简单应力状态下的弹塑性力学问题共66页文档

合集下载

(完整)弹塑性力学简答题

(完整)弹塑性力学简答题

弹塑性力学简答题第一章 应力1、 什么是偏应力状态?什么是静水压力状态?举例说明?静水压力状态时指微六面体的每个面只有正应力作用,偏应力状态是从应力状态中扣除静水压力后剩下的部分。

2、应力边界条件所描述的物理本质是什么?物体边界点的平衡条件。

3、对照应力张量ij δ与偏应力张量ij S ,试问:两者之间的关系?两者主方向之间的关系?相同。

110220330S S S σσσσσσ=+=+=+.4、为什么定义物体内部应力状态的时候要采取在一点的领域取极限的方法?不规则,内部受力不一样。

5、解释应力空间中为什么应力状态不能位于加载面之外?保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续。

6、Pie 平面上的点所代表的应力状态有何特点?该平面上任意一点的所代表值的应力状态1+2+3=0,为偏应力状态,且该平面上任一法线所代表的应力状态其应力解不唯一。

固体力学解答必须满足的三个条件是什么?可否忽略其中一个?第二章 应变1、从数学和物理的不同角度,阐述相容方程的意义。

从数学角度看,由于几何方程是6个,而待求的位移分量是3个,方程数目多于未知函数的数目,求解出的位移不单值.从物理角度看,物体各点可以想象成微小六面体,微单元体之间就会出现“裂缝”或者相互“嵌入",即产生不连续.2、两个材料不同、但几何形状、边界条件及体积力(且体积力为常数)等都完全相同的线弹性平面问题,它们的应力分布是否相同?为什么?相同。

应力分布受到平衡方程、变形协调方程及力边界条件,未涉及本构方程,与材料性质无关.3、应力状态是否可以位于加载面外?为什么?不可以.保证位移单值连续。

连续体的形变分量x ε、y ε、xy τ不是互相独立的,而是相关,否则导致位移不单值,不连续.4、给定单值连续的位移函数,通过几何方程可求出应变分量,问这些应变分量是否满足变形协调方程?为什么?满足。

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

工程塑性力学(第四章)弹塑性力学边值问题的简单实例

σθ
−σr
=
2
p
b2 r2
在 r = a 时取最大值,则 r = a 处首先屈服
(σθ
− σ r ) max
=
2
p
b2 a2
=σs
求得弹性极限载荷(压力)为
pe
=
a2σ s 2b2

p
=
pe
=
b2 − a2 a2
pe
= σs 2
⎜⎜⎝⎛1 −
a2 b2
⎟⎟⎠⎞
(2)弹塑性解
(4-26)
p > pe 时,塑性区逐渐扩张。设弹、塑性区交界处 r = c , a < c < b 。
b
弹性区
c
用边界条件σ r r=a = − p ,可确定出 C′ = − p − σ s ln a ,
a
所以
⎪⎧σ r ⎨ ⎪⎩σθ
= σ s ln r − p − σ s ln a = − p + σ s
=σs
+σr
=
−p
+ σ s (1 +
ln
r) a
ln
r a
(4-27)
塑性区 图 4-3
属静定问题,未用到几何关系。
ΔFi = F&iΔt , ΔTi = T&iΔt , Δui = u&iΔt
(4-10) (4-11)
式中 F&i ,T&i 和 u&i 分别称为体力率、面力率和位移率(速度)。引入率的表达形式
可以简化公式表达。 求解过程为:
已知时刻 t 时,位移 ui ,应变 εij ,应力σij ,加载面 f (σij ,ξ ) = 0 。在 ST 上给

第五章弹塑性力学问题的提法优秀课件

第五章弹塑性力学问题的提法优秀课件
在一般情况下,屈服条件和所考虑的应力状态有关
f (ij) 0
屈服函数. 表示在一个六维应力空间内的 超曲面.
超曲面上的任一点(称为应力点)都表示一个屈服应力
状态. 所以又称 屈服面.
对于各向同性材料,坐标轴的转动不应当影响 材料的屈服,因而可以取三个应力主轴为坐标 轴.屈服函数改写为
f(1,2,3)0
第一类边值问题 在全部边界上给定体力和面力,求在平衡状态下的 应力场和位移场,称这类问题为应力边值问题。
边界称为自由边界,属应力边界的特殊情况。如果边界上有集中力, 应转换为作用在微小面积上的均布面力;集中力偶则应转换为作用 在微小面积上的非均布面力。
第二类边值问题 给定物体力和在物体表面各点的位移,求在平衡状 态下的应力场和位移场,称这类问题为位移边值问题。
当物体处于弹塑性状态时,同样有3个平衡方程,6个几何 方程以及6个本构方程。但在此情况下多引进了一个参数
d ,不过也增加了一个屈服条件 f (ij) 0
只有在应力满足屈服条件时,d 才不等于零。
在研究弹塑性小变形平衡问题范围内时,以上弹塑性力学问题 的解还必须满足的边界条件。边界条件一般可分为三类,即
球形应力状态只引起弹性体积变化,而不影响材料的屈服.
屈服函数只包含应力偏量,即
f (sij) 0
这样,屈服函数为应力偏量的函数,而且可以在 主应力1,2,3所构成的空间,即主应力空间 内来讨论.
4 德鲁克公设与伊留申公设
Drucker公设:
对于处于在某一状态下的材料质点(或试件),借助一个外部作用, 在其原有的应力状态之上,缓慢地施加并卸除一组附加应力,在这 附加应力的施加和卸除的循环内,外部作用所做的功是非负的。
由此可见,弹性力学的基本方程组一般地反映物体内部的应 力、应变和位移之间相互关系的普遍规律,而定解条件具体 给定了每一个边值问题的特定规律。因此,每一个具体问题 反映在各自的边界条件上。所以,弹性力学问题的基本方程 组和边界条件共同构成弹力学问题严格而完整的提法。

塑性力学第五章(2)-简单的弹塑性问题(二)

塑性力学第五章(2)-简单的弹塑性问题(二)

σs
E
不变, ,保持 ε s不变,再加扭矩至 γ s =
τs
G
γ 同时拉扭进入塑性状态, 不变, (3)同时拉扭进入塑性状态,保持 ε 不变,到
ε s ,γ s
求应力分量
σ ,τ = ?
τ σ
Mises条件: 条件: 条件
σ 2 + 3τ 2 = σ s2
τ
σ
3
s
B
C A
O
σ
σ
s
γ
ε = σs
E =
应变分量(体积不可压缩): 应变分量(体积不可压缩):
σ
1 de z = d ε , de r = deθ = − d ε 2
d γ zθ = d γ
γ θr = γ rz = 0
塑性功增量: 塑性功增量:
dW d = sij deij
= s z de z + s r de r + sθ deθ + τ θz d γ θz + τ θr d γ θr + τ rz d γ rz
th
σs
σs
σ =
ch
σs
3G γ
σs
γ =
σs
3G

σ = 0 .648 σ s , τ = 0 .439 σ s
(2)先扭后拉 )
γ
σs
3G
τ
B C
σ
3
A
s
B
C A
O
σs
3G
ε
O
σ
σ
s
dγ = 0
dW d = σ d ε + τd γ = σ d ε
3Gd ε = dσ 1−

工程弹塑性力学题库及答案

工程弹塑性力学题库及答案

(2)如将该曲线表示成
解:(1)由 在
处连续,有
形式,试给出 的表达式。
(a)
由在
处连续,有
(a)、(b)两式相除,有
由(a)式,有
(2)取
形式时,




:应力相等,有
解出得,
(代入 值)
(b) (c) (d)
(代入 值) 5.6已知简单拉伸时的应力-应变曲线
如图5-1所示,并表示如下:
问当采用刚塑性模型是,应力-应变曲线应如何表 示?
解:1) OD 边:
GD 边:
沿
线,

2)
沿 OB 线,

8.7 Mises 线性等强化材料,在平面应变( 试导出用表示的强化规律和本构关系。
解:当 时,在弹性阶段有
)和泊松比 条件下,

平均应力 因此在弹性阶段有
,进入塑性后有
对平均应变
刚进入塑性时
。由上式导出
。因此进入塑性
后还满足
(2)当 = 时,继续加载,使 解:1)开始屈服时
,求此时的 、 、 。 ,代入 Mises 屈服准则


2)屈服后对应的塑性应变增量为
由 及屈服条件的微分形式
, 式子得到答案结果。
7.9 在如下两种情况下,试求塑性应变增量的比。
(1)单向拉伸应力状态,

,联列可得 ,代入
(2)纯剪力状态,

解:(1)单向拉伸应力状态

中:
沿
线,
中: ,
中:
,


, 情况二见图(1),与①一样
所以
8.6 已知具有尖角为 的楔体,在外力 P 的作用下,插入具有相同角度的 V 形缺口 内,试分别按如下两中情况画出滑移线场并求出两种情况的极限荷载。 1)、楔体与 V 形缺口之间完全光滑;2)、楔体与 V 形缺口接触处因摩擦作用其剪应 力为 k。

弹塑性力学第五章 简单弹塑性力学问题1

弹塑性力学第五章 简单弹塑性力学问题1


利用 2 ij ij ,以上各式易改写为张量形式
ij ,kl kl ,ij ik , jl jl ,ik
这六个方程的几何意义是被分割后的微分单元体在受力 变形后能重新拼合成连续体,即不会出现“撕裂”或 “套叠”等现象。如图(这里略)
(5.17)
F cos 2 1 2 A (1 2cos3 ) F 1 3 A (1 2cos3 )
(5.18)
由式(5.18)可见 3 1 ,当F增加时,杆3将首先屈服。 显然,当 3 s 时,桁架开始初始屈服,由式(5.18)可 求得桁架初始屈服时对应的荷载值 Fe
3.本构方程 1)弹性阶段,即
f ( ij ) 0或f ( ij ) 0, df 0
本构方程可表示为两种可相互转换的形式:(1)应力表 示应变;(2)应变表示应力

1 ij ij kk ij E E
(5.4)
ij kk ij 2G ij

1

因此,有变形协调关系
1 2 3 cos
2
(5.16)
1、弹性阶段——弹性解和弹性极限荷载
当荷载F足够小时,各杆应力都小于屈服应力,整个桁架 处于弹性阶段。由2 3 E 3
联立式(5.14)、(5.15)和(5.17)并求解,得
5.5 叠加原理(线弹性体)
考虑同一边界条件下作用在同一固体上的两组荷载情况:第 ' ' 一组体力 X i 和面力 X i' ,第二组为体力 X i''和面力 .设它 X i' ' ' 们引起的应力场、应变场和位移场分别为 ij、ij、ui , '' '' '' 和 ij、ij、ui ,则在线弹性和小变形情况下两组荷载共同 作用时产生的应力场、应变场和位移场,等于各自单独作用 时引起的相应场之和,即

弹塑性力学 应力函数求解

弹塑性力学 应力函数求解
例题1如图所示的简支梁只承受自重的作用,设材料的密度 为 ,给出 ( x, y) 函数可以作为应力函数的条件,并求 出 ( x, y) 表达式和应力分量,其中, ( x, y) 的形式为:
( x, y) Ax 2 y 3 By 5 Cy 3 Dx 2 y
解: 将应力函数代入相容方程, 2 2 0 得到
在上边界上 f (s) 0, f (s) 12ax f x (s) 0, f y (s) y 12ax2 在下边界上 f x (s) x 12ay2 , f y (s) 0 在左边界上 在右边界上 f x (s) x 12ay2 , f y (s) 0
y h 2 h 2
0 5 Bh 2 4 D 2 0 0 15Bh 2 4 D 0 x ydy 0 5 Bl 2 2 Bh 2 4C 0
2
h 2 h 2
y
x
l 2
B 2 5h l2 C 2 4h 10 D 3 4
Ax 3 Bx 2 y Cxy2 Dy3
4 0
12
Ax 3 Bx 2 y Cxy2 Dy3
2 x 2 f x x 2Cx 6 Dy y 2 f y y 6 Ax 2 By gy y 2 x 2 (2 Bx 2Cy ) xy xy 0 x 1 xy f x 0 y 0 6 Ax 0 A 0 直边界上 0 xy 1 y f y 0 xy 0 2 Bx 0 B 0
2
axy bxy
3
7
axy3 bxy

工程塑性力学(第一章)

工程塑性力学(第一章)
σ σ
σ′
σ′
σs
σs
O
εp ε
εe
ε
O
εp ε
εe
ε
图 1-2
卸载和再加载
σ ′′
图 1-3 卸载后反向加载到屈服
1.2.2 没有明显屈服阶段的拉伸曲线(铝合金类)
屈服极限(应力)规定:0.2%塑性应变对应的应力, σ 0.2
σ σb σ0.2
σ′
O
0.2%
ε
σ ′′
图 1-4 没有明显屈服平台的应力应变曲线
1.5.2 卸载
从介于 Ps 和 Pe 之间的某一值 P * 卸载 ΔP ,服从弹性规律。应力应变的改变 量为
Δσ 1 = Δσ 3 =
Δε 1 = Δε 3 =
σ s ⎛ ΔP ⎞
⎛ ΔP ⎞ ⎜ ⎟ , Δσ 2 = σ s ⎜ ⎜ ⎟ ⎜ P ⎟ ⎟ 2 ⎝ Pe ⎠ ⎝ e ⎠
(1-20) (1-21)
σ
σs
E’
E
εs
图 1-7
ε
幂强化模型
σ = Aε n , 0 ≤ n ≤ 1
(1-3)
σ
n =1
A
n = 1/ 2 n = 1/ 3 n=0
1
ε
图 1-8
Ramberg-Osgood 模型
σ /σ0
ε / ε 0 = σ / σ 0 + (σ / σ 0 ) n
3 7
(1-4)
1
n = 0 n =1 n=2 n=5 n=∞
位移:
(1-18)
δ y = ε 2 ⋅ l = 2ε1l =

2σ 1 l E
δy P = (1 + 2 ) − 2 δe Pe

(完整word版)弹塑性力学思考题答案

(完整word版)弹塑性力学思考题答案

弹塑性理论思考题⒈ 一点的应力状态?答:通过一点P 的各个面上应力状况的集合 ⒉ 一点应变状态? 答:[受力物体内某点处所取无限多方向上的线应变与剪应变(任意两相互垂直方向所夹直角的改变量)的总和,就表示了该点的应变状态。

]代表一点 P 的邻域内线段与线段间夹角的改变⒊ 应力张量?应力张量的不变量?应力球张量?体积应力?平均应力?应力偏张量?偏应力第二不变量J2的物理意义?单向应力状态、纯剪应力状态的应力张量?给出应力分分量,计算第一,第二不变量。

答:应力张量:代表一点应力状态的应力分量,当坐标变化时按一定的规律变化,其变换关系符合张量之定义,因此,表示点的应力状态的9个分量构成一个二阶张量,称为应力张量。

一点的应力状态可以借用矩阵以张量σij 表示:。

其中:xz τ=zxτ,xy τ=yx τ,yz τ=zy τ。

应力张量的不变量:对于一个确定的应力状态,只有一组(三个)主应力数值,即J 1,J 2,J 3是不变量,不随着坐标轴的变换而发生变化。

所以J 1,J 2,J 3分别被称为应力张量的第一、第二、第三不变量。

应力张量可分解为两个分量0-00+00m x m xy xz ij m yxy m yz m zx zy z m σσσττσστσστσττσσ⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,等式右端第一个张量称为应力球张量,第二个张量称为应力偏张量。

应力球张量:应力球张量,表示球应力状态(静水应力状态),只产生体积变形,不产生形状变形,任何切面上的切应力都为零,各方向都是主方向。

应力偏张量:应力偏张量,引起形状变形,不产生体积变形,切应力分量、主切应力、最大正应力及主轴同原σij ,二阶对称张量,同样存在三个不变量J 1' ,J 2' ,J 3' 体积应力:P46平均应力:12311()()33m x y z σσσσσσσ=++=++,m δ为不变量,与坐标无关。

塑性力学第五章(2)-简单的弹塑性问题(二)

塑性力学第五章(2)-简单的弹塑性问题(二)
2
ε = 0.707σ s
1 τ= 3
σs ε2 + γ2
1 3
γ = 0.408σ s
附一: 附一:
理想弹塑性材料的 Prandtl
理想弹塑性力学模型
— Reuss 理论
σ σs
Eε σ = σ s
ε ≤ εs ε > εs
εs εp εe ε
在塑性区, 在塑性区,应变增量由弹性和塑 性两部分组成。 性两部分组成。
简 单 的 弹 塑 性 问 题(二) 二
薄壁圆筒的拉扭联合变形 增量理论 全量理论
不可压缩(v=0.5)理想弹塑性材料的薄壁圆管受轴向拉力和扭矩作用, 不可压缩(v=0.5)理想弹塑性材料的薄壁圆管受轴向拉力和扭矩作用, 使用Mises条件。 使用Mises条件。 条件 应力路径:(1)先拉至 ε s = :(1 应力路径:( (2)先扭后拉。 先扭后拉。
th
σs
σs
σ =
ch
σs
3G γ
σs
γ =
σs
3G

σ = 0 .648 σ s , τ = 0 .439 σ s
(2)先扭后拉 )
γ
σs
3G
τ
B C
σ
3
A
s
B
C A
O
σs
3G
ε
O
σ
σ
s
dγ = 0
dW d = σ d ε + τd γ = σ d ε
3Gd ε = dσ 1−
dσ σ 2 dε dε = + 3G σ s2
σ = 0 .707 σ s τ = 0 .408 σ s
σ 2 + 3τ 2 = σ s2

(完整word版)弹塑性力学试卷

(完整word版)弹塑性力学试卷

二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。

(参照oxyz直角坐标系)。

2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。

三、选择题(每小题有四个答案,请选择一个正确的结果。

每小题4分,共16分。

)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。

裂纹展布的方向是:_________。

A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。

该板危险点的最大拉应力是无孔板最大拉应力__________倍。

A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。

)则在该点处的应变_________。

A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。

A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。

)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。

2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。

为平均应力。

并说明这样分解的物理意义。

3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。

若选取=ay2做应力函数。

试求该物体的应力解、应变解和位移解。

(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。

)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。

塑性力学(第一章)简单应力状态下的弹塑性力学问题

塑性力学(第一章)简单应力状态下的弹塑性力学问题

2、真应力
~ = P, σ A
3、对数应变
P) σ , (名义应力 = A 0
~ = ι dl′ = ln( l / l ) = ln(1+ ε) ε ∫ 0 l′ ι0 l − l0 ( 义 变 = 名 应 ε ) , l0
4、截面积收缩比 q=(A0-A)/A0 q=(
二、真应力
假定材料是不可压缩的: 假定材料是不可压缩的:A0l0=Al,并认为名义应力 达到最高点C时出现颈缩: 达到最高点C时出现颈缩:
当材料有较大的塑性变形时(弹性变形相对地很小), 当材料有较大的塑性变形时(弹性变形相对地很小), 可近似地认为体积是不可压的。 可近似地认为体积是不可压的。 静水压力对屈服应力的影响也是不大的。 静水压力对屈服应力的影响也是不大的。
应力§1.3 应力-应变关系关系的简化模型
1.理想弹塑性模型
σ < σs时 ε = σ E 当 , 当 , σ = σs时 ε = σ E + λsignε
适用: 适用:材料的强化率较高且在一定范围 内变化不大
σS
E′
O εS
E
ε
图 4
3.一般加载规律
对于一般的单向拉伸曲线,在不卸载时应力应变关系: 对于一般的单向拉伸曲线,在不卸载时应力应变关系:
σ = φ(ε) = Eε[1−ω(ε)]
其 中 0 ω(ε) = [Eε -φ(ε)]/(Eε) 当 ≤ εs ε 当 > εs ε
例如,对处于图2(a)中的M点,当加 中的M 例如,对处于图2 载时即应力(或应变)继续增长时, 载时即应力(或应变)继续增长时, 应力应变曲线将沿AMM 方向延伸, 应力应变曲线将沿AMM1方向延伸,公 当卸载时即应力(或应变) 当卸载时即应力(或应变)减小时应 力应变曲线才以( 式的规律沿MN 力应变曲线才以(1)式的规律沿MN 向下降。 向下降。为了区分以上这种加载和卸 载所具有的不同规律, 载所具有的不同规律,就必须给出相 应的加卸载准则 加卸载准则。 应的加卸载准则。

塑性力学-简单弹塑性问题

塑性力学-简单弹塑性问题
ys
h2
理想弹塑性材料、矩形截面 b × h −σ s −
σ = Φ (ε ) = σ s
ys ys
其中:
⎤ ⎡ I (A ) M = σs ⎢ z e + Sp⎥ ⎦ ⎣ ys
2 3 I z ( Ae ) = b ⋅ y s 3
h2 2 S p = b( − y s ) 4
6
σs
+
M 3 1 y = − ( s )2 Me 2 2 h 2
+
ε=
y
+
σ

+
σs
σ
ρ
σ*
卸载前的应力、应变:σ 残余应力: σ * = σ − σ
ε
卸载过程应力改变量: σ = M y
I
10
2. 等截面梁的横向弯曲
•弯矩是变化的 M = M (x) •存在剪应力 忽略剪应力对屈服的影响
y ⎧ σs ⎪ σ ( x, y ) = ⎨ y s ( x ) ⎪Φ ( ε ) ⎩ 在 y ≤ ys ( x )时 在 y ≥ ys ( x )时
中性层曲率:
ρ
=
σs
Ey s
5
M = 2 ∫ σ ⋅ dA ⋅ y = 2 ∫ σ ⋅ dA ⋅ y + 2 ∫ σ ⋅ dA ⋅ y
0
h2
ys
h2
0
ys
= =
E
ρ σs
ys
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
ys
h2
I z ( Ae ) + 2 ∫ Φ (ε ) ⋅ dA ⋅ y
z
该问题是球对称的。采用 球坐标 不为零的应力分量 σ θ σ ϕ σ r

(完整版)弹塑性力学习题题库加答案.docx

(完整版)弹塑性力学习题题库加答案.docx

第二章 应力理论和应变理论2— 15.如 所示三角形截面水 材料的比重 γ,水的比重 γ 1。

己求得 力解 :σ x = ax+by , σy =cx+dy- γy , τxy =-dx-ay ;根据直 及斜 上的 界条件,确定常数 a 、b 、c 、 d 。

解:首先列出OA 、 OB 两 的 力 界条件:OA :l 1=-1 ;l 2=0 ;T x= γ1 y ; T y =0σx =-γ1y ; τxy =0代入: σx =ax+by ; τxy =-dx-ay 并 注 意 此 : x =0得 : b=- γ1; a=0;OB : l 1=cos β ; l 2=-sin β, T x =T y =0:x cosxy sin0 yx cosy sin⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( a )将己知条件: σ x=1xy=-dxyγ y-γ y ; τ; σ =cx+dy-代入( a )式得:1 y cos dx sin0L L L L L L L L L bdx coscxdyy sin L L L L L L L L L化 ( b )式得: d = γ12β;ctgT4n2τ 30° δ 30°30°化 ( c )式得: c =γctg β -2γ 13y10x10Ox12 6τxy103 Pa2— 17.己知一点 的 力 量6 10 00 0δ y求 点的最大主 力及其主方向。

x题1-3 图解:由 意知 点 于平面 力状 ,且知:σx =12×O103σ y =10× 103 τ xy =6× 103,且 点的主 力可由下式求得:β212 101221.2xyxy21023n 22xy22610βγ 1y113710311 6.0828 10317.083 10 3 Paγ34.91724 10BA然:y117.083 10 3Pa2 4.917 10 3Pa30σ 1 与 x 正向的 角 : (按材力公式 算)c2 xy2 6 12 sin 2tg 2121026xycos2然 2θ 第Ⅰ象限角: 2θ=arctg ( +6) =+80.5376 °则:θ=+40.2688 B 40° 16'或(-139° 44')2— 19.己知应力分量为:σx=σy=σz=τxy=0,τzy=a,τzx=b,试计算出主应力σ1、σ2、σ3 并求出σ2 的主方向。

塑性力学01_绪论_简单应力状态下的弹塑性问题

塑性力学01_绪论_简单应力状态下的弹塑性问题

塑性力学的基本方程
3 基本方程与基本解法
根据基本方程求解 精确解法 即能满足塑性力学中全部方程的解。 即能满足塑性力学中全部方程的解。 近似解法 即根据问题的性质, 即根据问题的性质,采用合理的简化假 设,从而获得近似结果。 从而获得近似结果。 有限元数值分析方法 它不受物体或构件几何形状的限制, 它不受物体或构件几何形状的限制,对于各种复 杂的物理关系都能算出正确的结果。 确的结果。
s s
J.Bauschinger(
德国)
塑性变形较大时, σ-ε曲线不能真正 反映加载和变形的 状态。 状态。 例如颈缩阶段, 阶段, σ-ε曲线上试件的 应变增加而应力反 而减小,与实际情 况不符。 颈缩后,由于局部的实际横截面积的减小,局部的 拉应力仍在增加。 拉伸失稳状态
真实应力和真实应变
4 基本概念
4 基本概念
③理想刚塑性模型
σ =σs
韧性 材料
②线性强化弹塑性模型

σ =
塑性成形阶段, 塑性成形阶段, 忽略弹性应变 σ = σ ② ①
ε σ
④线性强化刚塑性模型
s
(ε ≤ ε s ) ′ σ E ε ε ε > εs) + ( − ) ( s s
+ E ′ε
σ
E′
E′
σs
E
σs
o
④ ③
实验表明, 实验表明,直到1500MPa,体积变形仍然是弹性的, 体积变形仍然是弹性的,并且 这种弹性体积变化是很小的。 这种弹性体积变化是很小的。钢在1000MPa下体积仅缩小0.6% 因此, 因此,对于金属材料, 对于金属材料,可忽略弹性的体积变化, 可忽略弹性的体积变化,认为材料 不可压缩。 不可压缩。 对于金属材料, 对于金属材料,静水压力对初始屈服应力的 影响很小, 影响很小,可以忽略不计。 可以忽略不计。

塑性力学-绪论与第一章N

塑性力学-绪论与第一章N

比例极限、弹性极限;线性弹性、弹性
§1.2
一种没有 明显的屈 服阶段, 例如一些 铝材的拉 伸试验曲 线。
一种有明显 的屈服阶段, 例如低碳钢 的拉伸试验 曲线。在这 种情形下, 在“屈服平 台”上应力 保持不变, 应变可以有 很大增长。
2. 如果应力超过弹性极限还继续加载,则完全卸载后应 变仍不为零,残留的应变称为塑性应变。记为 P 。 因此,弹性极限是产生不产生塑性应变的分界应力。
地震时混凝土构件中钢筋的塑性变形
切削中的塑性变形
图片引自周增文主编:《机械加工工艺基础》
材料的破坏伴随着塑性变形
(金属)材 料破坏区域 在破坏前经 历了明显的 (有时是非 常剧烈的) 塑性变形
材料的破坏伴随着塑性变形
(金属)材 料破坏区域 在破坏前经 历了明显的 (有时是非 常剧烈的) 塑性变形
尽管已取得很大成就,未解决的问题依然很多。特别是各种材料 的本构描述及小尺度下的材料塑性性质等方面。
塑性力学的应用
估计(或预测)工程结构的强度和寿命(塑 性力学通常会被用到)
寻找充分发挥材料的强度潜力的方法(例如 研究在哪些条件下可以允许结构中某些部 位进入塑性变形,以充分发挥材料的强度 潜力,减少用料,减轻结构自重 )
线性强化
§1.3
2 线性强化弹塑性模型 (材料的强化率较高且强化率在一 定范围内变化不大)
为分析简便,将材料

E'
的应变强化假定为线性强
化、并假定拉伸和压缩的 s
屈服应力绝对值相同、强 E 化模量也相同。
s E'
s E
于是单调载荷下(即 不考虑卸载时)的应力应 变关系可以写为:
o


03-简单应力状态的弹塑性问题

03-简单应力状态的弹塑性问题

(4) 断裂特性
伸长率:
截面收缩率:
k
lk l0
100%
k
F0 Fk F0
100%
标志材料的塑性 特性,其值越大 则材料破坏后的 残余变形越大。
k 5%:塑性材料;低碳钢k=20% ~30% k <5%:脆性材料。
3.1 基本实验资料
塑性变形有以下特点:
(1)、由于塑性应变不可恢复,所以外力所作的塑性功具有不可逆 性,或称为耗散性。在一个加载卸载的循环中外力作功恒大于零, 这一部分能量被材料的塑性变形损耗掉了。
s


O
e
一般金属的拉伸与压缩曲线比较
3.1 基本实验资料
一、应力--应变曲线
(3)反向加载
卸载后反向加载,ss’’< ss’——Bauschinger效应
s
B
A
ss O
O’ e
拉伸塑性变形后使 压缩屈服极限降低 的现象。即正向强 化时反向弱化。
ss’
ss’’
B’
B’’
3.1 基本实验资料
一、应力--应变曲线
第三章 简单应力状态的弹塑性问题
3.1 基本实验资料 3.2 应力-应变的简化模型 3.3 应变的表示法 3.4 理想弹塑性材料的简单桁架 3.5 线性强化弹塑性材料的简单桁架 3.6 加载路径对桁架内应力和应变的影响
3.1 基本实验资料
拉伸试验和静水压力试验是塑性力学 中的两个基本试验,塑性应力应变关 系的建立是以这些实验资料为基础。
曲线的相对差值
O ep
B
e
e
O es
e
3.2 应力应变简化模型
对线性强化弹性材料在加载时:
| e | e s [s s E (e e s )]sign e Ee [1 w (e )]
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档