八年级数学下:17.1分式及其基本性质-17.1.2分式的基本性质教案2华东师大版
分式教案(2)
分式教案一、教学内容本节课的教学内容来自人教版初中数学八年级下册第22章《分式》。
本节课主要讲解分式的概念、分式的基本性质、分式的运算以及分式方程的解法。
二、教学目标1. 理解分式的概念,掌握分式的基本性质。
2. 学会分式的运算方法,提高运算能力。
3. 学会解分式方程,提高解决问题的能力。
三、教学难点与重点重点:分式的概念、分式的基本性质、分式的运算方法、分式方程的解法。
难点:分式方程的解法。
四、教具与学具准备教具:黑板、粉笔、多媒体教学设备。
学具:教材、练习本、铅笔、橡皮。
五、教学过程1. 实践情景引入:教师出示实际问题:“甲、乙两地相距100公里,甲地有一辆汽车以每小时40公里的速度向乙地行驶,同时乙地有一辆汽车以每小时60公里的速度向甲地行驶。
问两辆汽车相遇时,它们之间的距离是多少?”学生尝试解决实际问题,引出分式的概念。
2. 自主学习:学生自主阅读教材,理解分式的概念,并尝试解决教材中的例题。
3. 课堂讲解:教师讲解分式的概念,强调分式的分子、分母以及分式的值。
4. 课堂练习:教师出示练习题,学生独立完成,巩固分式的概念。
5. 分式的基本性质:教师讲解分式的基本性质,引导学生发现分式的基本性质。
6. 课堂练习:教师出示练习题,学生独立完成,巩固分式的基本性质。
7. 分式的运算:教师讲解分式的运算方法,引导学生发现分式的运算规律。
8. 课堂练习:教师出示练习题,学生独立完成,巩固分式的运算方法。
9. 分式方程的解法:教师讲解分式方程的解法,引导学生发现解分式方程的方法。
10. 课堂练习:教师出示练习题,学生独立完成,巩固解分式方程的方法。
六、板书设计板书设计如下:分式的概念:分子分母分式的值分式的基本性质:分式的分子、分母都乘(或除以)同一个不为零的数,分式的值不变。
分式的运算:加减法:通分后相加(减)乘除法:分子相乘(除),分母相乘(除)分式方程的解法:去分母求解七、作业设计1. 请解释分式的概念,并给出一个例子。
分式及其基本性质(1)
17.1 分式及其基本性质(1)学习目标:1、 理解并掌握分式、有理式的概念;2、 正确识别分式是否有意义,能掌握分式的值是否等于零的方法。
重点、难点:重点:使学生理解并掌握分式、有理式的概念。
难点:正确识别分式是否有意义,通过类比分数的意义,•加强对分式意义的理解。
课前诊断:(1)面积为2平方米的长方形,一边长3米,则它的另一边长为多少?(2)面积为S 平方米的长方形,一边长a 米,则它的另一边长为多少?(3)一箱苹果售价为P 元,总量m 千克,箱重n 千克,则每千克苹果的售价是多少? 导学思考:(1)面积为2平方米的长方形,一边长3米,则它的另一边长为 米; (2)面积为S 平方米的长方形,一边长a 米,则它的另一边长为 米; (3) 一箱苹果售价为P 元,总重m 千克,箱重n 千克,则每千克苹果的售价是元.我的发现:两个整式相除,不能整除时结果可用 表示。
小结:形如A B(A 、B 是整式,且B 中含有字母,B ≠0)的式子叫做分式.其中A 叫做分式的分子,B •叫做分式的分母.整式和分式统称有理式,即有有理式⎧⎨⎩整式分式 注意:1、在分式中,分母的值不能是零,因为零不能做分母。
2、如果分母的值是零,则分式就没有意义了;反之,如果分母不等于零,则分式有意义。
例如在分式S a 中a ≠0则分式有意义,在分式()P m n -中m ≠n 则分式有意义. 归纳:关于分式强调两点:在A B中,第一,B 中含有字母;第二,B 不能为零。
教材中强调分母为零,分式没有意义,那么在什么时候分式的值才能为零呢?我的结论:分子 且分母 时,分式的值等于零。
各小组完成课本例题 基础知识检测:一、选择题: ①要使分式1(1)(2)x x x ++-有意义,则x 应满足 ( ) A .x ≠-1 B .x ≠2 C .x ≠±1 D .x ≠-1且x ≠2 ②要使分式212x x x -+-的值为零,则x 的取值为 ( ) A .x=1 B .x=-1 C .x ≠1且x ≠-2 D .无任何实数 ③要使分式||2x x -无意义,则x 的取值为 ( ) A .x=0 B .x=2 C .x=±2 D .x=-2④x 为任意实数时,分式一定有意义的是 ( )A .21x x -B .211x x +-C .211x x -+D .11x x -+ 二、填空题:1、当a ≠ 时,分式322a a+-有意义; 2、当x= 时,分式31x x+无意义; 3、当m= 时,分式2m m +的值为零; 4、已知x=2时,分式31x k x ++的值为零,则k= ; 5、x=2时,分式x a x b -+的值为0,则a= ,b ≠ 三、解答题:1、 下列有理式中,哪些是整式?哪些是分式?13x ,3x ,15x 2y-2xy 2,4x -x y ,x π,2a b -,5x π+,a b a b +-,1m (x-y ),34(x 2+1) 2、2、当x 为何值时,分式(2)(3)(1)(2)x x x x ----有意义?当x 为何值时,此分式的值为零?3、求使下列分式有意义的x 的取值范围.①125x x +-; ②342||x x +-; ③1(2)(53)x x -+; ④22230.5x x x --+.17.1 分式及其基本性质(2)学习目标:1、理解并掌握分式的基本性质;2、了解最简分式的概念.3、根据分式的基本性质,•对分式进行约分化简及分式的通分运算,并能正确地找出最简公分母. 重点、难点:重点:根据分式的基本性质,对分式进行约分、通分等有关计算.难点:把分式化成最简分式以及找最简公分母. 课前诊断: 观察以下运算:25=2454⨯⨯;1218=126186÷÷.以上计算过程根据分数的什么性质?什么是分数的基本性质?分数的分子、分母都乘以(或除以)同一个不等于零的数,分数的值不变。
初二【数学(人教版)】《分式的基本性质》【教案匹配版】最新国家级中小学精品课程全文
−3 5a
=-
3 5a
;
(2)−2b −5a
2b
=
5a
;
(3)-−−1115yx
=-
11y 15x
.
初中数学
初中数学初二上册
例 把下列分式中的字母a,b同时扩大到原来的2倍,
分式的值会怎么变化?
(1)a2−ab;
(2)aa+bb.
解:
(1)
2∙2a 2a−2b
=
2∙2a 2(a−b)
,
分子分母都除以2得a2−ab; 所以分式的值不变;
进行变形可得
A B
=
−
−A B
=−
A −B
=
−A −B
分式的变号法则:
分式本身及其分子、分母这三处的正负号
中,同时改变两处,分式的值不改变.
初中数学
初中数学初二上册
练习 不改变分式的值,使下列分式的分子、分母
都不含负号.
(1)−5a3 ;
(2)−−25ba ;
(3)−
−11y −15x
⋅
解:
(1)
初中数学
初中数学初二上册
作业
4.不改变分式的值,使分式的分子、分母中的首项 的系数都不含 “-” 号:
初中数学
①
2x−1 −x+1
,
② −x−2−x−3x1+1.
5.不改变分式的值,把下列各式的分子与分母中
各项的系数都化为整数:
①
0.8x−0.7y 0.5x+0.4y
;
② 132xx−+1612yy.
m m+1
=
m(m−1) (m+1)(m−1)
八年级数学分式的基本性质2
( ) a2b
b(2a b) a2 b
2ab b2 a2b
x2 xy x2
(x
y
)
(x2 xy) x x2 x
x x
y
x x2 2x
( ) x2
xx (x2 2x) x
1 x2
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结,不讲科学、不讲技巧的蛮干。它也想开锁,只是采用的方式不正确,可见解决问题应追求合理的途径。参考拟题:开锁的启示、科学方法与科学 精神。 ? 25.阅读下面的文字,根据要求作文。 非洲加纳的库马西有一所寄宿学校。一天早上,一位老师走进教室,举起手里的一张画有一个黑点的白纸问学生:“同学们,你们看到什么了?”学生们齐声回答:“一个黑点。” 老师说:“不对!你们再看看,难道你们谁也没看到这是 一张白纸吗?”接着,老师语重心长地说:“在今后的生活中,你们可不要这样看人看事物啊!” 老师关于这张“白纸”的教导,一直铭刻在一个当时年仅17岁的学生的脑海深处。当年的这位学生就是现在的联合国秘书长科菲?安南。 请以“白纸与黑点”为话题写一篇文章。题目自拟, 文体自选,立意自定,不少于800字。 ? [写作提示]在这个硝烟不断,危机纷起,恐怖分子无孔不入,时刻都有意想不到的灾难发生的世界里,身为联合国秘书长的安南先生时时体味当年老师关于“白纸与黑点”的谆谆教诲,仍然乐观地看到这张虽有许多“黑点”的“白纸”的美丽。其 实,我们也常常遇到这样被染上了“黑点”的“白纸”。比如患过错误的同志,比如有许多毛病的同事……我们应该认真品味这位非洲老师的“黑点与白纸”的故事,从中领悟这样的道理:看人应当首先看“一张白纸”,即看人的主流,看人的优点,对别人的身上的“黑点”应当懂得宽 容、包涵,求同存异,不要只注意别人的“黑点”而刻意挑剔甚至吹毛求疵。 ? 26.阅读下面的文字,根据要求作文。 ? 比,是人人皆有的心态,所不同的是比的内容和方法因人而异:有的比吃比穿、比车比房,有的比成就、比贡献。比,又是我们认识事物的常用方法,拿中国古代的 文明和其他国家比,我们会比出自豪和勇气。拿我们现在的科技与发达国家比,我们比出了落后和清醒。但是,并不是人人都会正确运用比的。 请以“比”为话题,写一篇文章,文体自定,文题自拟,不少于800字。 ? [写作提示]这是一种提示性的话题作文,提示语中列举了一些常见 的“比”的内容和“比”的方法,目的是为了打开同学们的思路。你完全可以从中选择你熟悉的内容来写,但是也不必拘泥于提示的方面,还可以在更广阔的领域寻觅“比”的新鲜内容。但是值得注意的是:选择可比的事物必须是同一范畴的事物,要通过现象或形式异同的比较,概括出 可比点来;罗列差异不是目的,目的是通过差异来说明问题,所以,重点要放在对问题的分析上。 ? 27.阅读下面的文字,根据要求作文。 ? 一天,上帝带着一个教士来到地狱,教士发现地狱中的人们围着一口盛满粥的大锅端坐着。虽然他们每人都有一把长柄勺子,但由于勺柄太长, 他们谁也无法将食物送到自己的嘴里去,只能挨饿。上帝又带着教士来到天堂,这里的人们看上去既快乐又满足,虽然他们也是围着一口大锅,每人手里也拿一把长柄勺子。上帝见教士迷惑不解,便对他说:“难道你没看出来这里的人都学会喂对方了吗?” 请以“合作”为话题,写一 篇作文,所写内容必须在这个话题范围之内。 立意自定,题目自拟,写一篇不少于800字的议。 [写作提示] “合作”即互相配合做某事或共同完成某项任务。随着科学技术的突飞猛进和信息社会的高度发展,合作显得越来越重要。因为科技越发达,分支科学越繁多,社会分工就越精细, 而个人的智力、知识面是有限的,因此,加强合作,取长补短,优势互补,已越来越成为时代的要求。论重点应放在“为什么要进行合作”上,用摆事实,讲道理的方法来明合作的必要,可以引用名言阐述合作的必要,也可以举例明合作带来的各种好处,还可以从反面明不合作带来的弊 端,要用辩的方法,分析要全面,理由要充足,最后还要指出解决问题的办法,即合作的途径。如写议,论角度有“合作是成功的土壤”“合作是人类生存的必需”“个人离不开集体”“团结互助才能由弱变强”“协作就是力量”“团队精神”“优势互补、共同发展”等。 ? 28.阅读下 面的文字,按要求作文。 水,滋润万物,是生命之源; 暴雨倾盆,江河泛滥,也会带来灾难。 水,看似柔弱,却能把坚石滴穿; 汇成洪流,更可穿峡破谷,一往无前。 水,演绎出多少可歌可泣的故事, 流淌着古往今来多少悲欢…… 请以“水的联想”为题,写一篇文章。除诗歌外, 文体自选,不少于800字。 [写作提示]本题主要考查学生的联想、想象能力。具体的写作思路有:根据作文材料的提示,写水既可滋润万物、孕育生命,也会吞噬生灵、造成灾难;或者由水“能把坚石滴穿”“更可穿峡破谷”,阐发水的力量及水的精神;或者由人不能没有水,自然不能 没有水发挥开来,呼唤保护水资源。联想水的其他特点,比如,自己活动,并能推动别人的,是水;经常探求自己方向的,是水;以自己的清洁洗净他人的污浊,有容清纳浊的度量的,是水;能蒸发为云,变成雨、雪、雾,或凝结成晶莹如镜的冰,但不论变化如何,仍不失其本性的,还 是水……然后找到人与水的相似点,构思成篇。 ? 29.阅读下面一则材料,按要求作文。 林语堂先生说:中国人的脸,不但可以洗,可以刮,还可以争,可以留,有时好像争面子是人生的第一要义,甚至可以倾家荡产而为之。对此,你或许也有一些认识或经历。请以“面子”为话题, 写一篇文章,不少于800字,题目自拟,文体自选。 ? [写作提示]中国人爱争面子,在国人看来,面子是人们身份的标志,有面子是才干的表现。面子关系着人的尊严、荣誉。但是,为了面子而不顾实际,为了形象而不顾人的死活,却是当前某些人的一种通病。 面子关乎人们的尊严、 荣辱,当然要讲,特别是在大是大非面前,要面子就是讲尊严。但是,面子不等于虚荣心,不能“死要面子活受罪”,更不能为了所谓的政绩而劳民伤财、弄虚作假。有时候,勇于暴露自己的缺点,恰恰是给自己争来了面子。我们要的是表里如一、形式内容相统一的面子。 30.阅读下面 一则材料,按要求作文。 “美国宗教精神病学基金会”创始人之一的伯兰特医生曾录下他与几位患有不同程度心理疾病的病人的谈话,通过研究,他发现这些人总在不停地重复这类话:“如果当时那样多好”“只要我再如何如何,就不会如何如何”。他由此告诫人们说:“这些想法就 像毒药,它们会使你患上心理疾病。你必须学会说‘下次再来’。因为这句话指向未来,指向新的一天,它会让你受伤的心痊愈,会带给你健康的心灵。” 请以“着眼未来”为话题写一篇文章,自拟题目,自定文体,不少于800字。 [写作提示]“着眼未来”这个话题是要人们学会正确 对待现实生活中的各种困境、挫折等问题,学会摆脱不良情绪,拥有健康快乐的人生。它其实是在倡导一种积极乐观的人生态度。考生可据此展开联想:或儒或道,或穷或达、或成或败……人生其实不外乎积极有为和消极避世两种,在考虑选材时不必受“心理疾病”这个概念束缚,这样 难度就会减小。如果选取的视角新颖,对社会现象、现实人生的评判独特,自然会写出不一般的文章来。 ? 31.阅读下面材料,请以“人的价值”为话题写作文,立意自定,文体自选,题目自拟。不少于800字。 一个年轻人对智者说:“老师,我觉得自己什么事也干不好。没有人看重我, 我该怎么办呢?” 智者从手指上脱下一枚戒指交给年轻人说:“你到集市上把这枚戒指卖了,无论如何不能少于1个金币。” 年轻人到了集市上,到处兜售戒指,但没人肯出1个金币。 年轻人说:“老师,对不起,我没能达到你的要求。也许我可以卖到两个或3个银币,但我觉得那不应 该是这枚戒指的真正价值。” “年轻朋友,你说得太对了。”智者笑着说,“你再去一趟珠宝店,问他能出多少钱,但不要真卖戒指,问完价格你再带戒指回来。” 珠宝商仔细看了看戒指后说:“告诉你的老师,如果他想卖戒指,我最多可以给他58个金币。” “58个金币!”年轻人 惊呼。“对。”珠宝商说,“如果不着急的话,我可以出70个金币……” 年轻人兴奋地跑回去,将发生的一切告诉智者。智者说:“你就像这枚戒指,珍贵、独一无二,只有专家才能真正判定你的价值。你怎能期望生活中随便一个人就能发现你真正的价值呢。”智者说着将戒指套回手 上,“我们所有人都像这枚戒指,珍贵,独一无二;不过,我们进入生活的市场后却希望毫无经验的人肯定我们的价值。” [写作提示]人们都希望自己的价值被肯定,但几乎也都希望被别人肯定,特别是由此自己的感情就被别人左右了,直到自己终生一事无成,这是可悲的。人首先应 该有自知之明,清楚自己的能力和努力方向;然后排除干扰,一往无前。有掌声的人生是美丽的;没有掌声的人生,只要自觉无悔,也是美丽的。 32.阅读下面材料,根据要求作文。 那是上世纪70年代的一场比赛。 在比赛进行到第14个回合时,拳王阿里已经筋疲力尽,濒临崩溃,到了 如有一片羽毛落在他身上也能让他轰然倒地的地步。但阿里仍竭力保持坚毅的表情和势不低头的气势。这时,拳坛另一猛将弗雷泽支持不住,放弃了。裁判当即宣布阿里获胜,阿里再次获得“拳王”的美誉。 获胜的阿里还没走到台中央,便眼前一黑,双腿无力地跪倒在地。弗雷泽见此 后悔莫及。 这次比赛的结果告诉我们:很多人的失败,不是败在技术、智力和能力,而是败在意志力的丧失和最后一刻的自我放弃。 瞬间的放弃,导致了心中永恒的伤痛,生活中这类事例或教训难道还少吗?请以“瞬间与永恒”为话题写一篇作文。立意自定,文体自选,题目自拟,不
八年级数学下册 17.1.2 分式的基本性质(2)约分课件 华东师大版
化简下列分式(约分)
(1) (2) (3)
a 2 bc ab
32a b c 24a 2 b 3 d
3 2
约分的步骤
2
15a b 25a b
(1)约去系数的最 大公约数
(2)约去分子分母 的公因式。
自学指导2
最简分式
对于分数而 言,彻底约 分后的分数 叫什么?
小颖: 5xy 5x 2 2 20x y 20x 5xy 5xy 1 2 20x y 4x 5xy 4x 小明: •一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫最简分式.
Байду номын сангаас
自学指导一约分的理解8分钟
1.约分的定义:就是把分式的分子与分母中的公
因式约去, 约分的依据是分式的基本性质
约分的关键是 找公因式 约分的 方法(1)若分子分母都是单项式先找
分子分母的最大公约数,再找相同字母的最低次幂, 约去分子与分母的最大公约数,化为最简分式。(2 )若分子分母是多项式先把多项式因式分解,再找出 分子分母的公因式
练习: P8 1.约分.
( 1)
自学指导 3 练习约分 3a
3
a4
3 2
12a y x ( 2) 27ax y
x 2 y xy 2 ( 3) 2 xy
2 m ( 4) 2 m 1 1 m
1 1 2a 3ab 2b 3 已知,a b ,求分式 的值。 a ab b
17.1.2 分式的基本性质(2) ------约分
教学目标
熟练应用分式的基本性质,对分式进行 约分 会用约分法则约分 理解什么是最简分式 总结约分的步骤
华师大版八年级数学下册第十六章《分式的基本性质2》优质课课件
(4) m2 2m 1 1 m
例4 通分
把各分式化成相同
3
(1)2 a 2 b
与
ab
ab2c
(3)
1 与x
x24 42x
分母的分式叫做
分式的通分.
(2)
x
2x
5
3x 与x5
a b 解:(1)最简公分母是 2 2 2c
2a32b2a32•bb•bcc2a32 bb2 cc
aab2bc(aab2bc)••22aa22aa22b22acb
分式的基本性质
在化简分式 5xy 时,小颖和小明的做法 出现了分歧: 20x2y
小颖: 5xy 5x
20x2y 20x2
小明: 5xy
20x2y
5xy 4x 5xy
1 4x
对于分数而 言,彻底约 分后的分数
叫什么?
你对他们俩的解法有何看法?说说看!
•一般约分要彻底, 使分子、分母没有公因式. •彻底约分后的分式叫最简分式.
分 式 的 基
16.1.2
一 、复习提问
x
(1)x22xx2,
3x3xy2 6x2
xy
(2)ab ;
ab a2b
2ab
a2
不改变分式的值,使下列各式的分子与分母中的多项
式按 的x 降幂排列,且首项的系数是正数.
1 3x x2,x2 23 xx 12,2x1 x2 x3
(2) 2 x 与 3 x x5 x5
解:(2)最简公分母是 (x5)(x5)
x2x5(x2x5 (x ) x (5 )5)2xx22 1 2x0 5 x3x5(x3x5 (x) (x5 )5)3xx2 2 1 2x5 5
(3) 1 与 x
数学教案-分式的基本性质
数学教案-分式的基本性质引言分式作为数学中的重要概念,具有广泛的应用。
掌握分式的基本性质是进一步学习和应用分式的基础。
本教案将围绕分式的基本性质展开,以帮助学生更好地理解和掌握相关知识。
分式的定义分式是数学中的一种表示形式,它由一个分数线将分子和分母分开。
通常用$\\frac{a}{b}$表示,其中a为分子,b为非零的分母。
分式的基本性质性质一:分式的化简当分式的分子和分母有公因数时,可以进行化简。
我们可以约去分子和分母的公因数,将分式简化为最简形式。
例如,$\\frac{4}{8}$可以化简为$\\frac{1}{2}$。
性质二:分式的相等性分式的相等性是指两个分式表示的数相等。
如果两个分式的分子、分母对应相等,则这两个分式相等。
例如,$\\frac{1}{2}$和$\\frac{2}{4}$是相等的。
性质三:分式的乘法两个分式相乘时,可以将分子和分母分别相乘,得到一个新的分式。
新分式的分子是前两个分式的分子相乘,分母是前两个分式的分母相乘。
例如,$\\frac{1}{2} \\times \\frac{2}{3} = \\frac{1 \\times 2}{2 \\times 3} =\\frac{2}{6}$。
性质四:分式的除法两个分式相除时,可以将第一个分式乘以第二个分式的倒数,得到一个新的分式。
新分式的分子是第一个分式的分子乘以第二个分式的分母,分母是第一个分式的分母乘以第二个分式的分子的倒数。
例如,$\\frac{1}{2} \\div \\frac{2}{3} =\\frac{1}{2} \\times \\frac{3}{2} = \\frac{1 \\times 3}{2 \\times 2} =\\frac{3}{4}$。
性质五:分式的加法两个分式相加时,可以将它们的分母取公倍数,然后将分子相加,得到一个新的分式。
新分式的分母是前两个分式的分母的公倍数,分子是前两个分式的分子相加。
初中分式的教案
初中分式的教案一、教学目标1. 让学生理解分式的概念,掌握分式的基本性质和运算方法。
2. 培养学生解决实际问题的能力,提高学生的数学思维水平。
二、教学内容1. 分式的概念及其表示方法2. 分式的基本性质3. 分式的运算方法4. 分式在实际问题中的应用三、教学重点与难点1. 重点:分式的概念、基本性质和运算方法。
2. 难点:分式的运算规律和实际问题中的应用。
四、教学过程1. 导入:通过复习整式的知识,引导学生思考整式在表示数量关系方面的局限性,从而引出分式的概念。
2. 新课讲解:a) 分式的概念:用分数的形式表示两个整式的商。
b) 分式的表示方法:分子、分母及分式的约分和通分。
c) 分式的基本性质:分式的分子、分母都乘(或除以)同一个不为0的整式,分式的值不变。
d) 分式的运算方法:分式的加减法、乘除法及混合运算。
3. 例题解析:通过例题讲解,让学生掌握分式的运算方法,培养学生的解题能力。
4. 课堂练习:设计一些练习题,让学生巩固所学知识,提高运算能力。
5. 实际问题应用:通过解决实际问题,让学生了解分式在生活中的应用,提高学生的实际问题解决能力。
6. 课堂小结:对本节课的主要内容进行总结,强调分式的概念、基本性质和运算方法。
五、课后作业1. 完成教材后的练习题。
2. 收集生活中的分式问题,下节课分享。
六、教学反思1. 课后及时了解学生的学习情况,针对性地进行辅导。
2. 在教学中,注重学生的参与,提高学生的动手操作能力和思维能力。
3. 注重分式知识与实际生活的联系,提高学生的应用能力。
七、教学评价1. 学生对分式的概念、基本性质和运算方法的掌握程度。
2. 学生解决实际问题的能力。
3. 学生对分式知识的兴趣和积极性。
《分式的基本性质》教学设计五篇范文
《分式的基本性质》教学设计五篇范文第一篇:《分式的基本性质》教学设计《分式的基本性质》教学设计黄大恩教材与目标1、教材的地位及作用分式的基本性质是分式本章的重点内容之一,是分式变形的依据,也是进一步学习分式的通分、约分及四则运算的基础,学生掌握本节内容是学好本章及以后学习方程、函数等问题的关键,对后续学习有重要影响。
2、学情分析本节课是在学生学习了分数的基本性质的基础上进行的,学生一方面可能会对原有知识有所遗忘,从心理上愿意去验证,愿意去猜想,从而激活原有知识;另一方面,八年级学生已经具备了一定归纳总结的能力。
3、教学目标(1)了解分式的基本性质。
灵活运用“性质”进行分式的变形。
(2)通过类比、探索分数的基本性质,探索分式的基本性质,初步掌握类比的思想方法。
(3)通过探索分式的基本性质,积累数学活动经验。
(4)通过研究解决问题的过程,体验合作的快乐和成功,培养与他人交流的能力,增强合作交流的的意识。
4、教学重难点分析重点:理解并掌握分式的基本性质。
难点:灵活运用分式的基本性质,进行分式化简、变形。
二、教法与学法1、教学方法基于本节课的特点:课堂教学采用了“问题—观察—思考—提高”的步骤,使学生初步体验到数学是一个充满着观察、思考、归纳、类比和猜测的探索过程。
根据教材分析和目标分析,贯彻新课程改革下的课堂教学方法,确定本节课主要采用启发引导探索的教学方法。
学法指导本节课采用学生自主探索,讨论交流,观察发现,师生互动的学习方式。
学生通过自主探究-自主总结-自主提高,突出学生是学习的主体,他们在感知知识的过程中,无疑提高了探索-发现-实践-总结的能力。
同时强化了学生以旧知识类比得出新知识的能力。
三.教学过程(一)情景引入观察、对比各图形(课件展示)中的阴影部分面积,你能发现什么结论?(直观得出结论)问题:(1)若图中大正方形的面积为1,则上面三幅图的面积分别表示为?(师生共同完成)(设计意图:通过复习分数的的基本性质,激活学生原有的知识,为学习分式的基本性质做好铺垫。
华东师大版数学八年级下册16.分式的基本性质课件
作业
课本习题16.1第3,4 题做到作业本上
2 xy
(__2_x_y_)
x2 y2
,
3x x y
15x( x y)
(_5_(_x_+_y_))2
x x2
y y2
(__1___)
x y
约去的是分子、
例2、化简分式:8ab2c
分母的公因式
12a2b
解: 8ab2c
12a2b
4 a b( 2 b c ) 4 a b( 3 a )
2bc
3 a ((约根去据的什是么什?么)?)
11
1
1
(5) x2 x , x2 x ; (6) x2 x , x2 2x 1
答案展示 (4) 1 1 , 1 x y x2 y2 (x y)(x y) x y (x y)(x y)
解:(1) 1 b , 1 a a2b a2b2 ab2 a2b2
(2) c c2 , a a2 , b b2 ab abc bc abc ac abc
A、扩大到本来2倍 B、缩小为本来的 1
2
C、不变
D、缩小为本来的 1
x
x
2、如果把上题分式
什么呢?( B )
x y
改为
xy
那么4答案又是
课堂检测
3、约分
ab (1) 2a2 ;
x2 2xy y2 (2) x2 y2 .
解:(1) b 2a
, (2)
x x
y y
4、通分:(1)
a
b
x
,
ay
(1)ac, (2) 1 , (3) 2a , (4) a 4x 3b b
(5) 1 , (6) 2mn, (7) 4 y , (8) 1
华东师大版八年级下册数学教案全册
华东师大版八年级下册数学教案全册第17章 分式§17.1.1 分式的概念教学目标:1、知识与技能:经历实际问题的解决过程,从中认识分式,并能概括分式 的意义。
2、过程与方法:使同学们能正确地判断一个代数式是否是分式,能通过回忆 分数的意义,类比地探索分式的意义。
3、情感态度与价值观:渗透数学中的类比,分类等数学思想。
教学重点:探索分式的意义及分式的值为某一特定情况的条件。
教学难点:能通过回忆分数的意义,探索分式的意义。
教学过程:一、做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米; (3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是___元; 二、概括:形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式.其中 A 叫做分式的分子,B 叫做分式的分母.整式和分式统称有理式, 即有理式 整式,分式.三、例题:例1 下列各有理式中,哪些是整式?哪些是分式?(1)x 1; (2)2x; (3)y x xy +2; (4)33y x -.解:属于整式的有:(2)、(4);属于分式的有:(1)、(3).注意:在分式中,分母的值不能是零.如果分母的值是零,则分式没有意义.例如,在分式aS中,a ≠0;在分式n m -9中,m ≠n.例2 当x 取什么值时,下列分式有意义?(1)11-x ; (2)322+-x x .分析 要使分式有意义,必须且只须分母不等于零. 解 (1)分母1-x ≠0,即x ≠1.所以,当x ≠1时,分式11-x 有意义.(2)分母23+x ≠0,即x ≠-23. 所以,当x ≠-23时,分式322+-x x 有意义.四、练习:P5习题17.1第3题(1)(3)1.判断下列各式哪些是整式,哪些是分式? 9x+4, x 7 , 209y +, 54-m , 238y y -,91-x2. 当x 取何值时,下列分式有意义? (1) (2) (3)3. 当x 为何值时,分式的值为0?(1) (2) (3) 五、小结:什么是分式?什么是有理式? 六、作业:P5习题17.1第1、2题,第3题(2)(4) 七、教学反思:通过分式概念的教学,让同学们懂得了什么时分式,知道了分式与整式的区别,了解了分式成立的条件,为以后的学习打好了基础。
完整版)华师大版八年级下册数学知识点总结
完整版)华师大版八年级下册数学知识点总结八年级华师大版数学(下)第16章分式16.1 分式及基本性质一、分式的概念1.分式的定义:如果 A、B 表示两个整式,并且 B 中含有字母,那么式子叫做分式。
2.对于分式概念的理解,应把握以下几点:1)分式是两个整式相除的商。
其中分子是被除式,分母是除式,分数线起除号和括号的作用;2)分式的分子可以含有字母,也可以不含字母,但分式的分母一定要含有字母才是分式;3)分母不能为零。
3.分式有意义、无意义的条件1)分式有意义的条件:分式的分母不等于 0;2)分式无意义的条件:分式的分母等于 0.4.分式的值为 0 的条件:当分式的分子等于 0,而分母不等于 0 时,分式的值为 0.即,使 A=0,B≠0 的条件是。
5.有理式整式和分式统称为有理式。
整式分为单项式和多项式。
分类:有理式单项式整式多项式分式ABAB单项式:由数与字母的乘积组成的代数式;多项式:由几个单项式的和组成的代数式。
二、分式的基本性质1.分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
用式子表示为:A·M/B=A·M/B·M/M=A·M·1/B·M,其中M(M≠0)为整式。
2.通分:利用分式的基本性质,使分子和分母都乘以适当的整式,不改变分式的值,把几个异分母分式化成同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是:确定几个分式的最简公分母。
确定最简公分母的一般方法是:(1)如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数、相同字母的最高次幂、所有不同字母及指数的积。
(2)如果各分母中有多项式,就先把分母是多项式的分解因式,再参照单项式求最简公分母的方法,从系数、相同因式、不同因式三个方面去确定。
3.约分:根据分式的基本性质,约去分式的分子和分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
初中数学分式 教案
初中数学分式教案一、教学目标:1. 让学生理解分式的概念,掌握分式的基本性质和运算法则。
2. 培养学生运用分式解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容:1. 分式的概念:分式是形如 a/b 的表达式,其中 a 和 b 是整式,b 不为零。
2. 分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为零的整式,分式的值不变。
3. 分式的运算法则:(1)分式的加减法:分母相同,分子相加(减);分母不同,通分后相加(减)。
(2)分式的乘除法:分子乘(除)以分子,分母乘(除)以分母。
4. 分式在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的概念,基本性质和运算法则。
2. 难点:分式的运算法则的应用,分式在实际问题中的解决。
四、教学过程:1. 导入:通过展示实际问题,引导学生思考如何用数学方法解决这些问题。
2. 新课讲解:(1)介绍分式的概念,通过示例让学生理解分式的含义。
(2)讲解分式的基本性质,让学生通过实际操作验证这些性质。
(3)讲解分式的运算法则,引导学生通过例子理解和掌握这些法则。
3. 课堂练习:布置一些简单的分式题目,让学生独立完成,巩固所学知识。
4. 应用拓展:展示一些实际问题,引导学生运用分式解决这些问题。
5. 总结:对本节课的内容进行总结,强调重点和难点。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度,理解程度和表现。
2. 作业完成情况:检查学生作业的完成质量,对学生的学习效果进行评估。
3. 实际问题解决能力:通过课后实践,观察学生运用分式解决实际问题的能力。
六、教学反思:在教学过程中,要注意引导学生理解和掌握分式的基本性质和运算法则,通过实际例子让学生学会如何运用分式解决实际问题。
同时,要关注学生的学习进度,及时解答学生的疑问,提高学生的学习效果。
新人教版八年级下册数学教案
新人教版八年级下册数学教案新人教版八年级下册数学教案1:分式的基本性质一.教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形.二.重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形.3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.三.例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3.例4地目的是进一步利用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,因此补充例5.四.课堂引入1.请同学们考虑:与相等吗? 与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质.五.例题讲解P7例2.填空:[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.P11例3.约分:[分析] 约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.因此要找准分子和分母的公因式,约分的结果要是最简分式.P11例4.通分:[分析] 通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号.,,,,。
17.1分式及分式基本性质学案
17.1《分式的概念》导学案学习目标1. 了解分式、有理式的概念.2. 理解分式有意义的条件、分式的值为零的条件、能熟练求出分式有意义的条件、分式的值为零的条件. 学习重点理解分式有意义的条件、分式的值为零的条件。
学习难点能熟练地求出分式有意义的条件、分式值为零的条件。
一、学前准备1、 统称为整式 。
2、32表示 ÷ 的商,那么(m+a )÷(n+b)可以表示为 。
3、某村有 m 人,耕地50公顷,人均耕地面积为 公顷。
4、三角形ABC 的面积为S ,BC 边长为a,高为 。
5、一辆汽车行驶a 千米用b 小时,它的平均车速为 千米/小时;一列火车行驶a 千米比这辆汽车少用1小时,它的平均车速 千米/小时。
6、以上(3、4、5)题的共同点是 ,与分数相比的不同点 。
7、如果A 、B 表示两个整式,并且B 中含有 ,那么式子BA 叫做分式,其中A 叫做 ,B 叫做 。
二、探究活动:1、独立思考,解决问题。
(1)分式BA 的分母表示 ,由于 不能为0,所以分式的分母不能为 ,即当B 0时,分式B A 才有意义。
即时训练(1)当x 时,分式X32有意义。
(2)当x 时,分式1-x x 有意义。
(3)当x 、y 满足关系 时,分式yx y x +-有意义。
2、师生探究,合作交流。
探究:分式在什么情况下值为零。
. (1)若分式142+-X X 的值为0,则x= . (2)若分式B A 的值为0,则 且 。
探究:分式在什么情况下无意义。
(1)当x 时,分式123-X 无意义。
(2)使分式1-X X 无意义,x 的取值是( ) A 、0 B 、1 C 、—1 D 、±1(3)对于分式B A ,当 时分式有意义,当 时分式BA 无意义。
三、同步演练 1、下列各式①x 2 ② y x +5 ③ a -21 ④123-x ,是分式的有( ) A 、①② B 、③④ C 、 ①③ D 、①②③④2、当x 取什么值时,下列分式有意义?① 18-x ② 912-x ③12+x y ②当a 时,分式242+-a a 的值为0. ③使分式1-x x 无意义,x 的取值是( )A 、0 B 、1 C 、-1 D 、±1 四、拓展延伸已知y=xx 321--,x 取哪些值时:①y 的值是正数;②y 的值是负数;③y 的值是零;④分式无意义。
初中分式认识教案
初中分式认识教案1. 让学生理解分式的定义,掌握分式的基本性质,了解分式与整式的区别和联系。
2. 培养学生运用分式解决实际问题的能力,提高学生的数学素养。
3. 培养学生合作交流、积极思考的良好学习习惯。
二、教学内容1. 分式的定义:分式是两个整式的比,分母不能为零。
2. 分式的基本性质:分式的分子、分母同时乘以(或除以)同一个非零整式,分式的值不变。
3. 分式与整式的区别和联系:整式是分式的特殊形式,分式是整式的推广。
三、教学重点与难点1. 重点:分式的定义,分式的基本性质。
2. 难点:分式与整式的区别和联系。
四、教学方法1. 采用自主探究、合作交流的学习方式,让学生在实践中掌握分式的定义和性质。
2. 利用多媒体课件,直观展示分式的生成过程,提高学生的学习兴趣。
3. 结合生活实例,引导学生运用分式解决实际问题。
五、教学过程1. 导入:复习整式的知识,引导学生思考整式在实际生活中的应用。
2. 新课导入:介绍分式的定义,让学生理解分式是两个整式的比,分母不能为零。
3. 讲解分式的基本性质,让学生通过实例感受分式的性质。
4. 分析分式与整式的区别和联系,引导学生理解分式是整式的推广。
5. 练习巩固:布置一些分式的基本运算题目,让学生独立完成,检验学习效果。
6. 拓展应用:给出一些实际问题,引导学生运用分式解决。
7. 课堂小结:回顾本节课所学内容,让学生总结分式的定义、性质及应用。
8. 布置作业:布置一些有关分式的练习题,巩固所学知识。
六、教学反思1. 课后认真反思本节课的教学效果,了解学生的掌握情况。
2. 对教学方法进行调整,以提高学生的学习兴趣和效果。
3. 关注学生在实际问题中的运用能力,提高学生的数学素养。
4. 针对学生的差异,给予个别辅导,帮助学生克服学习困难。
通过以上教学设计,希望能帮助学生更好地理解分式,提高学生的数学素养。
在实际教学中,教师应根据学生的实际情况灵活调整教学方法,关注学生的个体差异,使每位学生都能在数学学习中取得良好的成绩。
华师大版第17章分式电子课本
第17章分式2§17.1整式的除法21.同底数幂的除法22.单项式除以单项式3§17.2 分式及其基本性质41.分式的概念42.分式的基本性质5§17.3分式的运算71.分式的乘除法72.分式的加减法8阅读材料10§17.4可化为一元一次方程的分式方程11§17.5零指数幂与负整指数幂131.零指数幂与负整指数幂132.科学记数法15小结16复习题16第17章 分 式现要装配30台机器,在装配好6台后,采用了新的技术,每天的工作效率提高了一倍,结果共用了3天完成任务。
如果设原来每天能装配x 台机器,那么不难列出方程:326306=-+xx这个方程左边的式子已不再是整式,这就涉及到分式与分式方程的问题.§17.1整式的除法1.同底数幂的除法我们知道同底数幂的乘法法则:n m n m a a a +=⋅,那么同底数幂怎么相除呢? 试一试用你熟悉的方法计算: (1)=÷2522___________; (2)=371010÷___________; (3)=÷37a a ___________(a ≠0). 概 括由上面的计算,我们发现:=÷252223=25-2;=371010÷104=107-3; =÷37a a a 4=a 7-3.一般地,设m、n为正整数,m>n,a≠0,有m annm÷.=aa-这就是说,同底数幂相除,底数不变,指数相减。
我们可以利用除法的意义来说明这个法则的道理。
因为除法是乘法的逆运算,a m÷a n=a m-n实际上是要求一个式子(),使a n·()= a m而由同底数幂的乘法法则,可知a n·a m-n=a n+(m-n) =a m,所以要求的式(),即商为a m-n,从而有nm amn=÷.a-a例1计算:(1)a8÷a3;(2)(-a)10÷(-a) 3;(3)(2a)7÷(2a)4;解(1)a8÷a3=a8-3=a5.(2)(-a)10÷(-a) 3=(-a)10-3=(-a)7=-a7(3)(2a)7÷(2a)4=(2a)7-4=(2a)3Z=8a3思考你会计算(a+b)4÷(a+b)2吗?2.单项式除以单项式问题地球的质量约为5.98×1024千克,木星的质量约为1.9×1027千克.问木星的质量约是地球的多少倍?(结果保留三个有效数字)分析本题只需做一个除法运算:(1.9×1027)÷(5.98×1024),我们可以先将1.9除以5.98,再将1027除以1024,最后将商相乘.解(1.9×1027)÷(5.98×1024)=(1.9÷5.98)×1027-24≈0.318×103=318.答:木星的重量约是地球的318倍.概括两个单项式相除,只要将系数及同底数幂分别相除就可以了.例2计算:(1)6a3÷2a2;(2)24a2b3÷3ab;(3)-17a2b3c÷3ab.解(1)6a 3÷2a 2=(6÷2)(a 3÷a 2) =3a .(2)24a 2b 3÷3ab=(24÷3)a 2-1b 3-1 =8ab 2.(3)-17a 2b 3c ÷3ab=(-17÷3)a 2-1b 3-1c =-7ab 2c . 讨 论有了单项式除以单项式的经验,你会做多项式除以单项式吗? (1)计算(ma +mb +mc )÷m ;(2)从上面的计算中,你能发现什么规律?与同伴交流一下; 练 习 1. 填表:2. 下雨时,常常是“先见闪电,后闻雷鸣”这是由于光速比声速快的缘故.已知光在空气中的传播速度约为3×108米/秒,而声音在空气中的传播速度约为3.4×102米/秒.请计算一下,光速是声速的多少倍?(结果保留两个有效数字) 习题17.1 1. 计算:(1)510÷58; (2)a 6÷a 3; (3)(-a )6÷(-a ) 2;(4)(a 2)3÷a 4. 2. 计算:(1)-17a 2b 3÷7ab ; (2)7a 3b 2÷(-3a 3b);(3)(21-a 4x 4)÷(61-a 3x 2); (4)(16x 3-8x 2+4x )÷(-2x );3. 一颗人造地球卫星的速度是8×103/秒,一架喷气式飞机的速度是5×102米/秒,试问:这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?4. 聪聪在一次数学课外活动中发现了一个奇特的现象:他随便想一个非零的有理数,把这个数平方,再加上这个数,然后把结果除以这个数,最后减去这个数,所得结果总是1.你能说明其中的道理吗?§17.2 分式及其基本性质1.分式的概念做一做(1)面积为2平方米的长方形一边长3米,则它的另一边长为_____米; (2)面积为S 平方米的长方形一边长a 米,则它的另一边长为________米;(3)一箱苹果售价p 元,总重m 千克,箱重n 千克,则每千克苹果的售价是______元;形如BA(A 、B 是整式,且B 中含有字母,B ≠0)的式子,叫做分式(fraction ).其中 A 叫做分式的分子(numerator ),B 叫做分式的分母(denominator ).整式和分式统称有理式(rationalexpression ), 即有有理式整式,分式.注意:在分式中,分母的值不能是零。
华师版八年级下册数学精品教学课件 第16章 分式 分式及其基本性质 分式的基本性质
x x2
y y2
1 = 1(x y) = x y x y ( x y)( x y) x2 y2
③
1 x2
y2
,
x2
1
xy
分析:取各分母的所有因式的最高次幂的积作
公分母,即最简公分母
解:
x2
1
y2
(x
1 y)( x
, y)
x2
1
xy
1 x(x
y)
最简公分母:x( x y)( x y)
等于零的整式,分式的值不变.
上述性质可以用式表示为: A A C , A A C(C 0). B BC B BC 其中A,B,C是整式.
典例精析 例1 填空:
看分母如何变化,想想分一想子:如(何1)变中化. 看分子如何变化,想为分什么母不如给何出变x 化.
≠0,而(2)中却 给出了b ≠0?
当堂练习
1.下列各式成立的是( D )
A.
c ba
c ab
C.
c ba
c ab
B.
c ab
c ab
D. c c
ba ab
2.下列各式中是最简分式的( B )
A. a b ba
B. x2 y2 x y
C. x2 4 x2
D.
x y x2 y2
3.若把分式
y的
x y
x
和y
都扩大两倍,则分式
最简公分母的系数,取各个分母的系数的最小 公倍数,字母及式子取各分母中所有字母和式子的 最高次幂.
练一练 找最简公分母:
(1) 3 与 b ; 2a2 3ac
(2)
3 2a2b
与
ab ab2c
华师大版八年级下分式1分式及其基本性质2分式的基本性质市赛一等奖
《分式的基本性质》 教学设计教学目标1.使学生理解分式的基本性质.2.使学生运用分式的基本性质对分式进行恒等变形.3.通过对分式的基本性质的学习培养学生抽象概括的能力.教学重点、难点重点:理解分式的基本性质.难点:分式基本性质的运用.教学方法启发式教学教学过程复习提问:1.什么叫分式?2.小学学习的分数的基本性质是什么?举例说明.引言:我们小学学习了分数的基本性质,今天我们为学习分式的基本性质. 新课:根据分数的基本性质,分式可仿照分数的性质.()0.÷==≠÷;,是常数a a c a a c c c b b c b b c请同学们根据上面的式子和以前学过的分数的基本性质,总结出分式的基本性质是什么?学生回答出来,教师及学生补充完整. 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变. ()0.÷==≠÷;,是整式a a c a a c c c b b c b b c注意:分式的基本性质的条件是乘(除以)一个不等于0的整式.指出分式的性质与分数的性质的不同,乘以(除以)一个不等于0的整式.分数是乘以(除以)一个不等于0的数.例3:约分:2324216412.2044x y x xy x x ---+(),()()()()23343222164441=.2045522422=.4422--=-+--+=-+--解:()()x y xy x x xy xy y y x x x x x x x x分式的通分,即要求把几个异分母的分式分别化为与原来的分式相等的同分母的分式.通分的关键是确定几个分式的公分母,通常取各坟墓所有因式的最高次幂的积作为公分母(叫做最简公分母).例4:通分:22222111112113.a b ab x y x y x y x xy-+-+(),;(),;(), 22222222222211111=11=.解:()与的最简公分母为,所以==a b ab a b b b a b a b b a b a a ab ab a a b()()()()()()()()22222211211==11==.x y x yx y x y x y x y x y x y x y x y x y x y x y x y x y x y x y -+-+-++--+---+-+-()与的最简公分母为即,所以,()()()()()()()()()2222222223.11.1=1=.x y x y x y x xy x x y x y x xyx x y x y x x y x x y x y x y x xy x x y x y -=+-+=+-++--+--++-()因为,所以与的最简公分母为因此, 课堂小结请同学们总结下本节课里你有哪些收获?分式的基本性质成立的条件是都乘以或除以一个不等于0的整式. 作业:教材P6第4题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
17.1.2 分式的基本性质(1)
教学目标掌握分式的基本性质,掌握分式约分方法,熟练进行约分,并了解最简分式的意义.
教学重点分式约分方法
教学难点分子、分母是多项式的分式约分
(一)复习与情境导入
分式的基本性质
分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变.
用式子表示是:
(其中M是不等于零的整式).
与分数类似,根据分式的基本性质,可以对分式进行约分和通分.可类比分数的基本性质来识记.
(二)实践与探索
例4、下列等式的右边是怎样从左边得到的?
(1)(2)(y≠—1).
特别提醒:对,由已知分式可以知道x,因此可以用x去除以分式的分子、分母,因而并不特别需要强调这个条件,再如是在
已知分式的分子、分母都乘以y+1得到的,是在条件y+10下才能进行的,所以,这个条件必须附加强调.
例5:不改变分式的值,把下列各式的分子与分母中各项的系数都化为整数.
(1);(2). 仔细观察分母(分子)的变化利用分
式的基本性质来解题.深入理解.尝试解题.
例6:约分
(1);(2)
解(2)==.
说明:在进行分式约分时,若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.
练习:约分:
;;;;;.
先思考约分的方法,再解题,并总结如何约分:若分子和分母都是多项式,则往往需要先把分子、分母分解因式(即化成乘积的形式),然后才能进行约分.约分后,分子与分母不再有公因式,我们把这样的分式称为最简分式.
(四)小结与作业请你分别用数学语言和文字表述分式的基本性质
分式的约分运算,用到了哪些知识?
让学生发表,互相补充,归结为:(1)因式分解;(2)分式基本性质;(3)分式中符号变换规律;约分的结果是,一般要求分、分母不含“-”.
作业:课本习题1、2
各抒已见.看谁说得最全.
(五)板书设计
分子分母是单项式例
约分
分子分母是多项式
(六)教学后记
17.1.2分式的基本性质(2)
教学目标
1.进一步理解分式的基本性质以及分式的变号法则.
2.使学生理解分式通分的意义,掌握分式通分的方法及步骤;
教学重点让学生知道通分的依据和作用,学会分式通分的方法.
教学难点几个分式最简公分母的确定.
教学过程教师活动学生活动
(一)复习与情境导入
1.分式中,当x 时分式有意义,当x 时分式没有意义,当x 时分式
的值为0.
2.分式的基本性质.
(二)实践与探索
1、分式的的变号法则
例1不改变分式的值,使下列分式的分子和分母都不含“—”号:
(1);(2);(3).
例2不改变分式的值,使下列分式的分子与分母的最高次项的系数是正数:(1);(2).
注意:(1)根据分式的意义,分数线代表除号,又起括号的作用.
(2)当括号前添“+”号,括号内各项的符号不变;当括号前添“—”号,括号内各项都变号.
例3若x、y的值均扩大为原来的2倍,则分式的值如何变化?若x、y的值均变为原
来的一半呢?
2、分式的通分
(1).把分数通分.
解,,
(2.)什么叫分数的通分?先独立思考再交流总结变号法则.
注意转化为例1的类型.引导学生用多种方法解题.
(1)赋值法(2)增值代入作商法
答:把几个异分母的分数化成同分母的分数,而不改变分数的值,叫做分数的通分. 3.和分数通分类似,把几个异分母的分式化成与原来的分式相等的同分母的分式叫做分式的通分.
通分的关键是确定几个分式的公分母.
4.讨论:(1)求分式的(最简)公分母.
分析:对于三个分式的分母中的系数2,4,6,取其最小公倍数12;对于三个分式的分母的字母,字母x为底的幂的因式,取其最高次幂x3,字母y为底的幂的因式,取其最高次幂y4,再取字母z.所以三个分式的公分母为12x3y4z.
(2)求分式与的最简公分母.
分析:先把这两个分式的分母中的多项式分解因式,即
4x—2x2= —2x(x-2),x2—4=(x+2)(x—2),
把这两个分式的分母中所有的因式都取到,其中,系数取正数,取它们的积,即2x(x+2)(x-2)就是这两个分式的最简公分母.
请同学概括求几个分式的最简公分母的步骤.
5.练习:填空:
(1);(2);
(3).
求下列各组分式的最简公分母:
(1);(2);
(3)
6、例3 通分
(1),;(2),;
答:1.取各分式的分母中系数最小公倍数;
2.各分式的分母中所有字母或因式都要取到;
3.相同字母(或因式)的幂取指数最大的;
4.所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母.
(3),.
分析:分式的通分,即要求把几个异分母的分式分别化为与原来的分式相等的同分母的分式.通分的关键是确定几个分式的公分母;要归纳出分式分式是多项式如何确定最简公分母,一般应先将各分母分解因式,然后按上述的方法确定分母.
练习
通分:
(1),;(2),(3).
合作交流解法.
板演并互批.
(四)小结与作业
把几个异分母的分式,分别化成与原来分式相等的同分母的分式,叫做分式的通分.分式通分,是让原来分式的分子、分母同乘以一个适当的整式,根据分式基本性质,通分前后分式的值没有改变.通分的关键是确定几个分式的公分母,从而确定各分式的分子、分母要乘以什么样的“适当整式”,才能化成同一分母.确定公分母的方法,通常是取各分母所有因式的最高次幂的积做公分母,这样的公分母叫做最简公分母.
(五)板书设计
分子分母是单项式例
约分
分子分母是多项式
分母是单项式
通分分母是多项式 (六)教学后记。