1.2 粘弹性和滞弹性解析

合集下载

1.2 粘弹性和滞弹性

1.2 粘弹性和滞弹性

图l-11所示,当突然施加一应力σo于 拉伸试样时,试样立即沿0A线产生瞬时 应变Oa。如果低于材料的微量塑性变形 抗力,则应变Oa只是材料总弹性应变OH 中的一部分。应变aH只是在σo长期保 持下逐渐产生的,aH对应的时间过程为 图1-11中的ab曲线。
恒定应力σo
卸载时,如果速度也比较大,则当应力下降为零时, 只有应变eH部分立即消逝掉,而应变eO是在卸载后逐渐去 除的,这部分应变对应的时间过程为图中的cd曲线。
三.动态粘弹性(滞后、内耗)
在正弦或其它周期性变化的外力作用下,聚合物粘弹性的表现. 高聚物作为结构材料在实际应用时,往往受到交变力的作 用。如轮胎、传送皮带、橡齿轮。
研究动态力学行为的实际意义?
用作结构材料的聚合物许多是在交变的力场中使用 , 因 此必须掌握作用力频率对材料使用性能的影响。 如外力的作用频率从 0→100~1000 周,对橡胶的力学性 能相当于温度降低 20~40℃,那么在-50℃还保持高弹性 的橡胶,到-20℃就变的脆而硬了。 塑料的玻璃化温度在动态条件下,比静态来的高,就 是说在动态条件下工作的塑料零件要比静态时更耐热 , 因此不能依据静态下的实验数据来估计聚合物制品在动 态条件下的性能。
对于未交联橡胶
Cross-linking polymer Linear polymer
0e
0
t
玻璃态 高弹态
粘流态
不同温度下的应力松弛曲线 t
t
不同聚合物的应力松弛曲线
高分子链的构象重排和分子链滑移是导致材料蠕变和应力松 弛的根本原因。 如果T很高(>>Tg),链运动摩擦阻力很小,应力很快松弛掉了, 所以观察不到,反之,内摩擦阻力很大,链段运动能力差,应力 松弛慢,也观察不到.只有在Tg温度附近的几十度的范围内应 力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)

第八章 聚合物的高弹性和粘弹性

第八章 聚合物的高弹性和粘弹性
第8章 聚合物的高弹性和粘弹性
1
1. 高弹性 高弹性的特点 平衡态高弹性热力学分析 橡胶的使用温度
2
1.1 高弹性的特点 高弹态是高聚物所特有的,是基于链段运动的 一种力学状态,即高聚物在一定条件下,通过 玻璃化转变而处于高弹态时所表现出独特的力 学性能——高弹性。 这是高聚物中一项十分难能可贵的性能。
37
3 应力松弛 定义:对于一个线性粘弹体来说,在应变保持不变 的情况下,应力随时间的增加而逐渐衰减,这一现 象叫应力松弛。 例如:拉伸一块未交联的橡胶到一定长度,并保持 长度不变,随着时间的增加,这块橡胶的回弹力会 逐渐减小,这是因为里面的应力在慢慢减小,最后 变为0。因此用未交联的橡胶来做传动带是不行的。
橡胶热力学方程式:
∂u ∂f f = ( )T ,V + T ( )l ,V ∂l ∂T
实验时用f当纵坐标,T为横坐标,作f-T图:
9
f
77% 33% 11% 4%
∂u 截距为 ( ) T ,V ∂l ∂f 斜率为 ( ) l ,V ∂T
T (K )
固定拉伸时的张力-温度曲线
发现各直线外推到 T → 0时均通过原点,即截距 为0,得: f = −T (
O CH2
(5)主链上均为非碳原子的二甲基硅橡胶
CH3 O Si CH3
16
2)改变取代基结构 带有供电子取代基的橡胶易氧化:天然橡胶、丁苯 橡胶。带有吸电子取代基的橡胶不易氧化:氯丁橡 胶、氟橡胶。 3)改变交联链的结构 原则:含硫少的交联链键能较大,耐热性好,如果 交联键是C-C或C-O,键能更大,耐热性更好。 (氯丁橡胶用ZnO硫化交联键为-C-O-C-,天然橡 胶用过氧化物或辐射交联,交联键为-C-C-)。

粘弹性

粘弹性

外力的方向运动以减小或者消除内部应力,如果T很高(>>Tg),链运动摩擦
阻力很小,应力很快松弛掉了,所以观察不到,反之,内摩擦阻力很大,链段 运动能力差,应力松弛慢,也观察不到.只有在Tg温度附近的几十度的范围
内应力松弛现象比较明显.(链由蜷曲变为伸展,以消耗外力)
21
第8章 聚合物的粘弹性
0
玻璃态 高弹态 粘流态 t
2 0
0 0
sin tcost - dt
W 0 0sin
又称为力学损耗角,常用tan表示内耗的大小
33
第8章 聚合物的粘弹性
③内耗的表达
当 t 0sin t时, 应力 ( t ) 0sin t
展开 : ( t ) 0 cos sin t 弹性形变的动力 0sin cost 消耗于克服摩擦阻力
27
第8章 聚合物的粘弹性
③滞后现象与哪些因素有关?
a.化学结构:刚性链滞后现象小,柔性链滞后现象大.
b.温度:当不变的情况下,T很高滞后几乎不出现,温度很低, 也无滞后.在Tg附近的温度下,链段既可运动又不太容易,此 刻滞后现象严重。 c. : 外力作用频率低时,链段的运动跟的上外力 的 变化,滞 后现象很小. 外力作用频率不太高时,链段可以运动,但是跟不上外力的变 化,表现出明显的滞后现象.
外力作用频率很高时,链段根本来不及运动,聚合物好像 一块刚性的材料,滞后很小
28
第8章 聚合物的粘弹性
2.内耗:
①内耗产生的原因: 当应力与形变的变化相一致时,没有滞后现象,每次形变所 作的功等于恢复形变时所作的功,没有功的消耗
如果形变的变化跟不上应力的变化,发生滞后现象,则每 一次循环变化就会有功的消耗(热能),称为力学损耗,也叫内 耗. 外力对体系所做的功:一方面用来改变链段的构象(产生 形变),另一方面提供链段运动时克服内摩擦阻力所需要的能量 .

材料的弹性与滞弹性内含精选动图资料

材料的弹性与滞弹性内含精选动图资料
无应力作用时
体心立方
3、内耗机制
施加单向拉应力后,间隙原 子将沿拉伸方向排队,这种 现象称为应力感生有序。间 隙原子存在应力感生有序倾 向,对于应力产生的应变就 有弛豫现象。当晶体在这个 方向受到交变应力作用的时 候,间隙原子就在这些位置 上来回跳动,使应变落后于 应力,导致能量损耗。
3、内耗机制
B、热膨胀与膨胀合金
B、热膨胀与膨胀合金
定膨胀合金的主要特点是在一定温度范围内, 具有与玻璃或陶瓷等封接材料相近的线膨胀 系数。因此这类膨胀合金也称为封接材料。
B、热膨胀与膨胀合金
B、热膨胀与膨胀合金
B、热膨胀与膨胀合金
双金属带材:热双金属是 由两层或两层以上具有 不同线膨胀系数的合金 牢固结合的复合材料。 膨胀系数较大的合金层 称为主动层,膨胀系数 较小的合金层称为被动 层,主动层与被动层间 可加有起调节电阻作用 的中间层,当环境温度 变化时,由于主动层和 被动层的膨胀系数不同, 产生弯曲或转动。
2、弹性滞后效应
2、弹性滞后效应
振幅的拟合函数
材料震荡衰减曲线
2、弹性滞后效应
弛豫时间越长的过程,内耗峰值所对应的频率越低。 例如:置换原子的扩散比间隙原子的扩散就要难得多, 所以只能在极低的频率下产生内耗。
3、内耗机制
内耗是材料内部的内耗源在应力作用下的行
为的本质反映。
各类点缺陷、线缺陷、
3、内耗机制
3) 与晶界有关的内耗
晶粒愈细, 晶界多,则 内耗峰值愈 大。
3、内耗机制
3) 与晶界有关的内耗
A、晶粒愈细,晶界愈多,则内耗峰值愈大 B、杂质原子分布于晶界,对晶界起着钉扎 作用,从而可使晶界峰值显著地下降,当杂 质的浓度足够高时,晶界峰可完全消失。 因此晶界内耗的测量可用于研究与晶界强化 有关的问题。

材料性能学名词解释大全

材料性能学名词解释大全

名词解释第一章:弹性比功:材料在弹性变形过程中吸收变形功的能力。

包申格效应:是指金属材料经预先加载产生少量塑性变形,而后再同向加载,规定残余伸长应力增加,反向加载,规定残余伸长应力降低的现象。

滞弹性:是材料在加速加载或者卸载后,随时间的延长而产生的附加应变的性能,是应变落后于应力的现象。

粘弹性:是指材料在外力的作用下,弹性和粘性两种变形机理同时存在的力学行为。

内耗:在非理想弹性变形过程中,一部分被材料所吸收的加载变形功。

塑性:材料断裂前产生塑性变形的能力。

韧性:是材料力学性能,是指材料断裂前吸取塑性变形攻和断裂功的能力。

银纹:是高分子材料在变形过程中产生的一种缺陷,由于它密度低,对光线反射高为银色。

超塑性:材料在一定条件下呈现非常大的伸长率(约1000%)而不发生缩颈和断裂的现象。

脆性断裂:是材料断裂前基本不产生明显的宏观塑性变形,没有明显预兆,而是突然发生的快速断裂过程。

韧性断裂:是指材料断裂前及断裂过程中产生明显宏观塑性变形的断裂过程。

解理断裂:在正应力作用下,由于原子间结合键的破坏引起的沿特定晶面发生的脆性穿晶断裂。

剪切断裂:是材料在切应力作用下沿滑移面滑移分离而造成的断裂。

河流花样:两相互平行但出于不同高度上的解理裂纹,通过次生解理或撕裂的方式相互连接形成台阶,同号台阶相遇变汇合长大,异号台阶相遇则相互抵消。

当台阶足够高时,便形成河流花样。

解理台阶:不能高度解理面之间存在的台阶韧窝:新的微孔在变形带内形核、长大、聚集,当其与已产生的裂纹连接时,裂纹便向前扩展形成纤维区,纤维区所在平面垂直于拉伸应力方向,纤维区的微观断口特征为韧窝。

2 材料的弹性模数主要取决因素:1)键合方式和原子结构2)晶体结构3)化学成分4)微观组织5)温度6)加载方式3决定金属材料屈服强度的因素1)晶体结构2)晶界与亚结构3)溶质元素4)第二相5)温度6)应变速率与应力状态4 金属的应变硬化的实际意义1)在加工方面:利用应变硬化和塑性变形的合理配合,可使金属进行均匀的塑性变形,保证冷变形工艺的顺利实施2)在材料应用方面:应变硬化可以使金属机件具有一定的抗偶然过载能力,保证机件的安全使用。

1.2 粘弹性和滞弹性

1.2 粘弹性和滞弹性

图l-11所示,当突然施加一应力σo于拉 伸试样时,试样立即沿0A线产生瞬时 应变Oa。如果低于材料的微量塑性变 形抗力,则应变Oa只是材料总弹性应 变OH中的一部分。应变aH只是在σo长 期保持下逐渐产生的,aH对应的时间 过程为图1-11中的ab曲线。
恒定应力σo
卸载时,如果速度也比较大,则当应力下降为零时,只 有应变eH部分立即消逝掉,而应变eO是在卸载后逐渐去 除的,这部分应变对应的时间过程为图中的cd曲线。
b.交联:可以防止分子间的相对滑移。如橡胶采用硫化 交联的办法来防止由蠕变产生分子间滑移造成的不可 逆形变。
2. 聚合物的蠕变现象
从分子运动和变化的角度来看,蠕变过程分为: a.普弹形变
(t)
从分子运动的角度解释:
材料受到外力的作用,链内的键长和 键角立刻发生变化,产生的形变很小, 我们称它普弹形变.
(t)
t
外力除去, 立即完全回复
t1
t2 t
图1 理想弹性体(瞬时蠕变)普弹形变
0
E1
0 应力
E1 普弹形变模量
§1-4 粘弹性与滞弹性
理想弹性固体
➢ 弹性服从虎克定律, ➢ 特点:
✓ 受外力作用后,应力和应变之间呈线性关系 ,应力与 应变随时保持同相位;
✓ 应变与t无关。受力时,应变瞬时发生达到平衡值,除 去外力,应变瞬时恢复(可逆)。
E
t
t1
t2
滞弹性
➢ 实际上,绝大多数固体材料的弹性行为很难满足理想弹 性行为。一般都表现出非理想弹性性质,即实际固体的 应力与应变不是单值对应关系,往往有一个时间的滞后 现象。
(t)
t
不可回复
t1 t2
t
图3 理想粘性流动蠕变

无机材料物理性能第2讲

无机材料物理性能第2讲
➢ 5.晶体结构 共价键结构程度增加,扩散及位错运动降低,
抗蠕变性能就较好。
1.6 无机材料的超塑性
超塑性:一些晶粒尺寸非常细小的无机材料在较高温度下 受到一个缓慢增大的荷载作用时,其永久形变能力发生较 大幅度的提高,远大于常规变形极限的现象。
超塑性
相变超塑性:由于材料发生结构相变而导致永 久性的各向异性尺寸变化。
如果玻璃相不润湿晶相,则晶界为晶粒与晶粒结合, 抵抗蠕变的性能就好;如果玻璃相完全湿润晶相, 玻璃相穿入晶界,将晶粒包围,就形成了抗蠕变最 薄弱的结构,抵抗蠕变的性能就差,其它湿润程度处 在二者之间。
➢ 4.组成 组成不同的材料其蠕变行为不同。 即使组成相同,单独存在和形成化合物,其蠕 变行为不一样。
柏氏矢量具有守恒性,一根不分叉的任何形状的位错 只有一个柏氏矢量。
三、 塑性形变速率对屈服强度的影响
YS m
式中,m为位错运动速率的应力敏感性指数。
1.4 高温下玻璃相的黏性流动
dv
dx
dv 或
dx
dr
dt
式中,常数为粘性系数或粘度,单位为 Pa s
这一定律称为牛顿定律,符合这一定律的流体叫 牛顿液体。
e u 2
0 E kT sinh
23
2kT
1
根据牛顿定律 : dv , 得:
1
dx
1
1
2
eE
0
kT
sinh 231
3kT
可近似认为
1
2
3
, 则:
expE kT
式中:
v
2
0
sinh
0
2kT
E —没有剪应力时的势垒高度;
—频率,即每秒超过势垒的次数; 0

物体的粘弹性名词解释

物体的粘弹性名词解释

物体的粘弹性名词解释物体的粘弹性是指物体在受力后能够具有一定的变形,并且在去除外力后能够恢复到原有形状和大小的性质。

这种性质常见于许多材料和物质,如橡胶、黏土、塑料等。

粘弹性的具体表现包括两个方面:粘性和弹性。

粘性是指物体在受力下会出现持续性的变形和流动现象。

当外力作用于物体时,物体各部分间的分子或原子发生相对位移,导致物体的形态发生改变。

在外力去除后,物体会经过一段时间才能恢复到原始状态。

这是因为物体内部的分子或原子需要一定的时间来重新排列和重新组合,以恢复原有的结构。

橡胶是一个常见的具有粘性的材料,当我们拉伸一块橡胶时,它会发生可见的变形,并且橡胶大小变大,拉伸结束后,橡胶会慢慢恢复到原始长度和形状。

而弹性是指物体在受力下发生变形后能够迅速恢复到原有形状和大小的性质。

当外力作用于物体时,物体内部的原子或分子会发生相对位移,导致物体发生形变。

然而,一旦外力去除,物体会立即恢复到原有的形状和大小,这是因为物体内部的分子或原子能够自行重新排列和重新组合,以恢复原有的结构。

弹簧是一个典型的具有弹性的物体,当我们把弹簧压缩或拉伸时,它会发生可见的变形,但一旦释放压力,弹簧会立即恢复到原始状态。

粘弹性是指物体同时具有粘性和弹性的性质。

粘弹性物体在受力后既会发生形变,又会恢复到原有形状和大小。

这种性质可以通过应力松弛实验来进行观察和研究。

在应力松弛实验中,物体在受到外力后,会出现初始的形变,然后随着时间的流逝逐渐恢复到较小的变形。

这是因为物体内部的分子或原子在受力后会发生位移,导致物体产生粘性的流动,但随着时间的推移,分子或原子会重新排列和重新组合,恢复到原始结构,这个过程称为应力松弛。

粘弹性在工程和科学领域具有广泛的应用。

在材料工程中,理解和掌握材料的粘弹性能够帮助工程师设计和生产具有特定性能的材料。

在机械制造领域,合理利用物体的粘弹性能够改善产品的寿命和耐久性。

在生物医学领域,理解生物组织的粘弹性能够为疾病的诊断和治疗提供有力的支持。

无机材料物理性能,名词解释

无机材料物理性能,名词解释

第一章1.形变(变形):材料的形状和尺寸随外力作用而改变的现象。

2.弹性模量:表征材料抵抗变形的能力。

3.滞弹性:弹性行为与时间有关,表征材料的形变在应力移去后能够恢复但不能立即恢复的能力。

4.剪切应变:材料的内部一体积元上的两个面元之间的夹角的变化。

5.应变松弛:固体材料在恒定载荷下,变形随时间延续而缓慢增加的不平衡过程,或材料变形后内部原子由不平衡到平衡的过程,也称蠕变或徐变。

6.应力松弛:在持续外力作用下,发生形变着的物体,在总的形变值保持不变的情况下,由于徐变变形渐增,弹性变形相应减小,由此使物体的内部应力随时间延续而逐渐减少的过程。

即一体系因外界原因引起的不平衡状态逐渐转为平衡状态的过程。

7.塑性形变:在超过材料的屈服应力作用下,产生变形,外力移去后不能恢复的形变。

8.塑性:表征材料经受塑性变形而不被破坏的能力。

9.硬度:表示材料表面在承受局部静压力下抵抗变形的能力。

10.断裂功:指材料在抵抗外力破坏时,单位面积上所需吸收的功。

11.蠕变:材料在恒定载荷作用下,随着时间延长持续发生塑性变形的现象。

12.冲击韧性:指材料在冲击载荷下吸收塑性变形功和断裂功的能力。

13.滑移:是刃型位错沿滑移面从晶体内部移出的过程或刃型位错沿滑移面的运动。

14.静态疲劳(亚临界裂纹扩展):在持久载荷下发生的断裂。

15.动态强度:指材料抵抗冲击载荷作用而不至于发生断裂破坏的能力。

第二章1.抗热震性(抗热冲击性):指材料承受温度骤变而不至于被破坏的能力。

2.比热容:指单位质量材料升高(降低)1K所需吸收(放出)的热量。

3.热膨胀:物体的体积或长度随温度升高而增大的现象。

4.热导率:指热量流过材料的速率。

5.热扩散系数:表征物体内部温度趋于均衡的能力,其大小直接影响物体中的温度梯度分布。

6.热抗震系数:为脆性无机材料抗热震断裂能力的度量。

第三章1.电偶极子:由一个正电荷q和另一个符号相反、数量相等的负电荷-q由于某种原因而坚固的互相束缚与不等于零的距离上所组成。

第六章 弹性与滞弹性

第六章 弹性与滞弹性

三、影响因素 1. 温度的影响
金属的弹性模量随温度升高而降低,而且弹性模量随温度升高
近似呈直线降低。
2. 相变的影响
材料内部的相变(如多晶型转变、有序化转变、铁磁性转变及
超导态转变)都会对弹性模量产生明显的影响。金属发生相变时, 其弹性弹性模量会偏离随温度正常变化的规律。
3.合金成分与组织的影响
(1)形成固溶体合金 (2)形成化合物和多相合金
4、与晶界有关的内耗
5、热弹性内耗和磁弹性内耗 (1)热弹性内耗 (2)磁弹性内耗 a.宏观涡流损耗 b.微观涡流损耗 c.静态滞后损耗
第三节
高阻尼合金与弹性模量的反常变化
一 高阻尼合金 机制: 1、与弹性孪晶结构有关的内耗 2、与明显不均匀组织结构有关的内耗 3、与铁磁性合金机械滞后效应有关的内耗
4. 晶体结构的影响
弹性模量是依晶体的方向而改变的。多晶 体的弹性模量不依方向而变化。可用单位晶体 的弹性模量取平均值来计算。 如果通过冷变形(冷轧、冷拉、冷压、扭转), 且冷变形量很大时,由于织构的形成,将导致 金属与合金弹性模量各向异性。
四、铁磁状态的弹性反常(△E效应)
未磁化的铁磁材料,在居里温度以下的弹性模量比磁饱 和状态的弹性模量低,这一现象称为弹性的铁磁性反 常,又称△E效应。
第六章 弹性与滞弹性
弹性是一种重要的物理性能,弹性理论在机械设计和计算中占有重要的地位. 材料的弹性是人们选择和使用材料的依据之一.作为减振元件或结构则要求材料 应变能高.近代航空,航天,无线电及精密仪器,仪表工业对材料的弹性有更高的要 求,不仅要有高的弹性模量,而且要有恒定.因此准确测定材料的弹性常数对研究 材料间原子的相互作用具有工程和理论意义.
E E G ,K 2(1 ) 3(1 2 )

材料性能学王从曾答案

材料性能学王从曾答案

材料性能学王从曾答案【篇一:材料性能学】002362 、课程名称(中、英文)材料性能学an introduction to materials properties3 、授课对象材料科学与技术试验班、材料物理专业本科生4 、学分3 学分,54学时5 、修读期第六学期或第七学期6 、课程组负责人(姓名、所在学院、职称、学位)潘春旭,物理科学与技术学院,教授,博士7 、课程简介该课程涉及知识面宽,信息量大,基础性强。

主要讲授材料各种性能的基本概念、物理(化学)本质、影响材料性能的因素及性能指标的测试原理与工程应用等。

主要内容包括:1)材料的力学性能:材料在静载条件下的力学性能、冲击韧性、断裂韧性、疲劳性能、磨损性能,以及高温力学性能等;2)材料的物理性能:材料的热学性能、磁学性能、电学性能、光学性能、压电及铁电性能等。

8、实践环节学时与内容或辅助学习活动实验课4学时“断口形貌的电镜观察”;看专题录像 2 学时;课堂讨论课6 学时,要求学生就材料的光学效应、材料的疲劳性能、材料的磨损性能、材料的高温力学性能、材料的腐蚀效应,等内容,写出课堂论文,并做成ppt 文件在班上演讲。

9 、成绩考评期末考试笔试:50% ;平时成绩15%;撰写小论文:35%10 、指定教材《材料性能学》王从曾主编,刘会亭主审,北京工业大学出版社,2001 年。

11 、参考书目《材料物理性能》田莳编著,北京航空航天大学出版社,2001 年。

《工程材料力学性能》刘瑞堂、刘文博、刘锦云编,哈尔滨工业大学出版社,2001 年。

【篇二:材料性能学复习总结(王从曾版)l 力学部分】=txt> 第一章1. 熟悉力——拉伸曲线和应力——应变曲线的测试方法。

(书本p1)常用的拉伸试件:为了比较不同尺寸试样所测得的延性,要求试样的几何相似,l0 /a01/2 要为一常数.其中a0 为试件的初始横截面积。

光滑圆柱试件:试件的标距长度l0 比直径d0 要大得多;通常,l0=5d0 或l0=10d0板状试件: 试件的标距长度l0 应满足下列关系式:l0=5.65a01/2 或11.3a0 1/2 。

材料的弹性和滞弹性

材料的弹性和滞弹性

材料的弹性和滞弹性弹性和滞弹性是材料力学性质中的重要概念,对于材料的工程应用和设计具有重要意义。

弹性是材料力学性质中最基本的特性之一、当外力作用于材料时,材料会发生形变。

对于弹性材料而言,在外力解除后,材料会立即恢复到未受力前的原始形状和尺寸,即形变完全消失。

这种性质被称为弹性。

弹性是材料受力产生弹性形变的结果。

在材料受力时,其中的原子或分子发生相对位移,形成了新的平衡位置。

当外力解除后,这些原子或分子之间的相对位移便会消失,恢复到没有受力前的初始位置。

这种恢复到原状的能力称为弹性回复。

弹性材料的弹性回复是可以完全恢复的,也就是说,弹性形变是可逆的。

这意味着材料在受力下形变时,其内部原子或分子的相对位置发生改变,但是这种变化是可逆的,一旦外力解除,相对位置就会回到初始状态,形变完全消失。

当材料受到外力作用时,它的形变不仅取决于外力的大小和方向,还取决于材料自身的性质。

材料的弹性可以通过弹性模量(也称为杨氏模量)来描述。

弹性模量是衡量材料弹性性质的指标,它与材料的刚度相关,材料的刚度越大,弹性模量就越大,材料的形变能力就越小。

而相对于弹性,滞弹性是材料的一种特殊性质。

在实际应用中,有些材料在受力过程中不仅发生弹性形变,而且还有一定的延展性和留下不可逆形变的能力,这种现象称为滞弹性。

滞弹性是弹性材料在受力后不完全恢复到原始状态的性质。

当外力作用于滞弹性材料时,材料会发生形变,包括弹性形变和塑性形变。

弹性形变是可逆形变,当外力解除后可以完全恢复。

而塑性形变是不可逆形变,当外力解除后只能部分或者完全恢复。

滞弹性是由材料内部的微观结构和分子结构的变化引起的。

在材料受力作用下,微观结构和分子结构发生位移和相互影响,形成了新的平衡位置,导致材料的形变。

当外力解除后,这些位移不会完全恢复到初始位置,引起了材料的残余形变,即滞弹性变形。

滞弹性是由材料的内部结构和组成决定的,不同类型的材料具有不同的滞弹性特性。

一些金属材料,如钢和铜,具有较低的滞弹性,弹性变形和塑性变形在总形变中所占比例较大,形变能大部分恢复。

材料性能学复习总结(王从曾版)

材料性能学复习总结(王从曾版)

材料性能学课后习题答案(王从曾版)第一章1、名词解释弹性比功We:材料开始塑性变形前单位体积所能吸收的弹性变形功,又称弹性比能或应变比能。

包申格效应:金属材料经预先加载,产生少量塑性变形(1-4%),然后再同向加载,弹性极限(屈服极限)增加,反向加载,σe降低的现象。

滞弹性:材料在快速加载或则卸载后,随时间的延长而产生的附加弹性应变得性能。

粘弹性:材料在外力作用下,弹性和粘性两种变形机制同时存在的力学行为。

表现为应变对应力的响应(或反之)不是瞬时完成,而需要通过一个馳豫过程,但卸载后应变逐渐恢复,不留残余变形。

表现形式:应力松驰:恒定温度和形变作用下,材料内部的应力随时间增加而逐渐衰减的现象。

蠕变:恒定应力作用下,试样应变随时间变化的现象。

高分子材料当外力去除后,这部分蠕变可缓慢恢复。

伪弹性:在一定温度条件下,当应力达到一定水平后,金属或合金将由应力诱发马氏体相变,伴随应力诱发相变产生大幅度弹性变形的现象。

伪弹性变形量60%左右。

工程应用:形状记忆合金内耗:在非理想弹性条件下,由于应力-应变不同步,使加载线与卸载线不重合而形成一封闭回线,这个封闭回线称为弹性滞后环。

存在弹性滞后环的现象说明加载材料时吸收的变形功大于卸载时材料释放的变形功,有一部分加载变形功被材料所吸收。

这部分在变形过程中被吸收的功称为材料的内耗,其大小可用回线面积度量。

塑性:指金属材料断裂前发生塑性变形的能力。

脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力。

韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力,或指材料抵抗裂纹扩展的能力。

银纹:高分子材料在变形过程中产生的一种缺陷,其密度低对光线的反射能力很高,看起来呈银色,故称银纹。

其内部为有取向的纤维和空洞交织分布。

超塑性:是指材料在一定的内部条件和外部条件下,呈现非常大的伸长率而不发生颈缩和断裂的现象。

脆性断裂:材料未经明显的宏观塑性变形而发生的断裂。

断口平齐而光亮,且与正应力垂直,断口呈人字或放射花样。

第五章 弹性与滞弹性

第五章 弹性与滞弹性

➢高弹性模量的材料加载时具有大的裂纹扩展速率。
➢自动控制仪表、高级钟表及精密仪器,材料的弹性模 量随温度变化是有害的;合金在一定温度范围内,其弹 性模量保持恒定,称为恒弹性材料。
一、弹性模量及其物理本质
E G
p K
➢ σ、τ和p分别为正应力、切应力和体积压缩应力;ε、γ和θ 分别为线应变、切应变和体积应变;比例系数E、G和K分别为正弹 性模量(杨氏模量)、切变模量和体积模量。
弯曲振动:
α为试样的热膨胀系数;T为加热温度。
(二)悬挂法测弹性模量
悬挂法测弹性模量是弯曲共振法的一种。
✓由音频信号发生器发出交
变信号并传给换能器,换能
器通过悬丝把转换成的机械
振动传给试样,驱使试样产
生弯曲振动,试样振动的频
率与音频信号发生器发出的
信号频率相同。另一端悬丝
把试样机械振动传给接收换
能器,转换成电信号,经放 图5-21 悬挂法共振测量弹性模
➢磁性材料弹性模量温度系数的反常: ➢温度升高引起晶体点阵常数增大,应力伸长增大,E值 下降;自发磁化强度减小,磁致伸缩现象减弱,附加应 变减小,E值上升。Elinvar合金和Invar合金。
图5-18 不同磁场下镍的弹 性模量与温度的关系
图5-19 42%Ni+58%Fe Invar 合金弹性模量与温度关系
第一节 材料的弹性 第二节 影响弹性模量的因素 第三节 弹性模量的各向异性 第四节 弹性的铁磁性反常 第五节 弹性模量的测量及应用 第六节 滞弹性与内耗 第七节 内耗产生的机制 第八节 内耗的量度和内耗的测量方法 第九节 内耗分析的应用
➢外力去除后,材料恢复到形变前的形状和尺寸的能力 称为弹性。
➢材料在交变应力作用下,在弹性范围内还存在非弹性 行为,称为滞弹性。

粘弹性介绍选编

粘弹性介绍选编
驰掉了,觉察不到。 温度过低,链段运动受到内摩擦力很大,应力松驰
极慢,短时间也不易觉察。 只有在Tg附近,聚合物的应力松驰最为明显。 △应用中,要考虑应力松驰,剩余应力。
7.3 线性粘弹性模型
线性粘弹性:可由服从虎克定律的线性弹性行 为和服从牛顿定律的线性粘性行为的组合来描 述的粘弹性。
模型是唯象的处理
模型由代表理想弹性体的弹簧与代表理想粘性 体的粘壶以不同方式组合而成
E
σ=E·ε
dε σ=η·dt

弹簧 理想弹性体
粘壶 理想粘性体
7.3 线性粘弹性模型
7.3.1 Maxwell 模型 一个弹簧与一个粘壶串联组成
E η
F
t=0
t=∞
7.3.1 Maxwell 模型
7.3.1 Maxwell 模型
dt
d 1 ( ( ) ) dt
d 1 ( ( ) ) dt
d dt ( ( ))
两边积分: ( t ) ( )( 1 )

Kelvin模型的应力松弛方程
(3) 分子运动与温度的关系 The relationship with temperature
High molecules, =10-1~10-4s
T

T

Time dependence
在一定的温度和外力作用 下,高聚物分子从一种平 衡态过渡到另一种平衡态 需要一定的时间。
x x0e t /
stress removed (t)
0/
0
t
7.3.1 Maxwell 模型
dε 1 dσ σ dt = E ·dt +η
dε 应力松弛: ε=常数,即 dt =0

[精品]1弹性模量e

[精品]1弹性模量e

1弹性模量E:是一个重要的材料常数,它是原子间结合强度的一个标志。

2粘弹性与滞弹性:一些非晶体和多晶体在比较小的应力时,可以同时表现出弹性和粘性,称为粘弹性。

对于理想的弹性固体,作用应力会立即引起弹性应变,一旦应力消除,应变也随之立即消除。

但对于实际固体这种弹性应变的产生与消除需要有限时间,这种与时间有关的弹性称为滞弹性。

3蠕变:当对粘弹性体施加恒定应力时,其应变随时间而增加,这种现象叫蠕变,此时弹性模量也随时间而减小。

4驰豫:如果施加恒定应变,则应力将随时间而减小,这种现象叫驰豫。

此时,弹性模量也随时间而降低。

5杜隆一珀替定律:(元素的热容定律)恒压下元素的原子热容为6柯普定律:(化合物的热容定律)化合物分子热容等于构成该化合物各元素原子热容之和。

7防止裂纹扩展的措施1使作用应力不超过临界应力,裂纹就不会失稳扩展。

2.在材料中设置吸收能量的机构阻止裂纹扩展。

⑴陶瓷材料中加入塑性粒子或纤维。

⑵人为地造成大量极微细的裂纹(小于临界尺寸)能吸收能量,阻止裂纹扩展。

8显微结构对材料脆性断裂的影响一、晶粒尺寸大量试验证明:晶粒越小,强度越高。

断裂强度与晶粒直径d的平方根成反比:式中,和为材料常数如果起始裂纹受晶粒限制,其尺度与晶粒度相当,则脆性断裂与晶粒度的关系为:二、气孔的影响断裂强度与气孔率的P关系:n 为常数,一般为4~7;为没有气孔时的强度。

1.气孔不仅减小了负荷面积,而且在气孔邻近区域应力集中,减弱了材料的负荷能力。

2.在高应力梯度时,气孔能容纳变形,阻止裂纹扩展的作用。

1载流子:负载电荷并可形成电流的自由粒子。

2、霍尔效应(电子电导特性)现象:沿试样x轴方向通入电流I(电流密度Jx),Z轴方向加一磁场Hz,那么在y轴方向上将产生一电场Ey,这一现象称为霍尔效应。

所产生电场为:3、电解效应(离子电导特性)离子的迁移伴随质量变化,离子在电极附近发生电子得失,产生新的物质。

4本征电导(固有离子电导):源于晶体点阵的基本离子的运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t1
t2
t
0 应力
E1 普弹形变模量
图1 理想弹性体(瞬时蠕变)普弹形变
b.高弹形变
链段运动
(t) 0 (t<t1) t/
(t)
t
外力除去, 逐渐回复
(t)=
E
( 1 e ) 松弛时间
2
=2/E2
0 (t→) E2-高弹模量 特点:高弹形变是逐渐回复的.
t1
t2
图l-11所示,当突然施加一应力σo于 拉伸试样时,试样立即沿0A线产生瞬时 应变Oa。如果低于材料的微量塑性变形 抗力,则应变Oa只是材料总弹性应变OH 中的一部分。应变aH只是在σo长期保 持下逐渐产生的,aH对应的时间过程为 图1-11中的ab曲线。
ห้องสมุดไป่ตู้
恒定应力σo
卸载时,如果速度也比较大,则当应力下降为零时, 只有应变eH部分立即消逝掉,而应变eO是在卸载后逐渐去 除的,这部分应变对应的时间过程为图中的cd曲线。
线形非晶态聚合物在Tg以上单轴 拉伸的典型蠕变及回复曲线
2. 聚合物的蠕变现象
从分子运动和变化的角度来看,蠕变过程分为: a.普弹形变 (t)
从分子运动的角度解释:
材料受到外力的作用,链内的键长和 键角立刻发生变化,产生的形变很小, 我们称它普弹形变.
(t)
t
外力除去, 立即完全回复

0
E1
当聚合物受力时,以上三种形变同时发生聚 合物的总形变方程:
2+3
1 2 3
t
( t ) 1 2 3 -t
1
(1 e ) t E1 E2 3
线形非晶态聚合物的蠕变及回复曲线
d.不同聚合物的蠕变曲线:
①线性结晶聚合物
玻璃态 1 蠕变量很小,工程材料,作结构材料的Tg 远远高于室温 高弹态 1+2 粘流态 1+2+3 存在永久形变 ②理想交联聚合物(不存在粘流态)
受力作用后,应力与应变速率呈线性关系;
受力时,应变随时间线性发展,外力去除后,应变 不能回复。


t

d d

t1
t2
粘弹性
材料在较小的外力作用下,弹性和粘性同时存在的力学
行为称为粘弹性。 其特征是应变落后于应力,即应变对应力的响应不是 瞬时完成的,需要通过一个弛豫过程。应力与应变的 关系与时间有关。 粘弹性材料的力学性质与时间有关,具有力学松弛的特 征。 最典型的是高分子材料。一些非晶体,有时甚至多晶体, 在比较小的应力时表现粘弹性现象。高分子材料常见的力 学松弛现象:蠕变、应力松弛、滞后和内耗
无机固体和金属材料发生弹性形变时,应变落后于应力 的行为,即与时间有关的弹性称为滞弹性。



滞弹性的应变落后于应力,有一个时间的滞后
滞弹性的应变不仅与应力有关,而且与时间有关,弹性模量也 依赖于时间。
滞弹性体的应变在应力卸除后可以完全回复到原始形状 和尺寸,只要经过充分长时间才能达到。它与不可能完 全回复的非弹性体有明显的区别。
§1-4 粘弹性与滞弹性
理想弹性固体
弹性服从虎克定律, 特点: 受外力作用后,应力和应变之间呈线性关系 ,应力与 应变随时保持同相位; 应变与t无关。受力时,应变瞬时发生达到平衡值,除 去外力,应变瞬时恢复(可逆)。

E


t1
t2

t
滞弹性
实际上,绝大多数固体材料的弹性行为很难满足理想弹 性行为。一般都表现出非理想弹性性质,即实际固体的 应力与应变不是单值对应关系,往往有一个时间的滞后 现象。
(4)结构 主链刚性:分子运动性差,外力作用下,蠕变小 ε(%)
2.0
1.5 1.0 0.5
聚砜
ABS(耐热级)
聚苯醚
聚碳酸酯
聚甲醛
尼龙
改性聚苯醚 ABS 1000 2000
图6
3000
t
f、 提高材料抗蠕变性能的途径: 聚合物蠕变性能反映了材料的尺寸稳定性和长期 负载能力,有重要的实用性。如主链含有杂环的刚性 链聚合物具有较好的抗蠕变性能,成为广泛应用的工 程塑料,可以代替金属材料加工机械零件。如工程塑 料:POM、PC、PSF等。
具体表现:
蠕变:固定和T, 随t增加而逐 渐增大
静态的粘弹性 (粘弹性) 力学松弛 动态粘弹性 应力松弛:固定和T, 随t增加而 逐渐衰减 滞后现象:在一定温度和和交变应 力下,应变滞后于应力变化. 力学损耗(内耗): 的变化落后于 的变化,发生滞后现象,则每一个循 环都要消耗功,称为内耗.
t
图2 理想高弹体推迟蠕变
c.粘性流动 (t) 无化学交联的线性高聚物,发生分 子间的相对滑移,称为粘性流动.
(t)
不可回复
t (t)=
0 (t<t1)
0 t (t1 t t 2 ) 3
0 t 2 (t t 2 ) 3
t1
t2
t
3-----本体粘度
注:不可逆形变
图3 理想粘性流动蠕变
t
(3)受力时间:受力时间延长,蠕变增大。
如何观察到完整的蠕变曲线?
温度过低远小于Tg,或外力太小,蠕变量很小,很 慢,短时间内观察不出。 T过高(>>Tg),或外力大,形变太快,也观察不出。 只有在适当的外力,温度在Tg以上不远时,才可以 观察到完整的蠕变曲线。原因:因为链段可运动, 但又有较大阻力——内摩擦力,因而只能较缓慢的 运动。
一、蠕变 1. 定义
蠕变是在一定的温度和较小的恒定应力(拉力、 扭力或压力等)作用下,材料的形变随时间的增长而 逐渐增加的现象。如硬塑料的电缆、挂久的雨衣。 若除掉外力,形变随时间变化而减小---称为蠕变回复
软PVC丝
砝码

1
2+3 1
a) 普弹形变ε1
2 3
t
b) 高弹形变ε2
c) 粘性流动ε3
ε 线性非晶 高聚物 理想粘性体 理想弹性体 交联高聚物
形变:
1 +2
t
e、蠕变的影响因素 (1)温度:温度升高,蠕变速率增大,蠕变程度变大
因为外力作用下,温度高使分子运动速度加快,松弛加快
(2)外力作用大,蠕变大,蠕变速率高(同于温度的作用)
外 力 增 大 温 度 升 高
图5 蠕变与,T的关系
滞弹性在金属材料和高分子材料(高弹形变) 中表现得比较明显。 材料的滞弹性对仪器仪表和精密机械中的重
要传感元件的测量精度有很大影响,因此选用材
料时需要考虑滞弹性问题。 如长期受载的测力弹簧、薄膜传感器等。所 选用材料的滞弹性较明显时,会使仪表精度不足, 甚至无法使用。
理想粘性液体
粘性服从牛顿流动定律 特点:
相关文档
最新文档