射信号(时宽)带宽(或处理后脉冲宽度)有关, 脉冲越窄、性能越好
.
6
测角
利用天线方向性实现
目标角位置:方位角α 仰角β
α
接收回波最强时的天线波束指向
天线尺寸增加,波束变窄,测角精度和角分辨力提高 角位置还可以利用两个分离接收天线收到信号的相位差来决定
2π弧度=360°=6000密位,1密位=0.06 °
《雷达原理与系统》 课程复习
.
1
• 什么是雷达(radar)?
Radio Detection and Ranging 无线电探测与测距
测量目标的距离、方位和仰角
测量目标的速度
提供目标的其他信息,如:形态、表面信息等
.
2
• 雷达坐标系
球(极)坐标系
斜距R,雷达到目标的直线距离
仰角β,目标斜距R与
其在水平面上的投影 OB在铅垂面上的夹角
.
7
测速
利用回波多普勒频移测相对速度
v
vr
fd
2vr
vr vcos
fd :多普勒频移(Hz) vr :雷达与目标之间的径向速度(m/s) λ:载波波长(m)
当目标向着雷达运动时, 0 > vr ,回波载频提高; 反之0 < vr ,回波载频降低。
径向速度也可用距离的变化率来求得
.
8
利用足够高的分辨力获得 目标的尺寸和形状
信号强度的变化范围。
过载时的Si /Si min,80~120 dB
.
18
• 接收机的噪声系数
接收机输入端信号噪声比与输出端信号噪声比 的比值。其公式为:
规定输入噪声以天线等效电阻 RA在室温T 0 = 290 K
时产生的热噪声为标准
.
19
雷达显示器的主要类型
• 距离显示器。A显,J显 • 平面显示器。PPI显示器 • 高度显示器。E显
脉冲发出时间点的功率Pt,脉冲期间射频振荡 的平均功率。
工作比,占空比
输出和输入的功率比
• 总效率
.
输入发射机的总平均功率
15
习题
• 某雷达发射机峰值功率为800kW,矩形脉 冲宽度为3μs,脉冲重复频率为1000Hz,求 该发射机的平均功率和工作比。
.
16
雷达接收机
作用:通过适当的滤波将天线上接收到的微弱高频信号从噪 声和干扰中选择出来,并经放大和检波后,送至显示器、信 号处理器或由计算机控制的雷达终端设备中。
例:一单基地脉冲雷达目标回波时延为1μs,求 目标离雷达的距离。
解:由公式 R c t r 代入参数可得 R150m 2
常见时延Байду номын сангаас距离:
1μs--0.15km, 6.67μs--1km, 12.3μs--1.852km(1海里), 10μs--1.5km, 100μs--15km, 1ms--150km,
.
12
从地面或水面的反射影响来看:水平极化的米波雷达, 由于地面反射,波瓣分裂;地面反射对厘米波影响较小, 故中等作用距离的引导雷达均采用厘米波段。
从杂波干扰的影响来看:在目标(飞机)与云、雨相混 的情况下,由于飞机的尺寸远大于水滴的尺寸,依目标 的反射特性,采用大的λ可以提高输入信杂比。当目标 (飞机)以地物为背景时,由于飞机的尺寸远小于地物 的尺寸,依目标的反射特性,采用小的λ较好。
频率选择因素:体积、分辨力、用途、功能
.
11
• 工作波长的选择
从接收机灵敏度来看,须考虑所选λ下接收机内部噪声和大
气噪声大小以及电磁波在大气中的衰减, λ应长一些。
从提高距离分辨率、角分辨率、天线增益的角度来看,希 望λ要短一些。
从目标检测来看,目标的散射特性与λ有关:当目标尺寸 >>λ时,目标对电磁波以散射为主,以绕射为辅,RCS大; 当目标尺寸<< λ时,目标对电磁波以绕射为主,以散射 为辅,RCS小;对隐身目标,波长在两个极端即米波或毫 米波为好。
β
α
方位角α,目标斜距R在水平面上
的投影OB与某以起始方向(参考 . 方向)在水平面上的夹角 3
• 雷达的基本工作原理
单基地脉冲雷达
发射机 电信号 收发开关
接收机
收发开关
天线.
天线 电磁波 大气 大气 回波 目标反射 4
测距
利用发射信号回波时延求得
tr
tr
2R c
C :光速,
R ctr 2
.
5
距离分辨力: R c c
2 2B
角分辨力:
1 2
0
k
D
τ:脉冲宽度 B:信号带宽 β0:天线半功率宽度 λ:信号波长 D:天线孔径
.
9
习题
• 已知脉冲雷达中心频率f0=3000MHz,回波 信号相对发射信号的延迟时间为1000μs, 回波信号的频率为3000.01MHz,目标运动 方向与目标所在方向的夹角60°,求目标 距离、径向速度与线速度。
.
13
雷达发射机的任务和基本组成
• 任务 产生大功率的特定调制的电磁振荡即射频信号
• 组成
单级振荡式 大功率电磁振荡产生与调制在一个器件中同时完成 主振放大式 先产生小功率的CW 振荡,再分多级调制和放大
.
14
雷达发射机的性能指标
• 输出功率
输出信号功率
平均功率 峰值功率
单位时间内发出的功率能量Pav ,脉冲重复周 期内的输出平均功率。
工作稳定、中频部分可标准化等. 优点。
17
• 接收机主要质量指标
1.灵敏度:Simin ,用最小可检测信号功率Simin 表示, 检 率测Pd灵时敏的度输,入给端定的虚信警号概功率率:Pfa ,达到指定检测概
通常所需接收机 gain = 120 ~ 160 dB ,
Simin=-120~-140dbw 主要由中频完成。 2.动态范围:表示接收机能够正常工作所允许的输入
v
vr
R ctr 2
fd
2vr
vr vcos
.
10
雷达的工作频率
f =c /λ
只要是通过辐射电磁能量,利用从目标反射回来的回波 对目标探测和定位,都属于雷达系统的工作范畴。
常用雷达工作频率范围:220MHz~35GHz 天波超视距雷达(OTHR):4MHz~5MHz 地波超视距雷达:2MHz 毫米波雷达:94GHz 雷达频段划分和对应频率-- 书P7,表1.1