模板盒形件拉深模具设计

合集下载

盒形件拉深模具设计内容知道

盒形件拉深模具设计内容知道

目录题目盒型件拉深模设计 (2)前言 (2)第一章审图 (5)第二章拉深工艺性分析 (6)2.1对拉深件形状尺寸的要求 (6)2.2拉深件圆角半径的要求 (6)2.3 形拉深件壁间圆角半径rpy (7)2.4 拉深件的精度等级要求不宜过高 (7)2.5 拉深件的材料 (7)2.6 拉深件工序安排的一般原则 (8)第三章拉深工艺方案的制定 (8)第四章毛坯尺寸的计算 (9)4.1 修边余量 (9)4.2毛坯尺寸 (9)第五章拉深次数确定 (10)第六章冲压力及压力中心计算 (11)6.1 冲压力计算 (11)6.2 压力中心计算 (12)第七章冲压设备选择 (12)第八章凸凹模结构设计 (13)8.1凸模圆角半径 (13)8.2 凸凹模间隙 (13)8.3 凸凹模尺寸及公差 (14)第九章总体结构设计 (14)9.1 模架的选取 (14)9.2 模柄 (15)9.3拉深凸模的通气孔尺寸 (15)9.4导柱和导套 (16)9.5 推杆 (17)9.6卸料螺钉 (17)9.7螺钉和销钉 (17)第十章拉深模装配图绘制和校核 (18)10.1拉深模装配图绘制 (18)10.2 拉深模装配图的校核 (20)第十一章非标准件零件图绘制 (21)11.1冲压凸模 (21)11.2 冲压凹模 (22)11.3 压边圈 (22)11.4 凸模垫板 (23)第十二章结论 (24)参考文献 (25)题目盒型件拉深模设计其目的在于巩固所学知识,熟悉有关资料,树立正确的设计思想,掌握设计方法,培养学生的实际工作能力。

通过模具结构设计,学生在工艺性分析、工艺方案论证、工艺计算、模具零件结构设计、编写技术文件和查阅文献方面受到一次综合训练,增强学生的实际工作能力前言从几何形状特点看,矩形盒状零件可划分成2 个长度为(A-2r) 和2 个长度为(B-2r) 的直边加上4 个半径为r 的1/4 圆筒部分(图4.4.1) 。

若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为 2r 、高为 h 的圆筒件的拉深,直边部分的变形相当于弯曲。

阶梯型盒形盖的拉深工艺及模具设计

阶梯型盒形盖的拉深工艺及模具设计

d a n r c s ,wh c e st e a c r c e u r m e t f sz n h p r wi g p o e s i h me t h c u a y r q i e n si i e a d s a e l

Ke wo ds he qu y r :t adr t t p。 o r;t ompo a e se c ve he c und d e;d sgn;dr i ei awi e hnol y ng t c og
3 1
R2 i 台阶 处 圆 角 拉 深 时 , 角 部 分 材 料 要 向 4tm r 圆
其 直 边 部 分 流 动 , 直 边 部 分 受 到 切 向压 缩 , 使 圆
度 ) 远 , 成 形 只 能 在 凸 模 作 用 下 , 靠 局 部 较 其 仅 材 料 两 向受 拉 而 变 薄 成 形 。其 他 部 位 则 只需 根

Pr c i e pr e ha he f m i a tc ov s t tt or ng
t nn og nd i de i n ec ol y a d e sg ar r a ona e, a t pa t a b a hi ve t e es bl nd he r c n e c e d wih o i l ne s ng e
角 部 分 变 形 得 到 减 轻 , 资 料 介 绍 其 极 限 拉 深 据
系 数 口达 0 3 0 3 。 由 于 圆 角 的 切 向 压 缩 仍 J .~ .2 然 比直 边 的大 , 角 处 的 变 形 程 度 较 大 , 起 皱 圆 故 和破 裂 仍 发 生 在 圆 角 。 因此 , 艺 方 案 的 制 工
ZHON G a g s n Xi n —ha

高正方形盒形件拉深工艺及模具设计

高正方形盒形件拉深工艺及模具设计

相对高度 $ " #($ 为方形件的高度)大时,圆角部分对
直边部分的影响就大。
从拉深件(图 &)的工艺性来看,由于 ! 角*+,,,! 底*
!,,,边 长
#
*&-
."#&( "
,,,高

$"*/!
.&#" "
,,,正 方 边 长 与
其高度相差较大,板材厚度 %*"#),,。
+ 高正方形盒形件拉深工艺计算 盒形件拉深过程的应力和变形比较复杂,沿周边
&(
《模具制造》 !""!#$%#& 总第 ’ 期
高度较长,所以首次拉深工序的模具方式应采用压边 圈在下模的反向拉深模结构。
电 池 壳 落 料 — 首 次 拉 深 复 合 模 的 工 作 过 程 是 :先 把 毛 坯 送 入 下 模 上 ,碰 着 挡 料 钉( 未 画 出 )为 限 定 毛 坯 的送进距离。开动压力机使其滑块下行时,首先是落 料、拉深凸凹模 * 与落料凹模 4 进行落料工序,然后圆 形坯料受到弹顶器的下顶杆 &4 向上运动,使压边圈 && 有 力 地 压 紧 圆 形 坯 料 。 当 滑 块 继 续 下 行 时 ,通 过 落 料 、 拉深凸凹模 * 与拉深凸模 &" 完成首次拉深工序。冲压 完毕滑块回升,通过由下弹簧 &(、下托板 &)、螺杆 &5、 上托板 &* 及下顶杆 &4 组成顶出机构的压边圈 && 从 拉深凸模 &" 把制件 !& 向上顶出。当滑块继续向上回 升时,通过打料棒 6 及上推块 5 组成刚性推件机构,把 制件 !& 从落料、拉深凸凹模 * 内而推下,才能取出留 在下模上的制件 !&。

拉深模具设计说明书

拉深模具设计说明书

拉深模具设计说明书————————————————————————————————作者:————————————————————————————————日期:拉深模具设计说明书学院:机械工程学院系:车辆工程系班级:车辆11姓名:范凯学号:21101050051 设计的目的和意义不锈钢饭盒是一种简单的生活用品,生产批量为大批次,材料采用10钢板,料厚2mm。

图1图22 冲压零件图及工艺此工件为无凸缘盒型拉深件,要求外形尺寸,没有厚度不变的要求但是壁厚不可低于0.5mm。

此工件的形状满足拉深工艺要求,可以用拉深工序加工。

2.1冲压件工艺性分析及冲裁方案的确定2.1.1材料分析采用430不锈钢板,包含铁+12%以上的铬,可以防止自然因素所造成的氧化,称之为不锈钢,在jis的代号为430号,因此又称为430不锈钢。

满足使用要求。

抗拉强度。

2.1.2冲裁件的结构工艺性工件底部圆角半径为r=14mm,大于拉深凸模圆角半径,满足首次拉深对圆角半径的要求。

相对高度 ,属于低盒型件,可以一次拉深而成。

总之,该工件的拉深工艺性较好。

2.1.3 冲裁件经济性分析材料利用率较高,经济性良好。

2.1.4冲裁方案的确定本工件首先需要落料,然后以落料件为毛坯进行拉深。

本次做拉深工序所需的拉深模。

2.2 排样图的设计及材料利用率的计算2.2.1排样毛坯尺寸计算对于尺寸为的矩形盒拉深件,可以看做由两个宽度为b的半正方形和中间为的直边组成。

展开图(图3)如下:图3长圆形毛坯的圆弧半径为:式中,——毛坯的圆弧半径;D——尺寸为的假象方形盒的毛坯直径。

长圆形毛坯的长度为:长圆形毛坯的宽度为:计算得:D248,,,毛坯面积:A=688402.2.2 排样的方式图42.2.3 材料利用率计算2.3 拉深工艺力的计算2.3.1拉深力的计算拉深力:和——盒型件的长和宽();——盒型件的角部圆角半径();——材料厚度();——材料抗拉强度(MPa);——拉深系数;由毛坯相对厚度 ,盒型件相对高度根据一次拉深成的低矩形件的系数相关表得:,;388029N压边力:不采用压边。

盒形件拉深模设计

盒形件拉深模设计

《冲压工艺与模具设计》课程设计说明书设计题目盒形件首次拉深模设计系别机械工程系专业班级机自Y091学生姓名学号200900103017指导教师日期2012年6月目录设计任务零件工艺分析1.材料分析2.结构分析3.精度分析工艺方案的确定零件工艺计算1.拉伸工艺计算(1)确定零件修边余量(2)确定坯料尺寸(3)判断是否采用压边圈(4)确定拉深次数(5)确定各工序件尺寸(6)确定各工序件高度2.首次拉伸模工艺计算(1)首次拉深凸、凹模尺寸计算(2)拉伸力与压边力冲压设备的选用模具零部件结构的确定1.模架的确定2.模座3.凸模固定板4.模柄5.定位圈6.压边圈及卸料装置7.设置反顶装置8.螺钉与销钉拉深模装配图凸凹模零件图设计感想设计任务电器盒技术要求:未标注公差按IT14级精度制造材料为黄铜H62,t = 0.5mm设计任务:设计该零件的首次拉伸模具零件工艺性分析1.材料分析黄铜有很好塑形,拉深成形性能良好,易于冷热压力加工成型2. 结构分析零件为一无凸缘盒形件,结构简单,底部圆角半径为R1.5,壁间圆角半径也为R1.5,由最终拉伸凸模保证,材料厚度t=0.5,较薄,所以,零件具有良好的结构工艺性。

3. 精度分析盒形件外形尺寸公差为IT12级,由最后一道拉伸工序保证,侧壁孔中心距尺寸与定位尺寸公差也为IT12级,由冲孔工序保证工艺方案的确定零件的生产包括落料、拉深(需计算确定拉深次数)、冲孔,切边等工序,为了提高生产效率,可以考虑工序的复合,在此为简化模具设计不考虑工序复合。

毛坯落料后,经多次拉深成形,由机械加工方法切边保证零件高度,最后对盒形件进行冲孔。

零件工艺计算1.拉深工艺计算(1)确定零件修边余量 零件的相对高度23.12227==B H ,查表5-2(167)得修边余量mm h 5.2=∆,所以,修正后拉深件的总高应为H =27+2.5=29.5mm 。

(2)确定坯料尺寸由于盒形件壁间圆角半径与底部圆角相等,边长为B 的高方盒件毛坯直径为:mm62.70mm 5.133.05.295.172.15.143.05.292242213.133.0(72.1)43.0(413.122≈⨯+⨯⨯-⨯-⨯⨯+=+---=)()()r H r r H B B D 所以,高矩形盒椭圆形形毛坯尺寸为:mm B L D Lz 62.82)2234(62.70)(=-+=-+=mmrL B L 14.745.1234)2234()]5.10.43-29.5222 [5.12-(2262.072)(0.43r)]-H 2B [2r -(B D Bz =⨯--⨯⨯⨯++⨯⨯=--⨯⨯++⨯=()()mm D R b 31.35262.702===mmR B R L B L R bz bz z z l 62.4631.35214.7431.3561.82)14.7462.82(0.252)(0.252222=⨯-⨯-+⨯=--+⨯=(3)判断是否采用压边圈 零件的相对厚度压边圈67.010014.742100=⨯=⨯z B t ,经查表5-8(P181),需采用压边圈,防止拉伸起皱。

底部多孔盒形拉深件模具设计解析

底部多孔盒形拉深件模具设计解析

参磊 。 加 工 冷 工
WWW r t wor ng7 50 c ne a1 ki 9 . om
21 第 期● 07 2 雀 年

。 。

/ D

R|

罔 3 毛坯尺寸求作 图
首先 ,所确定 的毛坯尺寸即为落料 凹模尺寸 。 其次 ,两次拉 深 的相互关 系 应符合下列条件 ( 见图 4 : )
次拉深 ( 整形 )一冲孔一 车边 。
须两次拉深。第二次拉深近似整形 ,主要 日的是用来减 小角部 和底 部 圆角 ,而其 外形 不 变 ,轮廓 尺寸 稍有 改
变。
因考虑到工件 圆角部分要 两次拉深 ,同时材料 有向 侧壁 挤流现象 ,故将展 开圆角半径 加大 1 % ~ 0 。 0 2% 求作 毛坯相关尺寸
段 ,在公 司得到广泛应用。该模 具结构简 单 、换 刀方便 而且制造周期短。槽钢下料 后断面光 洁 ,毛刺很小 ,完 全能够满足生产要求。作为一种 稳定实用 的模 具 ,值得
() b 下切 刀
借鉴 和推广 。MW
( 稿 日期 :2 10 1 ) 收 0 0 9 3
图 4 上 、下切刀
毛坯 相对厚度 为 lO/ ( 为材料 厚度 ,D为毛坯 O tD t
尺寸 , 图 3 ,一般情况下 ,盒形件在拉深后都需要修 见 )
边 ,所 以在确定其毛坯尺寸和进行工艺计 算之前 ,应在 工件 高度或 凸缘宽度上加修边余量 。无 凸缘 盒形件修边
余量 △日。
下 面介绍此拉深件模具 的设计过程及改进措施。
阿 1 底部多j盒形
径中心不 同。
本文盒形件 r i ,H :1 t o= n o 7 m,则 / =7 m r 。查 表得 △日

盒形件拉深模设计

盒形件拉深模设计

2.拉深工作零件尺寸计算 首先确定拉深凸、凹模间隙,根据盒形件间隙确定原 则,取直边部分的间隙等于材料厚度,即1mm;圆角部分 间隙较直边部分增加0.1倍料厚,即1.1mm。因为零件标注 内形尺寸( 52 0.5mm 、67 0.5mm 、R10 0.25mm),所以要先计算凸 模,即 d (d 0.4 Δ) 0 (52 0.5 0.4 1) 0 mm 51.90 0 mm

计算压边力
F压 Ap 7615 .15 2.3N 17514 N 18kN
总工作力
F总 F拉 F压 (62 18)kN 90 kN
根据以上力的计算数值,同时考虑零件的高度,初选设 备为J23—16。
四、模具零部件结构的确定
1.标准模架的选用 取凹模的壁厚为45mm,计算得出凹模的外形尺 寸为159mm×144mm,凹模高度受到拉深件高度 和模具结构的影响暂不能确定,其具体尺寸在绘制 模具装配图时可调整确定。模具采用后置导柱模 架,根据凹模外形尺寸,查得模架规格为: 上模座160mm×160mm×40mm, 下模座160mm×160mm×45mm, 导柱28mm×170mm, 导套28mm×100mm×38mm。
(3)确定坯料的形状与尺寸 根据一次拉深成形的矩形盒坯料计算方法,其直边部分 按弯曲件求解坯料展开长度。 盒形件圆角部分按筒形件拉深求解坯料展开尺寸
R r 2 2rh 0.86 r底 r 0.16 r底) ( 10.5 2 2 10.5 35.5 0.86 10.5 1.16 10.5mm 27.31mm
(4)校核橡胶垫的自由高度
H 0 170 0.88 D 193
橡胶垫的高径比在0.5~1.5之间,所以,选用的橡胶垫规 格合理。橡胶的装模高度约为0.85×170mm=144.5mm。 3.其它零部件结构 为降低拉深凸模的高度,模具采用凸模直接固定在下模 座的固定方法。模柄采用压入式模柄,根据设备上模柄孔尺 寸,选用规格A40×100的模柄。

拉深工艺和拉深模设计

拉深工艺和拉深模设计
学习目旳: 掌握拉深件旳构造工艺性要求,了解拉深件在
公差、材料上旳要求,掌握拉深件工序安排旳一般 原则。
教学要求: 根据弯曲件旳构造工艺性要求改善拉深件旳结
构设计;能够根据拉深件旳工艺条件,拟定拉深件 圆角半径,拟定带孔拉深件旳孔旳位置。
4.2.1 对拉深件形状尺寸旳要求
1)拉深件形状应尽量简朴、对称,尽量一次拉 深成形。
1)孔位应与主要构造面(凸缘面)在同一平面, 或孔壁垂直该平面,便于冲孔与修边在同一 道工序中完毕。
2)拉深件侧壁上旳冲孔与底边或凸缘边旳距离 h 2d t
3)拉深件凸缘上旳孔距:
D1 (d1 3t 2r2 d )
4)拉深件底部孔距:
d d1 2r1 t
4.2.3 拉深件旳精度等级 主要指其横断面旳尺寸精度;一般在IT13级
2)叠加各段中间层面积,求出制件中间层面积;
3)根据“等面积原则”求出毛坯直径。
D
4S
4
f
式中
S——毛坯面积(涉及修边余量); f——简朴旋转体拉深件各部分面积; D——毛坯直径。
案例分析: 带凸缘制件
无凸缘制件
将制件分割为: 1)1/4凹球环 2)圆柱
3)1/4凸球环 4)圆板
计算:
1)1/4凹球环
要求:
1)rpg≥t,一般取:rpg≥(35)t 2)rpg<t,增长整形工序,每整形一次,rpg
可减小1/2。
pg
pg
py
3.矩形拉深件壁间圆角半径rpy 矩形拉深件壁间圆角半径rpy:
指矩形拉深件旳四个壁旳转角半径。
要求:rpy≥3t及rpy≥H/5
pg
pg
py
4.2.2 拉深件上旳孔位布置

模板盒形件拉深模具设计

模板盒形件拉深模具设计
2.5拉深件的材料
由工件图可知拉深件所用的材料为08钢。
材料名称
牌号
材料
状态
抗拉强度 /MPa
屈服强度 /MPa
抗剪强度
/ MPa
伸长率
/%
优质碳素结构钢
08
已退火
400
200
300
32
2.6拉深件工序安排的一般原则
l)在大批量生产中,在凹、凸模壁厚强度允许的条件下,应采用落科、拉深复合工艺;
2)除底部孔有可能与落料、拉深复合冲压外,凸缘部分及侧壁部分的孔、槽均需在拉深工序完成后再冲出;
由参考【2】表5-11有凸缘件的修边余量知道修边余量为5.5毫米。
4.2
因为h/B=30/190=0.16 0.6时,(2)
1)直边部分按弯曲件求展开长度,即
l= +h+0.57r -0.43r =50.7mm(3)
2)四圆角拼成一个带凸缘的圆筒,其展开半径为
当相对高度H/B大时,圆角部分对直边部分的影响就大,直边部分的变形与简单弯曲的差别就大。因此盒形件毛坯的形状和尺寸必然与r/B和H/B的值有关。对于不同的r/B和H/B,盒形件毛坯的计算方法和工序计算方法也就不同。
第一章
由工件图可知,该工件为带凸缘的开口对称盒形件,要求保证内形尺寸,没有厚度不变的要求。该工件形状满足拉深工艺性要求,可用拉深工序加工。材料为08钢,料厚为1mm。拉深精度等级为IT14
合肥学院
课程设计说明书
姓名:
chenmou
学号:
1006032043
年级:
10级
专业:
材料成型机控制工程
学院:
机械学院
指导教师:
赵茂愈
教学单位:

4.4 盒形零件的拉深

4.4 盒形零件的拉深

盒形零件的拉深4.4盒形零件的拉深4.4.1盒形零件拉深变形特点盒形件是由圆角和直边两部分组成,可以把它划分为四个长度为A -2r 和B -2r 的直边部分(相当于弯曲)和四个半径为r 的圆角部分(相当于拉深)。

1231231231231231231231......===...=...2h h ...h h h ...h =h =h =...=h nnn n nnn l l l l l l l l l l l l l l l l h h h ∆∆∆∆''''∆∆∆∆''''∆∆∆∆>∆>∆>∆>>∆∆∆∆∆''''∆∆∆∆∆∆∆∆<∆拉深后横向尺寸愈靠近中部,尺(1)直边部分)横向尺寸拉深前:、、、、拉深后:、、、、)纵向尺寸拉深前:、、、、拉深后:、、、、寸越小123h h ...h n h ''''<∆<∆<<∆拉深后纵向尺寸愈靠近盒形件口部,尺寸越大(2)圆角部分1)拉深前与底面垂直的等距平行线拉深后变成径向放射线(上部距离宽,下部距离窄的斜线);2)同心圆的间距不再相等,而是变大,越向口部越大。

图4-35 盒形件拉深时的应力分布(1)盒形件径向伸长,切向缩短,凸缘变形区径向拉应力σ1和切向压应力σ3分布不均,圆角处大,直边处最小;(2)圆角处的径向拉应力和切向压应力最大,为变形危险区;(3)盒形件的直边和圆角部分联系在一起,两部分变形相互影响,不是单纯的拉深和弯曲变形。

有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)4.4.2盒形零件拉深毛坯的形状与尺寸确定确定原则:保证毛坯的面积应等于加上修边余量后的零件表面积。

由于盒形件拉深时周边的变形不均匀,应把毛坯形状和尺寸进行修正,使毛坯轮廓成光滑的曲线,尽可能保证拉深件口部高度一致。

拉伸工艺及拉伸模具设计

拉伸工艺及拉伸模具设计

图阶梯形零件

图4.2.12 阶梯形多次拉深方法
01
若最小阶梯直径 过小,即 过小, 又不大时,最小阶梯可用胀形法得到。
02
若阶梯形件较浅,且每个阶梯的高度又不大,但相邻阶梯直径相差又较大而不能一次拉出时,可先拉成圆形或带有大圆角的筒形,最后通过整形得到所需零件,(如图)。
拉深过程中变形毛坯各部分的应力与应变状态 拉深过程中某一瞬时毛坯变形和应力情况(如图)
凹模圆角区 过渡区
凸模圆角部分 过渡区
平面凸缘部分 主要变形区
筒壁部分 传力区
圆筒底部分 小变形区
1
2
3
4
5
6
图 4.1.5 拉深中毛坯的应力应变情况
图4.2.13 直径差较大的浅阶梯形件的拉深方法
4.3 非直壁旋转体零件拉深成形的特点 曲面形状(如球面、锥面及抛物面) 零件的拉深,其变形区的位置、受力情况、变形特点等都与圆筒形零件不同,所以在拉深中出现的各种问题和解决方法亦与圆筒形件不同。对于这类零件就不能简单地用拉深系数衡量成形的难易程度,并把拉深系数作为制定拉深工艺和模具设计的依据。
4.1.3 拉深变形过程的力学分析
1.凸缘变形区的应力分析 (1)拉深中某时刻变形区应力分布 根据微元体的受力平衡可得 因为 取 并略去高阶无穷小,得: 塑性变形时需满足的塑性方程为 :
01
4.1 拉深变形过程的分析
在拉深后我们发现如图:工件底部的网格变化很小,而侧壁上的网格变化很大,以前的等距同心圆,变成了与工件底部平行的不等距的水平线,并且愈是靠近工件口部,水平线之间的距离愈大,同时以前夹角相等的半径线在拉深后在侧壁上变成了间距相等的垂线,如图所示,以前的扇形毛坯网格变成了拉深后的矩形网格。

盒形件拉深设计

盒形件拉深设计

华中科技大学材料学院盒形件加工工艺及模具设计班级:XXXXXXX学生姓名:X X X学号:XXXXXXX时间:2015年1月1、零件工艺性分析 (1)2、工艺方案的确定 (1)3、工艺计算 (3)3.1拉深部分工艺计算 (3)3.2落料时冲裁工艺计算 (8)4、冲压设备的选用 (12)5、落料拉深模主要零部件计算 (13)5.1落料凹模设计计算 (13)5.2拉深凸模设计计算 (14)5.3固定板设计计算 (15)5.4卸料结构计算 (16)5.5压边圈设计计算 (17)5.6凸凹模设计计算 (18)5.7其它零件设计和选用 (18)5.8模具闭合高度计算 (23)6、模具总装图的绘制 (24)7、结束语 (24)8、参考文献 (25)1、零件工艺性分析1.1零件结构图示图1.1:加工零件图1.2零件结构分析工件为矩形盒形件,零件形状简单,要求为外形尺寸;尺寸为长、宽、高分别为45mm ,27mm ,20mm ;料后t=0.4mm ,没有厚度方向上不变的要求;底部圆角半径p r =3mm ,矩形四个角处圆角半径为r =4mm ,满足拉深工艺对形状和圆角半径的要求。

1.3材料性能分析零件所用材料为H68M ,拉伸性能好,易于成形。

1.4精度等级分析公等级定为IT14级。

满足普通冲压工艺对精度等级的要求。

2、工艺方案的确定由上分析,该零件为矩形盒形件,可采用拉深成形。

为确定拉深工艺方案,先计算拉深次数及相关工艺尺寸。

2.1修边余量 工件相对高度0h 20==5r 4,则依据下表可知修边余量 0h=~h =0.0420=0.8mm ∆⨯(0.030.05)。

工件相对高度△h 2.5~6 7~17 18~44 45~100工件修边余量h0 (0.03~0.05)h0(0.03~0.05)h0 (0.03~0.05)h0 (0.03~0.05)h0表2.1:无凸缘盒形件的修边余量表 2.2相关工艺尺寸计算毛坯相对厚度t 0.4100100 1.48b 27⨯=⨯=; 矩形盒形件相对半径r 4==0.148b 27; 矩形盒形件拉深响度高度0h +h h 20+0.8===0.77b b 27∆;2.3判断拉深次数根据相关工艺尺寸计算结果,由下图可知,应选择一次拉深成形即可。

模具第四章拉深模设计

模具第四章拉深模设计
rp(0.7~1.0)rd
7)确定各次拉深半成品的高度:
h10.2(5 D d1 2d1)0.4d r 3 1 1(d10.3r1 2 ) h20.2(5 D d2 2d2)0.4d r3 2 2(d20.3r2 2 )
hn0.2(5 D dn 2dn)0.4d r3 n n(dn0.3rn 2 )
D0max 的拉深系数——极限拉深系数 (圆角部分不破裂,周边变形区坯料不 失稳起皱)
mc

d D0 m ax
3、影响极限拉深系数的因素
– 板料的力学性能 – 板料的相对厚度:t/D; t/D大,抗失
稳能力强,不易起皱。 – 模具结构及其参数:有无压边圈、凹
模圆角半径、凸模圆角半径。 – 拉深工艺条件:拉深次数、压边条件、
C=(1.1-1.20)t
用压边的一次拉深 光洁拉深
C=(1.0-1.15)t
C=(0.95-1.05)t
二、凸凹模结构形式
无压料一次拉深成形的凹模结构
a)圆弧形 b)锥形 c)渐开线形 d)等切面形
无压料多次拉深的凸、凹模结构
有压料多次拉深的凸、凹模结构
四、凸凹模刃口尺寸及公差(1)
• 当工件要求外形尺寸 (D) 时:
二、常用拉深模
无压边装置的以后各次拉深模
1-推件板 2-拉深凹模 3-拉深凸模 4-压边圈 5-顶杆 6-弹簧
有压边装置的以后各次拉深模
§4-7凸凹模工作部分的设计
一、拉深模间隙:间隙太大时,拉深件壁不 直或成锥形;间隙太小,模具磨损加剧, 工件易拉裂。
不用压边的浅拉深 多次拉深
C=(1.0-1.05)t
§4-5拉深件的起皱与破裂
一、起皱 拉深件的起皱: 受切向压应力失 稳而起皱。

模具毕业设计44盒形件落料拉深模设计

模具毕业设计44盒形件落料拉深模设计

模具毕业设计44盒形件落料拉深模设计一、引言在现代工业生产中,模具起着非常重要的作用,特别是在金属加工领域中。

本文将介绍我设计的44盒形件落料拉深模具的设计过程。

该模具的主要功能是对44盒形件进行落料和拉深加工,以实现形状的改变和尺寸的精确控制。

二、设计要求该模具的设计要求如下:1.落料加工:能够将原材料切割成相应形状的板材,以便后续的拉深加工。

2.拉深加工:能够将板材拉深成所需的44盒形件,确保形状和尺寸的精确度。

3.高效性:提高生产效率,降低人工成本。

4.安全性:确保操作人员的安全。

5.可靠性:保证模具的可靠性和稳定性。

三、设计方案基于以上的设计要求,我设计了如下的模具结构和工作流程:1.模具结构:a.上模:用于落料加工,具有落料刀具和固定装置。

b.下模:用于拉深加工,具有拉深刀具和固定装置。

c.顶针:用于定位模具和控制深度。

d.螺杆:用于固定上模和下模。

e.润滑系统:用于减少模具与工件之间的摩擦,提高模具寿命和工作效率。

2.工作流程:a.上模将原材料切割成相应形状的板材,并使用固定装置固定在下模上。

b.下模通过拉深刀具将板材拉深成所需的44盒形件,通过顶针进行定位和深度控制。

c.完成拉深后,顶针向上拉起,使得模具和工件分离,下模通过润滑系统排出模具,准备下一次工作。

四、设计计算模具设计中的关键计算有以下几个方面:1.材料选择:根据要求的板材材料和形状,选择适当的材料来制作模具。

常见的模具材料有钢和铝合金等。

2.受力分析:对模具进行受力分析,确保其满足强度和刚度要求。

3.尺寸设计:根据要求的44盒形件的尺寸和形状,设计相应的模具尺寸,确保精确控制形状和尺寸。

4.温度控制:根据材料的热膨胀系数和工作温度,设计合适的温度控制系统,以避免模具变形和尺寸不稳定。

五、结论通过对44盒形件落料拉深模具的设计,可以实现对原材料的快速加工和形状的改变,提高生产效率和产品质量。

模具的设计要求高效、安全、可靠,并发挥其在金属加工中的重要作用。

模具第四章拉深模设计

模具第四章拉深模设计

• 根据面积相等的原则,筒 形拉深件的毛坯尺寸为:
F1 d ( H R )
F2
4
[2 R (
d
2R)
8R2]
F3
1 4
(d
2R)2
D 0
4 Fi
•表4.1-4.2
§4-4圆筒形拉深件拉深工艺计算
一、拉深系数 1、拉深系数:即拉深后圆筒形件的直径与拉深
前毛坯(或半成品)直径的比值。
d m
二、常用拉深模
•无 压 边 圈 拉 深 模
二、常用拉深模
•带 压 边 圈 拉 深 模



1-上模座

2-推杆

3-推件板

4-锥形凹模

5-限位柱

6-锥形压边圈

7-拉深凸模

8-固定板

9-下模座

二、常用拉深模
• 双动 压力 机使 用的 拉深 模
双动压力机用拉深模刚性压 边装置动作原理
rp(0.7~1.0)rd
7)确定各次拉深半成品的高度:
h10.2(5 D d1 2d1)0.4d r 3 1 1(d10.3r1 2 ) h20.2(5 D d2 2d2)0.4d r3 2 2(d20.3r2 2 )
hn0.2(5 D dn 2dn)0.4d r3 n n(dn0.3rn 2 )
1、
应大于各次的极限拉深
系数m。1,m2.......m.n..
2、
这是因为每次拉深后的材
料,m硬1m 化2.不...断m .n.有所增加,无中间退火时 更为严重。
(表4-7、8、9)(表2-1)
总结
• (M<1)拉深系数M反映了拉深时材料变 形程度的大小,M越小,表明变形程度越 大。

盒形件的拉深

盒形件的拉深

高盒形件毛坯的形状与尺寸
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
长圆形毛坯的长 度为:
长圆形毛坯的宽度为:
盒形件的拉深
1.3 盒形件拉深的变形程度
拉深系数 m
盒形件初次拉深的最大相对高度
冲压工艺与模具设计
(3)用光滑曲线
连接直边和
ห้องสมุดไป่ตู้
圆角部分,
即得毛坯的

形状和尺寸。








盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
所谓高盒形件是指必须用多次拉深才能最后成形的盒形件。 采用圆形毛坯, 其直径 D 为:
ra = rb = r时,则:
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
方盒形件毛坯的形状与尺寸
盒形件的拉深
1.1 盒形件的拉深变形特点
盒形件拉深时的应力分布
盒形件的拉深
1.1 盒形件的拉深变形特点
盒 形 件 基 本 尺 寸
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
(1)按弯曲计算直边部分的展开长度 l0,即:
(2)按拉深计算圆角部分的毛坯半径R,即:
盒形件的拉深
1.2 盒形件拉深毛坯形状与尺寸的确定
冲压工艺与模具设计
盒形件的拉深
1.1 盒形件的拉深变形特点
1.圆角部分应力分布不均匀 。 2.直边部分发生弯曲变形 。 3.圆角部分的平均应力比相同半径的圆筒件的径向拉应力要小得多 。 4.圆角部位易出现拉裂、起皱等现象 。 5.除了在圆角侧壁底部与凸缘圆角相切处容易发生拉裂外,还会因凹模圆
角半径过小等原因,引起凸缘根部(圆角附近侧壁处)产生拉裂 。 6.圆角与直边相互影响的程度取决于相对圆角半径 r/B 和相对高度 H/B 。

机械毕业设计(论文)-浅盒形件拉深工艺及模具设计(拉深冲孔2)(含全套图纸)[管理资料]

机械毕业设计(论文)-浅盒形件拉深工艺及模具设计(拉深冲孔2)(含全套图纸)[管理资料]

目录摘要……………………………………………………………………………………1关键词 (1)前言 (1)2冷冲压工艺方案设计 (2) (2) (2) (3) (3) (4) (4) (4) (5) (8)3冲孔落料复合模具设计 (12) (12)................................................1 2 ...................................................1 2 ...................................................1 5 ......................................................1 5 ......................................................1 6 (17) (18) (18) (19) (20) (21)............................................................2 1 4拉深工艺及拉深模设计 (21) (21) (21) (22) (22).........................................................2 2 、凹模间隙 (22).............................................2 2 .........................................................2 3 .........................................................2 3 5结论 (23)参考文献 (24)致谢 (24)浅盒形件拉深工艺及模具设计学生:钟发明指导老师:陈志亮(湖南农业大学东方科技学院,长沙 410128)摘要:浅盒形件在汽车、电器行业应用广泛,且不同的用途决定了盒形件技术要求的不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.5拉深件的材料
由工件图可知拉深件所用的材料为08钢。
材料名称
牌号
材料
状态
抗拉强度 /MPa
屈服强度 /MPa
抗剪强度
/MPa
伸长率
/%
优质碳素结构钢
08已退火ຫໍສະໝຸດ 400200300
32
2.6拉深件工序安排的一般原则
l)在大批量生产中,在凹、凸模壁厚强度允许的条件下,应采用落科、拉深复合工艺;
2)除底部孔有可能与落料、拉深复合冲压外,凸缘部分及侧壁部分的孔、槽均需在拉深工序完成后再冲出;
第二章
2.1
1)拉深件形状应尽量简单、对称,尽可能一次拉深成形;
2)尽量避免半敞开及非对称的空心件,应考虑设计成对称(组合)的拉深;
3)在设计拉深件时,应注明必须保证外形或内形尺寸,不能同时标注内外形尺寸;带台阶的拉深件,其高度方向的尺寸标注一般应以底部为基准;
4)拉深件口部尺寸公差应适当。
5)一般拉深件允许壁厚变化范围0.6t1.2t,若不允许存在壁厚不均现象,应注明;
由参考【2】表5-11有凸缘件的修边余量知道修边余量为5.5毫米。
4.2
因为h/B=30/190=0.16 0.6时,(2)
1)直边部分按弯曲件求展开长度,即
l= +h+0.57r -0.43r =50.7mm(3)
2)四圆角拼成一个带凸缘的圆筒,其展开半径为
方案1的模具结构简单,但需要三道工序,三套模具才能完成零件的加工,生产效率低,难以满足零件的大批量生产需求。为提高生产效率,应采用复合或级进冲压方式,为了保证尺寸精度,最后确定使用复合冲压方式进行生产。加工完之后再进行切边。
第四章
4.1
因为B /B=230/190=1.21,其中B =230,B=190(1)
2)rpg<t,增加整形工序,每整形一次,rpg可减小1/2。
2.3
矩形拉深件壁间圆角半径rpy:
指矩形拉深件的四个壁的转角半径。
要求:rpy=15mm≥3t=3mm及rpy=15mm≥H/5=6mm.
2.4拉深件的精度等级要求不宜过高
主要指其横断面的尺寸精度;一般在IT13级以下,不宜高于IT11级,高于IT13级的应增加整形工序。因为工件图精度等级为IT14,所以符合要求。
拉深前,在毛坯的直边部分画出相互垂直的等距平行线网格,在毛坯的圆角部分,画出等角度的径向放射线与等距离的同心圆弧组成的网格。变形前直边处的横向尺寸是等距的,即 ,纵向尺寸也是等距的,拉深后零件表面的网格发生了明显的变化(如图1所示)。这些变化主要表现在:
图1盒形件的拉深变形特点
⑴直边部位的变形直边部位的横向尺寸变形后间距逐渐缩小,愈向直边中间部位缩小愈少,纵向尺寸变形后,间距逐渐增大,愈靠近盒形件口部增大愈多,可见,此处的变形不同于纯粹的弯曲。
(2)变形的不均匀导致应力分布不均匀(图2)。在圆角部的中点 最大,向两边逐渐减小,到直边的中点处 最小。故盒形件拉深时破坏首先发生在圆角处。又因圆角部材料在拉深时容许向直边流动,所以盒形件与相应的圆筒件比较,危险断面处受力小,拉深时可采用小的拉深系数也不容起皱。
图2盒形件拉深时的应力分布
(3)盒形件拉深时,由于直边部分和圆角部分实际上是联系在一起的整体,因此两部分的变形相互影响,影响的结果是:直边部分除了产生弯曲变形外,还产生了径向伸长,切向压缩的拉深变形。两部分相互影响的程度随盒形件形状的不同而不同,也就是说随相对圆角半径r/B和相对高度H/B的不同而不同。r/B愈小,圆角部分的材料向直边部分流得愈多,直边部分对圆角部分的影响愈大,使得圆角部分的变形与相应圆筒件的差别就大。当r/B=0.5时,直边不复存在,盒形件成为圆筒件,盒形件的变形与圆筒件一样。
(2)圆角部位的变形拉深后径向放射线变成上部距离宽,下部距离窄的斜线,而并非与底面垂直的等距平行线。同心圆弧的间距不再相等,而是变大,越向口部越大,且同心圆弧不位于同一水平面内。因此该处的变形不同于纯粹的拉深。
根据网格的变化可知盒形件拉深有以下变形特点:
(1)盒形件拉深的变形性质与圆筒件一样,也是径向伸长,切向缩短。沿径向愈往口部伸长愈多,沿切向圆角部分变形大,直边部分变形小,圆角部分的材料向直边流动。即盒形件的变形是不均匀的。
合肥学院
课程设计说明书
姓 名:
chenmou
学 号:
1006032043
年 级:
10级
专 业:
材料成型机控制工程
学 院:
机械学院
指导教师:
赵茂愈
教学单位:
合肥学院
前言
在珠宝盒的外壳分析中得到,上图可知此矩形盒状零件可划分成2个长度为(A-2r)和2个长度为(B-2r)的直边加上4个半径为r的1/4圆筒部分(图4.4.1)。若将圆角部分和直边部分分开考虑,则圆角部分的变形相当于直径为2r、高为h的圆筒件的拉深,直边部分的变形相当于弯曲。但实际上圆角部分和直边部分是联系在一起的整体,因此盒形件的拉深又不完全等同于简单的弯曲和拉深,有其特有的变形特点,这可通过网格试验进行验证。
3)当拉深件的尺寸精度要求高或带有小的圆角半径时.应增加整形工序;
4)修边工序一般安排在整形工序之后;
5)修边冲孔常可复合完成。
第三章
该零件包括落料、拉深切边三个基本工序,可以采用以下三种方案:
1)落料---再拉深---再切边,采用单工序模具生产。
2)落料---拉深复合冲压,采用复合模生产。
3)落料---拉深—切边连续冲压,采用级进模生产。
当相对高度H/B大时,圆角部分对直边部分的影响就大,直边部分的变形与简单弯曲的差别就大。因此盒形件毛坯的形状和尺寸必然与r/B和H/B的值有关。对于不同的r/B和H/B,盒形件毛坯的计算方法和工序计算方法也就不同。
第一章
由工件图可知,该工件为带凸缘的开口对称盒形件,要求保证内形尺寸,没有厚度不变的要求。该工件形状满足拉深工艺性要求,可用拉深工序加工。材料为08钢,料厚为1mm。拉深精度等级为IT14
6)需多次拉深成形的工件,应允许其内、外壁及凸缘表面上存在压痕。
2.2
1.凸缘圆角半径r
凸缘圆角半径r :指壁与凸缘的转角半径。
要求:
1)r =5>t=1一般取:r =(48)t
2)当rdΦ<0.5mm时,应增加整形工序。
2.底部圆角半径rpg
底部圆角半径rpg:指壁与底面的转角半径。
要求:
1)rpg=5mm≥t=1mm,一般取:rpg≥(35)t
相关文档
最新文档