高二数学辅导讲义(排列组合二项式定理与概率)
排列组合、二项式定理与概率统计
排列组合、二项式定理与概率统计
概率统计与排列组合和二项式定理是数学中的重要知识。
它们主要用来解释和计算物理实验的概率,以及理解事件出现的概率统计规律。
排列组合是概率统计的基础,是指在一组数中,每个数字的位置不同的可能的组合数。
它的公式有:A(n,m)=n(n-1)...(n-m+1)。
这里的A表示从n个中取出m个的排列数。
二项式定理(亦称二项分布定理)是研究一个随机变量满足二项分布的定理。
它是推导概率统计解决一些问题的重要方法,它通过如下公式来计算事件发生的概率:
C(n,k)=An,m/k!,其中n表示试验次数,m表示成功的次数,k表示重复的次数。
概率统计用来研究不同事件出现的可能性和规律。
这些规律会告诉我们正发生的事件的可能性有多大,并帮助我们更好地解释现象。
概率统计的计算和分析是一个复杂的过程,需要全面的、简易的的方法。
排列组合、二项式定理等工具是进行概率统计分析的有力帮助,它们可以帮助我们了解不同事件出现的概率,并对现象加以解释和推断。
高二数学辅导讲义(排列组合二项式定理与概率)
高二数学辅导讲义(排列组合、二项式定理与概率)07、5、7排列组合试题从解法上看,大致有以下几种:(1)有附加条件的排列组合问题,大多需用分类讨论的方法;(2)排列与组合的混合型问题,需分步骤,要用乘法原理解决;(3)元素不相邻问题常用插空法,相邻问题常用捆绑法;(4)排除法,将不符合条件的排列或组合剔除掉;(5)穷举法,将符合条件的所有排列或组合一一写出来,或写出一部分发现规律;(6)定序问题“缩倍法”,即若某几个元素必须保持一定的顺序,则可按通常排列后再除以这几个元素的排列数;(7)隔板法,例如:10个相同的小球分给三人,每人至少1个,有多少种方法?可将10个C种方法。
球排成一排,再用2块“隔板”将它们分成三个部分,有291、n个人参加某项资格考试,能否通过,有多少种可能的结果?2、同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有种3、某班的10人中恰有班干部和团干部各5名:(1)班干部不全排在一起;(2)任何两名团干部都不相邻;(3)班干部和团干部相间排列。
4、有9个不同的文具盒:(1)将其平均分成三组;(2)将其分成三组,每组个数分别为2,3,4。
上述问题各有多少种不同的分法?5、排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?6、一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?7、20个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法?8、从4名男生和3名女生中选4人参加某座谈会,若这四人中必须既有男生又有女生,则不同选法有 A.140种B.120种C.35种D.34种9、从1、3、5、7中任取两个数字,从0、2、4、6、8中任取两个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有个(数字答)10、将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案有()A.12 种B.24种C.36种D.48种11、乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.1.某办公室有8人,现从中选出3人参加A ,B ,C 三项活动,其中甲不得参加A 项活动,则不同的选派方法有 ( )A .35种B .56种C .294种D .336种2.A ,B ,C ,D ,E 五种不同商品要在货架上排成一排,其中A ,B 两种商品必须排在一起,而C ,D 两种商品不能排在一起,则不同的排法共有 ( )A .12种B .20种C .24种D .48种3.某展览会一周(七天)内要接待三所学校的学生参观,每天择安排一所学校,其中甲学校要连续参观两天,则不同的安排方法的种类有( )A .24B .60C .120D . 2104.在如图的1×6矩形长条格中涂上红.黄.兰三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方法共有( )A .90种B .54种C .45种D .30种5.在三张卡片的正反面上分别写有数字0与2,3与4,5与6,且6可以作9用,把这三张卡片拼在一起表示一个三位数,则三位数的个数为( )A .12B .72C .60D .406.若n xx )1(23 的展开式中只有第6项的系数最大,则常数项的值为 ( ) A .462 B .252 C .210 D .107.1.056的计算结果精确到0.01的近似值是 ( )A .1.23B .1.24C .1.34D .1.448.两个同学同时做一道题,他们做对的概率分别为P(A)=0.8, P(B)=0.9,则该题至少被一个同学做对得概率为 ( )A .1.7B .1C .0.72D .0.989.一个学生通过一种英语听力测试的概率是21,他连续测试两次,那么其中恰有一次通过的概率是 ( ) A.41 B.31 C.21 D.43 10.已知在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,则经过4次测试恰好将2个次品全部找出的概率( ) A.51 B.154 C.52 D.1514 11..如下图,A 、B 、C 、D 为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案共有12.某校高三年级举行的一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位,若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为( )A .101B .201C .401D .1201A.8种B.12种C.16种D.20种13.6)2||1|(|++x x 展开式中系数最大的项的系数为_________. 14.设二项式n x x )13(3+展开式的各项系数的和为P ;二项式系数的和为S ,且P+S=272,则展开式的常数项为_________.15.5个正四面体小木块表面上,分别标有1,2,3,4,如果把这5块小木块全部掷出,则至多有1块标有4的小木块因贴在桌面上看不见的概率是 .16.将正整数n 表示成k 个正整数的和(不计较各数的次序),称为将正整数n 分成k 个部分的一个划分,一个划分中的各加数与另一个划分的各加数不全相同,则称为不同的划分,将正整数n 划分成k 个部分的不同划分的个数记为P (n ,k ),则P (10,3)=_________.三.解答题17.用数字0,1,2,3,4,5组成没有重复数字的数,(1)能组成多少个是25的倍数的四位数;(2)能组成多少个比240135大的数;(3)若把所组成的全部六位数从小到大排列起来,第100个数是多少?18.在二项式n x )221(+的展开式中,(1)若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项;(2)若前三项的二项式系数和等于79,求展开式中系数最大的项.19.设x 10-3=Q(x )(x -1) 2+ax +b ,其中Q(x )为关于x 的多项式,a ,b ∈R .(1)求a ,b 的值;(2)若ax +b=28,求x 10-3除以81所得的余数。
高考排列组合二项式定理和概率综合运用精讲
排列组合二项式定理和概率一、知识整合二、考试要求:1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.5.了解随机事件的发生存在着规律性和随机事件概率的意义.6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.8.会计算事件在n 次独立重复试验中恰好发生k 次的概率.Ⅰ、随机事件的概率例1 某商业银行为储户提供的密码有0,1,2,…,9中的6个数字组成.(1)某人随意按下6个数字,按对自己的储蓄卡的密码的概率是多少?(2)某人忘记了自己储蓄卡的第6位数字,随意按下一个数字进行试验,按对自己的密码的概率是多少?解 (1)储蓄卡上的数字是可以重复的,每一个6位密码上的每一个数字都有0,1,2,…,9这10种,正确的结果有1种,其概率为6101,随意按下6个数字相当于随意按下610个,随意按下6个数字相当于随意按下610个密码之一,其概率是6101. (2)以该人记忆自己的储蓄卡上的密码在前5个正确的前提下,随意按下一个数字,等可能性的结果为0,1,2,…,9这10种,正确的结果有1种,其概率为101. 例2 一个口袋内有m 个白球和n 个黑球,从中任取3个球,这3个球恰好是2白1黑的概率是多少?(用组合数表示)解 设事件I 是“从m 个白球和n 个黑球中任选3个球”,要对应集合I 1,事件A 是“从m 个白球中任选2个球,从n 个黑球中任选一个球”,本题是等可能性事件问题,且Card(I 1)= 123)(,n m n m C C A Card C ⋅=+,于是P(A)=3121)()(nm n m C C C I Card A Card +⋅=. Ⅱ、互斥事件有一个发生的概率例3在20件产品中有15件正品,5件次品,从中任取3件,求:(1)恰有1件次品的概率;(2)至少有1件次品的概率.解 (1)从20件产品中任取3件的取法有320C ,其中恰有1件次品的取法为15215C C 。
专题04 排列组合与二项式定理(解析版)--高二数学专题解析
专题04排列组合与二项式定理--高二数学专题解析知识点一:排列1:排列≤)个元素,并按照一定的顺序排成一列,叫做从n个不(1)定义:一般地,从n个不同元素中取出m(m n同元素中取出m个元素的一个排列.(2)相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.2:排列数与排列数公式1:组合(1)定义:一般地:从n个不同的元素中取出m(m n≤)个元素作为一组,叫做从n个不同元素中取出m 个元素的一个组合.(2)相同组合:只要两个组合的元素相同,无论元素的顺序如何,都是相同的组合.(3)组合与排列的异同≤)个元素”.相同点:组合与排列都是“从n个不同的元素中取出m(m n不同点:组合要求元素“不管元素的顺序合成一组”,而排列要求元素“按照一定的顺序排成一列”因此区分某一问题是组合问题还是排列问题,关键是看选出的元素是否与顺序有关,即交换某两个元素的位置对结果有没有影响,若有影响,则是排列问题,若无影响,则是组合问题.2:组合数与组合数公式(1)组合数的定义:从n个不同元素中取出m(m n≤)个元素的所有不同组合的个数,叫做从n个不同元3:组合数的性质b一、单选题1.在()5232x x ++的展开式中x 的系数是()A .160B .180C .240D .210【答案】C【分析】根据二项式的定义可知有4个因式中取2,1个因式中取3x 项,即可得解.【详解】在()5232x x ++的展开式中,要得到含x 的项,则有4个因式中取2,1个因式中取3x 项,故x 的系数为445C 32240⨯⨯=.故选:C7.高三(一)班学生要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求2个舞蹈节目不连排,则共有________种不同的排法.【答案】3600【答案】20【分析】根据题意,先对【详解】对于6盏不同的花灯进行取下,可先对因为取花灯每次只能取一盏,且只能从下往上取,又因为每串花灯先后顺序已经固定,所以除去重复的排列顺序,所以共有663333A20 A A=故答案为:20.13.按照下列要求,分别求有多少种不同的方法?(1)6个不同的小球放入4个不同的盒子;(2)6个不同的小球放入4个不同的盒子,每个盒子至少一个小球;(3)6个相同的小球放入4个不同的盒子,每个盒子至少一个小球;(4)6个不同的小球放入4个不同的盒子,恰有1个空盒.x16.(多选题)若()32+n x(=20.(多选题)有甲、乙、丙、丁、戊五位同学,下列说法正确的是()A .若丙在甲、乙的中间(可不相邻)排队,则不同的排法有20种B .若五位同学排队甲不在最左端,乙不在最右端,则不同的排法共有78种C .若五位同学排队要求甲、乙必须相邻且甲、丙不能相邻,则不同的排法有36种D .若甲、乙、丙、丁、戊五位同学被分配到三个社区参加志愿活动,每位同学只去一个社区,每个社区至少一位同学,则不同的分配方案有150种【答案】BCD【分析】对于A :讨论甲、乙之间有几位同学,分析运算即可;对于B :讨论甲、乙所在位置,分析运算即可;对于C :先求甲、乙相邻的安排方法,再排除甲、乙相邻且甲、丙相邻的安排方法;对于D :先将学生安排出去,再排除有小区没有人去的可能.【详解】对于选项A :可知有三种可能:甲、乙之间只有一位同学,则不同的排法有2323A A 12=种;甲、乙之间有两位同学,则不同的排法有12222222C A A A 16=种;甲、乙之间有三位同学,则不同的排法有2323A A 12=种;不同的排法共有12161240++=种,故A 错误;对于选项B :可知有四种可能:甲在最右端,乙在最左端,则不同的排法有33A 6=种;甲在最右端,乙不在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙在最左端,则不同的排法有1333C A 18=种;甲不在最右端,乙不在最左端,则不同的排法有2333A A 36=种;不同的排法共有618183678+++=种,故B 正确;对于选项C :若甲、乙相邻,则不同的排法有2424A A 48=种;若甲、乙必须相邻且甲、丙相邻,则不同的排法有2323A A 12=种;不同的排法共有481236-=种,故C 正确;对于选项D :若每位同学只去一个社区,则不同的排法有53243=种;若有小区没有人去,则有两种可能:所有人去了一个小区,则不同的排法有13C 3=种;所有人去了两个小区,则不同的排法有()25132C 2C 90-=种;不同的排法共有()243390150-+=种,故D 正确;故选:BCD.21.将5名学生分到A ,B ,C 三个宿舍,每个宿舍至少1人至多2人,其中学生甲不到A 宿舍的不同分法有__________.原理即可得出答案.【详解】首位是1,第二位是0,则后三位可以用剩下的数字全排列,共有33A 6=个,前两位是12,第三位是0,后两位可以用余下的两个数字进行全排列,共有22A 2=种结果.前三位是123,第四位是0,最后一位是4,只有1种结果,∴数字12340前面有6+2+1=9个数字,数字本身就是第十个数字.故答案为:10.27.重新排列1,2,3,4,5,6,7,8.(1)使得偶数在原来的位置上,而奇数不在原来的位置上,有多少种不同排法?(2)使得偶数在奇数的位置上,而奇数在偶数的位置上,有多少种不同的排法?(3)使得偶数在偶数位置上,但都不在原来的位置上;奇数在奇数位置上,但也都不在原来的位置上,有多少种不同的排法?(4)如果要有数在原来的位置上,有多少种不同的排法?(5)如果只有4个数在原来的位置上,有多少种不同的排法?(6)如果至少有4个数在原来的位置上,有多少种不同的排法?(7)偶数在偶数位置上;但恰有两个数不在原来位置上,奇数在奇数位置上,但恰有两个数不在原来位置上,有多少种不同排法?(8)偶数在偶数位置上,且至少有两个数不在原来位置上;奇数在奇数位置上,也至少有两个数不在原来位置上,有多少种不同排法?【答案】(1)9;(2)576;(3)81;(4)25487;(5)630;(6)771;(7)36;(8)225.【分析】(1)利用匹配问题错排公式求解;(2)利用乘法分步原理求解;(3)利用匹配问题求解;(4)用排除法.对8个数进行全排列,再减去没有数在原来的位置上的排法,即得解;(5)利用乘法分步原理求解;(6)用排除法.先对8个数进行全排列,再去掉恰有i 个数在原来位置上的排法()0123i =,,,,即得解;(7)利用匹配问题和分步乘法原理得解;。
2068-高中数学必修三排列组合二项式定理概率加法公式-课件
讲课人:吕梁高中 孟雪梅
一 排列组合二项式定理
(一) 解读《考试大纲》
1.考试内容
分类计数原理与分步计数原理. 排列.排列数公式. 组合.组合数公式.组合数的两个性质. 二项式定理.二 项展开式的性质.
2.考试要求
掌握分类计数原理与分步计数原理,并能用它们 分析和解决一些简单的应用题.理解排列的意义,掌握 排列数计算公式,并能用它解决一些简单的应用问题.
例(2019年新课程卷) 某赛季足球比赛的计分规则是:胜一 场,得3分;平一场,得1分;负一场,得0分.一球队打完15场, 积33分.若不考虑顺序,该队胜、负、平的情况共有 A 3种 B 4种 C 5种 D 6种.
同时,我们不应忽视组合数性质的复习,也不应忽视有关应用 二项式定理和二项展开式的性质证明问题的复习.
外要要求学生在解答概率大题时书写应规范,引入符号意义让
人容易领会,如将3人同时上网的事件记为A3是好的记号,但写 成P(A3)就不行.
教材中的统计知识,要考的较少,不考的却不少,而且数 据、表格、图形又较多,从它们中较难提取出有用的信息.因 此,学生不大愿看书,从而造成统计知识的复习不仔细.我们 要明确告知学生研读课本哪几页书.统计中的知识点不多,要 一一复习.统计试题的背景是数据图表.
目的调查常采用一种逆抽样的调查,即事先规定
一个正整数m,进行随机抽样,当抽得的样本中 有m个稀少项目时,抽样停止,问正好抽取了n次
的概率是多少?
对于概率的求解策略是:紧扣概念—准确把握 各类事件概率的概念及计算公式(1,2,4题); 化繁为简—将复杂事件的概率转化为简单事件的 概率(3题);正难则反—灵活运用对立事件的概 率的关系简化问题(如3,4题).
高考数学专题复习 第10单元 排列 组合 二项式定理及概率课件 文 大纲人教版
第十单元 │ 考纲要求
【考试要求】 (1)掌握分类计数原理与分步计数原理,并能用它们分析和解决 一些简单的应用问题. (2)理解排列的意义,掌握排列数计算公式,并能用它解决一些 简单的应用问题. (3)理解组合的意义,掌握组合数计算公式和组合数的性质,并 能用它们解决一些简单的应用问题. (4)掌握二项式定理和二项展开式的性质,并能用它们计算和证 明一些简单的问题. (5)了解随机事件的发生存在着规律性和随机事件概率的意义.
第64讲 │ 知识梳理 知识梳理
1.分类计数原理 完成一件事,如果有 n 类办法,在第一类办法中有 m1 种不同的 方法,在第二类办法中有 m2 种不同的方法……在第 n 类办法中有 mn m1+m2+m3+…+mn 种不同的方法,那么完成这件事共有 N=_______________________ 种不同的方法. 2.分步计数原理 完成一件事,需要分成 n 个步骤,做第一步有 m1 种不同的方法, 做第二步有 m2 种不同的方法,…做第 n 步有 mn 种不同的方法,那么 m1· m2· …· mn 种不同的方法. 完成这件事共有 N=______________
第十单元 │ 使用建议 使用建议
1.编写意图 本讲内容:排列、组合题在高考试题中基本上是小题且难度不大, 但极易出错.主要是两个计数原理及多种常规方法的运用.对随机 事件的考查,常结合排列、组合的知识进行考查,多以选择题、填 空题形式出现.二项式定理在高考中必考,它的应用主要涉及利用 通项公式求展开式的特定项,利用二项式的性质求多项式的系数 和, 利用二项式定理进行近似计算等, 题型以选择题、 填空题为主,
第64讲 │ 知识梳理
3.分类和分步的区别 分类:完成一件事同时存在 n 类方法,每一类都能独立完成这件 事,各类互不相关. 分步:完成一件事需按先后顺序分 n 步进行,每一步缺一不可,只有 当所有步骤完成时,这件事才完成.
数学课件——高考 排列组合、二项式定理及概率初步专题学习
专题 排列组合、二项式定理及概率初步【高考导航】在对口高考中,本单元重点掌握以下两个重点:一、掌握排列数公式、组合数公式、组合数的性质。
二、能运用排列组合及概率论的知识解决有关实际问题(计数问题)。
解计数问题的基本方法如下:第一步,准确理顺完成事件的方式和具体过程。
解决计数问题的关键和难点在于通过分析,准确理顺完成事件的方式和具体过程,确保完成任务的方式和具体过程既不重复也不遗漏。
第二步,计算每一步或每一类的方法数。
第三步,根据分步计数原理或分类计数原理求总的方法数。
第四步,作答:要求用具体数学作答。
求事件发生的概率常用方法有定义法和公式法。
用定义法求等可能性事件的概率关键要对随机现象和所求概率的随机事件进行分析,求出它们所包含的基本事件个数;用公式法求概率关键要找到事件之间的关系,然后选择一种最佳的方法快速准确地解题,基本解题过程如下: 第一步,设简单事件,找出所求事件与所设事件的关系。
第二步,利用有关公式求概率。
第三步,作答:概率常用分数或小数作答。
解题难点是:设简单事件,找出所求事件与所设事件的关系。
【真题回访】1、某学校从6位教师中选派4位教师分别到一年级的4个班听课,不同的安排方法的种数为(D)A) 4C 46 B) 4P 46 C) C 46 D) P 462、2930除以6的余数是(C)A)5 B)0 C)1 D)-13、六名青年起愿者在北京参加2008年奥运会的六个服务项目,若每人只参加其中一项,且学生甲不参加第一个服务项目,则不同的安排方案有(D)A) C 15C 55 B) P 66 C) P 55 D) C 15P 55某校高二年级有8个班,甲、乙两人从外地转到该年级插班,学校让他们各自随机选择班级,他们刚好选在同一个班的概率是(D) A)41 B) 161 C) 641 D)81【仿真题型】【例1】求(2x+y )10的展开式中,系数最大的项。
【解】设展开式的第r+1项的系数最大,则有k k C --111102≤k k C -10102≥k k C -+91102 )!1()!9(2!109+-⨯-k k k ≤!)!10(2!1010k k k -⨯-≥)!1()!11(2!1011--⨯-k k k∴)1(1+k k ≤k k )10(2-≥)10)(11(4k k -- ∴38≤k ≤311, 又k N ∈且k ≤9 ∴k=3 ∴第4项的系数最大,最大系数为C 31072⨯=15360。
第11讲 排列组合和二项式定理,概率(2021高考数学 新东方内部
第11讲排列组合和二项式定理,概率(2021高考数学新东方内部第11讲排列、组合和二项式定理,概率(2021高考数学---新东方内部第一一章排列组合与二项式定理1.排列数公式成年男子n(n?1)(n?2)?(n?m?1)?Nn(m?n);an?Nn(n?1)(n?2)?2.1.(n?m)!如①1!+2!+3!+…+n!(n?4,n?n*)的个位数字为;(答:3)②满足a8x?6a8x?2的x=(答:8)组合数公式曼恩?(n?1)???(n?m?1)n!0c?M(m?n);指定0!?1,中国?一amm?(m?1)???2?1m!?n?m?!mnmnm如已知cn?cm?1?an?6,求n,m的值.(答:m=n=2)(了解)排列数、组合数的性质①cnmcnn?M1②cnm?cnm?1?cnm??1;kk?1.③kcn?ncn?1.1.④crr?crr?1.crr?r?cnr1.⑤NN(n?1)!?Nn11??⑥.(n?1)!n!(n?1)!2.解排列组合问题的依据是:分类和添加(每种方法都可以独立完成这项任务,相互独立,每次都得到最终结果,只有一种方法可以完成这项任务),分步相乘(一步得出的结果都不是最后的结果,任何一步都不能独立地完成这件事,只有各个步骤都完成了,才能完成这件事,各步是关联的),有序的安排,无序的组合如①将5封信投入3个邮筒,不同的投法共有种;(答:35)②从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各一台,则不同的取法共有种;(答:70)③ 从收集中?1,2,3? 和1,4,5,6? 如果将每个元素作为点的坐标,则它位于直角坐标系中中能确定不同点的个数是_;(答:23)④72的正约数(包括1和72)共有个;(答:12)⑤?a的一边ab上有4个点,另一边ac上有5个点,连同?a的一个顶点总共有10个点。
将这些点作为顶点可以形成三个三角形;(答复:cb90)⑥ 使用六种不同的颜色来分隔右图中的四个区域a、B、C和D,并且允许使用相同的颜色一颜色涂不同区域,但相邻区域不能是同一种颜色,则共有d种不同涂法;(答:480)⑦ 同一个房间里的四个人每人写一张新年贺卡,然后每人拿一张别人寄来的新年贺卡。
排列、组合和概率 二项式定理说课第一课
排列、组合和概率:课题:二项式定理(第一课)————说课设计今天我说课的内容是高二排列、组合和概率(人教版)第十章第四章节《二项式定理》的第一课时:《二项式定理》.下面我就从教材分析、教学目标、教法和学法、教学过程四个方面对本课的教学设计进行说明.一、说教材:1、知识内容:二项式定理及简单的应用.2、地位及重要性:二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及高三选修概率与统计,作知识上的铺垫.二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高的层次来审视初中学习的关于多项式变形的知识.运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等.3 、重点难点分析:重点:(1)使学生参与并深刻体会二项式定理形成过程,掌握二项式,系数,字母的幂次,展开式项数的规律.(2)能够应用二项式定理对二项式进行展开.难点:掌握运用多项式乘法以及组合知识推导二项式定理的过程.二、说教学目标:A.知识目标:(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律.(2)能够应用二项式定理对所给出的二项式进行正确的展开.B.能力目标:(1)通过二项式定理的推导过程,培养学生观察,猜想,归纳的能力以及分类讨论的能力.(2)培养学生化归的意识和知识迁移的能力.C. 德育渗透目标 : (1)培养学生“理论源于实践,用于实践”的观点 .(2)通过学生自主参与和探讨二项式定理的形成过程,培养学生解决数学问题的兴趣和信心.(3)通过学生自主参与和探讨二项式定理的形成过程,使学生体会到数学内在的和谐对称美.三、说教法和学法:1、教法为了完成本节课的教学目标,掌握并能正确运用二项式定理,让学生主动探索展开式的由来是关键.“学习任何东西的最好的途径是自己去发现”正所谓“学问之道,问而得,不如求而得之深固也”.本节课的教法贯穿启发式教学原则,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的 逻辑思维能力;同时,考虑到学生的个体差异,在教学的各个环节进行分层施教,实现“有差异”的发展.另外根据“最近发展区”的教学理论,精心设计问题,调控问题的解决过程,培养这节课内容最佳的“知识增长点”.2、 学法根据学生思维的特点,遵循“教必须以学为主立足点”的教学理念,让每一个学生自主参与整堂课的知识构建.在教学的各个环节中引导学生进行类比迁移,对照学习.学生在教师营造的“可探索”的环境里,积极参与,生动活泼地获取知识,掌握规律、主动发现、主动发展.3、 教学手段利用电脑,投影仪等多媒体教学展现二项式定理的推导过程,激发学生的的兴趣,增大教学容量,提高课堂效率.四、 教学过程:本节课教学过程总体指导思想是体现教学的阶段序进原则和学生主动性原则,在教学中注意发挥教师的主导作用和学生学习的主体作用.根据班级学生的情况,进行分组合作探究二项式定理.[复习引入新课]思考:如果今天是星期六,那么再经过 68天后是星期几??)17(866=+=我们知道 ()2222b ab a b a ++=+根据多项式乘法,又可得()=+3b a 322333b ab b a a +++,()=+4b a 432234464b ab b a b a a ++++.问题:按上述方法展开()100b a +、()nb a +实际可行吗?可见应探讨新方法. 引出问题1:将))()((332211b a b a b a +++展开由乘法原理可以得到有8项,由学生写出展开式为:321321321321321321321321b b b a b b b a b a a b b b a a b a b a a a a a +++++++教师提问:问:(1)展开式有多少项?为什么?(2)项是怎样构成的?有规律吗?学生在思考上述问题和观察展开可发现规律,老师引导总结:(1) 从每一个括号任取且只能取一个数;(2) 把取出的数乘在一起,将所有乘式加在一起就得到展开式.引申设疑:引出问题2: 在上式中:如果b b b b a a a a ======321321,则展开式又是什么? 学生答:是bbb bba bab baa abb aba aab aaa +++++++,仍然有8项,但有同类项,合并同类项得:3223333)(b ab b a a b a +++=+紧接着提出问题3:4)(b a +的展开式是什么?依照规律,展开式应有1624=项,但是有多少同类项?要想知道这个问题,还得从3)(b a +的展开式研究.思考,为什么a b 2的系数是3?除了从一般展开式中数出来,可以从什么角度出发呢?学生根据排列组合的知识,可以发现))()((b a b a b a +++这三个括号中任意两个取b ,剩下的一个括号取a ;利用组合知识得a b 2的系数是31123=C C . 实验猜想:学生对4)(b a +进行分类:四个括号中全取a 得:444a C四个括号中有3个取a ,剩下的1个取b 得:b C a C 11334四个括号中有2个取a ,剩下的2个取b 得: 222224b C a C四个括号中有1个取a ,剩下的3个取b 得:333114b C a C 四个括号中有全取b ,得:444b C其实只要抓住一个字母进行分类即可,可以按a 分类,也可以按b 分类,根据教材提示按b 分类得:在上面四个括号中:每个都不取b 的情况有1种,即04C 种,所以4a 的系数是04C ;恰有1个取b 的情况有14C 种,所以b a 3的系数是14C ;恰有2个取b 的情况有24C 种,所以22b a 的系数是24C ;恰有3个取b 的情况有34C 种,所以22b a 的系数是34C ; 4个都取b 的情况有44C 种,所以4b 的系数是44C ;因此,.)(44433422243144044b C ab C b a C b a C a C b a ++++=+归纳推广:教师提出问题4:()nb a +的展开式又是如何? 归纳猜想:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+•••++•••++=+-- —————— 二项式定理公式特征:(1) 项数:共有1+n 项.(2) 指数:a 的指数从n 逐项递减到0,是降幂排列;b 的指数从0逐项递增到n,是升幂排列, r r n b a -指数和为n.(3) 二项展开式的通项公式: 式中的r r n r n b a C -叫做二项展开式的通项.用1+r T 表示,即通项为展开式的第1+r 项: 1+r T =r r n r n b a C -(4) 二项式系数:依次为,,,,,,,210n n r n n n n C C C C C ••••••这里),,1,0(n r C r n ⋅⋅⋅=称为二项式系数.)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+•••++•••++=+--问=-nb a )(?令x b a ==,1,则=+n x )1(? 令x b a -==,1,则=-n x )1(?则,=-4)13(xx ? , =-6)11(x ? [例题分析] 例题1:展开6)12(x x -并求展开式中的常数项?(解答略)例题2:求12)(a x +的展开式中的倒数第4项.(解答略)例题3:求7)21(x +的展开式的第4项的二项式系数和第4项的系数.(解答略)[课堂练习]1.分别求66)23(,)32(a b b a ++的第3项.(解答略)2.写出433)21(x x -的展开式的第3项. (解答略)(把学生的练习进行投影,与同学们一起点评)[课堂小结](1)二项式定理:)()(*110N n b C b a C b a C a C b a n n n r r n r n n n n n n ∈+•••++•••++=+--(2)二项展开式的通项公式:1+r T =r r n r n b a C -(3)应用:求展开式及展开式中的指定项,求二项展开式某一项的二项式系数和系数.(4)科学态度:养成善于观察、归纳、大胆猜想,利用从特殊到一般从而得出结论的学习态度.[课后作业]A. 必做题:1.P 110习题10.4 T 2 、T 3 、T 4(1)(2).B. 选做题: 在n xx )12(23+ 展开式中,若存在常数项,则n 的最小值. 研究性问题:某市在描绘未来五年的蓝图中指出:年人均收入在今后五年都要以10%的速度增长,使每个家庭开开心心奔小康.若今年人均收入为8000元,则5年后人均收入是多少万元?(精确到0.01万元).课后探究:(1)二项式系数nn n n n C C C C ,,,,210•••有何性质?(2)如何求52)21(x x -+展开式中5x 项的系数?准备这节课,我主要考虑下面几个问题:(1)这节课的教学目的“使学生掌握二项式定理”重要,还是“使学生掌握二项式定理的形成过程”重要?我反复斟酌,听取了备课组老师们的意见,认为后者重要.于是,我这节课花了大部分时间是来引导学生探究.(2)学生怎样才能掌握二项式定理?是通过大量的练习来达到目的,还是通过学生对二项式定理的形成过程来记忆?正如前面所说“学问之道,问而得,不如求而得之深固也”.我还是要求学生自主的去探索二项式定理.这样也符合以教师为主导、学生为主体、师生互动的新课程教学理念.(3)准备什么样的例题?例题的目的是为了巩固本节课所学,通过例题加深学生对二项式定理的理解和对通项公式的掌握,区分系数和二项式系数.(4)根据学生的差异,布置选做题和课后探究题,因材施教.教学设计的说明:许多老师上课的着眼点是放在如何“讲”好一堂课,如何把知识“讲”明白上,而我根据我校推行的“以人为本,以学定教”的教学理念,把着眼点放在如何“引导”学生自主探究知识,获取知识上.所以,本节课的教学,我从学生已有的认识基础出发,以学生自主探索,合作交流为为主线,让学生经历数学知识的形成和应用过程,加深对所学知识的理解,从而突破重难点.教师是整个教学活动的组织者.策划者,学生是学习的主人.由于学生的层次不一,教师要全程关注每一位学生的学习状态,进行分层施教,对学有余力并对数学有浓厚兴趣的同学,通过布置选做题去发展他们的数学才能.总之,在整个教学过程中,我始终将“教学反应”型评价和“教学反馈”评价相结合,促进学生的自主评价,努力推行成功教育,愉快教育的理念,把握评价的时机和尺度,实现评价主体和形式的多样化,从而激发学生的学习兴趣,激活课堂气氛,使课堂教学达到最佳状态.。
排列组合二项式定理和概率
补 右图是我国古代的“杨辉三角形”,按其数字
构成规律,图中第八行所有 中应填数字的和
等于( B ). (09年)
1
A. 96 B.128 C. 256 D.312
11 121 13 31
解 n7
146 41 1 5 10 10 5 1
27 128
1 6 15 20 15 6 1
补 求 (x 1 )9 的展开式中 x3 的系数。
★ 3. 排列数公式
n! n (n 1) (n 2) 21
Pnm n (n 1) (n 2) (n m 1)
▽
Pnm
n! (n m)!
特别: Pnn n!
例 P130 1098 720.
补 由 0,1, 2, 9 可组成多少个8位数的电话号码?108.
例 5个男生和2个女生站成一排照相。
(1)共有多少种排法? (2)男生甲必须站在左端或右端,且2个女生必须相邻,
有多少种排法?
(3)男生甲必须站在中间,且2个女生必须相邻,
有多少种排法?
解 (1) P77 7! 5040
(2)
(P63 例2)
先安排甲 P21 P55 2 480
(3)
在第 n 类办法中有 mn种不同的方法。
则完成这件事共有:
m1 m2 mn 种不同的方法。
2. 分步计数原理(乘法原理)
若完成一件事需要分成 n 个步骤。
做第一步有 m1 种不同的方法; 做第二步有 m2 种不同的方法;
做第 n 步有mn 种不同的方法。
则完成这件事共有:
m1 m2 mn 种不同的方法。
(a0 a2 a4 )2 (a1 a3 )2 (2 3)4 (2 3)4
精品教案:排列组合、二项式定理、概率、统计
条件概率:在事件B已 经发生的情况下,计算 事件A发生的概率,即 P(A∣B)=P(A∩B)/P(B)
04
统计
统计的定义
统计是对数据进 行收集、整理、 分析和解释的科 学
统计方法常用于 研究数据的分布 规律和特征
统计在各个领域 都有广泛应用, 如经济学、社会 学、生物学等
统计的主要目的 是为决策提供数 据支持,帮助人 们做出科学合理 的决策
YOUR LOGO
THANK YOU
汇报人:XX
排列组合在金融领域的应用: 投资组合优化、风险评估、
决策理论等。
排列组合在游戏设计中的应 用:游戏策略、AI算法、 概率计算等。
排列组合的解题技巧
理解概念:排 列组合的概念 是解题的基础, 需要理解并掌
握。
掌握公式:排 列组合的公式 是解题的关键, 需要熟练掌握
并运用。
分类讨论:对 于复杂的问题, 需要进行分类 讨论,将问题 分解成若干个 简单的问题。
统计的公式和定理
内容1:统计的公式和定理 内容2:统计的公式和定理 内容3:统计的公式和定理 内容4:统计的公式和定理
统计的应用
数据分析:对大量数据进行整理、分析和解释,以揭示其内在规律和趋势 预测模型:利用统计方法对未来进行预测和推断,例如市场预测、气象预报等 决策制定:基于统计数据为决策者提供依据,例如制定政策、投资决策等 质量控制:通过统计技术对生产过程进行监控和评估,以确保产品质量符合标准
二项式定理的解题技巧
掌握二项式定理 的基本公式和展 开式
理解各项系数和 字母指数的含义 和作用
掌握二项式定理 的通项公式及其 应用
学会利用赋值法 简化计算和提高 计算效率
03
概率
排列组合、二项式定理及概率与统计
⑶当 中含有4个元素时,从5个元素中选出4个元素,有 =5种选法,再分成1-3;2-2;3-1两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有3×5=15种方法;
(4)某人射击6次,恰好有3枪命中的结果有多少种?
2、以一个正方体的顶点为顶点的四面体共有()个、计算:(1) + + + =_______
(2)若 ,则 =_______
4、四面体的一个顶点为A,从其它顶点与各棱中点中取三个点,使它们和点A在同一平面上,不同的取法有()种。
A. B. C. D.
集合 选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数。也就是A和B满足:① ;② 至少含有2个元素,至多5个元素。自然按照 中的元素多少可以分类计算了。
解法一:
⑴当 中含有2个元素时,从5个元素中选出2个元素,有 =10种选法,小的给A集合,大的给B集合。有10×1=10种方法;
第十章
知识体系:
第一讲
一、基础知识再现
1、分类计数原理:
______________________________________________________________________
______________________________________________________________________
(4)最多有一条次品的抽法有_________种。
二、典型例题
例1、若{1,2} Z {1,2,3,4,5},满足这个关系式的集合Z共有()个。
排列组合和二项式定理及概率统计知识点
排列组合二项定理 知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..重复..元素..的排列. 从m 个不同元素中,每次取出n 个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n 位上选取元素的方法都是m 个,所以从m 个不同元素中,每次取出n 个元素可重复排列数m·m·… m = m n .. 例如:n 件物品放入m 个抽屉中,不限放法,共有多少种不同放法? (解:nm 种)二、排列.1. ⑪对排列定义的理解.定义:从n 个不同的元素中任取m(m ≤n )个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑫相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同.⑬排列数.从n 个不同元素中取出m (m≤n )个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号mn A 表示.⑭排列数公式:),,()!(!)1()1(N m n n m m n n m n n n A m ∈≤-=+--=注意:!)!1(!n n n n -+=⋅ 规定0! = 1111--++=⋅+=m n m n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数?其排列个数1!3!3==n .三、组合.1. ⑪组合:从n 个不同的元素中任取m (m≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑫组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C mn mmm n mn-=+--== ⑬两个公式:①;m n n mn CC -= ②mn m n m n C C C11+-=+①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.(或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有mn C )②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n 个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C mn 种,依分类原理有mn m n m n C C C11+-=+.⑭排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系. ⑮①几个常用组合数公式 n n nn n n C C C 2210=+++ 11111121153142011112++--++++++-+=+==++=+++=+++k n k n k n k n m n m m n m m m m m m n n n n n n n n C n C k nC kC C C C C C C C C C C C②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n (利用!1)!1(1!1n n n n --=-) ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法(即用m n m n m n C C C 11+-=+递推)如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2= 四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法.②排除法. n 个不同座位,例:A 、B 两个不能相邻,则有排列法种数为-2n A 2211A A n ⋅-. ③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,②有n 件不同商品,若其中A 、B 排在一起有2211A A n n ⋅--.③有n 件不同商品,若其中有二件要排在一起有112--⋅n n n A A . ④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少?mm n m n m n A A 1+---⋅(插空法),当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有m m A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n 个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法?解法一:(逐步插空法)(m+1)(m+2)…n = n !/ m !;解法二:(比例分配法)m m n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法?有3!224=C⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故(4321,,,x x x x )是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式(如图所示)故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用n a a a ,...,21中i a 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为1-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.x 2x 4例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在(或不固定在)某一位置上,共有多少种排法?固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A (一类是不取出特殊元素a ,有mn A 1-,一类是取特殊元素a ,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的) ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列(或组合),规定某r 个元素都包含在内 。
_排列与组合_二项式定理_概率_专题系列讲座
则、先! 取∀ 后! 排∀ 的原则. 常用 技巧: 3 占位 法, 4 捆
绑法, 5 插空法, 6 排除法.
2. 通项公式是二项式定理的重点所在, 考题中常有
求展开式中的指定项、系数等需用待定系数法解决的问
题, 同时注意二项式定理的逆用, 赋值用等相关问题.
3. 等可能性事件 的特征: 3 每 一次 试验中 所有 可
线如右图所示.
15 条直线中异面 直线的对数
=
C
2 15
-
15 条直线中共面直线的对数
=
C215 -
(
2
C
2 3
+
3C26 +
6C23 ) =
105- ( 6+ 45+ 18)
= 36
其中,
2 C23
上、下底面内共面直线的对数;
3 C26
三个侧面内共面直线的对数;
6 C23
面 A EF 等 6 个 截面内
注: 二 项 式定 理 的学 习
或复习 应 重视 基 础, 对二 项
式定理的展开 式、通项公 式、
二项式 系 数的 性 质、二项 式
展开式中项的系 数特征 要弄
懂原理, 注意分辨 通解通 法,
牢固掌握, 不必追 求解难 题、
寻巧解.
3. 概率在实际中的应用
( 1) 考查等可能性事件的概率( 略)
( 2) 考查互斥事件、相互独 立事件的概率
( / ) 求甲射击 4 次, 至少 1 次未击中目标的概 率;
( 0) 求两人各射击 4 次, 甲恰好击中目标 2 次且乙
恰好击中目标 3 次的概率;
( 1) 假设某人连续 2 次未击中目标, 则停止射 击.
系统集成高中数学第十二章排列组合、二项式定理、概率理
第十二章排列组合、二项式定理、概率知识网络分类加法计数原理与分步乘法计数原理典例精析题型一 分类加法计数原理的应用【例1】 在1到20这20个整数中,任取两个数相加,使其和大于20,共有 种取法. 【解析】当一个加数是1时,另一个加数只能是20,有1种取法; 当一个加数是2时,另一个加数可以是19,20,有2种取法; 当一个加数是3时,另一个加数可以是18,19,20,有3种取法; ……当一个加数是10时,另一个加数可以是11,12,…,19,20,有10种取法; 当一个加数是11时,另一个加数可以是12,13,…,19,20,有9种取法; ……当一个加数是19时,另一个加数只能是20,有1种取法.由分类加法计数原理可得共有1+2+3+…+10+9+8+…+1=100种取法. 【点拨】采用列举法分类,先确定一个加数,再利用“和大于20”确定另一个加数. 【变式训练1】(2010济南市模拟)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )B.4【解析】当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12、13、23时,也有4个.故选D.题型二 分步乘法计数原理的应用【例2】 从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有 种.【解析】能去张家界的有4人,依此能去韶山、衡山、桃花源的有5人、4人、3人.则由分步乘法计数原理得不同的选择方案有4×5×4×3=240种.【点拨】根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步之间既不能重复也不能遗漏.【变式训练2】(2010湘潭市调研)要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有 种不同的排法.【解析】依题意,值班表须一天一天分步完成.第一天有5人可选有5种方法,第二天不能用第一天的人有4种方法,同理第三天、第四天、第五天也都有4种方法,由分步乘法计数原理共有5×4×4×4×4=1 280种方法.题型三 分类和分步计数原理综合应用【例3】(2011长郡中学)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有 .【解析】方法一:由题意知,有且仅有两个区域涂相同的颜色,分为4类:1与5同;2与5同;3与5同;1与3同.对于每一类有A 44种涂法,共有4A 44=96种方法.方法二:第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96种.【点拨】染色问题是排列组合中的一类难题.本题能运用两个基本原理求解,要注意的是分类中有分步,分步后有分类.【变式训练3】(2009深圳市调研)用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形,使得任意相邻(有公共边)小正方形所涂颜色都不相同,且1,5,9号小正方形涂相同颜色,则符合条件的所有涂法有多少种【解析】第一步,从三种颜色中选一种颜色涂1,5,9号有C 13种涂法;第二步,涂2,3,6号,若2,6同色,有4种涂法,若2,6不同色,有2种涂法,故共有6种涂法;第三步,涂4,7,8号,同第二步,共有6种涂法. 由分步乘法原理知共有3×6×6=108种涂法. 总结提高分类加法计数原理和分步乘法计数原理回答的都是完成一件事有多少种不同方法或种数的问题,其区别在于:分类加法计数原理是完成一件事要分若干类,类与类之间要互斥,用任何一类中的任何一种方法都可以独立完成这件事;分步乘法计数原理是完成一件事要分若干步,步骤之间相互独立,各个步骤相互依存,缺少其中任何一步都不能完成这件事,只有当各个步骤都完成之后,才能完成该事件.因此,分清完成一件事的方法是分类还是分步,是正确使用这两个基本计数原理的基础.排列与组合典例精析题型一 排列数与组合数的计算【例1】 计算:(1)8!+A 66A 28-A 410;(2) C 33+C 34+…+C 310.【解析】(1)原式=8×7×6×5×4×3×2×1+6×5×4×3×2×18×7-10×9×8×7=57×6×5×4×3×256×(-89)=-5 130623.(2)原式=C 44+C 34+C 35+…+C 310=C 45+C 35+…+C 310=C 46+C 36+…+C 310=C 411=330.【点拨】在使用排列数公式A mn =n !(n -m )!进行计算时,要注意公式成立的条件:m ,n ∈N +,m ≤n .另外,应注意组合数的性质的灵活运用.【变式训练1】解不等式x 9A >629A x .【解析】原不等式即9!(9-x )!>6×9!(11-x )!,也就是1(9-x)!>)!9)10()11(6xxx---••,化简得x2-21x+104>0,解得x<8或x>13,又因为2≤x≤9,且x∈N*,所以原不等式的解集为{2,3,4,5,6,7}.题型二有限制条件的排列问题【例2】 3男3女共6个同学排成一行.(1)女生都排在一起,有多少种排法(2)女生与男生相间,有多少种排法(3)任何两个男生都不相邻,有多少种排法(4)3名男生不排在一起,有多少种排法(5)男生甲与男生乙中间必须排而且只能排2位女生,女生又不能排在队伍的两端,有几种排法【解析】(1)将3名女生看作一人,就是4个元素的全排列,有A44种排法.又3名女生内部可有A33种排法,所以共有A44·A33=144种排法.(2)男生自己排,女生也自己排,然后相间插入(此时有2种插法),所以女生与男生相间共有2A33·A33=72种排法.(3)女生先排,女生之间及首尾共有4个空隙,任取其中3个安插男生即可,因而任何两个男生都不相邻的排法共有A33·A34=144种.(4)直接分类较复杂,可用间接法.即从6个人的排列总数中,减去3名男生排在一起的排法种数,得3名男生不排在一起的排法种数为A66-A33A44=576种.(5)先将2个女生排在男生甲、乙之间,有A23种排法.又甲、乙之间还有A22种排法.这样就有A23·A22种排法.然后把他们4人看成一个元素(相当于一个男生),这一元素及另1名男生排在首尾,有A22种排法.最后将余下的女生排在其间,有1种排法.故总排法为A23A22A22=24种.【点拨】排列问题的本质就是“元素”占“位子”问题,有限制条件的排列问题的限制主要表现在:某些元素“排”或“不排”在哪个位子上,某些元素“相邻”或“不相邻”.对于这类问题,在分析时,主要按照“优先”原则,即优先安排特殊元素或优先满足特殊位子,对于“相邻”问题可用“捆绑法”,对于“不相邻”问题可用“插空法”.对于直接考虑较困难的问题,可以采用间接法.【变式训练2】把1,2,3,4,5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列构成一个数列.(1)43 251是这个数列的第几项(2)这个数列的第97项是多少【解析】(1)不大于43 251的五位数A55-(A44+A33+A22)=88个,即为此数列的第88项.(2)此数列共有120项,而以5开头的五位数恰好有A44=24个,所以以5开头的五位数中最小的一个就是该数列的第97项,即51 234.题型三有限制条件的组合问题【例3】要从12人中选出5人去参加一项活动.(1)A,B,C三人必须入选有多少种不同选法(2)A,B,C三人都不能入选有多少种不同选法(3)A,B,C三人只有一人入选有多少种不同选法(4)A ,B ,C 三人至少一人入选有多少种不同选法 (5)A ,B ,C 三人至多二人入选有多少种不同选法【解析】(1)只须从A ,B ,C 之外的9人中选择2人,C 29=36种不同选法.(2)由A ,B ,C 三人都不能入选只须从余下9人中选择5人,即有C 59=C 49=126种选法. (3)可分两步,先从A ,B ,C 三人中选出1人,有C 13种选法,再从余下的9人中选4人,有C 49种选法,所以共有C 13·C 49=378种选法.(4)可考虑间接法,从12人中选5人共有C 512种,再减去A ,B ,C 三人都不入选的情况C 59,共有C 512-C 59=666种选法.(5)可考虑间接法,从12人中选5人共有C 512种,再减去A ,B ,C 三人都入选的情况C 29种,所以共有C 512-C 29=756种选法.【点拨】遇到至多、至少的有关计数问题,可以用间接法求解.对于有限制条件的问题,一般要根据特殊元素分类.【变式训练3】四面体的顶点和各棱中点共有10个点. (1)在其中取4个共面的点,共有多少种不同的取法 (2)在其中取4个不共面的点,共有多少种不同的取法【解析】(1)四个点共面的取法可分三类.第一类:在同一个面上取,共有4C 46种;第二类:在一条棱上取三点,再在它所对的棱上取中点,共有6种;第三类:在六条棱的六个中点中取,取两对对棱的4个中点,共有C 23=3种.故有69种.(2)用间接法.共C 410-69=141种. 总结提高解有条件限制的排列与组合问题的思路: (1)正确选择原理,确定分类或分步计数; (2)特殊元素、特殊位置优先考虑; (3)再考虑其余元素或其余位置.12.3二项式定理典例精析题型一 二项展开式的通项公式及应用【例1】 已知nx x )21(4-的展开式中,前三项系数的绝对值依次成等差数列.(1)求证:展开式中没有常数项;(2)求展开式中所有的有理项.【解析】由题意得2C 1n ·21=1+C 2n ·(21)2,即n 2-9n +8=0,所以n =8,n =1(舍去).所以T r +1=r8C ·(x )r -8·r x)21(4-=(-21)r ·r8C ·28r x-·4r x-=(-1)r·r r 2C 8·4316rx -(0≤r ≤8,r ∈Z ).(1)若T r +1是常数项,则16-3r4=0,即16-3r =0,因为r ∈Z ,这不可能,所以展开式中没有常数项.(2)若T r +1是有理项,当且仅当16-3r4为整数,又0≤r ≤8,r ∈Z ,所以 r =0,4,8,即展开式中有三项有理项,分别是T 1=x 4,T 5=358 x ,T 9=1256x -2.【点拨】(1)把握住二项展开式的通项公式,是掌握二项式定理的关键.除通项公式外,还应熟练掌握二项式的指数、项数、展开式的系数间的关系、性质;(2)应用通项公式求二项展开式的特定项,如求某一项,含x 某次幂的项,常数项,有理项,系数最大的项等,一般是应用通项公式根据题意列方程,在求得n 或r 后,再求所需的项(要注意n 和r 的数值范围及大小关系);(3) 注意区分展开式“第r +1项的二项式系数”与“第r +1项的系数”.【变式训练1】若(x x +32x)n的展开式的前3项系数和为129,则这个展开式中是否含有常数项,一次项如果有,求出该项,如果没有,请说明理由.【解析】由题知C 0n +C 1n ·2+C 2n ·22=129, 所以n =8,所以通项为T r +1=C r 8(x x )8-rrx)2(3=r rx r 611128C 2-, 故r =6时,T 7=26C 28x =1 792x ,所以不存在常数项,而存在一次项,为1 792x . 题型二 运用赋值法求值【例2】(1)已知(1+x )+(1+x )2+…+(1+x )n =a 0+a 1x +a 2x 2+…+a n x n,且a 1+a 2+…+a n -1=29-n ,则n = ;(2)已知(1-x )n =a 0+a 1x +a 2x 2+…+a n x n,若5a 1+2a 2=0,则a 0-a 1+a 2-a 3+…+(-1)na n = .【解析】(1)易知a n =1,令x =0得a 0=n ,所以a 0+a 1+…+a n =30.又令x =1,有2+22+ (2)=a 0+a 1+…+a n =30,即2n +1-2=30,所以n =4.(2)由二项式定理得,a 1=-C 1n =-n ,a 2=C 2n =n (n -1)2, 代入已知得-5n +n (n -1)=0,所以n =6, 令x =-1得(1+1)6=a 0-a 1+a 2-a 3+a 4-a 5+a 6, 即a 0-a 1+a 2-a 3+a 4-a 5+a 6=64.【点拨】运用赋值法求值时应充分抓住代数式的结构特征,通过一些特殊值代入构造相应的结构.【变式训练2】设(3x -1)8=a 0+a 1x +a 2x 2+…+a 7x 7+a 8x 8.求a 0+a 2+a 4+a 6+a 8的值. 【解析】令f (x )=(3x -1)8, 因为f (1)=a 0+a 1+a 2+…+a 8=28,f (-1)=a 0-a 1+a 2-a 3+…-a 7+a 8=48,所以a 0+a 2+a 4+a 6+a 8=f (1)+f (-1)2=27×(1+28).题型三 二项式定理的综合应用 【例3】求证:4×6n +5n +1-9能被20整除.【解析】4×6n +5n +1-9=4(6n-1)+5(5n-1)=4[(5+1)n-1]+5[(4+1)n-1]=20[(5n-1+C 1n 5n -2+…+C n -1n )+(4n -1+C 1n 4n -2+…+C n -1n )],是20的倍数,所以4×6n +5n +1-9能被20整除.【点拨】用二项式定理证明整除问题时,首先需注意(a +b )n中,a ,b 中有一个是除数的倍数;其次展开式有什么规律,余项是什么,必须清楚.【变式训练3】求的近似值,使误差小于.【解析】=(1-6=1+6×(-1+15×(-2+…+(-6. 因为T 3=C 26(-2=15×(-2= 06<, 且第3项以后的绝对值都小于,所以从第3项起,以后的项都可以忽略不计. 所以=(1-6≈1+6×(-=1-=. 总结提高1.利用通项公式可求展开式中某些特定项(如常数项、有理项、二项式系数最大项等),解决这些问题通常采用待定系数法,运用通项公式写出待定式,再根据待定项的要求写出n 、r 满足的条件,求出n 和r ,再确定所需的项;2.赋值法是解决二项展开式的系数和、差问题的一个重要手段;3.利用二项式定理解决整除问题时,关键是进行合理的变形,使得二项展开式的每一项都成为除数的倍数.对于余数问题,要注意余数的取值范围.随机事件的概率与概率的基本性质典例精析题型一 频率与概率【例1】某企业生产的乒乓球被08年北京奥委会指定为乒乓球比赛专用球.日前有关部门(1)计算表中乒乓球优等品的频率;(2)从这批乒乓球产品中任取一个,质量检查为优等品的概率是多少(结果保留到小数点后三位)【解析】(1)依据公式nmp ,计算出表中乒乓球优等品的频率依次是,,, ,,.(2)由(1)知,抽取的球数n 不同,计算得到的频率值不同,但随着抽取的球数的增多,却都在常数的附近摆动,所以质量检查为优等品的概率为.【点拨】从表中所给的数据可以看出,当所抽乒乓球较少时,优等品的频率波动很大,但当抽取的球数很大时,频率基本稳定在,在其附近摆动,利用概率的统计定义,可估计该批乒乓球的优等率.(1)计算表中进球的频率;(2)这位运动员投篮一次,进球的概率是多少【解析】(1)由公式计算出每场比赛该运动员罚球进球的频率依次为:.431612,107,97,43129,54108,4386==== (2)由(1)知,每场比赛进球的频率虽然不同,但频率总在43附近摆动,可知该运动员进球的概率为43.题型二 随机事件间的关系【例2】从一副桥牌(52张)中任取1张.判断下列每对事件是否为互斥事件,是否为对立事件.(1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”.【解析】(1)是互斥事件但不是对立事件.因为“抽出红桃”与“抽出黑桃”在仅取一张时不可能同时发生,因而是互斥的.同时,不能保证其中必有一个发生,因为还可能抽出“方块”或“梅花”,因此两者不对立.(2)是互斥事件又是对立事件.因为两者不可同时发生,但其中必有一个发生.(3)不是互斥事件,更不是对立事件.因为“抽出的牌点数为3的倍数”与“抽出的牌点数大于10”这两个事件有可能同时发生,如抽得12.【点拨】要区分互斥事件和对立事件的定义.【变式训练2】抽查10件产品,设事件A :至少有两件次品,则A 的对立事件为( ) A.至多两件次品 B.至多一件次品 C.至多两件正品D.至少两件正品【解析】根据对立事件的定义得选项B. 题型三 概率概念的应用【例3】 甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非已知从全部105人中随机抽取1人为优秀的概率为72.(1)请完成上面列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”(参考数据P (K 2>=;(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10人按2到11进行编号,然后两次掷一枚均匀的骰子,出现的点数之和为被抽取人的编号.试求抽到6号或10号的概率.【解析】(1)(2)计算K 2的一个观测值k =75305055)45203010(1052⨯⨯⨯⨯-⨯⨯=.因为<,所以没有95%的把握认为成绩与班级有关. (3)记被抽取人的序号为ζ,则P (ζ=6)=365,P (ζ=10)=363,所以P (ζ=6或ζ=10)=P (ζ=6)+P (ζ=10)=368=92. 【点拨】本题考查概率的概念在实际生活中的应用.【变式训练3】袋内有35个球,每个球上都记有从1~35中的一个号码,设号码为n 的球的重量为32n -5n +20克,这些球以等可能性从袋里取出(不受重量、号码的影响).(1)如果取出1球,试求其重量比号码数大5的概率;(2)如果任意取出2球,试求它们重量相等的概率.【解析】(1)由不等式32n -5n +20>n +5,得n >15或n <3,由题意知n =1,2或者n =16,17,…,35,于是所求概率为3522.(2)设第n 号和第m 号的两个球的重量相等,其中n <m ,则有32n -5n +20=32m -5m +20,所以(n -m )(n +m -15)=0. 因为n ≠m ,所以n +m =15,所以(n ,m )=(1,14),(2,13),…,(7,8).故所求概率为8515957C 7235==. 总结提高1.对立事件是互斥事件的一种特殊情况,是指在一次试验中有且仅有一个发生的两个事件.集合A 的对立事件记作A ,从集合的角度来看,事件A 所含结果的集合正是全集U 中由事件A 所含结果组成集合的补集,即A ∪A =U ,A ∩A =∅.对立事件一定是互斥事件,但互斥事件不一定是对立事件.事件A 、B 的和记作A +B ,表示事件A 、B 至少有一个发生.当A 、B 为互斥事件时,事件A +B 是由“A 发生而B 不发生”以及“B 发生而A 不发生”构成的.当计算事件A 的概率P (A )比较困难时,有时计算它的对立事件A 的概率则要容易些,为此有P (A )=1-P (A ).2.若A 与B 互相独立,则A 与B ,A 与B ,A 与B 都是相互独立事件.判断A 与B 是否独立的方法是看P (AB )=P (A )·P (B )是否成立.古典概型典例精析题型一 古典概率模型的计算问题【例1】一汽车厂生产A 、B 、C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月现按分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类10辆. (1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本,将该样本视为一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:,,, ,,,,把这8辆车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过的概率.【解析】(1)依题意知,从每层抽取的比率为140,从而轿车的总数为50×40=2 000辆,所以z =2 000-100-150-300-450-600=400.(2)由(1)知C 类轿车共1 000辆,又样本容量为5,故抽取的比率为1200,即5辆轿车中有2辆舒适型、3辆标准型,任取2辆,一共有n =10种不同取法,记事件A :至少有1辆舒适型轿车,则事件A 表示抽取到2辆标准型轿车,有m ′=3种不同取法,从而事件A 包含:基本事件数为m =7种,所以P (A )=710.(3)样本平均数x =18×+++++++=,记事件B :从样本中任取一数,该数与样本平均数的绝对值不超过,则事件B 包含的基本事件有6种,所以P (B )=68=34.【点拨】利用古典概型求事件的概率时,主要弄清基本事件的总数,及所求事件所含的基本事件的个数.【变式训练1】已知△ABC 的三边是10以内(不包含10)的三个连续的正整数,求任取一个△ABC 是锐角三角形的概率.【解析】依题意不妨设a =n -1,b =n ,c =n +1(n >1,n ∈N ),从而有a +b >c ,即n >2,所以△ABC 的最小边为2,要使△ABC 是锐角三角形,只需△ABC 的最大角C 是锐角,cos C =(n -1)2+n 2-(n +1)22(n -1)n =n -42(n -1)>0,所以n >4,所以,要使△ABC 是锐角三角形,△ABC 的最小边为4.另一方面,从{2,3,4,…,9}中,“任取三个连续正整数”共有6种基本情况,“△ABC 是锐角三角形”包含4种情况,故所求的概率为46=23.题型二 有放回抽样与不放回抽样【例2】 现有一批产品共有10件,其中8件为正品,2件为次品.(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率; (2)如果从中一次取3件,求3件都是正品的概率.【解析】(1)有放回地抽取3次,按抽取顺序(x ,y ,z )记录结果,则x ,y ,z 都有10种可能,所以试验结果有10×10×10=103种;设事件A 为“连续3次都取正品”,则包含的基本事件共有8×8×8=83种,因此,P (A )=33108=.(2)方法一:可以看作不放回抽样3次,顺序不同,基本事件不同,按抽取顺序记录(x ,y ,z ),则x 有10种可能,y 有9种可能,z 有8种可能,所以试验的所有结果为10×9×8=720种.设事件B 为“3件都是正品”,则事件B 包含的基本事件总数为8×7×6=336, 所以P (B )=336720≈. 方法二:可以看作不放回3次无顺序抽样,先按抽取顺序(x ,y ,z )记录结果,则x 有10种可能,y 有9种可能,z 有8种可能,但(x ,y ,z ),(x ,z ,y ),(y ,x ,z ),(y ,z ,x ),(z ,x ,y ),(z ,y ,x )是相同的,所以试验的所有结果有10×9×8÷6=120.按同样的方法,事件B 包含的基本事件个数为8×7×6÷6=56,因此P (B )=56120≈.【点拨】关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其结果是一样的,但不论选择哪一种方式,观察的角度必须一致,否则会导致错误.【变式训练2】有5张卡片,上面分别写有0,1,2,3,4中的1个数.求: (1)从中任取两张卡片,两张卡片上的数字之和等于4的概率;(2)从中任取两次卡片,每次取一张,第一次取出卡片,记下数字后放回,再取第二次,两次取出的卡片上的数字之和恰好等于4的概率.【解析】(1)两张卡片上的数字之和等于4的情形共有4种,任取两张卡片共有10种,所以概率为P =410=25;(2)两张卡片上的数字之和等于4的情形共有5种,任取两张卡片共有25种,所以概率为P =525=15.题型三 古典概型问题的综合应用【例3】 甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.从甲、乙两袋中各任取2个球.(1)若n =3,求取到的4个球全是红球的概率;(2)若取到的4个球中至少有2个红球的概率为34,求n .【解析】(1)记“取到的4个球全是红球”为事件A ,P (A )=C 22C 24·C 22C 25=16×110=160.(2)记“取到的4个球至多有1个红球”为事件B ,“取到的4个球只有1个红球”为事件B 1,“取到的4个球全是白球”为事件B 2.由题意,得P (B )=1-34=14.P (B 1)=C 12C 12C 24·C 2n C 2n +2+C 22C 24·C 12C 1n C 2n +2=2n23(n +2)(n +1),P (B 2)=C 22C 24·C 2n C 2n +2=n (n -1)6(n +2)(n +1).所以P (B )=P (B 1)+P (B 2)=2n 23(n +2)(n +1)+n (n -1)6(n +2)(n +1)=14,化简得7n 2-11n -6=0,解得n =2或n =-37(舍去),故n =2.【变式训练3】甲、乙二人参加普法知识竞赛,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙二人一次各抽取一题.(1)甲抽到选择题,乙抽到判断题的概率是多少 (2)甲、乙二人至少有一个抽到选择题的概率是多少【解析】(1)甲从选择题中抽到一题的可能结果有C 16个,乙从判断题中抽到一题的的可能结果是C 14,故甲抽到选择题,乙抽到判断题的可能结果为C 16×C 14=24.又甲、乙二人一次各抽取一题的结果有C 110×C 19=90,所以概率为2490=415.(2)甲、乙二人一次各抽取一题基本事件的总数是10×9=90. 方法一:(分类计数原理)①只有甲抽到了选择题的事件数是:6×4=24; ②只有乙抽到了选择题的事件数是:6×4=24;③甲、乙同时抽到选择题的事件数是:6×5=30.故甲、乙二人至少有一个抽到选择题的概率是24+24+3090=1315.方法二:(利用对立事件)事件“甲、乙二人至少有一个抽到选择题”与事件“甲、乙两人都未抽到选择题”是对立事件.事件“甲、乙两人都未抽到选择题”的基本事件个数是4×3=12. 故甲、乙二人至少有一个抽到选择题的概率是1-1290=1-215=1315.总结提高1.对古典概型首先必须使学生明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n 必须是有限个;②出现的各个不同的试验结果数m 其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P (A )=m n得出的结果才是正确的.使用公式P (A )=m n计算时,确定m 、n 的数值是关键所在.2.对于n 个互斥事件A 1,A 2,…,A n ,其加法公式为P (A 1+A 2+…+A n )=P (A 1)+P (A 2)+…+P (A n ).3.分类讨论思想是解决互斥事件有一个发生的概率的一个重要的指导思想.4.在应用题背景条件下,能否把一个复杂事件分解为若干个互相排斥或相互独立、既不重复又不遗漏的简单事件是解答这类应用题的关键,也是考查学生分析问题、解决问题的能力的重要环节.几何概型典例精析 题型一 长度问题【例1】如图,∠AOB =60°,OA =2,OB =5,在线段OB 上任取一点C ,试求:(1)△AOC 为钝角三角形的概率; (2)△AOC 为锐角三角形的概率. 【解析】如图,由平面几何知识知:当AD ⊥OB 时,OD =1;当OA ⊥AE 时,OE =4,BE =1.(1)当且仅当点C 在线段OD 或BE 上时,△AOC 为钝角三角形.记“△AOC 为钝角三角形”为事件M ,则P (M )=OD +EB OB =1+15=,即△AOC 为钝角三角形的概率为.(2)当且仅当点C 在线段DE 上时,△AOC 为锐角三角形.记“△AOC 为锐角三角”为事件N ,则P (N )=DE OB =35=,即△AOC 为锐角三角形的概率为.【点拨】我们把每一个事件理解为从某个特定的区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个事件发生则理解为恰好在上述区域内的某个指定的区域内的点,这样的概率模型就可以用几何概型求解.【变式训练1】点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为 .【解析】如图可设=1,则根据几何概率可知其整体事件是其周长3,则其概率是23.题型二 面积问题【例2】 两个CB 对讲机(CB 即CitizenBand 民用波段的英文缩写)持有者,莉莉和霍伊都为卡尔货运公司工作,他们的对讲机的接收范围为25公里,在下午3:00时莉莉正在基地正东距基地30公里以内的某处向基地行驶,而霍伊在下午3:00时正在基地正北距基地40公里以内的某地向基地行驶,试问在下午3:00时他们能够通过对讲机交谈的概率有多大【解析】设x 和y 分别代表莉莉和霍伊距基地的距离,于是0≤x ≤30,0≤y ≤40. 他们所有可能的距离的数据构成有序点对(x ,y ),这里x ,y 都在它们各自的限制范围内,则所有这样的有序数对构成的集合即为基本事件组对应的几何区域,每一个几何区域中的点都代表莉莉和霍伊的一个特定的位置, 他们可以通过对讲机交谈的事件仅当他们之间的距离不超过25公里时发生(如下图),因此构成该事件的点由满足不等式x 2+y 2≤25的数对组成,此不等式等价于x 2+y 2≤625,右图中的方形区域代表基本事件组,阴影部分代表所求事件,方形区域的面积为1 200平方公里,而事件的面积为(14)×π×(25)2=625π4,于是有P =625×π41 200=625π4 800≈.【点拨】解决此类问题,应先根据题意确定该实验为几何概型,然后求出事件A 和基本事件的几何度量,借助几何概型的概率公式求出.【变式训练2】如图,以正方形ABCD 的边长为直径作半圆,重叠部分为花瓣.现在向该正方形区域内随机地投掷一飞镖,求飞镖落在花瓣内的概率.【解析】飞镖落在正方形区域内的机会是均等的,符合几何概型条件.记飞镖落在花瓣内为事件A ,设正方形边长为2r ,则P (A )=S 花瓣S ABCD =12πr 2×4-(2r )2(2r )2=π-22. 所以,飞镖落在花瓣内的概率为π-22.题型三 体积问题【例3】 在线段[0,1]上任意投三个点,设O 至三点的三线段长为x 、y 、z ,研究方法表明:x ,y ,z 能构成三角形只要点(x ,y ,z )落在棱长为1的正方体T 的内部由△ADC ,△ADB ,△BDC ,△AOC ,△AOB ,△BOC 所围成的区域G 中(如图),则x ,y ,z 能构成三角形与不能构成三角形这两个事件中哪一个事件的概率大【解析】V (T )=1,V (G )=13-3×13×12×13=12,所以P =V (G )V (T )=12.由此得,能与不能构成三角形两事件的概率一样大.【点拨】因为任意投的三点x ,y ,z 是随机的,所以使得能构成三角形只与能构成三角形的区域及基本事件的区域有关.【变式训练3】已知正方体ABCD —A 1B 1C 1D 1内有一个内切球O ,则在正方体ABCD —A 1B 1C 1D 1内任取点M ,点M 在球O 内的概率是( )【解析】设正方体的棱长为a ,则点M 在球O 内的概率P =V 球V 正方体=43π(a 2)3a 3=π6,选C. 总结提高1.几何概型是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.其特点是在一个区域内均匀分布,概率大小与随机事件所在区域的形状和位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,其测度为0,则它出现的概率为0,但它不是不可能事件. 如果随机事件所在区域是全部区域扣除一个单点, 其测度为1,则它出现的概率为1,但它不是必然事件.2.若试验的全部结果是一个包含无限个点的区域(长度,面积,体积),一个基本事件是区域中的一个点.此时用点数度量事件A 包含的基本事件的多少就毫无意义.“等可能性”可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学辅导讲义(排列组合、二项式定理与概率)07、5、7
排列组合试题从解法上看,大致有以下几种:
(1)有附加条件的排列组合问题,大多需用分类讨论的方法;
(2)排列与组合的混合型问题,需分步骤,要用乘法原理解决;
(3)元素不相邻问题常用插空法,相邻问题常用捆绑法;
(4)排除法,将不符合条件的排列或组合剔除掉;
(5)穷举法,将符合条件的所有排列或组合一一写出来,或写出一部分发现规律;
(6)定序问题“缩倍法”,即若某几个元素必须保持一定的顺序,则可按通常排列后再除以这几个元素的排列数;
(7)隔板法,例如:10个相同的小球分给三人,每人至少1个,有多少种方法?可将10个
C种方法。
球排成一排,再用2块“隔板”将它们分成三个部分,有2
9
1、n个人参加某项资格考试,能否通过,有多少种可能的结果?
2、同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有种
3、某班的10人中恰有班干部和团干部各5名:
(1)班干部不全排在一起;
(2)任何两名团干部都不相邻;
(3)班干部和团干部相间排列。
4、有9个不同的文具盒:
(1)将其平均分成三组;
(2)将其分成三组,每组个数分别为2,3,4。
上述问题各有多少种不同的分法?
5、排一张有8个节目的演出表,其中有3个小品,既不能排在第一个,也不能有两个小品排在一起,有几种排法?
6、一个楼梯共10级台阶,每步走1级或2级,8步走完,一共有多少种走法?
7、20个相同的球分给3个人,允许有人可以不取,但必须分完,有多少种分法?
8、从4名男生和3名女生中选4人参加某座谈会,若这四人中必须既有男生又有女生,则不同选法有 A.140种B.120种C.35种D.34种
9、从1、3、5、7中任取两个数字,从0、2、4、6、8中任取两个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有个(数字答)
10、将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案有()
A.12 种
B.24种
C.36种
D.48种
11、乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第
一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种.
一.选择题
1.某办公室有8人,现从中选出3人参加A ,B ,C 三项活动,其中甲不得参加A 项活动,则不同的选派方法有 ( )
A .35种
B .56种
C .294种
D .336种
2.A ,B ,C ,D ,E 五种不同商品要在货架上排成一排,其中A ,B 两种商品必须排在一起,而C ,D 两种商品不能排在一起,则不同的排法共有 ( )
A .12种
B .20种
C .24种
D .48种
3.某展览会一周(七天)内要接待三所学校的学生参观,每天择安排一所学校,其中甲学校要连续参观两天,则不同的安排方法的种类有( )
A .24
B .60
C .120
D . 210
4.在如图的1×6矩形长条格中涂上红.黄.兰三种颜色,每种颜色限涂两格,且相邻两格不同色,则不同的涂色方法共有( )
A .90种
B .54种
C .45种
D .30种
5.在三张卡片的正反面上分别写有数字0与2,3与4,5与6,且6可以作9用,把这三张卡片拼在一起表示一个三位数,则三位数的个数为( )
A .12
B .72
C .60
D .40
6.若n x
x )1(23 的展开式中只有第6项的系数最大,则常数项的值为 ( ) A .462 B .252 C .210 D .10
7.1.056的计算结果精确到0.01的近似值是 ( )
A .1.23
B .1.24
C .1.34
D .1.44
8.两个同学同时做一道题,他们做对的概率分别为P(A)=0.8, P(B)=0.9,则该题至少被一个同学做对得概率为 ( )
A .1.7
B .1
C .0.72
D .0.98
9.一个学生通过一种英语听力测试的概率是
2
1,他连续测试两次,那么其中恰有一次通过的概率是 ( ) A.41 B.31 C.21 D.4
3 10.已知在6个电子元件中,有2个次品,4个合格品,每次任取一个测试,测试完后不再放回,直到两个次品都找到为止,则经过4次测试恰好将2个次品全部找出的概率( ) A.51 B.15
4 C.52 D.15
14 11..如下图,A 、B 、C 、D 为海上的四个小岛,要建三座桥,将这四个小岛连接起来,则不同的建桥方案共有
12.某校高三年级举行的一次演讲比赛共有10位同学参赛,其中一班有3位,二班有2位,其他班有5位,若采取抽签的方式确定他们的演讲顺序,则一班的3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为( )
A.8种
B.12种
C.16种
D.20种
A .101
B .201
C .401
D .120
1 二.填空题
13.6)2|
|1|(|++x x 展开式中系数最大的项的系数为_________. 14.设二项式n x
x )1
3(3+展开式的各项系数的和为P ;二项式系数的和为S ,且P+S=272,则展
开式的常数项为_________.
15.5个正四面体小木块表面上,分别标有1,2,3,4,如果把这5块小木块全部掷出,则至多有1块标有4的小木块因贴在桌面上看不见的概率是 .
16.将正整数n 表示成k 个正整数的和(不计较各数的次序),称为将正整数n 分成k 个部分的一个划分,一个划分中的各加数与另一个划分的各加数不全相同,则称为不同的划分,将正整数n 划分成k 个部分的不同划分的个数记为P (n ,k ),则P (10,3)=_________.
三.解答题
17.用数字0,1,2,3,4,5组成没有重复数字的数,
(1)能组成多少个是25的倍数的四位数;
(2)能组成多少个比240135大的数;
(3)若把所组成的全部六位数从小到大排列起来,第100个数是多少?
18.在二项式n x )22
1(+的展开式中, (1)若第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大的项;
(2)若前三项的二项式系数和等于79,求展开式中系数最大的项.
19.设x 10-3=Q(x )(x -1) 2+ax +b ,其中Q(x )为关于x 的多项式,a ,b ∈R .
(1)求a ,b 的值;(2)若ax +b=28,求x 10-3除以81所得的余数。
20.某电视台知识竞猜节目,为每位选手准备5道试题,每道试题设“正确”与“不正确”两个选项,其中只有一个是正确选项,假设甲、乙两位选手仅凭猜测独立答题.
(1)求甲至少答对3道题的概率;
(2)是否有99%的把握断定甲、乙两位选手中,至少有一位至少答对一道题?
21.两类自动控制常开开关j A ,j B 各2个,连接成下列两个系统N 1、N 2,假定在某段时间内两类开关j A ,j B 能够闭合的概率分别为a ,b ,这里0<a <1,0<b <1.
(Ⅰ)分别求这两个系统N 1、N 2在这段时间内正常工作的概率;
(Ⅱ)试比较这两个系统N 1、N 2在这段时间内正常工作的概率的大小.
(系统N 1) (系统N 2)
22.中央电视台“正大综艺”节目的现场观众来自四个单位,分别在图中4个区域内坐定.有4种不同颜色的服装,每个单位的观众必须穿同种颜色的服装,且相邻两个区域的颜色不同,不相邻区域颜色相同与否则不受限制,那么不同的着装方法有多少种?
j A j B j A
j B
j A j B A j B。