高中数学必修1第一章
高中数学必修一第一章知识点归纳
高中数学必修一第一章知识点归纳第一章是高中数学必修一的开篇,主要讲解了数的性质、整式的加减乘除以及分式的加减乘除等内容。
下面将对第一章的知识点进行归纳总结。
一、数的性质1. 自然数:自然数是人们最早认识和使用的数,包括0和正整数。
2. 整数:整数包括自然数、0和负整数。
3. 有理数:有理数是可以表示为两个整数的比值的数,包括整数和分数。
4. 实数:实数包括有理数和无理数,实数是数轴上的点。
5. 数轴:数轴是用来表示实数的直线,它以0为原点,正方向为右侧,负方向为左侧。
二、整式的加减乘除1. 代数式:代数式是由数、变量和运算符号组成的式子。
2. 同类项:同类项是指具有相同变量因子的代数式中的项。
3. 整式的加法:整式的加法是将同类项相加,要保持同类项的特性。
4. 整式的减法:整式的减法是将减数中各项的系数取相反数,然后与被减数相加。
5. 整式的乘法:整式的乘法是将各项的系数相乘,同时将各项的指数相加。
6. 整式的除法:整式的除法是将除式乘以被除式的倒数,再进行整式的乘法运算。
三、分式的加减乘除1. 分式:分式是由分子和分母组成的有理数表达式。
2. 分式的加法:分式的加法是将分式的分母取公倍数,然后将分子相加,再化简。
3. 分式的减法:分式的减法是将分式的分母取公倍数,然后将分子相减,再化简。
4. 分式的乘法:分式的乘法是将分式的分子与分母相乘,然后化简。
5. 分式的除法:分式的除法是将除式的分子与被除式的分母相乘,然后化简。
第一章主要介绍了数的性质、整式的加减乘除以及分式的加减乘除等内容。
通过学习这些知识点,我们可以更好地理解数的概念和运算规则,为后续的学习打下坚实的基础。
数学是一门系统性强的学科,需要我们掌握好基础知识,才能更好地应对复杂的问题。
希望同学们能够认真学习,多做练习,提高数学素养,为未来的学习和发展打下良好的基础。
人教版高中数学必修一第一章知识点
第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A{|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0)ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O 一元二次方程20(0)ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0)ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中数学必修一
必修一第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。
只要构成两个集合的元素是一样的,我们就成为这两个集合是相等的。
如果a是集合A的元素,就说a属于集合A,记作a;如果a不是集合A中的元素,就说a不属于集合A,记作a。
全体非负整数组成的集合称为非负整数集(或自然数集),记作N;所有正整数组成的集合称为正整数集,记作N*或N+;全体整数组成的集合称为整数集,记作Z;全体有理数集合的集合称为有理数集,记作Q;全体实数组成的集合称为实数集,记作R。
例举法:把集合的元素一一列举出来,并用花括号“”括起来表示集合的方法叫做例举法。
描述法:用集合所含元素的共同特征表示集合的方法称为描述法。
1.1.2 集合间的基本关系一般地,对于两个集合A,B如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集。
记作AB(或BA)读作“A含于B”(或“B含于A”)。
如果集合A是集合B的子集(AB),且集合B是集合A的子集(BA),此时,集合A与集合B中的元素是一样的,因此,集合A与集合B相等,记作A=B。
如果集合AB,但存在元素xB,且xA,我们称集合A是集合B的真子集,记作AB(或BA)。
我们把不含任何元素的集合叫做空集,记作,并规定:空集是任何集合的子集。
1.1.3 集合的基本运算并集一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A 与B的并集,记作AB(读作“A并B”),即AB=交集一般地,由属于集合A且属于集合B的所有元素组成的集合,称作A与B的交集,记作A(读作“A交B”),即A若A则A补集一般地,如果一个集合含有我们所研究问题中涉及到所有问题中涉及到所有元素,那么就称这个集合为全集,通常记作U。
对于一个集合A,由于全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作C U A,即C U A= (C U A C U B)=C U(C U A C U B)=C U1.2 函数及其表示1.2.1 函数的概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为集合A到集合B的一个函数,记作 y=f(x),x A其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合叫做函数的值域。
部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳
(名师选题)部编版高中数学必修一第一章集合与常用逻辑用语带答案必考知识点归纳单选题1、已知集合A={x|x2−2x≤0},B={−1,0,3},则(∁R A)∩B=()A.∅B.{0,1}C.{−1,0,3}D.{−1,3}2、设a,b是实数,集合A={x||x−a|<1,x∈R},B={x||x−b|>3,x∈R},且A⊆B,则|a−b|的取值范围为()A.[0,2]B.[0,4]C.[2,+∞)D.[4,+∞)3、设命题p:∃x0∈R,x02+1=0,则命题p的否定为()A.∀x∉R,x2+1=0B.∀x∈R,x2+1≠0C.∃x0∉R,x02+1=0D.∃x0∈R,x02+1≠04、已知集合P={x|1<x<4},Q={x|2<x<3},则P∩Q=()A.{x|1<x≤2}B.{x|2<x<3}C.{x|3≤x<4}D.{x|1<x<4}5、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.36、若集合M={a,b,c}中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形7、设a,b∈R,A={1,a},B={−1,−b},若A⊆B,则a−b=()A.−1B.−2C.2D.08、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4多选题9、集合{1,3,5,7,9}用描述法可表示为()A.{x|x是不大于9的非负奇数}B.{x|x=2k+1,k∈N,且k≤4}C.{x|x≤9,x∈N∗}D.{x|0≤x≤9,x∈Z}10、已知P={x|x2−8x−20≤0},集合S={x|1−m≤x≤1+m}.若x∈P是x∈S的必要条件,则实数m 的取值可以是()A.−1B.1C.3D.511、已知关于x的方程x2+(m−3)x+m=0,则下列说法正确的是()A.当m=3时,方程的两个实数根之和为0B.方程无实数根的一个必要条件是m>1C.方程有两个正根的充要条件是0<m≤1D.方程有一个正根和一个负根的充要条件是m<0填空题12、已知集合A={y|y=x2−32x+1,x∈[34,2]},B={x|x+m2≥1}.若“x∈A”是“x∈B”的充分条件,则实数m的取值范围为________.13、能够说明“∀x∈N∗,2x≥x2”是假命题的一个x值为__________.部编版高中数学必修一第一章集合与常用逻辑用语带答案(二十五)参考答案1、答案:D分析:先由一元二次不等式的解法求得集合A,再由集合的补集和交集运算可求得答案.因为A={x|x2−2x≤0}={x|0≤x≤2},所以∁R A={x|x<0或x>2},又B={−1,0,3},所以(∁R A)∩B={−1,3},故选:D.2、答案:D分析:解绝对值不等式得到集合A,B,再利用集合的包含关系得到不等式,解不等式即可得解.集合A={x||x−a|<1,x∈R}={x|a−1<x<a+1},B={x||x−b|>3,x∈R}={x|x<b−3或x>b+3}又A⊆B,所以a+1≤b−3或a−1≥b+3即a−b≤−4或a−b≥4,即|a−b|≥4所以|a−b|的取值范围为[4,+∞)故选:D3、答案:B分析:根据存在命题的否定为全称命题可得结果.∵存在命题的否定为全称命题,∴命题p的否定为“∀x∈R,x2+1≠0”,故选:B4、答案:B分析:根据集合交集定义求解.P∩Q=(1,4)∩(2,3)=(2,3)故选:B小提示:本题考查交集概念,考查基本分析求解能力,属基础题.5、答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案.对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x ∈R ,x 2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x ∈R ,x 2+2x +1≤0,则¬p:∀x ∈R ,x 2+2x +1>0,故③错误;对于④:ac 2>bc 2可以推出a >b ,所以a >b 是ac 2>bc 2的必要条件,故④正确;所以正确的命题为②④,故选:C6、答案:D分析:根据集合元素的互异性即可判断.由题可知,集合M ={a,b,c }中的元素是△ABC 的三边长,则a ≠b ≠c ,所以△ABC 一定不是等腰三角形.故选:D .7、答案:D分析:根据集合的包含关系,结合集合的性质求参数a 、b ,即可求a −b .由A ⊆B 知:A =B ,即{a =−1−b =1,得{a =−1b =−1, ∴a −b =0.故选:D.8、答案:B分析:根据并集运算,结合集合的元素种类数,求得a 的值.由A ∪B ={−2,−1,0,4,16}知,{a 2=4a 4=16,解得a =±2 故选:B9、答案:AB分析:利用描述法的定义逐一判断即可.对A ,{x |x 是不大于9的非负奇数}表示的集合是{1,3,5,7,9},故A 正确;对B ,{x |x =2k +1,k ∈N ,且k ≤4}表示的集合是{1,3,5,7,9},故B 正确;对C ,{x |x ≤9,x ∈N ∗ }表示的集合是{1,2,3,4,5,6,7,8,9},故C 错误;对D ,{x |0≤x ≤9,x ∈Z }表示的集合是{0,1,2,3,4,5,6,7,8,9},故D 错误.故选:AB.10、答案:ABC分析:解不等式得集合P ,将必要条件转化为集合之间的关系列出关于m 的不等式组,解得m 范围即可得结果. 由x 2−8x −20≤0,解得−2≤x ≤10,∴P =[−2,10],非空集合S ={x |1−m ≤x ≤1+m },又x ∈P 是x ∈S 的必要条件,所以S ⊆P ,当S =∅,即m <0时,满足题意;当S ≠∅,即m ≥0时,∴{−2≤1−m 1+m ≤10,解得0≤m ≤3, ∴m 的取值范围是(−∞,3],实数m 的取值可以是−1,1,3,故选:ABC.11、答案:BCD分析:方程没有实数根,所以选项A 错误;由题得m >1,m >1是1<m <9的必要条件,所以选项B 正确;由题得0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;由题得m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.对于选项A ,方程为x 2+3=0,方程没有实数根,所以选项A 错误;对于选项B ,如果方程没有实数根,则Δ=(m −3)2−4m =m 2−10m +9<0,所以1<m <9,m >1是1<m <9的必要条件,所以选项B 正确;对于选项C ,如果方程有两个正根,则{Δ=m 2−10m +9≥0−(m −3)>0m >0,所以0<m ≤1,所以方程有两个正根的充要条件是0<m ≤1,所以选项C 正确;对于选项D ,如果方程有一个正根和一个负根,则{Δ=m 2−10m +9>0m <0 ,所以m <0,所以方程有一个正根和一个负根的充要条件是m <0,所以选项D 正确.故选:BCD小提示:方法点睛:判断充分条件必要条件,常用的方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件,灵活选择方法判断得解.12、答案:(−∞,−34]∪[34,+∞) 分析:求函数的值域求得集合A ,根据“x ∈A ”是“x ∈B ”的充分条件列不等式,由此求得m 的取值范围. 函数y =x 2−32x +1的对称轴为x =34,开口向上,所以函数y =x 2−32x +1在[34,2]上递增,当x =34时,y min =716;当x =2时,y max =2.所以A =[716,2].B ={x|x +m 2≥1}={x|x ≥1−m 2},由于“x ∈A ”是“x ∈B ”的充分条件,所以1−m 2≤716,m 2≥916,解得m ≤−34或m ≥34,所以m 的取值范围是(−∞,−34]∪[34,+∞).所以答案是:(−∞,−34]∪[34,+∞)13、答案:3分析:取x =3代入验证即可得到答案.因为x =3∈N ∗,而23<32,∴说明“∀x ∈N ∗,2x ≥x 2”是假命题.所以答案是:3小提示:本题考查命题与简易逻辑,属于基础题.。
高中数学必修一第一章集合与常用逻辑用语知识点汇总(带答案)
高中数学必修一第一章集合与常用逻辑用语知识点汇总单选题1、设集合A={1,2},B={2,4,6},则A∪B=()A.{2}B.{1,2}C.{2,4,6}D.{1,2,4,6}答案:D分析:利用并集的定义可得正确的选项.A∪B={1,2,4,6},故选:D.2、已知集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z},则M∪N=()A.{x|x=6k+2,k∈Z}B.{x|x=4k+2,k∈Z}C.{x|x=2k+1,k∈Z}D.∅答案:C分析:通过对集合N的化简即可判定出集合关系,得到结果.因为集合M={x|x=2k+1,k∈Z},集合N={y|y=4k+3,k∈Z}={y|y=2(2k+1)+1,k∈Z},因为x∈N时,x∈M成立,所以M∪N={x|x=2k+1,k∈Z}.故选:C.3、已知集合S={x∈N|x≤√5},T={x∈R|x2=a2},且S∩T={1},则S∪T=()A.{1,2}B.{0,1,2}C.{-1,0,1,2}D.{-1,0,1,2,3}答案:C分析:先根据题意求出集合T,然后根据并集的概念即可求出结果.S={x∈N|x≤√5}={0,1,2},而S∩T={1},所以1∈T,则a2=1,所以T={x∈R|x2=a2}={−1,1},则S∪T={−1,0,1,2}故选:C.4、已知p:√x−1>2,q:m−x<0,若p是q的充分不必要条件,则m的取值范围是()A.m<3B.m>3C.m<5D.m>5答案:C分析:先求得命题p、q中x的范围,根据p是q的充分不必要条件,即可得答案.命题p:因为√x−1>2,所以x−1>4,解得x>5,命题q:x>m,因为p是q的充分不必要条件,所以m<5.故选:C5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、已知集合P={x|x=2k−1,k∈N∗}和集合M={x|x=a⊕b,a∈P,b∈P},若M⊆P,则M中的运算“⊕”是()A.加法B.除法C.乘法D.减法答案:C分析:用特殊值,根据四则运算检验.若a=3,b=1,则a+b=4∉P,a−b=2∉P,ba =13∉P,因此排除ABD.故选:C.7、等比数列{a n}的公比为q,前n项和为S n,设甲:q>0,乙:{S n}是递增数列,则()A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件答案:B分析:当q>0时,通过举反例说明甲不是乙的充分条件;当{S n}是递增数列时,必有a n>0成立即可说明q> 0成立,则甲是乙的必要条件,即可选出答案.由题,当数列为−2,−4,−8,⋯时,满足q>0,但是{S n}不是递增数列,所以甲不是乙的充分条件.若{S n}是递增数列,则必有a n>0成立,若q>0不成立,则会出现一正一负的情况,是矛盾的,则q>0成立,所以甲是乙的必要条件.故选:B.小提示:在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8、设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=()A.–4B.–2C.2D.4答案:B分析:由题意首先求得集合A,B,然后结合交集的结果得到关于a的方程,求解方程即可确定实数a的值.求解二次不等式x2−4≤0可得:A={x|−2≤x≤2},}.求解一次不等式2x+a≤0可得:B={x|x≤−a2=1,解得:a=−2.由于A∩B={x|−2≤x≤1},故:−a2故选:B.小提示:本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.多选题9、下列条件中,为“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有()A.0≤m<4B.0<m<2C.1<m<4D.−1<m<6答案:BC分析:对m讨论:m=0;m>0,Δ<0;m<0,结合二次函数的图象,解不等式可得m的取值范围,再由充要条件的定义判断即可.因为关于x的不等式mx2−mx+1>0对∀x∈R恒成立,当m=0时,原不等式即为1>0恒成立;当m>0时,不等式mx2−mx+1>0对∀x∈R恒成立,可得Δ<0,即m2−4m<0,解得:0<m<4.当m<0时,y=mx2−mx+1的图象开口向下,原不等式不恒成立,综上:m的取值范围为:[0,4).所以“关于x的不等式mx2−mx+1>0对∀x∈R恒成立”的充分不必要条件的有0<m<2或1<m<4.故选:BC.10、某校举办运动会,高一的两个班共有120名同学,已知参加跑步、拔河、篮球比赛的人数分别为58,38,52,同时参加跑步和拔河比赛的人数为18,同时参加拔河和篮球比赛的人数为16,同时参加跑步、拔河、篮球三项比赛的人数为12,三项比赛都不参加的人数为20,则()A.同时参加跑步和篮球比赛的人数为24B.只参加跑步比赛的人数为26C.只参加拔河比赛的人数为16D.只参加篮球比赛的人数为22答案:BCD分析:设同时参加跑步和篮球比赛的人数为x,由Venn图可得集合的元素个数关系.设同时参加跑步和篮球比赛的人数为x,由Venn图可得,58+38+52−18−16−x+12=120−20,得x=26,则只参加跑步比赛的人数为58−18−26+12=26,只参加拔河比赛的人数为38−16−18+12= 16,只参加篮球比赛的人数为52−16−26+12=22.故选:BCD.11、对于集合M,N,我们把属于集合M但不属于集合N的元素组成的集合叫作集合M与N的“差集”,记作M−N,即M−N={x|x∈M,且x∉N};把集合M与N中所有不属于M∩N的元素组成的集合叫作集合M与N的“对称差集”,记作MΔN,即MΔN={x|x∈M∪N,且x∉M∩N}.下列四个选项中,正确的有()A.若M−N=M,则M∩N=∅B.若M−N=∅,则M=NC.MΔN=(M∪N)−(M∩N)D.MΔN=(M−N)∪(N−M)答案:ACD分析:根据集合的新定义得到A正确,当M⊆N时,M−N=∅,B错误,根据定义知C正确,画出集合图形知D正确,得到答案.若M−N=M,则M∩N=∅,A正确;当M⊆N时,M−N=∅,B错误;MΔN={x|x∈M∪N,且x∉M∩N}=(M∪N)−(M∩N),C正确;MΔN和(M−N)∪(N−M)均表示集合中阴影部分,D正确.故选:ACD.填空题12、已知集合A=(1,3),B=(2,+∞),则A∩B=______.答案:(2,3)分析:利用交集定义直接求解.解:∵集合A=(1,3),B=(2,+∞),∴A∩B=(2,3).所以答案是:(2,3).13、已知集合A={−1,3,0},B={3,m2},若B⊆A,则实数m的值为__________.答案:0分析:解方程m2=0即得解.解:因为B⊆A,所以m2=−1(舍去)或m2=0,所以m=0.所以答案是:014、集合A={x|(x−1)(x2+ax+4)=0,x∈R}中所有元素之和为3,则实数a=________.答案:−4分析:由(x−1)(x2+ax+4)=0得x1+x2+x3=1−a,即可求解参数.由(x−1)(x2+ax+4)=0得x−1=0或x2+ax+4=0所以x1=1∈A,x2+ax+4=0,当Δ=a2−16=0时,x=2是方程x2+ax+4=0的根,解得a=−4,当Δ>0时,若方程x2+ax+4=0的一根为1,则a=−5,方程的另一根为4,不合题意;若1不是方程x2+ax+4=0的根,则方程两根x2+x3=−a=2,此时a=−2不满足Δ>0,舍去. 所以答案是:−4.解答题15、已知M={x|2≤x≤5},N={x|a+1≤x≤2a﹣1}.(1)若M⊆N,求实数a的取值范围;(2)若M⊇N,求实数a的取值范围.答案:(1)a∈∅(2)a≤3分析:(1)利用M⊆N,建立不等关系即可求解;(2)利用M⊇N,建立不等关系即可求解,注意当N=∅时,也成立(1)∵M⊆N,∴{a+1≤22a−1≥5,∴a∈∅;(2)①若N=∅,即a+1>2a﹣1,解得a<2时,满足M⊇N.②若N≠∅,即a≥2时,要使M⊇N成立,则{a+1≥22a−1≤5,解得1≤a≤3,此时2≤a≤3.综上a≤3.。
高中数学必修一目录
高中数学必修一目录第一章:集合论与函数1.1 集合的概念• 1.1.1 集合的定义• 1.1.2 元素与集合的关系• 1.1.3 子集与真子集1.2 集合的运算• 1.2.1 并集与交集• 1.2.2 补集与差集• 1.2.3 集合的运算法则1.3 函数的概念• 1.3.1 函数的定义• 1.3.2 定义域、值域和对应关系• 1.3.3 二元函数和多元函数第二章:代数式与方程式2.1 代数式的基本概念• 2.1.1 代数式的定义和性质• 2.1.2 简单代数式与多项式2.2 方程式与解的概念• 2.2.1 方程式的定义和分类• 2.2.2 方程的解的概念• 2.2.3 代入法与消元法2.3 一元一次方程和一元一次不等式• 2.3.1 一元一次方程的解法• 2.3.2 一元一次不等式的解法2.4 二次根式方程和二次根式不等式• 2.4.1 二次根式方程的解法• 2.4.2 二次根式不等式的解法第三章:直线与圆3.1 直线的基本概念• 3.1.1 直线的定义• 3.1.2 直线的表示方法• 3.1.3 直线的倾斜角和斜率3.2 直线的性质与判定• 3.2.1 平行直线与垂直直线• 3.2.2 直线的位置关系• 3.2.3 直线与斜率的关系3.3 圆的基本概念• 3.3.1 圆的定义和性质• 3.3.2 圆的公式• 3.3.3 圆与直线的位置关系第四章:三角函数4.1 角的概念与常用角• 4.1.1 角的定义和性质• 4.1.2 角的度量与弧度制• 4.1.3 常用角的度数和弧度表4.2 三角函数的概念与基本关系• 4.2.1 三角函数的定义• 4.2.2 三角函数的性质与图像• 4.2.3 三角函数的基本关系4.3 三角函数的计算• 4.3.1 三角函数的大小关系• 4.3.2 三角函数的正负判别• 4.3.3 三角函数的值域和周期以上是《高中数学必修一》的目录,包括集合论与函数、代数式与方程式、直线与圆、三角函数等内容。
高中高一数学必修1
高中高一数学必修1第一章集合与函数概念、一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的 无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者 是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都 是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是 平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样 ,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和 整体性。
3、集合的表示 方法:列举法、描述法、图像法。
4、集合的分类:1.有限集2.无限集3.空集含有有限个元素的集合含 有无限个元素的集合不含任何元素的集合例:{x|x2=-5}整数集Z有理数集Q 实数集R(有的带有正号的,就是指在该范围内正数部分,目前只需要了解这么多)二、集合间的基本关系1不含任何元素的集合叫做空集,记为Φ规定 :空集是任何集合的子集,空集是任何非空集合的真子集。
2.元素之间是包含的关系,而集合与集合间是属于的关系三、集合的运算1.交 集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集 .记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一 般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记 作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质: A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A.4、全集 与补集注意:在我们考试时,做题总把并集当作交集做,考试要注意。
第二章函数一、函数的有关概念1.函数的概念:设A、B是非空的数集,如果 按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯 一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数. 记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域; 与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域 .2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的 形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域 还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
高一数学必修一第一章知识点梳理
高一数学必修一第一章知识点梳理(原创版)目录1.必修一第一章的背景和重要性2.第一章的主要知识点3.知识点的具体内容和理解方法正文【必修一第一章的背景和重要性】高一数学必修一的第一章是整个高中数学学习的基础,也是高中数学的重要组成部分。
本章的主要内容是代数式和方程式,它们是数学中常见的表达方式,也是解决许多数学问题的关键。
因此,深入理解和掌握本章的知识点对于学生来说是至关重要的。
【第一章的主要知识点】第一章的主要知识点包括代数式、方程式和一元一次方程式。
【知识点的具体内容和理解方法】1.代数式代数式是由数、字母和运算符号组成的式子。
它是数学中常见的表达方式,也是解决许多数学问题的关键。
要理解代数式,我们需要掌握以下几个概念:(1)数:数是代数式中最基本的元素,它可以是整数、分数、小数或无理数。
(2)字母:字母是代数式中的变量,它可以表示数或量。
字母通常用 a、b、c 等表示。
(3)运算符号:运算符号是代数式中表示运算的符号,如+、-、×、÷等。
2.方程式方程式是含有未知数的等式。
它是代数式的一种,也是解决许多数学问题的关键。
要理解方程式,我们需要掌握以下几个概念:(1)未知数:未知数是方程式中的变量,它表示一个数或量。
(2)等式:等式是表示左右两边相等的式子。
(3)解方程:解方程是求方程式中未知数的过程。
3.一元一次方程式一元一次方程式是只含有一个未知数,并且未知数的次数是 1 的方程式。
它是方程式的一种,也是解决许多数学问题的关键。
要理解一元一次方程式,我们需要掌握以下几个概念:(1)一元:一元是指方程式中只含有一个未知数。
(2)一次:一次是指未知数的次数是 1。
(3)解一元一次方程:解一元一次方程是求一元一次方程式中未知数的过程。
高中数学必修一知识点整理
高中数学必修一知识点整理高中数学必修1知识点总结第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示集合是由一些确定、互异、无序的元素组成。
常用的数集有自然数集N、正整数集N*或N+、整数集Z、有理数集Q、实数集R。
集合的表示法有自然语言法、列举法、描述法和图示法。
集合可以分为有限集、无限集和空集。
1.1.2 集合间的基本关系集合间有子集、真子集和集合相等的关系。
子集表示A 中的任一元素都属于B,真子集表示A是B的子集且B中至少有一个元素不属于A,集合相等表示A和B互为子集。
1.1.3 集合的基本运算集合的基本运算有交集、并集和补集。
交集表示同时属于A和B的元素组成的集合,并集表示属于A或B的元素组成的集合,补集表示不属于A的元素组成的集合。
补充:含绝对值的不等式的解法是将其化为|x|a的形式进行求解。
含有ax+b的绝对值不等式可以化为|ax+b|c的形式进行求解。
注意:文章中没有明显的格式错误和有问题的段落,因此不需要删除和改写。
一元二次不等式的解法:一元二次不等式的判别式为 $\Delta = b^2-4ac$,根据判别式的大小关系可以得到不等式的解集。
对于二次函数 $y=ax^2+bx+c(a>0)$,它的图象是一个开口朝上的抛物线。
对于一元二次方程 $ax^2+bx+c=0(a>0)$,它的根可以通过公式 $x_{1,2}=\frac{-b\pm\sqrt{\Delta}}{2a}$ 求得,其中$\Delta=b^2-4ac$,当 $\Delta>0$ 时,方程有两个不相等的实根;当 $\Delta=0$ 时,方程有两个相等的实根;当$\Delta<0$ 时,方程没有实根。
对于一元二次不等式 $ax^2+bx+c>0(a>0)$,它的解集为$\{x|xx_2\}$,其中 $x_1$ 和 $x_2$ 分别是方程$ax^2+bx+c=0$ 的两个实根,且 $x_10)$ 时,它的解集为$\{x|x_10)$ 时,它的解集为 $\{x|x\neq-\frac{b}{2a}\}$。
高中数学必修1
高中数学必修1必修2第一章:空间几何三视图和直观图的绘制不算难。
但是从三视图中恢复实物并计算出来,需要很强的空间感。
要能从三个平面图中慢慢画出脑海中的实物。
这就要求学生特别是空间感弱的学生多看书上的例图,把实物图和平面图结合起来看,先熟练地正推,再慢慢的逆推。
有必要的还要在做题时结合草图,不能单凭想象。
记住后面圆锥圆柱的表面积和体积的公式,问题不大。
求表面积的时候注意有多少个面,有没有上下底这种问题。
第二章:点、直线、平面之间的位置关系这一章除了面的相交之外,对空间概念的要求并不强,大部分都可以直接画出来,这就要求学生自己画草图的时候要多看图片,严格注意实线和虚线,这是一个规范性的问题。
关于这一章的内容,牢记直线与直线、面与面、直线与面相交、垂直、平行的几大定理及几大性质,同时能用图形语言、文字语言、数学表达式表示出来。
只要这些全部过关这一章就解决了一大半。
本章的难点在于二面角的概念,难点在于我们无法理解这个概念,也就是我们知道这个概念存在,但就是无法在二面角里做出这个角度。
这种情况下,一定要从定义入手,先记住定义,然后多做,多看。
这没有捷径可走。
第三章:直线与方程这一章主要讲斜率与直线的位置关系。
只要搞清楚直线平行、垂直的斜率表示问题就不大了。
需要格外注意的是当直线垂直时斜率不存在的情况,这是常考点。
另外直线方程的几种形式,记得一般公式会用就行,要求不高。
点与点的距离、点与直线的距离、直线与直线的距离,记住公式,直接套用。
第四章:圆与方程能熟练的把一般式方程转化为标准方程,通常的考试形式是等式的一边含根号,另一边不含,这时就要注意开方后定义域或值域的限制。
通过点到点的距离、点到直线的距离与圆半径的大小关系判断点与圆、直线与圆、圆与圆的位置关系另外,注意圆的对称性引起的切线和相交直线,这也是一个常见的考点。
必修3总的来说这一本书难度不大,只是比较繁琐,需要有耐心的去画图去计算。
程序框图与三种算法语句的结合,及框图的算法表示。
高中数学必修一第一章集合与常用逻辑用语重点知识点大全(带答案)
高中数学必修一第一章集合与常用逻辑用语重点知识点大全单选题1、已知集合A={1,2,3,5,7,11},B={x|3<x<15},则A∩B中元素的个数为()A.2B.3C.4D.5答案:B分析:采用列举法列举出A∩B中元素的即可.由题意,A∩B={5,7,11},故A∩B中元素的个数为3.故选:B【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.2、设全集U={−2,−1,0,1,2,3},集合A={−1,2},B={x∣x2−4x+3=0},则∁U(A∪B)=()A.{1,3}B.{0,3}C.{−2,1}D.{−2,0}答案:D分析:解方程求出集合B,再由集合的运算即可得解.由题意,B={x|x2−4x+3=0}={1,3},所以A∪B={−1,1,2,3},所以∁U(A∪B)={−2,0}.故选:D.3、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.4、集合A={0,1,2}的非空真子集的个数为()A.5B.6C.7D.8答案:B分析:根据真子集的定义即可求解.由题意可知,集合A的非空真子集为{0},{1},{2},{0,1},{0,2},{1,2},共6个.故选:B.5、下列结论中正确的个数是()①命题“所有的四边形都是矩形”是存在量词命题;②命题“∀x∈R,x2+1<0”是全称量词命题;③命题“∃x∈R,x2+2x+1≤0”的否定为“∀x∈R,x2+2x+1≤0”;④命题“a>b是ac2>bc2的必要条件”是真命题;A.0B.1C.2D.3答案:C分析:根据存在量词命题、全称量词命题的概念,命题的否定,必要条件的定义,分析选项,即可得答案. 对于①:命题“所有的四边形都是矩形”是全称量词命题,故①错误;对于②:命题“∀x∈R,x2+1<0”是全称量词命题;故②正确;对于③:命题p:∃x∈R,x2+2x+1≤0,则¬p:∀x∈R,x2+2x+1>0,故③错误;对于④:ac2>bc2可以推出a>b,所以a>b是ac2>bc2的必要条件,故④正确;所以正确的命题为②④,故选:C6、在数轴上与原点距离不大于3的点表示的数的集合是()A.{x|x≤−3或x≥3}B.{x|−3≤x≤3}C.{x|x≤−3}D.{x|x≥3}答案:B分析:在数轴上与原点距离不大于3的点表示的数的集合为|x|≤3的集合.由题意,满足|x|≤3的集合,可得:{x|−3≤x≤3},故选:B7、集合A={0,−1,a2},B={−2,a4}.若A∪B={−2,−1,0,4,16},则a=()A.±1B.±2C.±3D.±4答案:B分析:根据并集运算,结合集合的元素种类数,求得a的值.由A∪B={−2,−1,0,4,16}知,{a 2=4a4=16,解得a=±2故选:B8、设集合A={−1,0,1,2},B={1,2},C={x|x=ab,a∈A,b∈B},则集合C中元素的个数为()A.5B.6C.7D.8答案:B分析:分别在集合A,B中取a,b,由此可求得x所有可能的取值,进而得到结果.当a=−1,b=1时,ab=−1;当a=−1,b=2时,ab=−2;当a=0,b=1或2时,ab=0;当a=1,b=1时,ab=1;当a=1,b=2或a=2,b=1时,ab=2;当a=2,b=2时,ab=4;∴C={−2,−1,0,1,2,4},故C中元素的个数为6个.故选:B.多选题9、下列选项正确的是()A .√7∈RB .Z ∈QC .0∈∅D .∅⊆{0}答案:AD分析:根据元素与集合的关系,集合与集合的关系以及空集的概念进行判断即可.A .√7是无理数,无理数属于实数,所以√7∈R ,故正确;B .因为Z,Q 都是集合,所以不能用∈表示两者关系,故错误;C .因为∅不包含任何元素,所以0∉∅,故错误;D .因为空集是任何集合的子集,所以∅⊆{0},故正确;故选:AD.10、已知集合A ={x|x 2−x −6=0},B ={x|mx −1=0}, A ∩B =B ,则实数m 取值为( )A .13B .−12C .−13D .0答案:ABD解析:先求集合A ,由A ∩B =B 得B ⊆A ,然后分B =∅和B ≠∅两种情况求解即可解:由x 2−x −6=0,得x =−2或x =3,所以A ={−2,3},因为A ∩B =B ,所以B ⊆A ,当B =∅时,方程mx −1=0无解,则m =0,当B ≠∅时,即m ≠0,方程mx −1=0的解为x =1m , 因为B ⊆A ,所以1m =−2或1m =3,解得m =−12或m =13, 综上m =0,或m =−12,或m =13,故选:ABD小提示:此题考查集合的交集的性质,考查由集合间的包含关系求参数的值,属于基础题11、“不等式x 2−x +m >0在R 上恒成立”的一个充分不必要条件是( )A .m >14B .0<m <1C .m >2D .m >1答案:CD解析:先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.因为“不等式x 2−x +m >0在R 上恒成立”,所以等价于二次方程的x 2−x +m =0判别式Δ=1−4m <0,即m >14. 所以A 选项是充要条件,A 不正确;B 选项中,m >14不可推导出0<m <1,B 不正确;C 选项中,m >2可推导m >14,且m >14不可推导m >2,故m >2是m >14的充分不必要条件,故C 正确;D 选项中,m >1可推导m >14,且m >14不可推导m >1,故m >1是m >14的充分不必要条件,故D 正确. 故选:CD.小提示:名师点评本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.填空题12、设集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A i ⊕A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3,则满足关系式(x ⊕x)⊕A 2=A 0的x (x ∈S )的个数为________.答案:2解析:由已知中集合S ={A 0,A 1,A 2,A 3},在S 上定义运算⊕为:A i ⊕A j =A k ,其中k 为i +j 被4除的余数,i ,j =0,1,2,3,分别分析x 取A 0,A 1,A 2,A 3时,式子的值,并与A 0进行比照,即可得到答案. 当x =A 0时,(x ⊕x)⊕A 2=(A 0⊕A 0)⊕A 2=A 0⊕A 2=A 2≠A 0当x =A 1时,(x ⊕x)⊕A 2=(A 1⊕A 1)⊕A 2=A 2⊕A 2=A 4=A 0当x =A 2时,(x ⊕x)⊕A 2=(A 2⊕A 2)⊕A 2=A 0⊕A 2=A 2≠A 0当x =A 3时,(x ⊕x)⊕A 2=(A 3⊕A 3)⊕A 2=A 2⊕A 2=A 0=A 0则满足关系式(x ⊕x)⊕A 2=A 0的x(x ∈S)的个数为:2个.所以答案是:2.小提示:本题考查的知识点是集合中元素个数,其中利用穷举法对x 取值进行分类讨论是解答本题的关键.属于中档题.13、已知A ={x ∈R|2a ≤x ≤a +3},B ={x ∈R|x <-1或x >4},若A ⊆B ,则实数a 的取值范围是________. 答案:a <-4或a >2分析:按集合A 为空集和不是空集两种情况去讨论即可求得实数a 的取值范围.①当a >3即2a >a +3时,A =∅,满足A ⊆B ;.②当a ≤3即2a ≤a +3时,若A ⊆B ,则有{2a ≤a +3a +3<−1或2a >4,解得a <-4或2<a ≤3 综上,实数a 的取值范围是a <-4或a >2.所以答案是:a <-4或a >214、命题p:∀x >2,2x −3>0的否定是___________.答案:∃x >2,2x −3≤0分析:将全称命题否定为特称命题即可命题p:∀x >2,2x −3>0的否定是∃x >2,2x −3≤0,所以答案是:∃x >2,2x −3≤0解答题15、已知集合A ={x |1≤x ≤3 },B ={x |a −4≤x ≤a −1 },若“x ∈A ”是“x ∈B ”的充分不必要条件,求实数a 的取值范围.答案:[4,5]分析:根据给定条件可得AB ,再借助集合的包含关系列式计算作答.因“x ∈A ”是“x ∈B ”的充分不必要条件,于是得AB ,而集合A ={x |1≤x ≤3 },B ={x |a −4≤x ≤a −1 },因此,{a −4<1a −1≥3 或{a −4≤1a −1>3,解得4≤a <5或4<a ≤5,即有4≤a ≤5, 所以实数a 的取值范围为[4,5].。
高中数学必修第一册第一章课后答案
第一章集合与常用逻辑用语1.1集合的概念P5练习1.判断下列元素的全体是否组成集合,并说明理由:(1)与定点A ,B 等距离的点;(2)高中学生中的游泳能手.【答案】(1)是,理由见解析;(2)不是,理由见解析.2.用符号“∈”或“∉”填空:0______N ;3-______N ;0.5______Z ______Z ;13______Q ;π______R .【答案】①.∈②.∉③.∉④.∉⑤.∈⑥.∈3.用适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合;(2)一次函数3y x =+与26y x =-+图象的交点组成的集合;(3)不等式453x -<的解集.【答案】(1){3,3}-;(2){(1,4)};(3){|2}x x <.P5习题1.1复习巩固1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则中国______________A ,美国__________A ,印度____________A ,英国_____________A ;(2)若{}2|A x x x ==,则-1_____________A ;(3)若{}2|60B x x x =+-=,则3________________B ;(4)若{|110}C x x =∈N,则8_______________C ,9.1____________C .【答案】(1),,,∈∉∈∉(2)∉(3)∉(4),∈∉2.用列举法表示下列集合:(1)大于1且小于6的整数;(2){}(1)(2)0A x x x =-+=;(3){}3213B x Z x =∈-<-<.【答案】(1){}2,3,4,5(2){}1,2A =-(3){}0,1B =P6综合运用3.把下列集合用另一种方法表示出来:(1){2,4,6,8,10};(2)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数;(3){|37}x N x ∈<<;(4)中国古代四大发明【答案】(1){|2,x N x k k Z ∈=∈且111x <<}(2){1,2,3,12,21,13,31,23,32,123,132,213,231,312,321}(3){4,5,6}(4){造纸术,印刷术,指南针,火药}4.用适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量组成的集合;(3)不等式342x x ≥-的解集第一章集合与常用逻辑用语1.2集合间的基本关系P8练习1.写出集合{,,}a b c 的所有子集.【答案】∅,{}a ,{}b ,{}c ,{,}a b ,{,}a c ,{,}b c ,{,,}a b c .2.用适当的符号填空:(1)a _____{,,}a b c ;(2)0____2{}|0x x =;(3)∅____2{0}|1x x ∈+=R ;(4){0,1}____N ;(5){0}____2{|}x x x =;(6){2,1}____2|320{}x x x -+=.【答案】①.∈②.∈③.=④.真包含于⑤.真包含于⑥.=3.判断下列两个集合之间的关系:(1){|0}A x x =<,{|1}B x x =<;(2){|3,}A x x k k ==∈N ,{|6,}B x x z z ==∈N ;(3){,|A x x =∈N 是4与10的公倍数},{|20,}B x x m m +==∈N .【答案】(1)A 真包含于B ;(2)A 真包含B ;(3)A B =.P9习题1.2复习巩固1.选用适当的符号填空:(1)若集合{}233A x x x =-<,{}2B x x =≥,则4-______B ,3-______A ,{}2______B ,B ______A(2)若集合{}210A x x =-=,则1______A ,{}1-______A ,∅______A ,{1,1}-______A ;(3){|x x 是菱形}______{|x x 是平行四边形};{|x x 是等边三角形}______{|x x 是等腰三角形}【答案】①.∉②.∉③.真包含于④.真包含于⑤.∈⑥.真包含于⑦.真包含于⑧.=⑨.真包含于⑩.真包含于2.指出下列各集合之间的关系,并用Venn 图表示:A ={|x x 是四边形},B ={|x x 是平行四边形},C ={|x x 是矩形},D ={|x x 是正方形}.【答案】D C B A ,Venn 图见解析.P9综合运用3.举出下列各集合的一个子集:(1)A ={|x x 是立德中学的学生};(2)B ={|x x 是三角形};(3){0}C =;(4){|330}D x Z x =∈<<.【答案】(1){|x x 是立德中学的女生}(2){|x x 是直角三角形}(3){0}(4){4,5,6}4.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看,集合21(,)|45x y D x y x y ⎧-=⎧⎫=⎨⎨⎬+=⎩⎭⎩表示什么?集合C ,D 之间有什么关系?【答案】D 真包含于CP9拓广探索5.请解决下列问题:(1)设,,{1,},{1,}a b R P a Q b ∈==--,若P Q =,求-a b 的值;(2)已知集合{|0},{|12}A x x a B x x =<<=<<,若B A ⊆,求实数a 的取值范围.【答案】(1)0a b -=(2)2a ≥第一章集合与常用逻辑用语1.3集合的基本运算P12练习1.设{}3,5,6,8A =,{4,5,7,8}B =,求A B ,A B .【答案】{}5,8A B = ,{}3,4,5,6,7,8A B = 2.设2{|450}A x x x =--=,2{|1}B x x ==,求A B ,A B .【答案】{}1,1,5A B =- ,{}1A B ⋂=-.3.设{|A x x =是等腰三角形},{|B x x =是直角三角形},求A B ,A B .形}4.设{|A x x =是幸福农场的汽车},{|B x x =是幸福农场的拖拉机},求A B .【答案】{|x x 是幸福农场的汽车或拖拉机}P13练习1.已知{1,2,3,4,5,6,7}U =,{2,4,5}A =,{1,3,5,7}B =,求()U A B ð,()()U U A B 痧.【答案】(){}2,4U A B = ð,()(){}6U U A B = 痧.2.设{|S x x =是平行四边形或梯形},{|A x x =是平行四边形},{|B x x =是菱形},{|C x x =是矩形},求B C ⋂,S B ð,S A ð.【答案】{|x x 是正方形},{|x x 是邻边不相等的平行四边形或梯形},{|x x 是梯形}.3.图中U 是全集,A ,B 是U 的两个子集,用阴影表示:(1)()()U U A B 痧;(2)()()U U A B ⋃痧.【答案】如下图阴影部分所示.P14习题1.3复习巩固1.已知集合{|24}A x x =≤<,{|3782}B x x x =-≥-,求A∩B,A∪B.【答案】{|34}A B x x =≤< ,{|2}A B x x ⋃=≥2.设{|A x x =是小于9的正整数},{}{},1,2,33,4,5,6B C ==.求,,A B A C ⋂⋂()(),A B C A B C ⋂⋃⋃⋂.【答案】{}1,2,3,{}3,4,5,6,{}1,2,3,4,5,6,{}1,2,3,4,5,6,7,8.3.学校开运动会,设A ={|x x 是参加100m 跑的同学},B ={|x x 是参加200m 跑的同学},C ={|x x 是参加400m 跑的同学},学校规定,每个参加上述比赛的同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释以下集合运算的含义:(1)A B ;(2)A C .【答案】A B C =∅ ;(1)表示参加100m 跑或参加200m 跑的同学;(2)表示既参加100m 跑又参加400m 跑的同学P14综合运用4.已知集合{}37A x x =≤<,{}210B x x =<<,求R ()A B ⋃ð,R ()A B ð,()A B Rð,()R A B ð.【答案】答案见解析.(){}R |210A B x x x ⋃=≤≥或ð;(){}R |37A B x x x ⋂=<≥或ð;(){}R|23710A B x x x ⋂=<<≤<或ð;(){}R |23710A B x x x x ⋃=≤≤<≥或或ð.5.设集合{}(3)()0,A x x x a a =--=∈R ,{}(4)(1)0B x x x =--=,求A B ,A B .所以{}1,4B =当3a =时{}3A =,所以{}1,3,4A B = ,A B =∅ 当1a =时{}1,3A =,所以{}1,3,4A B = ,{}1A B ⋂=当4a =时{}4,3A =,所以{}1,3,4A B = ,{}4A B ⋂=当1a ≠且3a ≠且4a ≠时{},3A a =,所以{}1,3,4,A B a = ,A B =∅ P14拓广探索6.已知全集(){|010},{1,35,7}U U A B x N x A C B =⋃=∈≤≤⋂=,,试求集合B .【答案】{0,1,2,3,4,5,6,7,8,9,10}U A B =⋃= ,(){1,3,5,7}U A B ⋂=ð,{1,3,5,7}U B ∴=ð.故(){0,2,4,6,8,9,10}U U B B ==痧.第一章集合与常用逻辑用语1.4充分条件与必要条件1.4.1充分条件与必要条件P20练习1.下列“若p ,则q ”形式的命题中,哪些命题中的p 是q 的充分条件?(1)若平面内点P 在线段AB 的垂直平分线上,则PA PB =;(2)若两个三角形的两边及一边所对的角分别相等,则这两个三角形全等;(3)若两个三角形相似,则这两个三角形的面积比等于周长比的平方.【答案】(1)p 是q 的充分条件;(2)p 不是q 的充分条件;(3)p 是q 的充分条件2.下列“若p ,则q ”形式的命题中,哪些命题中的q 是p 的必要条件?(1)若直线l 与o 有且仅有一个交点,则l 为o 的一条切线;(2)若x 是无理数,则2x 也是无理数.【答案】(1)q 是p 的必要条件;(2)q 不是p 的必要条件3.如图,直线a 与b 被直线1所截,分别得到了1∠,2∠,3∠和4∠.请根据这些信息,写出几个“a b ∥”的充分条件和必要条件.【答案】因为内错角相等,同位角相等,同旁内角互补,得到a b ∥,所以“a b ∥”的充分条件:12∠=∠,14∠=∠,13180︒∠+∠=;因为a b ∥可以得到内错角相等,同位角相等,同旁内角互补,所以“a b ∥”的必要条件:12∠=∠,14∠=∠,13180︒∠+∠=.1.4.2充要条件P22练习1.下列各题中,哪些p 是q 的充要条件?(1)p :三角形为等腰三角形,q :三角形存在两角相等;(2):p O 内两条弦相等,:q O 内两条弦所对的圆周角相等;(3):p A B ⋂为空集,:q A 与B 之一为空集.【答案】(1)p 是q 的充要条件;(2)p 不是g 的充要条件;(3)p 不是q 的充要条件2.分别写出“两个三角形全等”和“两个三角形相似”的几个充要条件.【答案】“两个三角形全等”的充要条件如下:①三边对应相等;②两边及其夹角对应相等;③两角及其夹边对应相等;④两角及一角的对边对应相等.“两个三角形相似”的充要条件如下:①三个内角对应相等(或两个内角对应相等);②三边对应成比例;③两边对应成比例且夹角相等.3.证明:如图,梯形ABCD 为等腰梯形的充要条件是AC BD =.【答案】证明:(1)必要性.在等腰梯形ABCD 中,AB DC =,ABC DCB ∠=∠,又∵BC CB =,∴BAC CDB ≅ ,∴AC BD =.(2)充分性.如图,过点D 作//DE AC ,交BC 的延长线于点E .∵//AD BE ,//DE AC ,∴四边形ACED 是平行四边形.∴DE AC =.∵AC BD =,∴BD DE =,∴1E ∠=∠.又∵//AC DE ,∴2E ∠=∠,∴12∠=∠.在ABC 和DCB 中,,21,,AC DB BC CB =⎧⎪∠=∠⎨⎪=⎩∴ABC DCB ≅ .∴AB DC =.∴梯形ABCD 为等腰梯形.由(1)(2)可得,梯形ABCD 为等腰梯形的充要条件是AC BD =.P22习题1.4复习巩固1.举例说明:(1)p 是q 的充分不必要条件;(2)p 是q 的必要不充分条件;(3)p 是q 的充要条件.【答案】(1)“1x >”是“0x >”的充分不必要条件;(2)“22x y =”是“x y =”的必要不充分条件;(3)“内错角相等”是“两直线平行”的充要条件2.在下列各题中,判断p 是q 的什么条件(请用“充分不必要条件”“必要不充分条件”“充要条件”“既不充分又不必要条件”回答):(1)p :三角形是等腰三角形,q :三角形是等边三角形;(2)在一元二次方程中,:p 20ax bx c ++=有实数根,2:40q b ac -;(3):,:p a P Q q a P ∈⋂∈;(4):,:p a P Q q a P ∈⋃∈;(5)22:,:p x y q x y >>.【答案】(1)必要不充分条件;(2)充要条件;(3)充分不必要条件;(4)必要不充分条件;(5)既不充分又不必要条件.3.判断下列命题的真假:(1)点P 到圆心O 的距离大于圆的半径是点P 在O 外的充要条件;(2)两个三角形的面积相等是这两个三角形全等的充分不必要条件;(3)A B A ⋃=是B A ⊆的必要不充分条件;(4)x 或y 为有理数是xy 为有理数的既不充分又不必要条件.【答案】(1)真命题;(2)假命题;(3)假命题;(4)真命题.P23综合运用4.已知A ={|x x 满足条件p },B ={|x x 满足条件q },(1)如果A B ⊆,那么p 是q 的什么条件?(2)如果B A ⊆,那么p 是q 的什么条件?(3)如果A B =,那么p 是q 的什么条件?【答案】(1)充分条件;(2)必要条件;(3)充要条件.5.设,,a b c ∈R 证明:222a b c ab ac bc ++=++的充要条件是a b c ==.【答案】证明:(1)充分性:如果a b c ==,那么222()()()0a b b c a c -+-+-=,2222220,a b c ab ac bc a b c ab ac bc ∴++---=∴++=++.(2)必要性:如果222a b c ab ac bc ++=++,那么2220a b c ab ac bc ++---=,222()()()0,0,0,0a b b c c a a b b c c a ∴-+-+-=∴-=-=-=,a b c ==∴.由(1)(2)知,222a b c ab ac bc ++=++的充要条件是a b c ==.P23拓广探索12.设a ,b ,c 分别是ABC 的三条边,且a b c.我们知道,如果ABC 为直角三角形,那么222+=a b c (勾股定理).反过来,如果222+=a b c ,那么ABC 为直角三角形(勾股定理的逆定理).由此可知,ABC 为直角三角形的充要条件是222+=a b c .请利用边长a ,b ,c 分别给出ABC 为锐角三角形和钝角三角形的一个充要条件,并证明.【答案】解:(1)设a ,b ,c 分别是ABC 的三条边,且a b c,ABC 为锐角三角形的充要条件是222a b c +>.证明如下:必要性:在ABC 中,C ∠是锐角,作AD BC ⊥,D 为垂足,如图(1).显然2222222222()2AB AD DB AC CD CB CD AC CD CB CD CB CD =+=-+-=-++-⋅22222AC CB CB CD AC CB =+-⋅<+,即222c a b <+.充分性:在ABC 中,222a b c +>,C ∴∠不是直角.假设C ∠为钝角,如图(2).作AD BC ⊥,交BC 延长线于点D .则2222222222()2AB AD BD AC CD BC CD AC CD BC CD BC CD =+=-++=-+++⋅22222AC BC BC CD AC BC =++⋅>+.即222c b a >+,与“222a b c +>”矛盾.故C ∠为锐角,即ABC 为锐角三角形.(2)设a ,b ,c 分别是ABC 的三条边,且a b c ≤≤,ABC 为钝角三角形的充要条件是222a b c +<.证明如下:必要性:在ABC 中,C ∠为钝角,如图(2),显然:2222222222()2AB AD BD AC CD CD CB AC CD CD CB CD CB =+=-++=-+++⋅22222AC CB CD CB AC CB =++⋅>+.即222a b c +<.充分性:在ABC 中,222a b c +<,C ∴∠不是直角,假设C ∠为锐角,如图(1),则222222()AB AD DB AC CD CB CD =+=-+-2222222222AC CD CB CD CD CB AC CB CD CB AC CB =-++-⋅=+-⋅<+.即222a b c +>,这与“222a b c +<”矛盾,从而C ∠必为钝角,即ABC 为钝角三角形.第一章集合与常用逻辑用语1.5全称量词与存在量词1.5.1全称量词与存在量词P28练习1.判断下列全称量词命题的真假:(1)每个四边形的内角和都是360°;(2)任何实数都有算术平方根;(3){|x y y ∀∈是无理数},3x 是无理数.【答案】(1)真命题;(2)假命题;(3)假命题2.判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直;(2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【答案】(1)真命题;(2)假命题;(3)真命题1.5.2全称量词命题和存在量词命题的否定P31练习1.写出下列命题的否定:(1)n ∀∈Z ,Q n ∈;(2)任意奇数的平方还是奇数;(3)每个平行四边形都是中心对称图形.【答案】(1)n ∃∈Z ,n ∉Q ;(2)存在一个奇款的平方不是奇数;(3)存在一个平行四边形不是中心对称图形.2.写出下列命题的否定:(1)有些三角形是直角三角形;(2)有些梯形是等腰梯形;(3)存在一个实数,它的绝对值不是正数.【答案】(1)任意三角形都不是直角三角形;(2)所有的梯形都不是等腰梯形;(3)任意一个实数,它的绝对值都是正数.P31习题1.5复习巩固1.判断下列全称量词命题的真假:(1)每一个末位是0的整数都是5的倍数;(2)线段垂直平分线上的点到这条线段两个端点的距离相等;(3)对任意负数2,x x 的平方是正数;(4)梯形的对角线相等【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.2.判断下列存在量词命题的真假:(1)有些实数是无限不循环小数;(2)存在一个三角形不是等腰三角形;(3)有些菱形是正方形;(4)至少有一个整数2,1n n +是4的倍数.【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.3.写出下列命题的否定:(1),||x Z x N ∀∈∈;(2)所有可以被5整除的整数,末位数字都是0;(3),10x R x ∃∈+;(4)存在一个四边形,它的对角线互相垂直.(2)存在一个可以被5整除的整数,末位数字不是0;(3),10x R x ∀∈+<;(4)任意一个四边形,它的对角线都不互相垂直.P32综合运用8.判断下列命题的真假,并写出这些命题的否定:(1)平面直角坐标系下每条直线都与x 轴相交;(2)每个二次函数的图象都是轴对称图形;(3)存在一个三角形,它的内角和小于180°;(4)存在一个四边形,它的四个顶点不在同一个圆上.【答案】(1)假命题;命题的否定:平面直角坐标系下,存在一条直线不与x 轴相交;(2)真命题;命题的否定:存在一个二次函数的图象不是轴对称图形;(3)假命题;命题的否定:任意一个三角形,它的内角和不小于180°;(4)真命题;命题的否定:任意一个四边形,它的四个顶点都在同一个圆上,5.将下列命题改写成含有一个量词的全称量词命题或存在量词命题的形式,并写出它们的否定:(1)平行四边形的对角线互相平分;(2)三个连续整数的乘积是6的倍数;(3)三角形不都是中心对称图形;(4)一元二次方程不总有实数根.【答案】(1)任意一个平行四边形,它的对角线互相平分;它的否定:存在一个平行四边形,它的对角线不互相平分;(2)任意三个连续整数的乘积是6的倍数;它的否定:存在三个连续整数的乘积不是6的倍数;(3)存在一个三角形不是中心对称图形;它的否定:所有的三角形都是中心对称图形;(4)存在一个一元二次方程没有实数根;它的否定:任意一元二次方程都有实数根.P32拓广探索10.在本节,我们介绍了命题的否定的概念,知道一个命题的否定仍是一个命题,它和原先的命题只能一真一假,不能同真或同假.在数学中,有很多“若p ,则q ”形式的命题,有的是真命题,有的是假命题,例如:①若1x >,则215x +>;(假命题)②若四边形为等腰梯形,则这个四边形的对角线相等.(真命题)这里,命题①②都是省略了量词的全称量词命题.(1)有人认为,①的否定是“若1x >,则215x +≤”,②的否定是“若四边形为等腰梯形,则这个四边形的对角线不相等”.你认为对吗?如果不对,请你正确地写出命题①②的否定.(2)请你列举几个“若p ,则q ”形式的省略了量词的全称量词命题,分别写出它们的否定,并判断真假.【答案】解:(1)不对.①的否定:存在1,215x x >+≤;②的否定:存在一个四边形为等腰梯形,它的对角线不相等.(2)命题1:矩形的对角线相等,是真命题;它的否定是:存在一个矩形,它的对角线不相等,是假命题.命题2:实数的平方是正数,是假命题;它的否定:存在一个实数,它的平方不是正数,是真命题.复习参考题1P34复习巩固1.用列举法表示下列集合:(1){}2|9A x x ==;(2){}|12B x N x =∈≤≤;(3){}2|320C x x x =-+=.【答案】(1){}3,3-;(2){}1,2;(3){}1,2.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(A ,B 是两个不同定点);(2){|3}P PO cm =(O 是定点)【答案】(1)线段AB 的垂直平分线;(2)以点O 为圆心,3cm 长为半径的圆.3.设平面内有ABC ,且P 表示这个平面内的动点,指出属于集合{|}{|}P PA PB P PA PC =⋂=的点是什么.【答案】ABC 三条边的垂直平分线的交点.4.请用“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”填空:(1)三角形两边上的高相等是这个三角形为等腰三角形的_______;(2)x A ∈是x A B ∈U 的___________;(3)x A ∈是x A B ∈ 的__________;(4)x ,y 为无理数是x y +为无理数的_________.【答案】①.充分不必要条件②.充分不必要条件③.必要不充分条件④.既不充分也不必要条件5.已知a ,b ,c 是实数,判断下列命题的真假:(1)“a b >”是“22a b >”的充分条件;(2)“a b >”是“22a b >”的必要条件;(3)“a b >”是“22ac bc >”的充分条件;(4)“a b >”是“22ac bc >”的必要条件.【答案】(1)假命题(2)假命题(3)假命题(4)真命题6.用符号“∀”与“∃”表示下列含有量词的命题,并判断真假:(1)任意实数的平方大于或等于0;(2)对任意实数a ,二次函数2y x a =+的图象关于y 轴对称;(3)存在整数x ,y ,使得243x y +=;(4)存在一个无理数,它的立方是有理数.【答案】(1)2,0x R x ∀∈.真命题;(2)a ∀∈R ,二次函数2y x a =+的图象关于y 轴对称,真命题;(3),,243x Z y Z x y ∃∈∈+=假命题;(4)3,R x Q x Q ∃∈∈ð,真命题.7.写出下列命题的否定,并判断它们的真假:(1)a ∀∈R ,一元二次方程210x ax --=有实根;(2)每个正方形都是平行四边形;(3)m N N ∃∈;(4)存在一个四边形ABCD ,其内角和不等于360 .【答案】(1)a R ∃∈,一元二次方程210x ax --=没有实根,假命题.(2)存在一个正方形不是平行四边形,假命题.(4)任意四边形ABCD ,其内角和等于360°,真命题.P35综合运用8.已知集合{(,)|20},{(,)|30},{(,)|23|A x y x y B x y x y C x y x y =-==+==-=,求,A B A C ⋂⋂,并解释它们的几何意义.【答案】{(0,0)}A B = ,几何意义是直线20x y -=与30x y +=相交于点(0,0);A C ⋂=∅,几何意义是直线20x y -=与23x y -=平行,无交点.9.已知集合{}21,3,,{1,2}A a B a ==+,是否存在实数a ,使得A B A ⋃=?若存在,试求出实数a 的值;若不存在,请说明理由.【答案】解:{}2{1,2}1,3,A B A B A a a ⋃=⇔⊆∴+⊆,222313a a a +=⎧⎪∴≠⎨⎪≠⎩或22222113a a a a a ⎧+=⎪+≠⎪⎨≠⎪⎪≠⎩,2a ∴=,∴存在实数2a =,使得A B A ⋃=.10.把下列定理表示的命题写成含有量词的命题:(1)勾股定理;(2)三角形内角和定理.【答案】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和;(2)所有三角形的内角和都是180°.P35拓广探索11.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人?【答案】解:如图.设同时参加田径和球类比赛的有x 人,则281581433x =++---,3x ∴=,即同时参加田径和球类比赛的有3人,而只参加游泳一项比赛的有15339--=(人).21/2112.根据下述事实,分别写出含有量词的全称量词命题或存在量词命题:(1)2222211,132,135313574,1,35795,=+=++=+++=++++= .(2)如图,在ABC 中,AD ,BE 与CF 分别为BC ,AC 与AB 边上的高,则AD ,BE 与CF 所在的直线交于一点O.【答案】(1)*2,135(21)n N n n ∀∈++++-= ;(2)任意三角形的三条高交于一点.。
高中数学必修1目录
高中数学必修1目录
第一章集合与函数概念
1.1.1集合的含义与表示
1.1.2集合间的基本关系
1.1.3集合间的基本关系
1.2函数及其表示
1.2.1的概念
1.2.2函数的表示法
1.3函数的基本性质
1.3.1单调性与最值
1.3.2奇偶性
第二章基本初等函数
2.1指数函数
2.1.1指数与指数幂的运算
以上是已经学习过的内容,以下是即将上课的内容
2.1.2指数函数及其性质
2.2对数函数
2.2.1对数与对数运算
2.3幂函数
2.2.2对数函数及其性质
第三章函数的应用3.1数与方程
3.2函数模型及其应用
3.1.1方程的根与函数的零点
3.1.2用二分法求方程的近似解3.2.1几类不同增长的函数模型3.2.2函数模型的应用实例。
新版高一数学必修第一册第一章全部课件
把集合的元素 一一列举出来,并用花括号“{ }”括起来表示集合的方
法叫做列举法.
[点睛] 列举法表示集合时的 4 个关注点
(1)元素与元素之间必须用“,”隔开.
(2)集合中的元素必须是明确的.
(3)集合中的元素不能重复.
(4)集合中的元素可以是任何事物.
2.描述法
(1)定义:用集合所含元素的 共同特征 表示集合的方法.
[解]
(1)因为不大于 10 是指小于或等于 10,非负是大于或
等于 0 的意思,所以不大于 10 的非负偶数集是{0,2,4,6,8,10}.
(2)方程 x3=x 的解是 x=0 或 x=1 或 x=-1,所以方程的
解组成的集合为{0,1,-1}.
(3)将 x=0 代入 y=2x+1,得 y=1,即交点是(0,1),
所以 17∈A.
7
令 3k+2=-5 得,k=- ∉Z.
3
所以-5∉A.
答案:∈ ∉
题型三 集合中元素的特性及应用
[ 例 3]
已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的
值为________.
[ 解析]
若 1∈A,则 a=1 或 a2=1,即 a=±1.
当 a=1 时,集合 A 有重复元素,不符合元素的互异性,
(
A.0
B.1
C.-1
)
D.0 或 1
答案:A
4.方程 x2 -1=0 与方程 x+1=0 所有解组成的集合中共有
________个元素.
答案:2
题型分析
举一反三
题型一 集合的含义
[ 例 1]
考查下列每组对象,能构成一个集合的是( B
人教版高中数学必修一第一章知识点
第一章集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N表示自然数集,N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集.(3)集合与元素间的关系对象a与集合M的关系是aM,或者aM,两者必居其一.(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{x|x具有的性质},其中x为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().【1.1.2】集合间的基本关系(6)子集、真子集、集合相等名称记号意义性质示意图AB(1)AA子集B (或A)A中的任一元素都属于B(2)A(3)若AB且BC,则AC(4)若AB且BA,则ABA(B)BA或真子集AB(或BA)AB,且B中至少有一元素不属于AA(A为非空子集)(1)(2)若AB且BC,则ACBA集合相等AB A中的任一元素都属于B,B中的任一元素都属于A(1)AB(2)BAA(B)n个子集,它有2n1个真子集,它有2n1个非空子集,(7)已知集合A有n(n1)个元素,则它有2n它有22非空真子集. (8)交集、并集、补集1【1.1.3】集合的基本运算名称记号意义性质示意图AB 交集{x|x A,且(1)AAA(2)AAB(3)ABAxB}ABBAB 并集{x|x A,或(1)AAA(2)AAAB(3)ABAxB}ABB1A(e U A)2()AeAUU补集e U A{x|xU,且xA} 痧U(A B)(U A)(?U B)痧U(AB)(U A)(?U B)【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集|x|a(a0){x|axa}|x|a(a0)x|xa或xa}把axb看成一个整体,化成|x|a,|axb|c,|axb|c(c0)|x|a(a0)型不等式来求解(2)一元二次不等式的解法判别式24bac000二次函数2(0)yaxbxcaO的图象一元二次方程20(0)axbxcax1,22bb4ac2abxx122a无实根(其中x1x2)的根20(0) axbxca的解集b{x|xx或xx2}{x|x}12aR 220(0)axbxca的解集{x|xxx}12〖1.2〗函数及其表示【1.2.1】函数的概念(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的一个函数,记作f:AB.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数.(2)区间的概念及表示法①设a,b是两个实数,且ab,满足a xb的实数x的集合叫做闭区间,记做[a,b];满足axb的实数x的集合叫做开区间,记做(a,b);满足a xb,或axb的实数x的集合叫做半开半闭区间,分别记做[a,b),(a,b];满足x a,xa,xb,xb的实数x的集合分别记做[a,),(a,),(,b],(,b).注意:对于集合{x|axb}与区间(a,b),前者a可以大于或等于b,而后者必须ab.(3)求函数的定义域时,一般遵循以下原则:①f(x)是整式时,定义域是全体实数.②f(x)是分式函数时,定义域是使分母不为零的一切实数.③f(x)是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤ytanx中,()xkkZ.2⑥零(负)指数幂的底数不能为零.⑦若f(x)是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知f(x)的定义域为[a,b],其复合函数f[g(x)]的定义域应由不等式ag(x)b解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数yf(x)可以化成一个系数含有y的关于x的二次方程2a(y)xb(y)xc(y)0,则在a(y)0时,由于x,y为实数,故必须有byaycy,从而确定函数的值域或最值.2()4()()0④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.(6)映射的概念①设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)叫做集合A到B的映射,记作f:AB.②给定一个集合A到集合B的映射,且aA,bB.如果元素a和元素b对应,那么我们把元素b叫做元素a的象,元素a叫做元素b的原象.〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的定义图象判定方法性质 如果对于属于定义域I 内某(1)利用定义个区间上的任意两个自变量 的值x2,当x . 1、x 1.<.x .2.时,都y y=f(X) f(x)2(2)利用已知函数的 单调性有f .(x ...).<.f(.x ...).,那么就说 12 f(x)在这个区间上是增函数. ...f(x)1(3)利用函数图象(在 某个区间图o x 1x 2x 象上升为增)函数的(4)利用复合函数 单调性(1)利用定义如果对于属于定义域I 内某yy=f(X)(2)利用已知函数的个区间上的任意两个自变量 11、x .<.x .的值x2,当x .2.时,都 有f .(x ..12.).,那么就说f(x) 1f(x) 2单调性 (3)利用函数图象(在 某个区间图f(x)在这个区间上是减函数. ...o xx 12x象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为 增函数,减函数减去一个增函数为减函数.③对于复合函数yf[g(x)],令ug(x),若yf(u)为增,ug(x)为增,则yf[g(x)]为增;若yf(u)为减,ug(x)为减,则y f[g(x)]为增;若yf(u)为 增,ug(x)为减,则y f[g(x)]为减;若yf(u)为减,ug(x)为增,则yyf[g(x)]为减.a(2)打“√”函数()(0)fxxax的图象与性质 f(x)分别在(,a ]、[a ,)上为增函数,分别在ox[a,0)、(0,a]上为减函数.(3)最大(小)值定义①一般地,设函数yf(x)的定义域为I,如果存在实数M满足:(1)对于任意的xI,都有f(x)M;(2)存在x I,使得f(x0)M.那么,我们称M是函数f(x)的最大值,记作0f max(x)M.5②一般地,设函数yf(x)的定义域为I,如果存在实数m满足:(1)对于任意的xI,都有f(x)m;(2)存在x0I,使得f(x0)m.那么,我们称m是函数f(x)的最小值,记作f max(x)m.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的定义图象判定方法性质如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有.f(.-.x..)=.-.判断定义域是否关于f(x)....,那么函数f(x)叫做奇.函.原点对称)数..(2)利用图象(图象关于原点对称)函数的奇偶性如果对于函数f(x)定义域内(1)利用定义(要先任意一个x,都有f(-.x..)=.f.(x.)..,..判断定义域是否关于那么函数f(x)叫做偶.函.数..原点对称)(2)利用图象(图象关于y轴对称)②若函数f(x)为奇函数,且在x0处有定义,则f(0)0.③奇函数在y轴两侧相对称的区间增减性相同,偶函数在y轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域;②化解函数解析式;③讨论函数的性质(奇偶性、单调性);④画出函数的图象.利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换yfxyfxh()h0,h()左移个单位右移|个单位h0,h|yfxyfxk()kk()0,上移个单位下移|个单位k0,k|变换②伸缩01,伸yf(x)yf(x)1,缩6yfxyAfx()0A1,缩()A1,伸③对称变换x轴yf(x)y轴yf(x)yf(x)yf(x)原点直线1yxyf(x)yf(x)yf(x)yf(x)去掉轴左边图象yyf(x)yf(|x|)保留y轴右边图象,并作其关于y轴对称图象保留轴上方图象yfxyfx()x|()|将轴下方图象翻折上去x(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.(3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.7。
高中数学必修一第一章集合知识点总结
高中数学必修一第一章集合一、集合的概念1、集合的含义:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。
注意:在集合中,通常用小写字母表示点(元素),用大写字母表示点(元素)的集合,而在几何中,通常用大写字母表示点(元素),用小写字母表示点的集合,应注意区别。
2、空集的含义:不含任何元素的集合叫做空集,记为Ø。
3、集合中元素的三个特性:确定性、互异性、无序性。
(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素,这叫集合元素的确定性。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素,这叫集合元素的互异性。
集合中的元素互不相同。
例如:集合A={1,a},则a不能等于1。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样,这叫集合元素的无序性。
例{0,1,2}有其它{0,2,1}、{1,0,2}、{1,2,0}、{2,0,1}、{2,1,0}等共六种表示方法。
4、元素与集合之间只能用“∈”或“∉”符号连接。
5、集合的分类:(1)有限集:含有有限个元素的集合。
(2)无限集:含有无限个元素的集合。
(3)空集:不含任何元素的集合。
6、常见的特殊集合:;(1)非负整数集(即自然数集)N(包括零);(2)正整数集N*或N+(3)整数集Z(包括负整数、零和正整数);(4)实数集R(包括所有有理数和无理数);(5)有理数集Q(包括整数集Z和分数集→正负有限小数或无限循环小数);(6)复数集C,虚数可以指不实的数字或并非表明具体数量的数字。
在数学中,虚数就是形如a+b*i 的数,其中a,b是任意实数,且b≠0,i²=-1。
二、集合的表示方式1、列举法:把集合中的元素一一列举出来,元素之间用逗号隔开,然后用一个花括号全部括上。
(完整版)人教版高中数学必修一第一章知识点
第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。
高中数学人教A版必修一第一章知识点总结及题型
高中数学人教A版必修一第一章知识点总结及题型高中数学必修一第一章知识点及题型一、第一章第一单元集合---知识点总结知识点一:集合的概念集合是研究对象的统称,用小写拉丁字母a,b,c等表示元素,一些元素的集合称为集合或集,用大写拉丁字母A,B,C等表示,不含任何元素的集合称为空集,记为∅。
知识点二:集合与元素的关系如果a是集合A的元素,就称a属于集合A,记作a∈A;如果a不是集合A中的元素,就称a不属于集合A,记作a∉A。
知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。
集合可分为有限集和无限集,有限集含有有限个元素,无限集含有无限个元素。
知识点四:集合的表示方法集合的表示方法有列举法和描述法。
列举法是把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法;描述法是用集合所含元素的特征表示集合的方法。
知识点五:集合与集合的关系集合A中的所有元素都是集合B中的元素时,称集合A是集合B的子集,记作A⊆B;如果A是B的子集,但存在元素不属于B,则称A是B的真子集,记作A⊂B。
子集的性质包括空集是任意集合的子集、任何集合都是它本身的子集、如果A是B的子集,B是C的子集,则A是C的子集。
知识点六:集合的运算集合的运算包括交集和并集。
集合A与B的并集是由A 和B中所有元素组成的集合,记作A∪B;集合A与B的交集是A和B中共有的元素组成的集合,记作A∩B。
3.交集与并集的性质交集的运算性质:A∩B = B∩A (交换律)A∩A = A (恒等律)A∩∅ = ∅(零律)A⊆B ⇔ A∩B = A (吸收律)并集的运算性质:A∪B = B∪A (交换律)A∪A = A (恒等律)A∪∅ = A (零律)A⊆B ⇔ A∪B = B (吸收律)A∪B = B∪A = {x | x∈A或x∈B} (定义)符号语言、图形语言和自然语言都可以用来表示集合的交集和并集。
4.全集在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)设大于10小于20的是整数为x,用描述 法表示为
B={ x∈Z|10<x<20}.
用列举法表示为
B={11,12,13,14,16,17,18,19}
思考:
(1)结合上述事例,试比较用自然语言、 列举法和描述发表示机集合时,各自特点 和适用的对象.
(2)自己举出几个集合的例子,并分别 用自然语言、列举法和描述法表示出来.
(2)设方程 x²=x 的所有实数根组成的 集合为B,那么
B={0,1}.
(3)设由1至20以内的所有素数组成的集 合为C,那么
C={2,3,5,7,11,13,17,19}.
思考:(1)你能用自然语言描述集合{2,4,6,8}吗?
(2)你能用列举法表示不等式x-7<3的解集吗?
6.描述法
• 用集合所含元素的共同特征表示集合 的方法称为描述法.
思考:判断以下元素的全体是否组成集合,并说
明理由。
• 大于3小于11的偶数; • 我国的小河流; • 瘦的人。
3.元素与集合的关系
• 如果a是集合A的元素,就说a属于 (belong to)集合A,记作a∈A;如果a 不是集合A中的元素,就说a不属于(not belong to)集合A,记作a∉A.
• 把集合的元素一一列举出来并用花括号 “{ }”括起来表示集合的方法叫做列举法。
例1 用列举法表示下列集合 (1)小于10的所有自然数组成的集合 (2)方程x²=x的所有实数根跟组成的集合; (3)由1至20以内的所有素数组成的集合.
解:(1)设小于10的所有自然数组成的集合为 A,那么 A={0,1,2,3,4,5,6,7,8,9}.
• 练习: Page.5(1、2) • 作业布置:
Page.11 习题1.1 1、2、3、4。
谢谢
例2 试分别用列举法和描述法表示下列集合: (1)方程x²-4=0的所有实数根跟组成的集合; (2)由大于10小于20的所有整数组成的集合.
解:(1)设方程x²-4=0的实数根为x,并且满足 条件x²-4=0,用描述法表示为
A={ x∈R|x²-4=0 } 方程x²-4=0的实数根为 2 ,-2,用列举法表 示为
4.数学中一些常用的数集及其记法
• 全体非负整数组成的集合称为非负整数集(或自 然数集),记作N;
• 所有正整数组成的集合称为正整数集,记作N*或 N﹢; • 全体整数组成的集合称为整数集,记作Z;
• 全体有理数组成的集合称为有理数集,记作Q;
• 全体实数组成的集合称为实数集,记作R.
5.列举法
人造卫星; (3)金星汽车厂2003年生产的所有汽车; (4)2004年1月1日之前与中华人民共和国建立外
交关系的所有国家; (5)所有的正方形; (6)到直线l的距离等于定长d的所有的点; (7)方程 x²+3x-2=0的所有实数根; (8)新华中学2004年9月入学的所有高一学生。
思考:上面的例(3)到例(8)也都能
组成集合吗?它们的元素分别是什么?
1.集合的定义:
一般地,我们把研究对象统称为元素 (element),把一些元素组成的总体叫 做集合(set)(简称为集)
2.集合中元素具有的三个特性
(1)确定性:给定的集合,它的元素必 须是确定的。 (2)互异性:即集合中的元素是互不相 同的。 (3)无序性:即集合中的元素没有次序 之分。
第一章 集合与函数概念
1.1 集合
1.1.1 பைடு நூலகம்合的含义与表示
我们接触过的一些集合:
➢自然数的集合,正分数的集合,有理数的集合 ➢不等式 x-7<3 的解的集合 ➢到一个定点的距离等于定长的点的集合
看下面的例子:
(1)1到20以内的所有素数; (2)我国从1991至2003年的13年内所发射的所有