第5章习题及答案_无机材料科学基础
第5章习题及答案-无机材料科学基础教学教材
第5章习题及答案-无机材料科学基础教学教材第5章习题及答案-无机材料科学基础第五章固体表面与界面5-1 名词解释驰豫表面重构表面定向作用诱导作用色散作用范德华力润湿角临界表面张力粘附功阳离子交换容量聚沉值触变性滤水性可塑性5-2 何谓表面张力和表面能?在固态和液态这两者有何差别?5-3 在石英玻璃熔体下 20cm处形成半径5×10-8m的气泡,熔体密度为 2200kg/m3,表面张力为0.29N/m,大气压力为1.01×105Pa,求形成此气泡所需最低内压力是多少?5-4 (1)什么是弯曲表面的附加压力?其正负根据什么划分?(2)设表面张力为0.9J/m2,计算曲率半径为0.5μm、5μm的曲面附加压力?5-5什么是吸附和粘附?当用焊锡来焊接铜丝时,用挫刀除去表面层,可使焊接更加牢固,请解释这种现象?5-6在高温将某金属熔于Al2O3片上。
(1)若Al2O3的表面能估计为1J/m2,此熔融金属的表面能也与之相似,界面能估计约为0.3J/m2,问接触角是多少?(2)若液相表面能只有Al2O3表面能的一半,而界面能是Al2O3表面张力的2倍,试估计接触角的大小?5-7在20℃及常压下,将半径为10-3m的汞分散成半径为10-9m的小汞滴,求此过程所需作的功是多少?已知20℃时汞的表面张力0.470N/m。
5-8在2080℃的Al2O3(L)内有一半径为10-8m的小气泡,求该气泡所受的附加压力是多大?已知2080℃时Al2O3(L)的表面张力为0.700N/m。
5-9 20℃时苯的表面张力为0.0289N/m,其饱和蒸气压为10013Pa,若在20℃时将苯分散成半径为10-6m的小滴,计算:(1)苯滴上的附加压力;(2)苯滴上的蒸气压与平面上苯液饱和蒸气压之比。
5-10 20℃时,水的饱和蒸气压力为2338Pa,密度为998.3kg/m3,表面张力为0.07275N/m,求半径为10-9m的水滴在20℃时的饱和蒸气压为多少?5-11若在101325Pa,100℃的水中产生了一个半径为10-8m 的小气泡,问该小气泡能否存在并长大?此时水的密度为958kg/m3,表面张力为0.0589N/m。
陆佩文版无机材料科学基础习题及解答第五章扩散
第五章扩散7-1解释并区分下列概念:(1)稳定扩散与不稳定扩散;(2)本征扩散与非本征扩散;(3)自扩散与互扩散;(4)扩散系数与扩散通量。
解:略7-2 浓度差会引起扩散,扩散是否总是从高浓度处向低浓度处进行?为什么?解:扩散是由于梯度差所引起的,而浓度差只是梯度差的一种。
当另外一种梯度差,比如应力差的影响大于浓度差,扩散则会从低浓度向高浓度进行。
7-3 欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,要求三价离子有什么样的浓度?试对你在计算中所做的各种特性值的估计作充分说明。
已知CaO肖特基缺陷形成能为6eV。
解:掺杂M3+引起V’’Ca的缺陷反应如下:当CaO在熔点时,肖特基缺陷的浓度为:所以欲使Ca2+在CaO中的扩散直至CaO的熔点(2600℃)时都是非本质扩散,M3+的浓度为,即7-4 试根据图7-32查取:(1)CaO在1145℃和1650℃的扩散系数值;(2)Al2O3在1393℃和1716℃的扩散系数值;并计算CaO和Al2O3中Ca2+和Al3+的扩散活化能和D0值。
解:由图可知CaO在1145℃和1650℃的扩散系数值分别为,Al2O3在1393℃和1716℃的扩散系数值分别为根据可得到CaO在1145℃和1650℃的扩散系数的比值为:,将值代入后可得,Al2O3的计算类推。
7-5已知氢和镍在面心立方铁中的扩散数据为cm2/s和cm2/s,试计算1000℃的扩散系数,并对其差别进行解释。
解:将T=1000℃代入上述方程中可得,同理可知。
原因:与镍原子相比氢原子小得多,更容易在面心立方的铁中通过空隙扩散。
7-6 在制造硅半导体器体中,常使硼扩散到硅单晶中,若在1600K温度下,保持硼在硅单晶表面的浓度恒定(恒定源半无限扩散),要求距表面10-3cm深度处硼的浓度是表面浓度的一半,问需要多长时间(已知D1600℃=8×10-12cm2/s;当时,)?解:此模型可以看作是半无限棒的一维扩散问题,可用高斯误差函数求解。
无机材料科学基础课后答案word资料74页
第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
材料科学基础A习题答案第5章[1]解析
材料科学基础A习题第五章材料的变形与再结晶1、某金属轴类零件在使用过程中发生了过量的弹性变形,为减小该零件的弹性变形,拟采取以下措施:(1)增加该零件的轴径。
(2)通过热处理提高其屈服强度。
(3)用弹性模量更大的金属制作该零件。
问哪一种措施可解决该问题,为什么?答:增加该零件的轴径,或用弹性模量更大的金属制作该零件。
产生过量的弹性变形是因为该金属轴的刚度太低,增加该零件的轴径可减小其承受的应力,故可减小其弹性变形;用弹性模量更大的金属制作该零件可增加其抵抗弹性变形的能力,也可减小其弹性变形。
2、有铜、铝、铁三种金属,现无法通过实验或查阅资料直接获知他们的弹性模量,但关于这几种金属的其他各种数据可以查阅到。
请通过查阅这几种金属的其他数据确定铜、铝、铁三种金属弹性模量大小的顺序(从大到小排列),并说明其理由。
答:金属的弹性模量主要取决于其原子间作用力,而熔点高低反映了原子间作用力的大小,因而可通过查阅这些金属的熔点高低来间接确定其弹性模量的大小。
据熔点高低顺序,此几种金属的弹性模量从大到小依次为铁、铜、铝。
3、下图为两种合金A、B各自的交变加载-卸载应力应变曲线(分别为实线和虚线),试问那一种合金作为减振材料更为合适,为什么?答:B合金作为减振材料更为合适。
因为其应变滞后于应力的变化更为明显,交变加载-卸载应力应变回线包含的面积更大,即其对振动能的衰减更大。
4、对比晶体发生塑性变形时可以发生交滑移和不可以发生交滑移,哪一种情形下更易塑性变形,为什么?答:发生交滑移时更易塑性变形。
因为发生交滑移可使位错绕过障碍继续滑移,故更易塑性变形。
5、当一种单晶体分别以单滑移和多系滑移发生塑性变形时,其应力应变曲线如下图,问A、B中哪一条曲线为多系滑移变形曲线,为什么?应力滑移可导致不同滑移面上的位错相遇,通过位错反应形成不动位错,或产生交割形成阻碍位错运动的割阶,从而阻碍位错滑移,因此其应力-应变曲线的加工硬化率较单滑移高。
无机材料科学基础课后习题答案(5).
5.1试述影响置换型固溶体的固溶度的条件。
解:1. 离子尺寸因素从晶体稳定性考虑,相互替代的离子尺寸愈相近,则固溶体愈稳定。
若以r1和r2分别代表半径大和半径小的两种离子的半径。
当它们半径差< 15%时,形成连续置换型固溶体。
若此值在15~30%时,可以形成有限置换型固溶体。
而此值>30%时,不能形成固溶体。
2、晶体的结构类型形成连续固溶体的两个组分必须具有完全相同的晶体结构。
结构不同最多只能生成有限固溶体。
3、离子的电价因素只有离子价相同或复合替代离子价总和相同时,才可能形成连续置换型固溶体。
4、电负性因素电负性相近,有利于固溶体的生成。
5.2 从化学组成、相组成考虑,试比较固溶体与化合物、机械混合物的差别。
解:从化学组成、相组成考虑,固溶体、化合物和机械混合物的区别列下表5-1比较之。
表5-1 固溶体、化合物和机械混合物比较(以AO溶质溶解在B2O3溶剂中为例)比较项固溶体化合物机械混合物化学组成B2-x A x O(x =0~2)AB2O4AO+B2O3相组成均匀单相单相两相有界面5.3试阐明固溶体、晶格缺陷和非化学计量化合物三者之间的异同点。
列出简明表格比较。
解:固溶体、晶格缺陷和非化学计量化合物都属晶体结构缺陷,但它们又各有不同,现列表5-2比较之。
表5-2 固溶体、晶格缺陷和非化学计量化合物比较分类形成原因形成条件缺陷反应固溶式溶解度热缺陷肖特基缺陷晶格热振动0K以上0MX只受温度控制弗伦克尔缺陷M M =X X=MX固溶体无限置换型固溶体掺杂溶解<15% ,A2+电价=B2+电价,AO结构同BO,电负性相近AO B1-x A x O受温度控制x=0~1有限固间隙型间隙离子半径小,晶YF3掺杂量<固溶度,受温度控制溶体体结构开放,空隙大组分缺陷<30% ,Ca2+电价≠Zr4+电价2CaOCaO掺杂量<固溶度,受温度控制非化学计量化合物阳离子缺位环境中气氛性质和压变价元素氧化物在氧化气氛中O2(g)→2Fe+V+O O[h][P O]阴离子间隙O2(g)→+U(2h)[]阳离子间隙力变化变价元素氧化物在还原气氛中ZnO+2e′+O2(g)[]阴离子缺位O O→+2+O2(g)[ V]5.4试写出少量MgO掺杂到Al2O3中和少量YF3掺杂到CaF2中的缺陷方程。
材料基础第5章习题课
单晶体的塑性变形 ——孪生
1.定义:是指晶体的一部分沿一定晶面和晶向相对于另 一部分所发生的切变。
2.孪生的特点: ① 孪生使晶格位向发生改变; ② 所需切应力比滑移大得多, 变形速度极快, 接近声速; ③ 孪生时相邻原子面的相对位移量小于一个原子间距. ④ 孪生变形在应力-应变曲线上也很有特点 ⑤ HCP晶格金属滑移系少, BCC晶格金属只有在低温 或冲击作用下才发生孪生变形,FCC晶格金属,一 般不发生孪生变形。 ⑥ 对塑性变形贡献小
合金的塑性变形——多相合金
1.结构:基体+第二相。 2.分类依据:第二相粒子尺寸大小 聚合型两相合金 与基体晶粒尺寸属同一数量级, 两相性能接近:按强度分数相加计算。
弥散分布型两相合金 第二相粒子细小而弥散地分布 在基体晶粒中。 不可变形粒子的强化作用(位错绕过机制) ; 可变形微粒的强化作用(位错切割粒子的机制)。
材料科学与工程学院 材料科学基础
zhanglei.hubu@
1、什么是弹性变形?并用双原子模型来解释其物理本质。 【答】弹性变形是指外力去除后能够完全恢复的那部分变形, 可从原子间结合力的角度来了解它的物理本质。 原子处于平衡时,其原子间距为r0,位能U处于最低 位臵,相互作用力为零,这是最稳定的状 态。当原子受力后将偏离其平衡位臵,原 子间距增大时将产生引力;原子间距减小 时将产生斥力。这样,外力去除后,原子 都会恢复其原来的平衡位臵,所产生的变 形便完全消失,这就是弹性变形。
孪生与滑移的异同
滑 移 相同点
晶体位向
孪 生
是塑变的形式;沿一定的晶面、晶向进行;不改变结构 。
不改变(对抛光面观察无重 现性) 改变,形成镜面对称关系(对 抛光面观察有重现性)
不 同 点
无机材料科学基础 第5章 热力学应用
第五章热力学应用§5-1 热力学应用计算方法一、经典法已知在标准条件下反应物与生成物从元素出发的生成热△H0298。
生成自由能△G0298及反应物与产物的热容温度关系式Cp=a+bT+cT-2中各系数时,计算任何温度下反应自由能变化可据吉布斯—赤赤姆霍兹关系式进行[α(△G0R/T)/Αt]P=-△H0R/T2(5-5)据基尔霍夫公式:△H0R=△H012298+∫T298△cpo/T (5-6)和考虑反应热容变化关系:△cp=△a+△bT+△c/T2(5-7)可积分求得:△H0R=△H0+△aT+½△bT2+△c/T (5-8a)△H0为积分常数:△H0=△H012298+298△a-2982△b/2+△c/298 (5-8b)将(5-6)式代入(5-5)式并积分,便得任何温度下反应自由能变化△G0298的一般公式:△G0298=△H0-△aTLnT-½△Bt2-½△cT-1-Yt (5-9a)y=(△G0R·298-△H0)/298+△aLn(298)+298△b/2+△c/2×2982(5-9b)经典法计算反应△G0298一般步骤:1、由有关数据手册,索取原始热力学基本数据:反应物和生成物的△H0298、△G0298(S0298)以及热容关系式中的各项温度系数:a、b、c。
2、计算标况下(298K)反应热△H0R·298,反应自由能变化△G0R·298, G0R·298或反应熵变△S0R·298以及反应热容变化△Cp中各温度系数△a、△b、△c。
3、将△H0R`298、△a、△b以及△c分别代入式(5-8b)各项,计算积分常数△H0。
4、△G0R`298、△a、△b以及△c分别代入式(5-9b)各项,计算积分常数y。
5、将△H0、y、△a、△b以及△c代入(5-9a)式得△G0R~T函数关系式。
无机非金属材料科学基础课后习题及答案
第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些?答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么?答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙?答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的?答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
《材料科学基础》习题答案
附:习题答案0 绪论一、填空题1. 结构,性能2. 原子结构、原子的空间排列、显微组织3.结构材料,功能材料;金属材料,无机非金属材料(陶瓷),高分子材料(聚合物)。
第1章一、填空题1、金属键,离子键、共价键,分子键、共价键2、金属键、离子键、共价键,_范德华键_、氢键。
3、共价键4、共价键5、共价键,氢键二、判断题(1)错。
离子键没有方向性和饱和性。
(2)对。
(3)错。
改为:S原子轨道的角度分布图为一个从原子核为球心的球面,而s电子云图是一个球体,其剖面图是个圆。
P轨道的角度分布图为两个在原点相切的球面。
而p电子云图像或几率分布是一个哑铃形体,其剖面图是∞字型。
(4)错。
改为:若用小黑点的疏度表示几率密度的大小,则黑点密的地方,表示|Ψ|2数值大,电子出现的几率大;黑点稀的地方表示|Ψ|2数值小,电子出现的几率小。
(5)错。
改为:主量子数为4时,有4s、4p、4d、4f四个亚层。
共16条轨道。
(6)错。
改为:多电子原子轨道能级与氢原子能级不同。
三、简答题1. H>He;Ba>Sr;Sc<Ca;Cu>N;Zr≈Hf;La>Gd;S2->S;Na>Al3+;Fe2+>Fe3+;Pb2+>Sn2+2.(1)金属性:Ge>Si>As (2) 电离能:As>Si>Ge(3) 电负性:As>Si≈Ge (4) 原子半径:Ge>As>Si3.因氢原子核外只有一个电子,核外运动的电子能量由主量子数n决定,n相同时能量相同。
而氯原子中核外有17个电子,核外运动的电子能量不仅与主量子数n有关,而且也与角量子数L有关,3s的穿透能力大于3p,故3s能级低于3p能级。
第2章综合习题----基础练习 一、填空题1、基元(原子团)以周期性重复方式在三维空间作有规则的排列的固体 。
2、是否在三维空间作周期性重复规则排列( 晶体原子排布长程有序,非晶体是长程无序短程有序) 。
材料科学基础 张晓燕1-5章作业及题解.
第一章 作业题解1. 原子中一个电子的空间位置和能量可用哪四个量子数来决定?2. 在多电子的原子中,核外电子的排布应遵循哪些个原则?3. 在元素周期表中,同一周期或同一主族元素原子结构有什么共同特点?从左到右或从上到下元素结构有什么区别?性质如何递变?解、同一周期元素具有相同原子核外电子层数,但从左到右,核电荷依次增多,原子半径逐渐减小,电离能增加,失去电子的能力降低,得到电子能力增加,金属性减弱,非金属性增强,同一主族元素最外层电子数相同,但从上→下,电子层数最多,原子半径增大,电离能降低,失去电子能力增加,得到电子能力降低,金属性增加,非金属性降低。
4. 铬的原子序数为24,共有四种同位数:4.31%的Cr 原子含有26个中子,83.76%含有28个中子,9.55%含有29个中子,且2.38%含有30个中子。
试求铬的原子量。
解、=Ar 0.0431X (24+26)+0.8376X (24+28)+0.0955X (24+29)+0.0238X(24+30)=52.0575. 原子间的结合键共有几种?各自特点如何? 解、6. 按分子材料受热的表现分类可分为热塑性和热固性两大类,试从高分子链结构角度加以解释之。
解、热塑性;具有线性和枝化高分子链结构,加热后变软,可反复加工再成形;热固性;具有体型(立体网状)高分子链结构,不溶于任何溶剂,也不能熔融,一旦定型后不能再改变形状,无法再生。
第二章 作业题解1、归纳总结三种典型的晶体结构的晶体学特征。
解、2、试证明理想密排六方结构的轴比c/a=1.633。
解、见图所示,等边三角形的高 a h ⋅=43 氢键;分子间作用力,氢桥,具有饱和性结合键化学键;主价键 物理键;次价键,也称范德华健 金属键;电子共有化,无饱和性,无方向性。
离子键;以离子而不是以原子为结合单元,无饱和性,无方向性。
共价键;共用电子对,有饱和性方向性。
hd2c343222222a c h c d +=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛= 理想密排六方晶体结构中a d = 故633.138==a c 3、Ni 的晶体结构为面心立方结构,其原子半径为r=0.1243nm ,试求Ni 的晶格常数和密度。
无机材料科学基础第五章固溶体
将外来组元引入晶体结构,占据主晶相质点位置一部分或间隙位置一部分,仍保持一个晶相,这种晶体称为固溶体(即溶质溶解在溶剂中形成固溶体),也称为固体溶液。
固溶体的分类
置换型固溶体
间隙型固溶体
形成固溶体后对晶体性质的影响
固溶体的研究方法
第五章 固溶体
A
根据外来组元在主晶相中所处位置 ,可分为置换固溶体和间隙固溶体。
在金属氧化物中,主要发生在金属离子位置上的置换,如:MgO-CaO,MgO-CoO,PbZrO3-PbTiO3,Al2O3-Cr2O3等。
C3S的固溶体C54S16MA2.相当于18个Si中有两个被置换。
间隙式固溶体,亦称填隙式固溶体,其溶质原子位于点阵的间隙中。
01
金属和非金属元素H、B、C、N等形成的固溶体都是间隙式的。如:在Fe-C系的α固溶体中,碳原子就位于铁原子的BCC点阵的八面体间隙中。
3、固溶强化
实际应用:铂、铑单独做热电偶材料使用,熔点为1450℃,而将铂铑合金做其中的一根热电偶,铂做另一根热电偶,熔点为1700℃,若两根热电偶都用铂铑合金而只是铂铑比例不同,熔点达2000℃以上。
4、形成固溶体后对材料物理性质的影响 固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。固溶体的强度与硬度往往高于各组元,而塑性则较低。
主要是氧化镁杂质的存在,阻碍了晶界的移动速度,使气体容易消除,从而得到透明氧化铝陶瓷。
另外,氧化铝掺杂其他一些氧化物可制的相应颜色的各类宝石制品。
详见P79页。
透明Al2O3 陶瓷
”
A
B
C
固溶体类型的大略估计
固溶体类型的实验判别
固溶体组成的确定
五、固溶体的研究方法
材料科学基础5---9章习题
第5章材料的形变和再结晶1. 有一70MPa应力作用在fcc晶体的[001]方向上,求作用在(111)和(111)滑移系上的分切应力。
答案:矢量数性积a×b=ïaï×ïbï Þ = a×bïaï×ïbï滑移系:(负号不影响切应力大小,故取正号)滑移系:2. Zn单晶在拉伸之前的滑移方向与拉伸轴的夹角为45°,拉伸后滑移方向与拉伸轴的夹角为30°,求拉伸后的延伸率。
答案 :如图所示,AC和A’C’分别为拉伸前后晶体中两相邻滑移面之间的距离。
因为拉伸前后滑移面间距不变,即AC=A’C’故3. 已知平均晶粒直径为1mm和0.0625mm的a-Fe的屈服强度分别为112.7MPa和196MPa,问平均晶粒直径为0.0196mm的纯铁的屈服强度为多少?答案:解得∴4. 铁的回复激活能为88.9 kJ/mol,如果经冷变形的铁在400℃进行回复处理,使其残留加工硬化为60%需160分钟,问在450℃回复处理至同样效果需要多少时间?答案:(分)5. 已知H70黄铜(30%Zn)在400℃的恒温下完成再结晶需要1小时,而在390℃完成再结晶需要2小时,试计算在420℃恒温下完成再结晶需要多少时间?答案:再结晶是一热激活过程,故再结晶速率:,而再结晶速率和产生某一体积分数所需时间t成反比,即∝∴在两个不同的恒定温度产生同样程度的再结晶时,两边取对数;同样故得。
代入相应数据,得到t3 = 0.26 h。
1.有一根长为5 m,直径为3mm的铝线,已知铝的弹性模量为70GPa,求在200N的拉力作用下,此线的总长度。
答案2.一Mg合金的屈服强度为180MPa,E为45GPa,a)求不至于使一块10mm⨯2mm的Mg板发生塑性变形的最大载荷;b)在此载荷作用下,该镁板每mm的伸长量为多少?答案3. 已知烧结Al2O3的孔隙度为5%,其E=370GPa。
无机材料科学基础习题与解答
第一章几何结晶学一、名词解释①晶体、②等同点、③空间点阵、④结点、⑤对称、⑥对称型、⑦晶类、⑧单形、⑨聚形、⑩晶体定向、○11晶体常数、○12布拉菲格子、○13晶胞、○14晶胞参数、○15空间群。
二、(1)根据对称型国际符号写出对称型,并指出各对称要素的空间方位关系。
①2/m ;②mm2;③422;④6/mmm 。
(2)写出下列对称型的国际符号①3L23pc 、②L4PC 、③Li4、④L33P (3)下列晶形是对称型为L4PC 的理想形态,判断其是单形或是聚形,并说明对称要素如何将其联系起来的。
(4)下列单形能否相聚而成聚形①四方柱、四方双锥②菱面体、六方柱 ③四角三八面体、平行双面④四方四面体、四方双锥 ⑤四面体、八面体 ⑥斜方柱、四方双锥 三、计算题(2)一个立方晶系晶胞中,一晶面在晶轴X 、Y 、Z 上的截距分别为2a 、1/2a 、2/3a ,求此晶面的晶面指数。
(2)一个四方晶系晶体的晶面,在X 、Y 、Z 轴上的截距分别为3a 、4a 、6c ,求该晶面的晶面指数。
四、填空题(1) 晶体的对称要素中点对称要素种类有_____、_____、_____ 、_____ ,含有平移操作的对称要素种类有_____ 、_____ 。
它们分别是 _____、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 、_____ 。
(2) 晶族、晶系、对称型、结晶学单形、几何单形、布拉菲格子、空间群的数目分别是 _____、_____ 、_____ 、_____ 、_____ 、_____ 。
(完整版)无机材料科学基础习题与解答完整版
第一章晶体几何基础1- 1 解释概念:等同点:晶体结构中,在同一取向上几何环境和物质环境皆相同的点。
空间点阵:概括地表示晶体结构中等同点排列规律的几何图形。
结点:空间点阵中的点称为结点。
晶体:内部质点在三维空间呈周期性重复排列的固体。
对称:物体相同部分作有规律的重复。
对称型:晶体结构中所有点对称要素(对称面、对称中心、对称轴和旋转反伸轴)的集合为对称型,也称点群。
晶类:将对称型相同的晶体归为一类,称为晶类。
晶体定向:为了用数字表示晶体中点、线、面的相对位置,在晶体中引入一个坐标系统的过程。
空间群:是指一个晶体结构中所有对称要素的集合。
布拉菲格子:是指法国学者A. 布拉菲根据晶体结构的最高点群和平移群对称及空间格子的平行六面体原则,将所有晶体结构的空间点阵划分成14 种类型的空间格子。
晶胞:能够反应晶体结构特征的最小单位。
晶胞参数:表示晶胞的形状和大小的6个参数(a、b、c、a、B、丫)•1- 2 晶体结构的两个基本特征是什么?哪种几何图形可表示晶体的基本特征?解答:⑴晶体结构的基本特征:①晶体是内部质点在三维空间作周期性重复排列的固体。
②晶体的内部质点呈对称分布,即晶体具有对称性。
⑵14种布拉菲格子的平行六面体单位格子可以表示晶体的基本特征。
1- 3 晶体中有哪些对称要素,用国际符号表示。
解答:对称面一m对称中心一1,n次对称轴一n,n次旋转反伸轴一n 螺旋轴—ns ,滑移面—a、b、c、d1- 5 一个四方晶系的晶面,其上的截距分别为3a、4a、6c,求该晶面的晶面指数。
解答:在X、Y、Z 轴上的截距系数:3、4、6。
截距系数的倒数比为:1/3:1/4:1/6=4:3:2晶面指数为:(432)补充:晶体的基本性质是什么?与其内部结构有什么关系?解答:①自限性:晶体的多面体形态是其格子构造在外形上的反映。
②均一性和异向性:均一性是由于内部质点周期性重复排列,晶体中的任何一部分在结构上是相同的。
异向性是由于同一晶体中的不同方向上,质点排列一般是不同的,因而表现出不同的性质。
无机陆佩文课后答案无机材料科学基础课后答案
无机陆佩文课后答案无机材料科学基础课后答案导读:就爱阅读网友为您分享以下“无机材料科学基础课后答案”的资讯,希望对您有所帮助,感谢您对的支持!4-19试简述哪些物质可以形成非晶态固体(NCS)?形成(NCS)的手段有哪些?可以用什么实验方法研究NCS结构?解:熔体和玻璃体可以形成非晶态固体。
将熔体和玻璃体过冷可以得到非晶态固体。
4-20试简述淬火玻璃与退火玻璃在结构与性能上有何差异?解:消除和均衡由温度梯度产生的内应力的玻璃为退火玻璃,这类玻璃不易碎裂且切割方便。
淬火处理是将制品加热至接近其软化温度,使玻璃完全退火,然后进行迅速冷却(淬火处理)。
因此产生均匀的内应力,从而使玻璃表面产生预加压应力,增加了抗弯、抗冲击的抗扭曲变形的能力。
4-21以下三种物质,哪个最容易形成玻璃?哪个最不容易形成玻璃,为什么?(1)Na2O·2SiO2;(2)Na2O·SiO2;(3)NaCl解:(1)最容易形成玻璃,(3)最不容易形成玻璃。
经计算可知R1=2.5,R2=3,Y1=3,Y2=2Y1>Y2,高温下(1)粘度大,容易形成玻璃,NaCl不具备网络结构,为典型的离子晶体很难形成玻璃。
4-22查阅下列系统的粘度和Tg/TM等有关数据,试判断下列系统形成玻璃可能性的顺序。
(1)GeO2·SiO2,以100℃/s冷却;(2)GeO2·SiO2气相沉积在0℃SiO2基板上;(3)金属金气相沉积在0℃铜基板上;(4)A12O3气相沉积在0℃A12O3基板上;(5)液态硫以1℃/s冷却;6(6)液态金以10℃/s冷却;(7)气态NaCl在0℃A12O3基板上冷却;(8)液态ZnCl2以100℃/s冷却。
解:略。
4-23若将10mol%Na2O加入到SiO2中去,计算O∶Si比例是多少?这样一种配比有形成玻璃趋向吗?为什么?解:,这种配比有形成玻璃的趋向,因为此时结构维持三维架状结构,玻璃的粘度还较大,容易形成玻璃。
无机材料科学基础课后答案
⽆机材料科学基础课后答案第⼆章晶体结构答案2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量⼜有哪些?答:定性:对称轴、对称中⼼、晶系、点阵。
定量:晶胞参数。
2-5依据结合⼒的本质不同,晶体中的键合作⽤分为哪⼏类?其特点是什么?答:晶体中的键合作⽤可分为离⼦键、共价键、⾦属键、范德华键和氢键。
离⼦键的特点是没有⽅向性和饱和性,结合⼒很⼤。
共价键的特点是具有⽅向性和饱和性,结合⼒也很⼤。
⾦属键是没有⽅向性和饱和性的的共价键,结合⼒是离⼦间的静电库仑⼒。
范德华键是通过分⼦⼒⽽产⽣的键合,分⼦⼒很弱。
氢键是两个电负性较⼤的原⼦相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种?⼀个球的周围有多少个四⾯体空隙、多少个⼋⾯体空隙?答:等径球最紧密堆积有六⽅和⾯⼼⽴⽅紧密堆积两种,⼀个球的周围有8个四⾯体空隙、6个⼋⾯体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四⾯体空隙、多少个⼋⾯体空隙?不等径球是如何进⾏堆积的?答:n个等径球作最紧密堆积时可形成n个⼋⾯体空隙、2n个四⾯体空隙。
不等径球体进⾏紧密堆积时,可以看成由⼤球按等径球体紧密堆积后,⼩球按其⼤⼩分别填充到其空隙中,稍⼤的⼩球填充⼋⾯体空隙,稍⼩的⼩球填充四⾯体空隙,形成不等径球体紧密堆积。
2-8写出⾯⼼⽴⽅格⼦的单位平⾏六⾯体上所有结点的坐标。
答:⾯⼼⽴⽅格⼦的单位平⾏六⾯体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。
2-9计算⾯⼼⽴⽅、密排六⽅晶胞中的原⼦数、配位数、堆积系数。
答::⾯⼼:原⼦数4,配位数6,堆积密度六⽅:原⼦数6,配位数6,堆积密度2-10根据最紧密堆积原理,空间利⽤率越⾼,结构越稳定,⾦刚⽯结构的空间利⽤率很低(只有34.01%),为什么它也很稳定?答:最紧密堆积原理是建⽴在质点的电⼦云分布呈球形对称以及⽆⽅向性的基础上的,故只适⽤于典型的离⼦晶体和⾦属晶体,⽽不能⽤最密堆积原理来衡量原⼦晶体的稳定性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章固体表面与界面5-1 名词解释驰豫表面重构表面定向作用诱导作用色散作用范德华力润湿角临界表面张力粘附功阳离子交换容量聚沉值触变性滤水性可塑性5-2 何谓表面张力和表面能?在固态和液态这两者有何差别?5-3 在石英玻璃熔体下20cm处形成半径5×10-8m的气泡,熔体密度为2200kg/m3,表面张力为0.29N/m,大气压力为1.01×105Pa,求形成此气泡所需最低内压力是多少?5-4 (1)什么是弯曲表面的附加压力?其正负根据什么划分?(2)设表面张力为0.9J/m2,计算曲率半径为0.5μm、5μm的曲面附加压力?5-5什么是吸附和粘附?当用焊锡来焊接铜丝时,用挫刀除去表面层,可使焊接更加牢固,请解释这种现象?5-6在高温将某金属熔于Al2O3片上。
(1)若Al2O3的表面能估计为1J/m2,此熔融金属的表面能也与之相似,界面能估计约为0.3J/m2,问接触角是多少?(2)若液相表面能只有Al2O3表面能的一半,而界面能是Al2O3表面张力的2倍,试估计接触角的大小?5-7在20℃及常压下,将半径为10-3m的汞分散成半径为10-9m的小汞滴,求此过程所需作的功是多少?已知20℃时汞的表面张力0.470N/m。
5-8在2080℃的Al2O3(L)内有一半径为10-8m的小气泡,求该气泡所受的附加压力是多大?已知2080℃时Al2O3(L)的表面张力为0.700N/m。
5-9 20℃时苯的表面张力为0.0289N/m,其饱和蒸气压为10013Pa,若在20℃时将苯分散成半径为10-6m的小滴,计算:(1)苯滴上的附加压力;(2)苯滴上的蒸气压与平面上苯液饱和蒸气压之比。
5-10 20℃时,水的饱和蒸气压力为2338Pa,密度为998.3kg/m3,表面张力为0.07275N/m,求半径为10-9m的水滴在20℃时的饱和蒸气压为多少?5-11若在101325Pa,100℃的水中产生了一个半径为10-8m的小气泡,问该小气泡能否存在并长大?此时水的密度为958kg/m3,表面张力为0.0589N/m。
5-12 17℃时大颗粒的1,2-二硝基苯在水中的溶解度为0.0059mol/L,1,2-二硝基苯固体与溶液的界面张力为0.0257N/m,计算直径为10-8m的1,2-二硝基苯在水中的溶解度。
1,2-二硝基苯固体的密度为1565kg/m3。
5-13在某一定温度下,对H2在Cu(s)上的吸附测得以下数据:P H(×103Pa) 5.066 10.13 15-20 20.27 25-33p/V(×105Pa/L) 4.256 7.600 11.65 14.89 17.73其中V是不同压力下每克Cu上吸附H2的体积(标准状况),求朗格缪尔公式中的V s。
5-14 20℃时,乙醚-水、汞-乙醚及汞-水的界面张力分别为0.0107、0.379及0.375N/m,在乙醚与汞的界面上滴一滴水,求其接触角。
5-15在真空下的氧化铝表面张力约为0.9 N/m,液态铁的表面张力为1.72 N/m,同样条件下液态铁-氧化铝的界面张力为2.3 N/m,问接触角有多大?液态铁能否润湿氧化铝?5-16 考虑四种联接作用:焊接、烧结、粘附接合和玻璃-金属的封接,请从原子尺度考虑,解释这些联接作用相互间有何差异?5-17 MgO-Al2O3-SiO2系统的低共熔物放在Si3N4陶瓷片上,在低共熔温度下,液相的表面张力为900mN/rn液体与固体的界面能为600mN/m,测得接触角为70.52o。
(1)求Si3N4的表面张力;(2)把Si3N4在低共熔温度下进行热处理,测试其热腐蚀的槽角为60℃,求Si3N4的晶界能?5-18 氧化铝瓷件中需要披银,已知1000℃时mN/m;mN/m;mN/m,问液态银能否润湿氧化铝瓷件表面?可以用什么方法改善它们之间的润湿性?5-19 根据图5-13和表5-2可知,具有面心立方晶格不同晶面(110)、(100)、(111)上,原子密度不同,试回答,那一个晶面上固-气表面能将是最低的?为什么?5-20 试解释粘土结构水和结合水(牢固结合水、松结合水)、自由水的区别,分析后两种水在胶团中的作用范围及其对工艺性能的影响。
5-21 一个均匀的悬浮液,粘土浓度为30vol%,薄片状粘土颗粒尺寸是平均直径0.1μm,厚度0.01μm,求颗粒间平均距离是多少个?5-22粘土的很多性能与吸附阳离子种类有关。
指出粘土吸附下列不同阳离子后的性能变化规律,(以箭头表示:)H+Al3+Ba2+Sr2+Ca2+Mg2+NH4+K+Na+Li+(l)离子交换能力;(2)粘土的ζ电位;(3)粘土的结合水量;(4)泥浆稳定性;(5)泥浆流动性;(6)泥浆触变性;(7)泥团可塑性;(8)泥浆滤水性;(9)泥浆浇注时间;(10)坯体形成速率5-23 若粘土粒子是片状的方形粒子。
长度分别为10、1、0.1μm,长度是其厚度的10倍。
试求粘土颗粒平均距离是在引力范围2nm时,粘土体积浓度?5-24 用Na2CO3和Na2SiO3分别稀释同一种粘土(以高岭石矿物为主)泥浆,试比较电解质加入量相同时,两种泥浆的流动性、注浆速率、触变性和坯体致密度有何差别?5-25影响粘土可塑性的因素有那些?生产上可以来用什么措施来提高或降低粘土的可塑性以满足成形工艺的需要?第五章答案5-1 略。
5-2 何谓表面张力和表面能?在固态和液态这两者有何差别?解:表面张力:垂直作用在单位长度线段上的表面紧缩力或将物体表面增大一个单位所需作的功;σ=力/总长度(N/m)表面能:恒温、恒压、恒组成情况下,可逆地增加物系表面积须对物质所做的非体积功称为表面能;J/m2=N/m 液体:不能承受剪应力,外力所做的功表现为表面积的扩展,因为表面张力与表面能数量是相同的;固体:能承受剪切应力,外力的作用表现为表面积的增加和部分的塑性形变,表面张力与表面能不等。
5-3 在石英玻璃熔体下20cm处形成半径5×10-8m的气泡,熔体密度为2200kg/m3,表面张力为0.29N/m,大气压力为1.01×105Pa,求形成此气泡所需最低内压力是多少?解:P1(熔体柱静压力)=hρg=0.2×2200×9.81=4316.4Pa附加压力=2×0.29/5×10-8=1.16×107Pa故形成此气泡所需压力至少为P=P1+△P+P大气=4316.4+1.16×107+1.01×105=117.04×105 Pa5-4 (1)什么是弯曲表面的附加压力?其正负根据什么划分?(2)设表面张力为0.9J/m2,计算曲率半径为0.5μm、5μm的曲面附加压力?解:(1)由于表面张力的存在,使弯曲表面上产生一个附加压力,如果平面的压力为P0,弯曲表面产生的压力差为△P,则总压力为P = P0 +△P。
附加压力的正负取决于曲面的曲率,凸面为正,凹面为负。
(2)根据Laplace公式:可算得△P=0.9×(1/0.5+1/5)=1.98×106 Pa5-5什么是吸附和粘附?当用焊锡来焊接铜丝时,用挫刀除去表面层,可使焊接更加牢固,请解释这种现象?解:吸附:固体表面力场与被吸附分子发生的力场相互作用的结果,发生在固体表面上,分物理吸附和化学吸附;粘附:指两个发生接触的表面之间的吸引,发生在固液界面上;铜丝放在空气中,其表面层被吸附膜(氧化膜)所覆盖,焊锡焊接铜丝时,只是将吸附膜粘在一起,锡与吸附膜粘附的粘附功小,锉刀除去表面层露出真正铜丝表面(去掉氧化膜),锡与铜相似材料粘附很牢固。
5-6在高温将某金属熔于Al2O3片上。
(1)若Al2O3的表面能估计为1J/m2,此熔融金属的表面能也与之相似,界面能估计约为0.3J/m2,问接触角是多少?(2)若液相表面能只有Al2O3表面能的一半,而界面能是Al2O3表面张力的2倍,试估计接触角的大小?解:(1)根据Yong方程:将已知数据代入上式=0.7,所以可算得接触角约为45.6度(2)将已知数据代入Yong方程=0.8,可算得接触角约为36.9度。
5-7在20℃及常压下,将半径为10-3m的汞分散成半径为10-9m的小汞滴,求此过程所需作的功是多少?已知20℃时汞的表面张力0.47N/m。
解:此过程所需作的功应等于系统表面能的增加,即==59w5-8在2080℃的Al2O3(L)内有一半径为10-8m的小气泡,求该气泡所受的附加压力是多大?已知2080℃时Al2O3(L)的表面张力为0.700N/m。
解:根据公式,可算得△P=2×0.7/10-8=1.4×108 N5-9 20℃时苯的表面张力为0.0289N/m,其饱和蒸气压为10013Pa,若在20℃时将苯分散成半径为10-6m的小滴,计算:(1)苯滴上的附加压力;(2)苯滴上的蒸气压与平面上苯液饱和蒸气压之比。
解:(1)根据公式,可算得△P=2×0.0289/10-6=5.78×104 N(2)根据开尔文方程,简化为查得苯的密度为879kg/m3将已知数据代入公式右边= =0.002=苯滴上的蒸气压与平面上苯液饱和蒸气压之比= =1.0025-10 20℃时,水的饱和蒸气压力为2338Pa,密度为998.3kg/m3,表面张力为0.07275N/m,求半径为10-9m的水滴在20℃时的饱和蒸气压为多少?解:根据公式,可算得△P=2×0.07275/10-9=1.455×108 N/m2根据开尔文方程,简化为,将已知条件代入可算得:=1.077P=6864Pa最后算得半径为10-9m的水滴在20℃时的饱和蒸气压P为6864Pa5-11若在101325Pa,100℃的水中产生了一个半径为10-8m的小气泡,问该小气泡能否存在并长大?此时水的密度为958kg/m3,表面张力为0.0589N/m。
解:根据公式,可算得附加压力为△P=2×0.0589/10-8=1.178×107 Pa对于液体中的气泡,气泡的压力为P=P0—△P=101325—1.178×107﹤0所以该小气泡不能存在。
5-12 17℃时大颗粒的1,2-二硝基苯在水中的溶解度为0.0059mol/L,1,2-二硝基苯固体与溶液的界面张力为0.0257N/m,计算直径为10-8m的1,2-二硝基苯在水中的溶解度。
1,2-二硝基苯固体的密度为1565kg/m3。
解:根据公式,将已知数据代入,即=114.42,由此又可算得直径为10-8m的1,2-二硝基苯在水中的溶解度为0.029 mol/L5-13在某一定温度下,对H2在Cu(s)上的吸附测得以下数据:P H×103Pa) 5.066 10.13 15.20 20.27 25.33p/V(×105Pa/L) 4.256 7.600 11.65 14.89 17.73其中V是不同压力下每克Cu上吸附H2的体积(标准状况),求朗格缪尔公式中的V s。