四平面桁架的内力计算
桁架的力法计算公式
桁架的力法计算公式桁架是一种结构工程中常用的结构形式,它由多个杆件和节点组成,能够有效地承受外部作用力并传递力量。
在工程实践中,我们经常需要计算桁架结构中各个杆件的受力情况,这就需要运用桁架的力法计算公式来进行计算。
本文将介绍桁架的力法计算公式及其应用。
桁架的力法计算公式主要包括平衡方程和杆件内力计算公式。
在进行桁架结构的力学分析时,我们首先需要根据平衡条件建立平衡方程,然后利用杆件内力计算公式计算各个杆件的受力情况。
首先,我们来看一下桁架的平衡方程。
对于一个静定的桁架结构,我们可以利用平衡条件建立平衡方程。
平衡方程的基本形式是∑Fx=0,∑Fy=0,∑M=0,即桁架结构在平衡状态下受到的外部力和外部力矩的合力合力矩为零。
通过解平衡方程,我们可以得到桁架结构中各个节点的受力情况。
接下来,我们来看一下桁架结构中杆件的内力计算公式。
在桁架结构中,杆件受到的内力包括拉力和压力。
根据静力学的原理,我们可以利用杆件的几何形状和受力情况建立杆件内力计算公式。
对于一般的杆件,其内力计算公式为N=±P/A,其中N为杆件的内力,P为杆件受到的外部力,A为杆件的横截面积。
当杆件处于受拉状态时,内力为正;当杆件处于受压状态时,内力为负。
通过杆件内力计算公式,我们可以计算桁架结构中各个杆件的受力情况。
在实际工程中,桁架的力法计算公式是非常重要的。
通过运用桁架的力法计算公式,我们可以有效地分析桁架结构中各个杆件的受力情况,为工程设计和施工提供重要的参考依据。
在进行桁架结构的力学分析时,我们需要注意以下几点:首先,要准确地建立桁架结构的平衡方程。
在建立平衡方程时,需要考虑到桁架结构受到的外部力和外部力矩,确保平衡方程的准确性。
其次,要正确地应用杆件内力计算公式。
在计算桁架结构中各个杆件的受力情况时,需要根据杆件的几何形状和受力情况正确地应用杆件内力计算公式,确保计算结果的准确性。
最后,要综合考虑桁架结构的整体受力情况。
理论力学4.4第4-4章平面简单桁架的内力计算
x y
0, F2 20 0 0, F1 0
解得: F1 0 F2 20kN
20kN
C
FAx F3 F4 FAy
10kN 10kN 10kN 10kN
F1
A
FBy
F2
FAx
解:(1) 取整体为研究对象
FAy
F1
(3) 取节点A为研究对象
F 0 , F F F cos 45 0 x Ax 4 3 F 0 , F F F sin 45 0 y Ay 1 3
F 0, F F 0, F M 0,
再以截面m-n左面部分为研究对象 MC 0
F3 A C FA F2 F4 F1
Fa F1b FA 2a 0 F1 4a F b
F
F
b
FB
例 题 4
C
求:桁架1、2杆的力。 解:(1) 取整体为研究对象
D a
M
解得:
a
B
0, P.2a FAy 3a 0
FAy 2P 3
α A E F FAC α α C α α
O α B C F G D FBC FGy FGx M
2M CG 2l cos 30 FBC 3l 参考受力图(b), 选x轴与FOB垂直。 ' O O F 0 , F . COS 30 F . COS 60 0 x BC AB
Fi Fix i Fiy j FR
i 1 i 1 i 1
n
n
n
桁架内力计算
21
一、节点法 (1)一般先研究整体,求支座约束力; (2)逐个取各节点为研究对象; (3)求杆件内力; (4)所选节点的未知力数目不大于2,由此 开始计算。
练习1
判断结构中的零杆
F F
F
FP
2015-3-5
15
结点法
基本概念 结点法 截面法 联合法 小结
۞
练习2
计算桁架各杆件内力
2F a
4×a
第一步:求支座反力 第二步:判断零杆和单杆,简化问题 第三步:逐次去结点,列平衡方程 第四步:自我检查
16
2015-3-5
结点法
基本概念 结点法 截面法 联合法 小结
目 ≤ 独立方程数(即2个);
小结
基本思路:尽可能简化问题,一般先求支座反力,
然后逐次列结点平衡方程。
2015-3-5 10
结点法
۞
例题1
如图所示为一施工托架计算简图,求图示 荷载作用下各杆轴力(单位:kN)。
基本概念 结点法 截面法 联合法 小结
8 A
1.5m
8
C 6 E8 G F
8
B
截面法
基本概念
۞ 例题2
求图示桁架25、34、35三杆内力(单位:kN)。 10 20
I 4
7 2m 8
结点法
10
3
a
截面法 联合法 小结
1
2
5 I8 m
6
解: 1)求支座反力。2)截面法,取分离体受力 分析,求内力。
《桁架的内力计算》
28
2.3.5 桁架节点设计
➢任务:确定节点的构造,连接焊缝及节点承载力的计 算。节点的构造应传力路线明确、简捷、制作安装方便。 ➢注意:节点板只在弦杆与腹杆之间传力,不直接参与 传递弦杆内力,弦杆若在节点板处断开,应设置拼接角 钢在两弦杆间直接传力。
整理ppt
29
2.3.5.1双角钢截面杆件的节点
整理ppt
39
肢背焊缝:
lw120K .71 hN f1 ffw2hf1
肢尖焊缝:
NN1N2
lw220K .72hfN 2 ffw2hf2
K1,K2角钢肢背、肢力 尖分 焊配 缝系 内数
hf1,hf2 肢背、肢尖焊缝焊寸 脚尺
f
w f
角焊缝强度设计值
整理ppt
40
⑵有集中荷载的节点
节点板伸出
槽焊缝“K”—假定只传递P力,按两条角焊缝 (焊脚尺寸为0.5t)计算所需的长度。
loy l
(1 N0 ) N
2
2) 相交另一杆受压,此另一杆在交叉点中 断但以节点板搭接。
loy l
12N0
整理1p2ptN
15
3)相交另一杆受拉,两杆截面相同并在交叉点 不中断。
loyl
1(13N0)0.5l 2 4N
4)相交另一杆受拉,此拉杆在交叉点中断但以 节点板搭接。
loy l
13N0 0.5l 4N
桁架平面内计算长度:
l0x 0.5l
无论另一杆为拉杆或压杆,两杆互为支承点。 桁架平面外计算长度:
拉杆可作为压杆的平面外支承点,压杆除非受力
较小且不断开,否则不起侧向支点的作用。
GB50017规范中交叉腹杆中压杆的平面外
计算长度计算公式:
静力学-平面简单桁架的内力计算
3. 取左(右)部分分析, 列平面任意力系的平衡方程。
2. 截面法 求某几根杆件内力常用的方法 —平面任意力系问题
例: 求:1、2、3杆件内力
3. 取左(右)部分分析,假设 “拉”
C ①D
FAy
②
A
③
F FB 列平面任C意力①系的平F衡1方程。
B
FAy
② F2
FAx E
G
F1
F2
解:1. 求支座约束力
A
(2)
F
f f
A
如果作用于物块的全部主动力合力 F
的作用线落在摩擦角之外( ≥ f ),则
无论此合力多小,物块必滑动。
FRA
2. 自锁现象
(phenomena of self-locking)
FRA
FRA
0 f 物体静止平衡时,全约束力必在摩擦角内
Fmax FS
FN f
A
(1)
F
f f
(2)
A
FAx
③ E
F3
P1
MA0
FB
ME 0
F1
MB 0
FAy
Fy 0
F2
Fx 0
FAx
Fx 0
F3
2. 把桁架截开 不要截在节点处
赛 车 起 跑
为什么赛车运动员起跑前要将车轮与 地面摩擦生烟?
第四章 摩擦 Friction
摩擦(friction): 一种极其复杂的物理-力学现象。
涉及:
“滚动摩阻定律”
—滚动摩阻系数 ,长度量纲
r
P A
FS FN
Q
r
临界平衡 P
A
Mf
FS
FN
桁架计算(TRUSS)
桁架内力计算程序(TRUSS)一、程序功能及编制方法桁架内力计算程序(TRUSS),能计算任意平面和空间桁架(包括网架)在结点荷载作用下各结点的位移和各杆的轴力。
程序采用变带宽一维数组存储总刚度矩阵,先处理法引进支座条件。
计算结果输出各结点的位移和各杆的轴力。
二、程序使用方法使用方法与“APF”程序相同。
用文件编辑编辑器建立数据文件后即可运行。
计算结果将写在结果文件中。
三、数据文件填写格式数据文件填写格式大致与APF程序相似。
1.总信息:T,NJ,NE,NR,NB,NP,EO,DS其中:T——桁架类型,平面桁架 T=2,空间桁架 T=3。
NR——支座约束数。
其他变量与APF程序相同。
2.结点坐标数组XYZ(NJ, 3)每个结点填一行,每行三个数分别填写结点的x,y,z三个坐标数值,平面桁架只填x,y 值(单位:m)。
3.单元信息数组G(NE)采用紧缩存储方式,每个单元填一个数。
把单元的左端、右端结点号和杆的类型号三个数紧缩为一个数。
例如某单元左端结点号为15,在端结点号为8,类型号为3,则写成0.15083,一般格式为0.×××××。
4.单元截面信息数组AI(NB)填写各类单元的杆截面面积(m2)。
5.约束信息数组R(NR)采用紧缩存储方式,每个约束(支座链杆)填一个数。
把约束作用的作用点写在该数的整数部分,约束的方向写在小数部分。
x方向的约束为“l”,y方向的约束为“2”。
例如某支座链杆作用在 17号结点上,方向沿整体坐标 y方向,则写为 17.2,一般格式为××.×。
6.结点荷载信息数组F(NP,2)每个结点荷载填一行,每行两个数。
前一个数用紧缩方式填写荷载作用的结点号和作用方向,格式与约束信息的格式相同。
后一个数为荷载的数值。
单位为kN,与整体坐标方向一致者为正值,相反者为负值。
例如,作用在16号结点上,数值为183.5 kN,方向向下的力,则写成:16.2,-183.5(这里,假定坐标轴y轴向上)。
理论力学4.1、平面简单桁架的内力计算
F3 12.31(kN) F2 2.82(kN) F1 8.72(kN)
10
课堂练习题1 求图4.1-6a/b所示桁架结构中带数字 编号的各杆件内力。
I
F
I
11
课堂练习题2,图4.1-7a所示桁架结构中 Fp 10 KN 求JO杆、FK杆的内力
12
各图桁架中带有编号 的杆是否都是零力杆?
13
零杆作用:可以把处 于受压状态的细长杆 “割断”成“短粗杆 ”,避免其“突然变 形”
14
15
C
D
E FE
A
B
G FG H FH
F1
F4
F3
FAy F1
F3 F5 F2
F2
G
E
D
C
B
A
FAy
FBy
FBx
16
3m
C 1D
E
2
FE
A
3
B
G FG H FH
A
C
E
1
2
6
3
7H 45
J
B DF GF I
Fix
0
F2
F1
c os30
0
F2
8.66(kN)
研究对象:D节点(图c);
Fix Fiy
0 0
F5 F3
F2 8.66(kN) P 10(kN)
研究对象:C节点(图d)
Fix 0 F4 cos30 F1 cos30 0 F4 10(kN) 9
(刚化公理的应用)
6
平面简单桁架:以三角形框架为基础,每增加一个节点 就要增加两根杆,而且所有的杆件都在同一平面内;
桁架的内力计算
�
平面内 计算长度: 桁架 桁架平面内 平面内计算长度:
l0 x = 0.5l
�
无论另一杆为拉杆或压杆,两杆互为支承点。 平面外 计算长度: 桁架 桁架平面外 平面外计算长度: 拉杆可作为压杆的平面外支承点, 压杆除非受力较小且不断开,否则不起侧向支点 的作用。 GB50017 规范中交叉腹杆中压杆的平面外 GB50017规范中交叉腹杆中压杆的平面外 计算长度计算公式:
4)相交另一杆受拉,此拉杆在交叉点中断但以 节点板搭接。 3N 0 loy = l 1 − ≥ 0.5l 4N
当此拉杆连续而压杆在交叉点中断但以节点板搭接。 若
N0 ≥ N
或拉杆在桁架平面外的抗弯刚度
3 N 0l 2 N EI y ≥ ( − 1) 2 4π N0
时,
l0 y = 0.5l
式中, l 为节点之间的距离, N 为所计算杆内力,N0 为相交另一杆内力,取绝对值。
2.3.2 桁架杆件的计算长度 2.3.2桁架杆件的计算长度 2.3.2 桁架杆件的计算长度 2.3.2桁架杆件的计算长度
计算长度概念:将端部有约束的压杆化作等 效的两端铰接的理想轴心压杆。 (a) (b)
Pcr1 =
Pcr 2 = Pcr 3 =
π 2 EI L2 π 2 EI
( 0.5 L ) 2
l0 y = l1 (0.75 + 0.25 N 2 N1
)
l1 = 2 d
考虑受力较小的杆件对受力大的杆件的 “援助”作用。
交叉腹杆中压杆的计算长度 2.3.2.3 2.3.2.3交叉腹杆中压杆的计算长度 2.3.2.3 交叉腹杆中压杆的计算长度 2.3.2.3交叉腹杆中压杆的计算长度
�
交叉腹杆中交叉点处构造: 1)两杆不断开。 2)一杆不断开,另一杆断开 用节点板拼接。
静定结构的内力—结点法求静定平面桁架内力(建筑力学)
20kN
FyDC FNDC
C
30 5
D A
FNDF
2m
F
FxDF
4m
FyDF
FNDF
51
2
Fy 0,
FyDC 30 20 FyDF 0
(FyDF 10kN )
FyDC 30 20 10 20kN
FNDC FyDC (l / l y ) 20( 5 / 1) 44.72kN (压)
FAy= FBy= 30kN (↑) FAx= 0KN
2)判断零杆: 见图中标注。 3)求各杆轴力:
20kN
D 0
0
AE
20kN
C
20kN
G
1m
0
1m
F
H
B
30kN 2m 2m 2m 2m 30kN
取结点隔离体的顺序为:A、E、D、C。
由于结构对称,荷载对称,只需计算半边结构。
结点A: Fy 0,
4) 运用比例关系:
FN Fx 。Fy l lx ly
结点受力的特殊情况:
1)
FN1
0。
90
0
FN2
s
结点上无荷载,则FN1=FN2=0。
由∑FS=0,可得FN2=0,故FN1=0。
2)
FN1
FN2
Fy 0, FN 3 0;
0
FN3
Fx 0,
FN 1
FN
。
2
3) FN1
FN4 FN3
结点C:
Fy 0,
FNCF 20 40 0, FNCF 20kN(拉)。
20 5
20k N
C
20 5
FNCF
20kN
桁架的内力计算
图1 屋架节点荷载的计算桁架的内力计算当桁架只受节点荷载时,其杆件内力一般按节点荷载作用下的铰接桁架计算。
这样,所有杆件都是轴心受压或轴心受拉杆件,不承受弯矩。
具体计算可用数解法(节点法或截面法)、图解法(主要是节点法)、图解法(主要是节点法)、计算机法(常用有限元位移法)等。
实际桁架节点为焊缝、铆钉或螺栓连接,具有很大的刚性,接近于刚接。
按刚接节点分析桁架时,各杆件将既受力又受弯矩。
但是,通常钢桁架中各杆件截面的高度都较小,仅为其长度的1/15(腹杆)和1/10(弦杆)以下,抗弯刚度较小;因而按刚接桁架算得的杆件弯矩M 常较小,且杆件轴心力N 也与桁架计算结果相差很小。
故一般情况都按铰接桁架计算。
对少数荷载较大的重型桁架,例如铁路桥梁等,当杆件截面高度超过其长度的1/10时,次应力份额逐渐增大,可达10~30%或以上,必要时应作计算。
目前用计算机计算刚接桁架已无困难。
据上所述,檩条或大型屋面板等集中荷载只作用在屋架节点处时,可按铰接桁架承受节点荷载计算杆件内力,例如图1。
这时节点荷载值即为檩条或边肋处的集中荷载值,按式上一小节公式,即:100011122F qA qbd d F qA qb d d d F qA qb == ==++== 来计算。
该图中檐口檩条集中荷载F 0在桁架计算时可归并入F 1内(或端节间按伸臂梁而将F 0(1+d 1/ d )并入F 1,-F 0 d 1/d 并入第二节点F );另外在计算上弦杆的支座截面时,除考虑轴心压力外还考虑偏心弯矩M e =F 0 d 1。
当檩条或屋面板等布置未与屋架节点相配合,屋面板没有边肋而是全宽度支图2 承受节间荷载的屋架 承于屋架上弦(上弦均布荷载)、或其它特殊情况时,桁架将受节间荷载,例如图1。
这时桁架内力计算可按下列近似方法:(1)把所有节间内荷载按该段节间为简支的支座反力关系分配到相邻两个节点上作为节点荷载,据此按铰接桁架计算杆件的轴心力。
7.2桁架内力的计算
FGC
P 2
P 2
P 2
P 2
C
FGC
G
P
FGD
FGB
E
FAx FAy A
D
GP
FBy
B
例题
例题8
§7 力系的平衡
4.取节点A
Fiy 0 FAE sin 60 FAy 0
3 FAx P, FAy 4 P
FAE
3 P 4
2 P 32
P
FEC FAE 2 C
Fix 0 FAD FAE cos 60 FAx 0
ED=DG=DB=a ,求CD
杆的内力。
例题
例 题 10
§7 力系的平衡
C
解:1.判断零杆
ED杆为零杆。
m
2.以m-m截面切开,取右半部分:
A
E
0
D
GP
B
MiB 0
FCD a P
3a0 2
FCD
3P 2
FGC
FCD
m
GP
பைடு நூலகம்FAD
B
D
例题
例 题 11
§7 力系的平衡
图示桁架各杆长均为1m,P1=10kN , P2=7kN , 求杆 EG的内力。
1.15
kN
(受拉)
例题
例 题 12
P3 P2 P1
3a
§7 力系的平衡
P4
P5
4a ①
桁架结构受力 如图,试求其 中①杆的内力。
例题
例 题 12
P3 P2 P1
m 3a
§7 力系的平衡
P4
解: 1.受力分析:
P5
此桁架S= 27 ,n=15 ,
2-6-1平面简单桁架的内力计算-节点法
平面简单桁架的内力计算平面简单桁架节点1、各杆件为直杆, 各杆轴线位于同一平面内;2、杆件与杆件间均用光滑铰链连接;3、载荷作用在节点上,且位于桁架几何平面内; 4、各杆件自重不计或均分布在节点上在上述假设下, 桁架中每根杆件均为二力杆,称为理想桁架。
关于平面桁架的几点假设:有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)求解桁架内力的方法1、节点法2、截面法桁架的每个节点都受一个平面汇交力系作用。
为了求每一个杆件的内力,可以逐个地取节点为研究对象,由已知力求出全部未知的杆件内力的方法。
例题 已知: P =10kN,尺寸如图;求: 桁架各杆件受力. 解: 取整体,画受力图.取节点A ,画受力图. ∑=0x F ∑=0y F ∑=0B M 0=Bx F 042=−Ay F P kN5=Ay F 0=−+P F F By Ay kN 5=ByF ∑=0y F030sin 01=+F F Ay kN 101−=F (压)∑=0x F 030cos 012=+F F kN 66.82=F (拉)取节点C ,画受力图. ∑=0x F 030cos 30cos 0'104=−F F kN 104−=F (压)∑=0y F ()030sin 04'13=+−−F F F kN 103=F (拉)取节点D ,画受力图.∑=0x F 0'25=−F F kN 66.85=F (拉) 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)取节点C ,画受力图. ∑=0x F 030cos 30cos 0'104=−F F kN 104−=F (压)∑=0y F ()030sin 04'13=+−−F F F kN 103=F (拉)取节点D ,画受力图.∑=0x F 0'25=−F F kN 66.85=F (拉)有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)。
四平面桁架的内力计算
四平面桁架的内力计算平面桁架是由各种杆件和节点组成的结构,用来支撑和传递荷载。
在设计和分析平面桁架时,需要计算每个杆件上的内力,以确定结构的稳定性和强度。
以下是平面桁架内力计算的方法。
平面桁架的内力计算可以分为两个步骤:静力平衡方程的建立和内力计算。
首先,建立静力平衡方程。
根据平面桁架的静力学原理,每个节点上的力的合力应等于零,每个节点上的力的合力矩也应等于零。
使用静力平衡方程可以得到各个节点上的力的关系。
节点力的计算可以通过以下步骤进行:1.选择一个节点作为参考节点,通常选择固定支座或者荷载作用点。
2.对于选择的参考节点,假设节点上的力的方向和大小,通常选择正向或者逆时针方向。
3.根据杆件的连接方式和静力平衡方程,计算其他节点上的力的方向和大小。
4.如果计算出的节点力的方向和大小与假设的相符,则计算准确。
如果不相符,则重新选择节点力的方向和大小,重复第3步。
5.重复第2和第3步,直到计算出所有节点上的力的方向和大小。
节点力的方向和大小确定后,可以计算每个杆件上的内力。
杆件内力的计算可以通过以下步骤进行:1.根据杆件的连接方式,在每个节点上绘制弯矩图和剪力图。
2.根据支点条件和杆件的连接方式,计算杆件上的弯矩和剪力。
3.根据杆件的材料性质和截面形状,计算杆件上的正应力和切应力。
4.计算出每个杆件上的内力,包括正应力和切应力的大小和方向。
在计算内力时,需要注意以下几个问题:1.合理选择参考节点,通常选择固定支座或者荷载作用点,可以简化计算过程。
2.在考虑弯矩和剪力时,需要考虑实际杆件长度和杆件的连接方式。
3.在计算正应力和切应力时,需要考虑杆件的材料性质和截面形状。
4.内力的计算需要满足力的平衡条件和结构的力学平衡条件。
总之,平面桁架的内力计算是通过建立静力平衡方程和应力平衡方程,确定每个节点和杆件上的力的大小和方向,然后根据杆件的连接方式和材料性质,计算杆件上的弯矩和剪力,最终计算出杆件上的内力。
桁架的内力计算
好运动者健,好思考者智,好助人
11
者乐,好读书者博,好旅游者悦,
2.3.2.2 变内力压杆的计算长度
平面内计算长度:
l0x d
平面外计算长度:
l0y l1(0.75 0.25 N2 N1)
l1 2d
考虑受力较小的杆件对受力大的杆件的“援助”作用。
好运动者健,好思考者智,好助人
12
者乐,好读书者博,好旅游者悦,
简化计算:
M0为将上弦节间视为简支梁所得跨中弯矩。
好运动者健,好思考者智,好助人
6
者乐,好读书者博,好旅游者悦,
2.3.2桁架杆件的计算长度
计算长度概念:将端部有约束的压杆化作等 效的两端铰接的理想轴心压杆。
P 2EI cr1
(a)
L2
P 2EI
(b) cr2
( 0.5 L ) 2
(c)
P 2EI cr3 ( L ) 2
刚度要求:
[]
容许长细比,查规范(GB50017)。
好运动者健,好思考者智,好助人
18
者乐,好读书者博,好旅游者悦,
2.3.3杆件截面型式
杆件截面选取的原则:
承载能力高,抗弯强度大, 便于连接,用料经济通常 选用角钢和T型钢
截面伸展 壁厚较薄 外表平整
等强设计: 压杆对截面主轴具有相等或接近的稳定性。
3)与所分析杆直接刚性相连的杆件作用大, 较远的杆件作用小。
好运动者健,好思考者智,好助人
8
者乐,好读书者博,好旅游者悦,
➢ 2. 杆件计算长度:
桁架平面内计算长度 l0x
弦杆
支座斜杆 支座竖杆
l0x l (节件长度)
中间腹杆 l0x 0.8l
计算静定平面桁架内力的两种基本方法
主题:计算静定平面桁架内力的两种基本方法随着现代建筑工程的发展,计算静定平面桁架内力成为了结构分析中的重要问题。
在计算静定平面桁架内力时,有两种基本的方法,即力法和位移法。
本文将分别介绍这两种方法的基本原理和应用,以及它们的优缺点。
一、力法1. 基本原理力法是通过平衡节点上的受力来计算静定平面桁架内力的一种方法。
在力法中,首先要对整个桁架进行受力分析,确定各个节点上的受力情况,然后根据节点受力的平衡条件,计算出每根构件的内力。
2. 应用力法广泛应用于静定平面桁架内力的计算中。
通过力法可以清晰地了解每根构件受力的情况,对于设计师来说具有很大的实用价值。
3. 优缺点优点:力法计算简单、直观,适用于多种不同类型的静定平面桁架。
缺点:力法在计算过程中需要考虑节点受力平衡的条件,当桁架节点较多时,计算过程较为繁琐,且容易出错。
二、位移法1. 基本原理位移法是通过分析节点的位移来计算静定平面桁架内力的一种方法。
在位移法中,首先需要假设桁架中的某个节点发生位移,然后根据位移引起的构件变形情况,计算出每根构件的内力。
2. 应用位移法在计算静定平面桁架内力时具有一定的优势,特别是在复杂结构的分析中,位移法可以更加直观地反映构件的变形情况,对于设计师来说具有较大的帮助。
3. 优缺点优点:位移法对于复杂结构的分析更加直观,能够清晰地揭示构件的内力分布情况。
缺点:位移法在计算过程中需要假设节点发生位移,这种假设可能与实际情况不符,导致计算结果存在一定误差。
三、综合比较1. 适用范围力法和位移法各有其适用范围,力法适用于简单桁架的受力分析,而位移法适用于复杂结构的受力分析。
2. 精度和准确性在计算静定平面桁架内力时,力法的结果相对准确,而位移法的结果受到假设位移的影响,精度较低。
3. 计算复杂度力法在计算过程中相对简单直观,适用于简单结构的分析;而位移法在复杂结构的分析中可以更加直观地反映构件的变形情况。
四、结论力法和位移法是计算静定平面桁架内力的两种基本方法,各自具有自身的优势和不足。
平面桁架的内力计算课件
目录
• 平面桁架概述 • 平面桁架的内力分析 • 平面桁架的节点位移 • 平面桁架的稳定性分析 • 平面桁架的内力计算实例
01
平面桁架概述
定义与特点
定义
平面桁架是一种由杆件组成的结 构,其所有杆件都位于同一平面 内。
特点
具有较高的承载能力和稳定性, 且结构简单、制造方便,广泛应 用于桥梁、建筑等领域。
内力分析的方法
解析法
通过建立数学模型,利用物理和数学知识求解内力。这种 方法适用于简单结构和对称性较好的情况。
实验法
通过实验测试和观察,利用传感器和测量仪器直接测量内 力。这种方法适用于复杂结构和无对称性的情况。
有限元法
将结构离散化为有限个小的单元,通过分析每个单元的内 力和相互间的约束关系,推算出整个结构的内力。这种方 法适用于大型复杂结构和动态分析。
结构的边界条件
结构的边界条件,如固定、 自由等,会影响节点的位 移。
04
平面桁架的稳定性分析
稳定性分析的定义与重要性
稳定性分析的定义
稳定性分析是评估结构在受到外力作用时能否保持稳定,不发生屈曲或失稳的力 学性能研究。
稳定性分析的重要性
对于平面桁架而言,稳定性是保证其承载能力和安全性的关键因素。通过稳定性 分析,可以预测结构在各种工况下的行为,从而采取相应的措施来提高结构的稳 定性,避免因失稳而导致的结构破坏和安全事故。
荷载
包括竖向荷载和水平荷载,竖向荷 载主要是由自重和活载组成,水平 荷载主要是风载和地震作用。
02
平面桁架的内力分析
内力的定义与分类
内力的定义
内力是指物体在受力过程中,由于外力作用而产生的内部应力。在平面桁架中, 内力是由于杆件间的相互作用而产生的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求解得
FAx= -2 kN FAy= 2 kN FB = 2 kN
第三章 平面任意力系和平面平行力系
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
三、平面简单桁架的内力计算
(2)逐一以各节点为对象,求各杆件的内力
取节点A,受力分析如左图,列平衡方程
FAF
A
Fx 0, FAx FAC FAF cos 45 0
C3 D
FC
FAy
A
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算 (三) 计算平面简单桁架杆件内力的方法
1、节点法—— 应用汇交力系平衡方程,逐一地选取平面简
单桁架上每个节点为研究对象,求出每一杆件
的内力。
例3-12 如图平面简单桁架,求各杆
F
E FE
内力。已知铅垂力FC=4 kN,水平力 A FE=2 kN。
第三章 平面任意力系和平面平行力系
S3 S4
且S1 S2
三、平面简单桁架的内力计算
2、截面法——应用平面任意力系的平衡方程,研究桁架由 截面切出的某些部分的平衡。
例3-13 如图平面简单桁架,求1、2、3杆的内力。已知 铅垂力FC=4 kN,水平力FE=2 kN。
F 1 E FE
2
a
A
a
a
a
B
FAx
FAC
Fy 0, FAy FAF cos 45 0
FAy
解得 FAF 2 2 kN, FAC 4 kN
取节点F,受力分析如左图,列平衡方程
节点F
F
FFE
Fx 0, FFE FFA cos 45 0
FFA
Fy 0,
FFC FFA cos 45 0
FAy
F
E FE FB
三、平面简单桁架的内力计算
= 杆件内力和理想桁架的优点
组成理想桁架的各杆件均为二力杆,内力沿杆轴线 作用,各截面内力均相等,因只承受轴向力,不承受剪 力和弯矩,可以充分发挥材料承受的拉(压)力特性;同时 有效地减轻结构的重量,节约材料增大结构跨度。力学 计算简单,计算结果偏安全。
这就是桁架结构广泛应用的主要原因 同时应注意:实际桁架和理想桁架是有差别 的,对重要的建筑物上采用的桁架结构,还需 考虑节点刚性、非节点荷载和节点偏心等造成 的影响。
三、平面简单桁架的内力计算
取节点B,受力分析如下 图,列平衡方程
FBE
FB
FAy
A
FAx
F
E FE
FB
a
a
a
a
C
D
B
FC
节点B
B
FBD
FAy 2 2
Fy 0, FB FBE cos 45 0 FAx
4
A
解得 FBE 2 2 kN
F 2 E
22
2
0
2
C
D
FC
FE FB
2 2
2 B
第三章 平面任意力系和平面平行力系
正值为轴向拉力,负值为轴向压力
三、平面简单桁架的内力计算
特殊杆件的内力判断 ① 两杆节点无载荷、且两杆不在
一条直线上时,该两杆是零力杆。
② 三杆节点无载荷、其中两杆在 一条直线上,另一杆必为零力杆。
S1 S2 0
③ 四杆节点无载荷、其中两两在 一条直线上,同一直线上两杆 内力等值。
S1 S2
三、平面简单桁架的内力计算
Determination of Internal Forces of Simple Plane Truss
(一)桁架结构概述 (二)桁架计算的常见假设 (三)计算平面简单桁架杆件内力的方法
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算 桁 架 是 工 程 上 常 见 的 结 构 形 式
对实际不作用在节点上的外力可按比例分配到杆件两 端的节点上。 满足上述三条假设的桁架称为理想桁架。
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
2.平面简单桁架
以一个铰链三角形框架为基础,每增一个节点需增 加二根杆件,如此构成的无多余杆的平面桁架。
总杆数 m
总节点数 n
m 3 2(n 3)
解:(1)取整体为研究对象,求平
面简单桁架两端的约束反力
FAy
画受力图
A
FAx
第三章 平面任意力系和平面平行力系
a
a
a
a
B
C
D
FC
F
E FE
FB
a
a
a
a
C
D
B
FC
三、平面简单桁架的内力计算
列平衡方程
Fx 0,
FAx FE 0
Fy 0,
FB FAy FC 0
M AF 0, FC a FE a FB 3a 0
定义:由若干杆件彼此在两端用适当方式连接而成,受力后几何形状不变的结构。 第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
(一)桁架结构概述
桁架 —— 由若干杆件彼此在两端用适当方式连接而 成,受力后几何形状不变的结构。
节点——组成桁架的杆件两端的连接处。 构造特点: 材料:木桁架、钢筋混凝土桁架、钢桁架等
解得 FCE 2 2 kN , FCD 2 kN
取节点D,受力分析如图,列平衡方程
FDE
D
FDC
Fx 0, FDB FDC 0 FAy
FDB
Fy 0, FDE 0
A
FAx
解得
FDB 2 kN , FDE 0
节点CFE Fra bibliotekEFB
a
a
a
a
C
D
B
FC 节点D
第三章 平面任意力系和平面平行力系
FFC
解得 FFE 2 kN,FFC 2 kN
A
FAx
a
a
a
a
C
D
B
节点A FC
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
FCF
C
FCA
FC
FCE FCD
取节点C,受力分析如图,列平衡方程
Fx 0, FCA FCD FCE cos 45 0 Fy 0, FC FCF FCE cos 45 0
连接方式:榫接、刚接、铆接、焊接等 空间形式:平面桁架、空间桁架
应用广泛
为什么?
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算 (二) 桁架计算的常见假设
1、假设 (1) 桁架中的各杆件均看作用光滑铰链相连接。 (2) 组成桁架各杆件的轴线都是直线,并通过铰的中心。 (3) 所有外力,包括荷载及支座反力都作用在节点上,
m 2n 3
第三章 平面任意力系和平面平行力系
三、平面简单桁架的内力计算
m 2n 3 平面复杂(超静定)桁架:如果从桁架中抽去某几根杆 件,桁架不会活动变形。
m 2n 3 平面简单(静定)桁架:如果从桁架中任意抽去一根杆
件,则桁架就会活动变形。
m 2n 3 非桁架(机构)
第三章 平面任意力系和平面平行力系