第1章 概率论的基本概念.
概率论知识点
第一章随机事件及其概率§ 1.1 随机事件及其运算随机现象:概率论的基本概念之一。
是人们通常说的偶然现象。
其特点是,在相同的条件下重复观察时,可能出现这样的结果,也可能出现那样的结果,预先不能断言将出现哪种结果•例如,投掷一枚五分硬币,可能国徽”向上,也可能伍分”向上;从含有5件次品的一批产品中任意取出3件,取到次品的件数可能是0,1,2或3.随机试验:概率论的基本概念之一•指在科学研究或工程技术中,对随机现象在相同条件下的观察。
对随机现象的一次观察(包括试验、实验、测量和观测等),事先不能精确地断定其结果,而且在相同条件下可以重复进行,这种试验就称为随机试验。
样本空间:概率论术语。
我们将随机试验E的一切可能结果组成的集合称为E的样本空间,记为1。
样本空间的元素,即E的每一个结果,称为样本点。
随机事件:实际中,在进行随机试验时,人们常常关心满足某种条件的那些样本点所组成的集合.称试验E的样本空间I ■■的子集为E的随机事件,简称事件•在每次试验中,当且仅当这一子集中的一个样本点出现时,称这一事件发生.特别,由一个样本点组成的单点集,称为基本事件.样本空间门包含所有的样本点,它是门自身的子集,在每次试验中它总是发生的,称为必然事件.空集?不包含任何样本点,它也作为样本空间的子集,它在每次试验中都不发生称为不可能事件.互斥事件(互不相容事件):若事件A与事件B不可能同时发生,亦即A B =①,则称事件A与事件B是互斥(或互不相容)事件。
互逆事件:事件A与事件B满足条件A B =①,A B =1 ,则称A与B是互逆事件,也称A与B是对立事件,记作B (或A = B )。
互不相容完备事件组:若事件组A,A2,…A满足条件A i A j二①,(i,i=t n ),nA-、_:,则称事件组A, A2,…A n为互不相容完备事件组(或称A, A2,…A n为样本空i=1间门的一个划分)。
§ 1.2 随机事件的概率概率:随机事件出现的可能性的量度。
概率论基础知识
对于连续型随机变量来说,它取任一指定实数值a的概率均为0,即P{X=a}=0。事实上0≤P{X=a}≤P{a-△x<X≤a}=F(a)-F(a-△x).P{a<X≤b}=P{a≤X≤b}=P{a<X<b}.
定理二:若事件A与B相互独立,则下列各对事件也相互独立:
多个事件相互独立:一般,设A1,A2,…,An是n(n≥2)个事件,如果对于其中任意2个,任意3个,…,任意n个事件的积事件的概率,都等于各事件概率之积,则称事件A1,A2,…,An相互独立。
推论:①若事件A1,A2,…,An(n≥2)相互独立,则其中任意k(2≤k≤n)个事件也是相互独立的。
第一章 概率论的基本概念
一、事件运算常用定律(设A,B,C为事件):
二、频率与概率
1.概率的公理化定义:
①非负性:对于每一个事件A,有P加性:设A1,A2,…是两两互不相容的事件,即对于AiAj=∅,i≠j,i,j=1,2,…,有P(A1∪A2∪…)=P(A1)+P(A2)+….
P{X>s+t|X>s}=P{X>t}
3.正态分布(高斯分布)[X~N(μ,σ2)]:
正态分布性质:
①曲线关于x=μ对称,这表明对于任意h>0有P{μ-h<X≤μ}=P{μ<X≤μ+h }.
②当x=μ时取到最大值 ,x离μ越远,f(x)的值越小。
③在x=μ±σ处曲线有拐点。曲线以Ox轴为渐近线。
标准正态分布:μ=0,σ=1.其概率密度和分布函数分别用φ(x),Φ(x)表示,即有:
②若n个事件A1,A2,…,An(n≥2)相互独立,则将A1,A2,…,An中任意多个事件换成它们各自的对立事件,所得的n个事件仍相互独立。
概率论与数理统计复习笔记
概率论与数理统计复习第一章概率论的基本概念一.基本概念随机试验E:1可以在相同的条件下重复地进行;2每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;3进行一次试验之前不能确定哪一个结果会出现.样本空间S: E的所有可能结果组成的集合. 样本点基本事件:E的每个结果.随机事件事件:样本空间S的子集.必然事件S:每次试验中一定发生的事件. 不可能事件:每次试验中一定不会发生的事件.二. 事件间的关系和运算事件B包含事件A 事件A发生必然导致事件B发生.∪B和事件事件A与B至少有一个发生.3. A∩B=AB积事件事件A与B同时发生.4. A-B 差事件事件A 发生而B 不发生.5. AB= A 与B 互不相容或互斥事件A 与B 不能同时发生.6. AB=且A ∪B=S A 与B 互为逆事件或对立事件表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德摩根律 B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为PA,称为事件A 的概率.1非负性 PA ≥0 ; 2归一性或规范性 PS=1 ;3可列可加性 对于两两互不相容的事件A 1,A 2,…A i A j =φ, i ≠j, i,j=1,2,…,PA 1∪A 2∪…=P A 1+PA 2+…2.性质1 P = 0 , 注意: A 为不可能事件2有限可加性对于n个两两互不相容的事件A1,A2,…,An,PA1∪A2∪…∪An=PA1+PA2+…+PAn有限可加性与可列可加性合称加法定理3若A B, 则PA≤PB, PB-A=PB-PA .4对于任一事件A, PA≤1, PA=1-PA .5广义加法定理对于任意二事件A,B ,PA∪B=PA+PB-PAB .对于任意n个事件A1,A2,…,An…+-1n-1PA1A2…An四.等可能古典概型1.定义如果试验E满足:1样本空间的元素只有有限个,即S={e1,e2,…,en};2每一个基本事件的概率相等,即Pe1=Pe2=…= Pen.则称试验E所对应的概率模型为等可能古典概型.2.计算公式 PA=k / n 其中k是A中包含的基本事件数, n是S中包含的基本事件总数.五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率PB|A=PAB / PA PA>0.2.乘法定理 PAB=PA P B|A PA>0; PAB=PB P A|B PB>0.PA 1A 2…A n =PA 1PA 2|A 1PA 3|A 1A 2…PA n |A 1A 2…A n-1 n ≥2, PA 1A 2…A n-1 > 03. B 1,B 2,…,B n 是样本空间S 的一个划分B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S ,则当PB i >0时,有全概率公式 PA=()()i ni i B A P B P ∑=1当PA>0, PB i>0时,有贝叶斯公式P B i|A=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足PAB = PA PB 时,称A,B 为相互独立的事件.1两个事件A,B 相互独立 PB= P B|A .2若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足PAB =PA PB, PAC= PA PC, PBC= PB PC,称A,B,C 三事件两两相互独立. 若再满足PABC =PA PB PC,则称A,B,C 三事件相互独立.个事件A 1,A 2,…,A n ,如果对任意k 1<k ≤n,任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X e 称为随机变量.2.随机变量X 的分布函数Fx=P{X ≤x} , x 是任意实数. 其性质为:10≤Fx≤1 ,F -∞=0,F∞=1. 2Fx 单调不减,即若x 1<x 2 ,则 Fx 1≤Fx 2.3Fx 右连续,即Fx+0=Fx. 4P{x 1<X≤x 2}=Fx 2-Fx 1.二.离散型随机变量 只能取有限个或可列无限多个值的随机变量1.离散型随机变量的分布律 P{X= x k }= p k k=1,2,… 也可以列表表示. 其性质为:1非负性 0≤P k ≤1 ; 2归一性11=∑∞=k k p .2.离散型随机变量的分布函数 Fx=∑≤xX k k P 为阶梯函数,它在x=x kk=1,2,…处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布1X~0-1分布 P{X=1}= p ,P{X=0}=1–p 0<p<1 .2X~bn,p 参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1k=0,1,2,…,n 0<p<1 3X~参数为的泊松分布 P{X=k}=λλ-e k k !k=0,1,2,… >0 三.连续型随机变量1.定义 如果随机变量X 的分布函数Fx 可以表示成某一非负函数fx 的积分Fx=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f x 称为X 的概率密度函数.2.概率密度的性质1非负性 fx ≥0 ; 2归一性 ⎰∞∞-dx x f )(=1 ;3 P{x 1<X ≤x 2}=⎰21)(xx dx x f ; 4若f x 在点x 处连续,则f x=F/x .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布1X ~U a,b 区间a,b 上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . 2X 服从参数为的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 >0.3X~N ,2参数为,的正态分布222)(21)(σμσπ--=x e x f -<x<, >0.特别, =0, 2=1时,称X 服从标准正态分布,记为X~N 0,1,其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, -x=1-Φx .若X ~N ,2, 则Z=σμ-X ~N 0,1, P{x 1<X ≤x 2}=Φσμ-2x-Φσμ-1x .若P{Z>z }= P{Z<-z }= P{|Z|>z /2}= ,则点z ,-z , z / 2分别称为标准正态分布的上,下,双侧分位点. 注意:z =1- , z 1- = -z .四.随机变量X 的函数Y= g X 的分布1.离散型随机变量的函数若gx k k=1,2,…的值全不相等,则由上表立得Y=gX 的分布律.若gx k k=1,2,…的值有相等的,则应将相等的值的概率相加,才能得到Y=gX 的分布律.2.连续型随机变量的函数若X 的概率密度为f X x,则求其函数Y=gX 的概率密度f Y y 常用两种方法:1分布函数法 先求Y 的分布函数F Y y=P{Y ≤y}=P{gX ≤y}=()()dx x f ky Xk∑⎰∆其中Δk y 是与gX ≤y 对应的X 的可能值x 所在的区间可能不只一个,然后对y 求导即得f Y y=F Y/y .2公式法 若gx 处处可导,且恒有g /x>0 或g / x<0 ,则Y=g X 是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=yhyhfyf XY其它βα<<y其中hy是gx的反函数 , = min g -,g = max g -,g .如果f x在有限区间a,b以外等于零,则 = min g a,g b = max g a,g b .第三章二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义若X和Y是定义在样本空间S上的两个随机变量,则由它们所组成的向量X,Y称为二维随机向量或二维随机变量.对任意实数x,y,二元函数Fx,y=P{X≤x,Y≤y}称为X,Y的X和Y的联合分布函数.2.分布函数的性质1Fx,y分别关于x和y单调不减.20≤Fx,y≤1 , Fx,- =0, F-,y=0, F-,-=0, F,=1 .3 Fx,y关于每个变量都是右连续的,即 Fx+0,y= Fx,y, Fx,y+0= Fx,y .4对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= Fx 2,y 2- Fx 2,y 1- Fx 1,y 2+ Fx 1,y 1二.二维离散型随机变量及其联合分布律1.定义 若随机变量X,Y 只能取有限对或可列无限多对值x i ,y j i ,j =1,2,… 称X,Y 为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为X,Y 的联合分布律.也可列表表示.2.性质 1非负性 0≤p i j ≤1 .2归一性 ∑∑=i jijp 1 .3. X,Y 的X 和Y 的联合分布函数Fx,y=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f x,y,使对任意的x 和y,有Fx,y=⎰⎰∞-∞-y xdudv v u f ),(则称X,Y 为二维连续型随机变量,称fx,y 为X,Y 的X 和Y 的联合概率密度.2.性质 1非负性 f x,y ≥0 . 2归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .3若f x,y 在点x,y 连续,则yx y x F y x f ∂∂∂=),(),(2 4若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. X,Y 关于X 的边缘分布函数 F X x = P{X ≤x , Y<}= F x , .X,Y 关于Y 的边缘分布函数 F Y y = P{X<, Y ≤y}= F ,y2.二维离散型随机变量X,Y关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i · i =1,2,… 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }=∑∞=1i ij p = p·jj =1,2,… 归一性11=∑∞=•j j p .3.二维连续型随机变量X,Y关于X 的边缘概率密度f X x=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y y=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义若对一切实数x,y,均有Fx,y= FX x FYy ,则称X和Y相互独立.2.离散型随机变量X和Y相互独立⇔p i j= p i··p·j i ,j =1,2,…对一切x i,y j成立.3.连续型随机变量X和Y相互独立⇔f x,y=f X xf Y y对X,Y所有可能取值x,y都成立.六.条件分布1.二维离散型随机变量的条件分布定义设X,Y是二维离散型随机变量,对于固定的j,若P{Y=yj}>0,则称P{X=xi |Y=yj}为在Y= yj条件下随机变量X的条件分布律.同样,对于固定的i,若P{X=xi}>0,则称P{Y=yj |X=xi}为在X=xi 条件下随机变量Y 的条件分布律.,}{},{jj ijjippyYPyYxXP•=====,}{},{•=====ij iijippxXPyYxXP第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量连续型随机变量分布律P{X=x i }= p i i =1,2,… 概率密度f x数学期望均值EX∑∞=1i i i p x 级数绝对收敛⎰∞∞-dx x xf )(积分绝对收敛方差DX=E{X-EX 2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=EX 2-EX 2 级数绝对收敛 积分绝对收敛函数数学期望EY=EgXi i i p x g ∑∞=1)(级数绝对收敛 ⎰∞∞-dx x f x g )()(积分绝对收敛标准差X=√DX .二.数学期望与方差的性质1. c 为为任意常数时, Ec = c , EcX = cEX , Dc = 0 , D cX = c 2 DX .,Y为任意随机变量时, E X±Y=EX±EY .3. X与Y相互独立时, EXY=EXEY , DX±Y=DX+DY .4. DX = 0 P{X = C}=1 ,C为常数.三.六种重要分布的数学期望和方差 EX DX~ 0-1分布P{X=1}= p 0<p<1 p p 1- p ~ b n,p 0<p<1 n p n p 1- p ~~ Ua,b a+b/2 b-a 2/12服从参数为的指数分布2~ N ,22四.矩的概念随机变量X的k阶原点矩EX k k=1,2,…随机变量X 的k 阶中心矩E{X-EX k}随机变量X 和Y 的k+l 阶混合矩EX k Y l l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{X-EX k Y-EY l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i X X n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11 k=1,2,… 样本k 阶中心矩∑-==n i ki k X X n B 1)(1k=1,2,…二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E X = EX , D X = DX / n .特别,若X~ N ,2 ,则 X ~ N , 2 /n .分布 1定义 若X ~N 0,1,则Y =∑=ni i X 12~ 2n 自由度为n 的2分布.2性质 ①若Y~ 2n,则EY = n , DY = 2n .②若Y 1~ 2n 1 Y 2~ 2n 2 ,则Y 1+Y 2~ 2n 1 + n 2.③若X~ N ,2 , 则22)1(σS n -~ 2n-1,且X 与S 2相互独立.3分位点 若Y~ 2n,0< <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为2分布的上、下、双侧分位点.3. t 分布1定义 若X~N 0,1 ,Y~ 2 n,且X,Y 相互独立,则t=nY X~tn 自由度为n 的t 分布. 2性质①n →∞时,t 分布的极限为标准正态分布.②X ~N ,2 时,nS X μ-~ t n-1 . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N 1,12 且12=22=2 X 1 ,X 2 ,…,X n1 X S 12Y~ N 2,22 Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t n 1+n 2-2 , 其中 2)1()1(212222112-+-+-=n n S n S n S w3分位点 若t ~ t n ,0 < <1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧分位点.注意: t 1- n = - t n.分布 1定义 若U~2n 1, V~ 2n 2, 且U,V 相互独立,则F =21n V n U ~Fn 1,n 2自由度为n 1,n 2的F 分布.2性质条件同3.2③22212221σσS S ~Fn 1-1,n 2-13分位点 若F~ Fn 1,n 2 ,0< <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧分位点. 注意: .).(1),(12211n n F n n F αα=- 第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数1, 2,…, k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111kk k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩 ll=1,2,…,k 得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值.2.最大似然估计法若总体分布形式可以是分布律或概率密度为px, 1, 2,…, k ,称样本X 1 ,X 2 ,…,X n 的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21 ,称为参数1, 2,…,k 的最大似然估计值,代入样本得到最大似然估计量.若L 1, 2,…, k 关于1, 2,…, k 可微,则一般可由似然方程组 0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ i =1,2,…,k 求出最大似然估计. 3.估计量的标准(1)无偏性 若E ∧θ=,则估计量∧θ称为参数的无偏估计量.不论总体X 服从什么分布, E X = EX , ES 2=DX, EA k =k =EX k ,即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值EX,方差DX,总体k 阶矩k 的无偏估计,2有效性 若E ∧θ1 =E ∧θ2= , 而D ∧θ1< D ∧θ2, 则称估计量∧θ1比∧θ2有效.3一致性相合性 若n →∞时,θθP →∧,则称估计量∧θ是参数的相合估计量.二.区间估计1.求参数的置信水平为1-的双侧置信区间的步骤1寻找样本函数W=WX 1 ,X 2 ,…,X n ,,其中只有一个待估参数未知,且其分布完全确定.2利用双侧分位点找出W 的区间a,b,使P{a<W <b}=1-.3由不等式a<W<b 解出θθθ<<则区间θθ,为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间2已知 nX σμ-~N 0,1 2/ασz n X ±2未知 nS X μ-~ t n-1 )1((2/-±n t n S X α 2未知22)1(σS n -~ 2n-1 ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体1均值差 1- 2其它参数 W 及其分布 置信区间已知2221,σσ22212121)(n n Y X σσμμ+--- ~ N0,1 )(2221212n n z Y Xσσα+±-未知22221σσσ==212111)(n n S Y X w +---μμ~tn 1+n 2-2)11)2((21212n n S n n t Y X w+-+±-α 其中S w 等符号的意义见第六章二. 3 2③.2 1, 2未知, W=22212221σσS S ~ Fn 1-1,n 2-1,方差比12/22的置信区间为注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上下限中的下标/2改为,另外的下上限取为- 即可.。
第1章 概率论的基本概念
试验者
德•摩根 蒲 丰 K•皮尔逊 K•皮尔逊 维 尼
n
2048 4040 12000 24000 30000
nH
1061 2048 60199 12012 14994
fn(H)
0.5181 0.5069 0.5016 0.5005 0.4998
nA 频率 f n ( A) 具有如下基本性质: n
统计概率的性质
1. 非负性:对每个事件A有 1 P ( A) 0; 2. 规范性:对必然事件S有 P ( S ) 1;
3. 有限可加性:设A1,A2,…An是两两互不相容事件 则 P( A1 A2 ... An ) P( A1 ) P( A2 ) ... P( An )
交换律 A B B A
A B B A
结合律 ( A B) C A ( B C )
( A B) C A ( B C )
分配律 ( A B) C ( A C ) ( B C )
A ( B C ) ( A B) ( A C )
其结果可能为:
正品、次品。
其结果可能为: 红、黄、绿。
实例6 “出生的婴儿可能是男,也可能是 女”。
实例7 “明天的天气可能是晴 , 也可能是多云 或雨 ”。
在我们所生活的世界上, 充满了不确定性
如何来研究随机现象?
随机现象是通过随机试验来研究的。
问题 什么是随机试验?
1. 试验(Experiment):包括各种各样的科学实 验,也包括对客观事物的“观察”、“测量”等。 2. 随机试验(E,Random experiment):具有以 下三个特征的试验: (1)可以在相同的条件下重复地进行; (2)每次试验的可能结果不止一个,并且能 事先明确试验的所有可能结果; (3)进行一次试验之前不能确定哪一个结果 会出现。
浙大概率论第五版习题答案
浙大概率论第五版习题答案浙大概率论第五版习题答案概率论是数学中的一门重要学科,它研究的是随机现象的规律和性质。
在浙江大学的概率论教材中,第五版是最新的版本,它包含了许多习题供学生练习和巩固知识。
本文将为大家提供浙大概率论第五版习题的答案,帮助大家更好地理解和掌握概率论的知识。
第一章:概率论的基本概念和基本原理1.1 概率的基本概念1. 掷一颗骰子,出现1的概率是多少?答案:由于骰子有6个面,每个面出现的概率是相等的,所以出现1的概率是1/6。
2. 一个袋子里有5个红球和3个蓝球,从中随机取出一个球,取到红球的概率是多少?答案:袋子中一共有8个球,其中5个是红球,所以取到红球的概率是5/8。
1.2 随机事件及其概率1. 从一副扑克牌中随机抽取一张牌,取到红桃的概率是多少?答案:一副扑克牌中有52张牌,其中有13张红桃牌,所以取到红桃的概率是13/52,即1/4。
2. 一箱中有6个红球和4个蓝球,从中不放回地抽取2个球,取到两个红球的概率是多少?答案:第一次抽取红球的概率是6/10,第二次抽取红球的概率是5/9,所以取到两个红球的概率是(6/10)*(5/9)=30/90,即1/3。
第二章:条件概率与独立性2.1 条件概率及其性质1. 一批产品中有10%的次品,现从中随机抽取一个产品,如果抽到的产品是次品,那么它是A型产品的概率是30%,那么这批产品中A型产品的比例是多少?答案:设A为抽到的产品是A型产品的事件,B为抽到的产品是次品的事件。
根据条件概率的定义,P(A|B)=0.3,P(B)=0.1,所以P(A∩B)=P(B)*P(A|B)=0.1*0.3=0.03。
又因为P(A∩B)=P(A)*P(B),所以P(A)=P(A∩B)/P(B)=0.03/0.1=0.3。
2. 一批产品中有20%的次品,现从中随机抽取两个产品,如果第一个产品是次品,那么第二个产品也是次品的概率是多少?答案:设A为第一个产品是次品的事件,B为第二个产品是次品的事件。
伊藤清概率论第一章
例如,由 R 的全体区间构成的族所生成的完全加法族为 Borel
集合族.再如,端点为有理数的全体区间构成的族也生成同一
个 Borel 集合族.R 上的完全加法族有很多种,但是 Borel 集合
族是最有用的一个.
将空间 Ω 与其子集构成的一个完全加法族 F 结合来考虑
时,所产生的序偶 (Ω, F ) 称为可测空间. 然而,当 Ω = R 时,通
4 第 1 章 概率论的基本概念
的测度 P ,称为 (Ω, F ) 上的概率测度. 对于 E ∈ F ,称 P (E) 为 E 的概率或 E 的P -测度.
将 Ω, F , P 一起考虑时,所产生的序偶 (Ω, F , P ) 称为概 率空间.
§2 概率空间的实际意义
针对想理解后面出现的定理含义的读者,这里有必要对前 一节定义的抽象概率空间在实际随机现象研究中的应用加以说 明,仅对推理感兴趣的读者另当别论.
k=1
3◦ 属于 F 的集合的余集也属于 F ,即若 E ∈ F ,则
2 第 1 章 概率论的基本概念
Ω−E ∈ F.
利用这三个条件,我们可以推出下列结论.
4◦ 空集 (今后用 ∅ 表示) 也属于 F .事实上,在 3◦ 中取
E = Ω 即可.
∞
5◦ 如果 E1, E2, E3, · · · ∈ F , 则 Ek ∈ F .
这个等式称为有限可加性. 以此类推,仅依靠形式的推理是不能导出完全可加性的. 将
概率的完全可加性作为基础来假设,是数学上的理想化模式. 你 渐渐地便能理解这种理想化不是与实际相悖的,反而是与其一 致的.
综合以上三个步骤的分析便获得概率空间 (Ω, F , P ).
§3 概率测度的简单性质
概率论与数理统计知识点总结(免费超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 A B 则称事件 B 包含事件 A ,指事件 A 发生必然导致事件 B 发生A B {x x A或x B} 称为事件 A 与事件 B 的和事件,指当且仅当 A ,B 中至少有一个发生时,事件 A B 发生A B {x x A且x B} 称为事件 A 与事件 B 的积事件,指当A,B 同时发生时,事件A B 发生A—B {x x A且x B} 称为事件A 与事件 B 的差事件,指当且仅当 A 发生、B 不发生时,事件 A — B 发生A B ,则称事件 A 与B 是互不相容的,或互斥的,指事件 A 与事件 B 不能同时发生,基本事件是两两互不相容的A B S A B ,则称事件 A 与事件 B 互为逆事件,又称事件 A 与事件 B 互为且对立事件2.运算规则交换律 A B B A A B B A结合律(A B) C A (B C) ( A B)C A(B C)分配律 A (B C)(A B) ( A C)A (B C)(A B)( A C)—徳摩根律 A B A B A B A B§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件 A 发生的次数n称为事件AA 发生的频数,比值n nA 称为事件 A 发生的频率概率:设E是随机试验,S 是它的样本空间,对于E 的每一事件A赋予一个实数,记为P(A),称为事件的概率1.概率P( A)满足下列条件:(1)非负性:对于每一个事件 A 0 P( A) 1(2)规范性:对于必然事件S P (S) 11(3)可列可加性:设A1, A2 , ,A是两两互不相容的事件,有nn nP A k ) P( A) ( (n可kk 1 k 1以取)2.概率的一些重要性质:(i )P( ) 0(ii )若A1, A2 , ,A是两两互不相容的事件,则有n Pn n( (n可以取)A k ) P( A )kk 1 k 1(iii )设A,B 是两个事件若 A B ,则P(B A) P( B) P( A) ,P( B) P(A) (iv)对于任意事件A,P(A) 1(v)P( A) 1 P(A) (逆事件的概率)(vi)对于任意事件A,B 有P(A B) P( A) P( B) P( A B)§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同若事件 A 包含k 个基本事件,即{e i } {e } {e }A ,里1 i i k] 2,k是,中某个不同的数,则有i1 i 2, ,i k 1,2 nP( A)j k1P { eij}knA包含的基本事件数S中基本事件的总数§5.条件概率(1)定义:设A,B 是两个事件,且P( A) 0 ,称P( A B)P(B | A) 为事件 A 发生的条P(A)件下事件 B 发生的条件概率(2)条件概率符合概率定义中的三个条件。
第1章 概率论的基本概念
确定概率的常用方法有: (1)频率方法(统计方法) (2)古典方法 (3)几何方法 (4)公理化方法 (5)主观方法
古典概率
(1) 古典概率的假想世界是不存在的 .对于那些极其罕见的, 定义 1.2.5 如果试验满足下面两个特征,则称其 但并非不可能发生的事情,古典概率不予考虑.如硬币落地后 为古典概型(或有限等可能概型): 恰好站立,一次课堂讨论时突然着火等. (1 )有限性:样本点的个数有限; (2) 古典概率还假定周围世界对事件的干扰是均等的 .而在 (2)等可能性:每个样本点发生的可能性相同 . 实际生活中无次序的、靠不住的因素是经常存在的 .
(3) 如果AiAj= (1 i < j k),则
fn(A1∪A2∪ … ∪Ak ) = fn(A1 ) +fn(A2 ) + … +fn(Ak 着事件在一次试验中发生的可能性就 大,反之亦然. 人们长期的实践表明:随着试验重复次数n的增加, 频率fn(A)会稳定在某一常数a附近,我们称这个常数为频 率的稳定值.这个稳定值就是我们所说的(统计)概率.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .
1概率论的基本概念
[注样本空间是相对于某个随机试验而言,而其元 ]
素取决于试验的内容和目的.
二、随机事件
1.随机事件: 试验E的样本空间S的子集. 简称事件. 通常用字母A,B,C表示.
A的对立事件记作 A .
ASA
B A
A
[注]
(1) 事件之间的关系可用文氏图表示; (2) 对于任意事件A,显然
AA , A
A S,
A S A, A A
(3) 基本事件都是互不相容的; A与B-A也是互不相容的. (4) B A B A B AB
B
A
A U B A U ( B A )
S1={H, T}(H表示出现正面, T表示出现反面)
试验E2:将一枚硬币抛掷三次,观察正面H、反面T出现的情况.
S2= {HHH,HHT,HTH,THH, HTT,THT,TTH,TTT}
试验E3:将一枚硬币抛掷三次,观察反面出现的次数. S3={0,1,2,3} 试验E4:抛掷一枚骰子, 观察出现的点数. S4={1,2,3,4,5,6}
第一章 概率论的基本概念
§1.1 §1.2 §1.3 §1.4 §1.5 §1.6 随机试验 样本空间、随机事件 频率与概率 等可能概型(古典概型) 条件概率 独立性
第一章 概率论的基本概念
引言:概率论是研究什么的?
研究和揭示随机现象的统计 在一定条件下必然发生的现象 确定现象 规律性的数学学科 例:向空中抛一物体必然落向地面; 水加热到100℃必然沸腾; 异性电荷相吸引; 放射性元素发生蜕变; … … 例:抛一枚硬币,结果可能正(反)面朝上; 向同一目标射击,各次弹着点都不相同; 某地区的日平均气温; 掷一颗骰子,可能出现的点数;… …
第一章 概率论的基本概念
• 答案:赢了4局的拿这个钱的3/4,赢了3局的 拿这个钱的1/4。
• 假定他们俩再赌一局,或者A赢,或者B赢。 若是A赢满了5局,钱应该全归他;A如果输了, 即A、B各赢4局,这个钱应该对半分。现在, A赢、输的可能性都是1/2,所以,他拿的钱 应该是(1/2)×1+(1/2)×(1/2)= 3/4,当然,B就应该得1/4。
24
0.4614
• “分赌本”问题 两个人决定赌若干局,事先约 定谁先赢得5局便算赢家。如果在一个人赢4 局,另一人赢3局时因故终止赌博,应如何分 赌本?是不是把钱分成7份,赢了4局的就拿4 份,赢了3局的就拿3份呢?或者,因为最早 说的是满5局,而谁也没达到,所以就一人分 一半呢?
• 法国数学家帕斯卡接受了这个问题,并与另一 位法国数学家费尔马进行讨论,后来荷兰科学 家惠更斯也参与了研究,并把解法写入了《论 赌博中的计算》(1657年)。
(5,1),(5,2),(5,3),(5,4),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5)
事件间的关系
包含:A B或B A,称事件B包含事件A,即事
件A发生必然导致事件B发生。
相等: A B且B A,即A B,称事件A与事件B
相等。
n
和: A,B表示A、B二事件中至少有一个发生;k1 Ak
ABC ABC ABC
6) 这三个事件至少发生一个可以表示为:
A B C或
ABC ABC ABC ABC ABC ABC ABC
练习 证明下列等式:
1A B A B A 2A B B A AB AB 3B A AB AB
解 1 A B A B A B A A
证明(3):由于A1,A2 ,… ,Ak是两两互不相 容,在n次试验中A1∪A2∪…∪Ak的频数
第一章概率论基本概念
在古典概型中, 2.概率的古典定义: 概率的古典定义: 概率的古典定义 在古典概型中,设 Ω={ω1, 2, , n} A = {ωi , i , , i } ω Lω ω2 L ωm 1 则
m 事件 包含的样本点数 事件A P( A) = . = n 样本点总数
n
事实上, 事实上, Q Ω = U {ω k } ∴ P (Ω ) = ∑ P ({ω k }) = nP ({ω k }) k =1 k =1 1 又 P (Ω ) = 1,所以 P ({ω 1 }) = P ({ω 2 }) = L = P ({ω n }) = . n
指每次试验都发生的事 件, Ω表示 5. 必然事件: 必然事件: . 用
6. 不可能事件: 不可能事件: 事件, 指每次试验都不发生的 事件,
用φ表示 .
注意: 必然事件和不可能事件不具有随机性, 注意: 必然事件和不可能事件不具有随机性, 但为了今后研究的方便, 但为了今后研究的方便,我们把它们作为随机事件 的特殊情形来处理。 的特殊情形来处理。
随机事件、 第一节 随机事件、频率与概率
样本空间与随机事件 一、
1、随机试验:指满足以下条件的试验 、随机试验: 1)试验可以在相同条件下重复进行; )试验可以在相同条件下重复进行; 2)试验的可能结果不止一个,但事先知道试验 )试验的可能结果不止一个, 的所有可能结果; 的所有可能结果; 3)每次试验恰好出现所有可能结果中的一个, )每次试验恰好出现所有可能结果中的一个, 但究竟出现哪个结果,试验前不能确切预言 不能确切预言。 但究竟出现哪个结果,试验前不能确切预言。 2、样本点:指随机试验中每一个可能的结果 、样本点: 也称基本事件, 也称基本事件, 通常用ω表示, 3、样本空间:指样本点的全体组成的结果; 、样本空间:指样本点的全体组成的结果; 结果
概率论整理
第一章概率论的基本概念 第一节随机试验一、随机试验E1.试验可以在相同的条件下重复进行; 2.试验的可能结果不止一个,并且能事先 明确试验的所有可能结果;3.进行试验之前不能确定哪一个结果会出现。
说明:随机试验简称为试验,随机试验通常用E 来表示.实例:“抛掷一枚硬币,观察字面,花面出现的情况”.分析:1) 试验可以在相同的条件下重复地进行;2) 试验的所有可能结果:正面、反面;3) 进行一次试验之前不能确定哪个结果会出现故为随机试验同理可知下列试验都为随机试验:掷骰子观察点数;一批产品任选三件其正品与次品数;某地平均气温等第二节随样本空间、随机事件一、 样本空间 样本空间Ω随机试验的所有可能结果组成的集合. 样本空间Ω 中的元素,即E 的每个结果,称为样本点.样本点一般用ω表示,可记为Ω = { ω } 例:说明1. 同一试验, 若试验目的不同,则对应的样 本空间也不同.例如对于同一试验: “将一枚硬币抛掷2次”. 若观察正面H 、反面T 出现的情况,则样本空间为S = {HH , HT , TH , TT }.若观察正面出现的次数, 则样本空间为S={0,1,2,3}2. 建立样本空间,事实上就是建立随机现象的数学模型. 因此, 一个样本空间可以概括许多内容大不相同的实际问题.例如只包含两个样本点的样本空间S = {H ,T }它既可以作为抛掷硬币出现正面或出现反面的模型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型等.例:1. 同时掷三颗骰子,记录三颗骰子之和. S = {3, 4, 5,……, 18}.2. 生产产品直到得到10件正品,记录生产产品的总件数S = {10 , 11 , 12 ,……}. 二、 随机事件随机试验E 的样本空间Ω的子集称为E 的随机事件,简称事件。
例如,随机试验“抛骰子观察点数”的样本空间是S={1,2,3,4,5,6}对于“骰子的点数是偶数点”,它是一个事件,即{2,4,6},显然,它是样本空间的一个子集。
《概率论与数理统计》前三章习题解答
11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y , f ( x, y) 其他. 0,
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由
f ( x, y)dxdy 1可解得c 1.
返回主目录
第三章 多维随机变量及其分布
第一章 概率论的基本概念
解:
令事件Ai分别表示输入AAAA,输入BBBB, 输入CCCC, i 1, , . 令事件A 表示输出ABCA. 23
由已知条件及独立性知
1 P( A | A2 ) P( A | A3 ) . 2
3
1 P( A | A1 ) , 2
2 2
返回主目录
第一章 概率论的基本概念
由贝叶斯公式知
P( A1 A) P( A1 | A) P( A)
P( A1 ) P( A | A1 ) P( A1 ) P( A | A1 ) P( A2 ) P( A | A2 ) P( A3 ) P( A | A3 )
2p1 . (3 1) p1 1
返回主目录
第二章 随机变量及其分布
2.将一颗骰子抛掷n次,将所得的n个点
数的最小值记为X,最大值记为Y.分别求 出X与Y的分布律. 解 : 以Yi 记第i次投掷时骰子出现的点 , 数
i 1,2,, n.则X minYi , Y maxYi .
1i n 1i n
X与Y的所有可能值均为 1,2,3,4,5, 6.
14
k
返回主目录
第三章 多维随机变量及其分布
பைடு நூலகம்
(2)当m 0,1,2,时 P{ X n, Y m} P{ X n | Y m} P{Y m}
概率论
S 7 : { ( x , y ) | T 0≤ x ≤ y ≤ T 1 }
返回主目录
第一章 概率论的基本概念
2、 随 机 事 件
定义: 定义: •随机事件 : 称试验 E 的样本空间 S 的子集为 E 的 随机事件 随机事件; 可能发生,也可能不发生) 随机事件; 可能发生,也可能不发生) ( •基本事件 : 有一个样本点组成的单点集; 基本事件 有一个样本点组成的单点集; ( •必然事件 : 样本空间 S 本身; 必然发生) 必然事件 本身; 必然发生) •不可能事件 : 空集∅。 不可能事件 空集∅ (必然不发生) 必然不发生)
返回主目录
第一章 概率论的基本概念 2 ) 频率的稳定性 n=500时 时 nA 251 249 256 253 251 246 fn(A) 0.502 0.498 0.512 0.506 0.502 0.492
244 0.488
0.002 -0.002 0.012 0.006 0.002 -0.008 -0.012 实验者 德•摩根 摩根 蒲 丰 n 2048 4040 nH 1061 2048 6019 fn(H) 0.5181 0.5096 0.5016 0.5005
A U A = A, A I A = A
A U B = B U A, A I B = B I A
( A U B ) U C = A U (B U C ) ( A I B ) I C = A I (B I C )
A U (B I C ) = ( A U B ) I ( A U C ) Morgan定律 定律: De Morgan定律: U A α = I Aα , I A α = U A α
不能同时发生 与 不能同时发生” 50 互不相容 A I B = ∅ “A与B不能同时发生” 60 对立(互逆)事件 A I B = ∅ 且 A U B = S 对立(互逆)
(第1章)_概率论的基本概念
或A1A2 … An ,也可简记为
。
在可列无穷的场合,用 事件同时发生。”
表示事件“A1、A2 、 …诸
上一页 下一页 返 回
事件A发生但事件B不发生,称为事件A与事件B的差 事件。显然有:
则称A和B是互不相容的或互斥的,指事件A与B不 可能同时发生。 基本事件是两两互不相容的。
上一页 下一页 返 回
为随机试验.
1. 可以在相同的条件下重复地进行; 2. 每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果; 3. 进行一次试验之前不能确定哪一个结果 会出现.
上一页 下一页 返 回
第一章 概率论的基本概念
第一节 样本空间、随机事件 第二节 概率、古典概型 第三节 条件概率、全概率公式 第四节 独立性
D={取到的正品数不少于2且不多于5}={2,3,4,5}
E={取到的正品数至少为4}={4,5,6,7,8}
F={取到的正品数多于4}={5,6,7,8}
上一页 下一页 返 回
2、样本空间与随机事件
随机事件(简称事件): 在随机试验中,可能发生也可能不发生的结果。 通常用大写字母A、B,…表示。
(A∩B)∩C=A∩(B∩C) (3)分配律:A ∩ (B∪C)= (A∩B)∪( A ∩ C )
A∪(B ∩ C)=(A∪B)∩(A∪C)
(4)A B AB A AB
(5)
上一页 下一页 返 回
例2: 设A,B,C为三个事件,试用A,B,C表 示下列事件: (1)A发生且B与C至少有一个发生; (2)A与B都发生而C不发生; (3)A,B,C恰有一个发生; (4)A,B,C中不多于一个发生; (5)A,B,C不都发生; (6)A,B,C中至少有两个发生。
概率论与数理统计知识点总结(超详细版)
《概率论与数理统计》第一章概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)())(()( C A B A C B A ⋂⋂=⋃⋂徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk knk kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -=(逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意事项
可能结果——样本点——基本事件
(1) (2)在概率论中常用一个长方形来 (3) 由中的单个元素组成的子集称为基本事件,常用表示. 判定一个事件是否发生的标准是看它所包含的样本点是否 表示概率空间,用椭圆或者其它的 A 出现 ① .事件发生当且仅当该事件包含的某个样本点出现 样本空间的最大子集称为必然事件,常用 表示; . ● 1 几何图形来表示事件.这类图形被称 ● ② 样本空间的最小子集称为不可能事件,常用 表示 .2 为维恩(Venn)图,又叫文氏图.
例1.1.2 一天内进入某商场的人数的样本空间为 ={0,1, 2, …}. 例1.1.3 电视机寿命的样本空间为 ={t|t0} . 在以后的数学处理上,我们往往把有限个或可列个 样本点的情况归为一类,称为离散样本空间;而将不可 列无限个样本点的情况归为另一类,称为连续样本空间.
随机事件 (random event) 随机试验的某些子集称为随机事件, 简称事件.它在随机试验中可能出现也可能不出现,而在大量重复试 验中具有某种规律性. 常用符号 (1)大写的英文字母:A,B,C. (2)大写的英文字母加下标:A1, A2, A3, … .
例1.1.7 设A, B, C是某个随机现象的三个事件,则 (1)事件“A与B发生,C不发生”:ABC (2)事件“A, B, C中至少有一个发生”:A B C (3)事件“A, B, C中至少有两个发生”:AB AC BC
(4)事件“A, B, C中恰好有两个发生”: ABC
(5)事件“A, B, C都发生”:ABC (6)事件“A, B, C都不发生”: ABC
随机现象:随机试验所描述的现象.
概率论与数理统计主要从数量角度研究随机现象的规律
(也注意研究不能重复的随机现象,如失业、经济增长速度等.)
样本空间 (sample space) :随机试验的一切可能结果组成的集合. 记为或S.可能结果又称为样本点,常用符号表示.
例1.1.1 将一枚硬币先后掷两次, 样本点是今后抽样的最基本单元,认识随机现 令 (1,0) =“第一次正面朝上,第二次反面朝上” 象的前提是要先列出它的样本空间. 则样本空间为: ={(0,0) , (0,1) , (1,0), (1,1)} . 若令 i =“正面朝上的次数为i ” 则样本空间为: ={0,1, 2} . 注意:样本空间和划分的标准有关.
互不相容与对立区别 随机事件间的关系与运算
(1)事件A与事件B对立 AB= , A∪B= . (2)事件 A与事件B互不相容 AB= . 关系 运算 包含 相等 互不相容 并 交 差 补
如果属于A的样本点一定 由在 中而不在事件 A 中的样本点 , B没有相同的样本点, 如果事件 A 由事件 如果 A A 与事件 B ,且 A B 中所共有的样本 B,那么 A=B. A中而不在事件B中的样 中所有的样本点 由在事件 属于B,则称 A 包含于 B , BB.B 组成的新事件,也叫 A的对立 B A A A 则称互不相容 . 记作 A ∩ B= . 点组成的新事件 即B包含 A=B A B, A B A. . 组成的新事件 .记作 A记作 ∪ B.BA 本点组成的新事件 .记作 A-B. 或 A. 记作 B. .
则
例1.1.4 掷一枚骰子的样本空间为 ={1, 2, …, 6}={i|1 i 6}. A=“出现偶数点”={2, 4, 6}.
例1.1.5 检测灯泡寿命的试验中,如果规定寿命超 过1500小时为合格,则 ={t|t 0} 事件 A=“合格品”={t|t >1500}. 例1.1.6 向平面OXY内随机投点,则 ={(x, y) | x,yR} 事件 A=“落在单位圆内”={(x, y) | x2+y2<1}.
第一章 随机事件与概率
1.1 1.2 1.3 1.4 1.5 随机事件及其运算 概率的定义及其确定方法 概率的性质 条件概率 独立性
1.1 随机事件及其运算
现实世界中的客观现象
确定性现象 (条件完全决定结果)
非确定性现象 (条件不能完全决定结果)
种瓜得瓜, 种豆得豆
随机现象 (不确定性、统计规律性)
多次重复抛一枚硬 在大量重复试验或观察中所呈现 币,正面朝上的次 随机试验 出来的固有规律性称为统计规律性 . 数约占一半.
世界上没有 两片完全相 同的叶子
随机试验E (random test)的特点: (1)试验可以在相同的条件下重复进行; (2)试验的所有可能结果可知,且不止一个; (3)每次试验总是恰好出现这些结果中的一个,但试验之前不能断定 到底会出现哪一个.
ABC
ABC
(7)事件“A, B, C不都发生”: ABC ABC A B C
(2Hale Waihona Puke ABCABCABC
ABC
ABC
(3)
ABC
ABC
事件的运算性质 (1)否定律: A A, ; (2)幂等律:A∩A= A, A∪A= A; (3)交换律: A∩B= B∩A, A∪B= B∪A; 对于多个事件及可列个事件场合有 (4)结合律: A∩(B∩C) = (A∩B)∩C, n n n n A ∪ ( B ∪ C ) = ( A ∪ B ) ∪ C ; Ai Ai , Ai Ai , Ai Ai , Ai i 1 i 1 1 B∪C i ) 1 = (A i 1 B)∪i( A 1 ∩C), i 1 (5)分配律: Ai∩( ∩ A∪(B∩C) = (A∪B)∩(A∪C); (6)对偶律(德摩根De morgan公式):