模糊数学在聚类分析中的作用(matlab代码)

合集下载

在Matlab中如何进行数据聚类分析

在Matlab中如何进行数据聚类分析

在Matlab中如何进行数据聚类分析数据聚类分析是一种常用的数据处理方法,在各个领域都有广泛的应用。

在Matlab中,数据聚类分析相对简单且易于实现。

本文将介绍在Matlab中如何进行数据聚类分析的基本步骤和常用的聚类算法,并通过实例演示其具体操作。

一、数据预处理在进行数据聚类分析之前,通常需要对原始数据进行预处理以保证聚类的准确性。

首先,要对数据进行标准化,使得不同维度的特征具有相同的范围和重要性。

常见的标准化方法有z-score标准化和min-max标准化。

其次,要对数据进行降维处理,以便对高维数据进行分析。

常见的降维方法有主成分分析(PCA)和线性判别分析(LDA)等。

最后,要对数据进行异常值处理,去除可能对聚类结果产生干扰的异常值。

二、选择聚类算法在Matlab中,有多种聚类算法可供选择,如K-means聚类、层次聚类、密度聚类等。

不同的聚类算法适用于不同的数据情况和分析目的。

在选择聚类算法时,应根据数据的特点、分析目的和算法的优缺点进行综合考虑。

下面将以K-means聚类算法为例进行演示。

三、K-means聚类算法实例演示K-means聚类算法是一种简单且常用的聚类算法。

其基本思想是通过迭代计算,将数据样本划分为K个簇,使得同一簇内的样本相似度较高,不同簇之间的相似度较低。

现假设有一组二维数据集,要对其进行聚类分析。

```matlab% 生成随机数据X = [randn(100,2)+ones(100,2); randn(100,2)-ones(100,2)];% K-means聚类K = 2; % 设置簇的个数[idx, C] = kmeans(X, K); % 进行聚类分析% 绘制聚类结果figure;plot(X(idx==1,1),X(idx==1,2),'r.','MarkerSize',12);hold on;plot(X(idx==2,1),X(idx==2,2),'b.','MarkerSize',12);plot(C(:,1),C(:,2),'kx','MarkerSize',15,'LineWidth',3);legend('Cluster 1','Cluster 2','Centroids','Location','NW');title 'Cluster Assignments and Centroids';hold off;```上述代码中,通过`randn`函数生成了一个含有200个样本的二维数据集X,然后利用`kmeans`函数进行聚类计算,得到了每个样本属于的簇的索引`idx`和簇的中心点坐标`C`。

模糊聚类分析方法

模糊聚类分析方法

模糊聚类分析方法对所研究的事物按一定标准进行分类的数学方法称为聚类分析,它是多元统 计“物以类聚”的一种分类方法。

载科学技术、经济管理中常常要按一定的标准 (相似程度或亲疏关系)进行分类。

例如,根据生物的某些性状可对生物分类, 根据土壤的性质可对土壤分类等。

由于科学技术、经济管理中的分类界限往往不 分明,因此采用模糊聚类方法通常比较符合实际。

一、模糊聚类分析的一般步骤1、第一步:数据标准化[9](1)数据矩阵设论域U ={X i ,X 2,||l,X n }为被分类对象,每个对象又有m 个指标表示其性状,于是,得到原始数据矩阵为Xm 1X m2bI-Xnm」其中X nm 表示第n 个分类对象的第m 个指标的原始数据(2)数据标准化在实际问题中,不同的数据一般有不同的量纲,为了使不同的量纲也能进行 比较,通常需要对数据做适当的变换。

但是,即使这样,得到的数据也不一定在 区间[0,1]上。

因此,这里说的数据标准化,就是要根据模糊矩阵的要求,将数据 压缩到区间[0,1]上。

通常有以下几种变换: ① 平移•标准差变换X i = {x i1, X i2,川,X m }X i 1X2 1X n2 IHxik -(i 一 1,21 n, k_;HL 2mS k其中-1 n1 n_ 2xkxi , 2(xik~'兀)。

n i 4: n i 4经过变换后,每个变量的均值为 0,标准差为1,且消除了量纲的影响。

但是,再用得到的x k 还不一定在区间[0,1]上。

② 平移•极差变换显然有0乞x ik 乞1,而且也消除了量纲的影响 ③ 对数变换xk- lg x ik (i = 1,n , k; l [L 2 m取对数以缩小变量间的数量级。

2、第二步:标定(建立模糊相似矩阵)设论域U ={为公2,川,人} , X i ={为1必2,川,心},依照传统聚类方法确定相似 系数,建立模糊相似矩阵,x i 与X j 的相似程度用=R(X j ,X j )。

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧

在Matlab中使用模糊C均值聚类进行图像分析的技巧在图像分析领域,模糊C均值聚类(FCM)是一种常用的工具,它可以帮助我们发现图像中隐藏的信息和模式。

通过使用Matlab中的模糊逻辑工具箱,我们可以轻松地实现FCM算法,并进行图像分析。

本文将介绍在Matlab中使用FCM进行图像分析的技巧。

首先,让我们简要了解一下FCM算法。

FCM是一种基于聚类的图像分割方法,它将图像的像素分为不同的聚类,每个聚类代表一类像素。

与传统的C均值聚类算法不同,FCM允许像素属于多个聚类,因此能够更好地处理图像中的模糊边界。

在Matlab中使用FCM进行图像分析的第一步是加载图像。

可以使用imread函数将图像加载到Matlab的工作区中。

例如,我们可以加载一张名为“image.jpg”的图像:```matlabimage = imread('image.jpg');```加载图像后,可以使用imshow函数显示图像。

这可以帮助我们对图像有一个直观的了解:```matlabimshow(image);```接下来,我们需要将图像转换为灰度图像。

这是因为FCM算法通常用于灰度图像分析。

可以使用rgb2gray函数将彩色图像转换为灰度图像:```matlabgrayImage = rgb2gray(image);```在使用FCM算法之前,我们需要对图像进行预处理。

预处理的目的是消除图像中的噪声和不必要的细节,从而更好地提取图像中的特征。

常用的图像预处理方法包括平滑、锐化和边缘检测等。

Matlab中提供了许多图像预处理函数。

例如,可以使用imnoise函数向图像中添加高斯噪声:```matlabnoisyImage = imnoise(grayImage, 'gaussian', 0, 0.01);```还可以使用imfilter函数对图像进行平滑处理。

常见的平滑方法包括均值滤波和高斯滤波:```matlabsmoothImage = imfilter(noisyImage, fspecial('average', 3));```一旦完成预处理步骤,我们就可以使用模糊逻辑工具箱中的fcm函数执行FCM算法。

MATLAB在模糊数学教学中应用示例

MATLAB在模糊数学教学中应用示例
l mb a 0.0 0 a d= 4 0 ;
[ n = i ( ; r= : m, ]s e R)o il z f m
fr. : o _1n
ce r l la l a
i R(, <a b a f i )lm d ) ( j b i )0 (, : ; j
级 别 含 量
Pr g a : o rm
l l l 2 1 00 I oo .1 .2 0 0
3 O0 .3 o
R [ . 02 08 0 1 01 05 01 o8 1 o5 = O3 . . ; . . .; o . .; o7 o6 1 o3 ; . . .]
po( ,2 ; lt y ) x y=r fx [ . 2 O叭 ,.,.]; 3 tm ( ,0 0 ,. 0102 ) i 0
s b lt 1 3, ) u po( , 3 po( ,3 ltx y )
自 16 年 扎 德 ( zdh 提 出 “ 糊 集 合 ” 概 念 , 糊 95 LA. e ) a 模 的 模 数 学 便 作 为一 门新 的数 学 学 科 诞 生 了. 五 十 年 来 , 的 发 展 近 它 非 常 迅 速 , 用 十分 广 泛 . 理 论 和 应 用 涉 及 社 会 科 学 、 应 其 自然 科 学 和思 维科 学诸 多 领 域 . 上 世 纪 九 十 年 代 , 外 应 用 模 糊 在 国 数 学 原 理 研 制 和 推 出 了首 批 模 糊 家 用 电器 , 而现 在 . 糊 洗 衣 模 机 、 糊 吸 尘 器 、 糊 电饭 煲 、 糊 空 调 机 等 已进 入 了 国 外 千 模 模 模 家 万 户 . 分 产 品 进 入 我 国 国 内 , 此 可 见 . 应 用 前 景 是 举 部 由 其 世 瞩 目的 . 以 . 生 学 好模 糊 数 学 十 分 重 要 . 外 , 糊 数 学 所 学 另 模 在 培 养 学 生 辩 证 唯 物 主 义 的 认 识 论 、 法 论 , 学 素 养 和 应 用 方 教 能力 等方 面 也 有 着 良好 的 教 育 功 能 .由 于模 糊 数 学 本 身 是 系 统 化 的 . 及 的 知 识 深 广 , 不 少 学 生 感 到 理 论 太 复 杂 . 抽 涉 使 太 象 , 所 学 内 容 难 把 握 , 产 生 畏 难 情 绪 , 仅 通 过 板 书 讲 授 对 易 仅 方 式 难 以 达 到 理想 的 教 学 效 果 . 而 , 强 实 践 教 学 是 必 不 可 因 加 少 的 一个 重 要 环 节 . 着 高 校 教 学 手 段 的 改 革 , 媒 体 辅 助 教 随 多 学 法 越 来 越 受 师 生 的欢 迎 ,据 统 计 ,0 以上 的 高 校 都 愿 接 6% 受 ,其 中 数 学 软 件 M T A 是 评 价 最 高 的 有 效 的 数 值 和 工 程 ALB 计 算 的 软 件 . 对 本 科 生 课 程 的 特 点 , 合 MA L B 言 所 独 针 结 TA语 具 的 优势 , 本 文 着 重 介 绍 MA I 在 模 糊 数 学 中的 实 际 应 用 TAB 示 例 , 而 积 极 推 进 和 改 善 可 视 化 教 学 , 化 教 学 效 果 . 面 从 强 下 给 出详 细 示 例 . 利 用MA L 建 立隶 属 度 函数 的 辅 助 教 学 T 隶属度是模糊集的基本概念 . 也是 模 糊 控 制 的应 用基 础 , 由此 , 确 构造 隶 属 度 函 数 是 用好 模糊 控 制 的 关 键 之 一 。 此 正 而 概 念 对 学 生 而 言 是 一 个 抽 象 的概 念 , 授课 过程 中 . 基 本 概 在 将 念 及 原 理 给 学 生 讲 透 的 同时 ,充 分 利 用 计 算 机 的表 现 能 力 会 将 抽 象 的东 西 具 体 化 、 象 化 . 形 例 1 某 污 染 河 水 中酚 的含 量t0 0 2 / 给 定 酚 的水 . 设 = . 1mg 0 L.

模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类 FCM算法的MATLAB代码

模糊c均值聚类FCM算法的MATLAB代码我做毕业论文时需要模糊C-均值聚类,找了好长时间才找到这个,分享给大家:FCM算法的两种迭代形式的MA TLAB代码写于下,也许有的同学会用得着:m文件1/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm(Data,C,plotflag,M,epsm)% 模糊C 均值聚类FCM: 从随机初始化划分矩阵开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm(Data,C,plotflag,M,epsm)% 输入:% Data: N×S 型矩阵,聚类的原始数据,即一组有限的观测样本集,% Data 的每一行为一个观测样本的特征矢量,S 为特征矢量% 的维数,N 为样本点的个数% C: 聚类数,1<C<N% plotflag: 聚类结果2D/3D 绘图标记,0 表示不绘图,为缺省值% M: 加权指数,缺省值为2% epsm: FCM 算法的迭代停止阈值,缺省值为1.0e-6% 输出:% U: C×N 型矩阵,FCM 的划分矩阵% P: C×S 型矩阵,FCM 的聚类中心,每一行对应一个聚类原型% Dist: C×N 型矩阵,FCM 各聚类中心到各样本点的距离,聚类中% 心i 到样本点j 的距离为Dist(i,j)% Cluster_Res: 聚类结果,共C 行,每一行对应一类% Obj_Fcn: 目标函数值% iter: FCM 算法迭代次数% See also: fuzzydist maxrowf fcmplotif nargin<5epsm=1.0e-6;endif nargin<4M=2;endif nargin<3plotflag=0;end[N,S]=size(Data);m=2/(M-1);iter=0;Dist(C,N)=0; U(C,N)=0; P(C,S)=0;% 随机初始化划分矩阵U0 = rand(C,N);U0=U0./(ones(C,1)*sum(U0));% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新聚类中心PUm=U0.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(U-U0,Inf)<epsmbreakendU0=U;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);endm文件2/7:function [U,P,Dist,Cluster_Res,Obj_Fcn,iter]=fuzzycm2(Data,P0,plotflag,M,epsm) % 模糊C 均值聚类FCM: 从指定初始聚类中心开始迭代% [U,P,Dist,Cluster_Res,Obj_Fcn,iter] = fuzzycm2(Data,P0,plotflag,M,epsm)% 输入: Data,plotflag,M,epsm: 见fuzzycm.m% P0: 初始聚类中心% 输出: U,P,Dist,Cluster_Res,Obj_Fcn,iter: 见fuzzycm.m% See also: fuzzycmif nargin<5epsm=1.0e-6;if nargin<4M=2;endif nargin<3plotflag=0;end[N,S] = size(Data); m = 2/(M-1); iter = 0;C=size(P0,1);Dist(C,N)=0;U(C,N)=0;P(C,S)=0;% FCM 的迭代算法while true% 迭代计数器iter=iter+1;% 计算或更新划分矩阵Ufor i=1:Cfor j=1:NDist(i,j)=fuzzydist(P0(i,:),Data(j,:));endendU=1./(Dist.^m.*(ones(C,1)*sum(Dist.^(-m))));% 更新聚类中心PUm=U.^M;P=Um*Data./(ones(S,1)*sum(Um'))';% 目标函数值: 类内加权平方误差和if nargout>4 | plotflagObj_Fcn(iter)=sum(sum(Um.*Dist.^2));end% FCM 算法迭代停止条件if norm(P-P0,Inf)<epsmbreakendP0=P;end% 聚类结果if nargout > 3res = maxrowf(U);for c = 1:Cv = find(res==c);Cluster_Res(c,1:length(v))=v;endend% 绘图if plotflagfcmplot(Data,U,P,Obj_Fcn);m文件3/7:function fcmplot(Data,U,P,Obj_Fcn)% FCM 结果绘图函数% See also: fuzzycm maxrowf ellipse[C,S] = size(P); res = maxrowf(U);str = 'po*x+d^v><.h';% 目标函数绘图figure(1),plot(Obj_Fcn)title('目标函数值变化曲线','fontsize',8)% 2D 绘图if S==2figure(2),plot(P(:,1),P(:,2),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot(v(:,1),v(:,2),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2,'r:') endgrid on,title('2D 聚类结果图','fontsize',8),hold off end% 3D 绘图if S>2figure(2),plot3(P(:,1),P(:,2),P(:,3),'rs'),hold onfor i=1:Cv=Data(find(res==i),:);plot3(v(:,1),v(:,2),v(:,3),str(rem(i,12)+1))ellipse(max(v(:,1))-min(v(:,1)), ...max(v(:,2))-min(v(:,2)), ...[max(v(:,1))+min(v(:,1)), ...max(v(:,2))+min(v(:,2))]/2, ...'r:',(max(v(:,3))+min(v(:,3)))/2) endgrid on,title('3D 聚类结果图','fontsize',8),hold off endm文件4/7:function D=fuzzydist(A,B)% 模糊聚类分析: 样本间的距离% D = fuzzydist(A,B)D=norm(A-B);m文件5/7:function mr=maxrowf(U,c)% 求矩阵U 每列第c 大元素所在行,c 的缺省值为1% 调用格式: mr = maxrowf(U,c)% See also: addrif nargin<2c=1;endN=size(U,2);mr(1,N)=0;for j=1:Naj=addr(U(:,j),'descend');mr(j)=aj(c);endm文件6/7:function ellipse(a,b,center,style,c_3d)% 绘制一个椭圆% 调用: ellipse(a,b,center,style,c_3d)% 输入:% a: 椭圆的轴长(平行于x 轴)% b: 椭圆的轴长(平行于y 轴)% center: 椭圆的中心[x0,y0],缺省值为[0,0]% style: 绘制的线型和颜色,缺省值为实线蓝色% c_3d: 椭圆的中心在3D 空间中的z 轴坐标,可缺省if nargin<4style='b';endif nargin<3 | isempty(center)center=[0,0];endt=1:360;x=a/2*cosd(t)+center(1);y=b/2*sind(t)+center(2);if nargin>4plot3(x,y,ones(1,360)*c_3d,style)elseplot(x,y,style)endm文件7/7:function f = addr(a,strsort)% 返回向量升序或降序排列后各分量在原始向量中的索引% 函数调用:f = addr(a,strsort)% strsort: 'ascend' or 'descend'% default is 'ascend'% -------- example --------% addr([ 4 5 1 2 ]) returns ans:% [ 3 4 1 2 ]if nargin==1strsort='ascend';endsa=sort(a); ca=a;la=length(a);f(la)=0;for i=1:laf(i)=find(ca==sa(i),1);ca(f(i))=NaN;endif strcmp(strsort,'descend') f=fliplr(f);end几天前我还在这里发帖求助,可是很幸运在其他地方找到了,在这里和大家分享一下!function [center, U, obj_fcn] = FCMClust(data, cluster_n, options)% FCMClust.m 采用模糊C均值对数据集data聚为cluster_n类%% 用法:% 1. [center,U,obj_fcn] = FCMClust(Data,N_cluster,options);% 2. [center,U,obj_fcn] = FCMClust(Data,N_cluster);%% 输入:% data ---- nxm矩阵,表示n个样本,每个样本具有m的维特征值% N_cluster ---- 标量,表示聚合中心数目,即类别数% options ---- 4x1矩阵,其中% options(1): 隶属度矩阵U的指数,>1 (缺省值: 2.0)% options(2): 最大迭代次数(缺省值: 100)% options(3): 隶属度最小变化量,迭代终止条件(缺省值: 1e-5)% options(4): 每次迭代是否输出信息标志 (缺省值: 1)% 输出:% center ---- 聚类中心% U ---- 隶属度矩阵% obj_fcn ---- 目标函数值% Example:% data = rand(100,2);% [center,U,obj_fcn] = FCMClust(data,2);% plot(data(:,1), data(:,2),'o');% hold on;% maxU = max(U);% index1 = find(U(1,:) == maxU);% index2 = find(U(2,:) == maxU);% line(data(index1,1),data(index1,2),'marker','*','color',' g');% line(data(index2,1),data(index2,2),'marker','*','color',' r');% plot([center([1 2],1)],[center([1 2],2)],'*','color','k') % hold off;if nargin ~= 2 & nargin ~= 3, %判断输入参数个数只能是2个或3个error('Too many or too few input arguments!');enddata_n = size(data, 1); % 求出data的第一维(rows)数,即样本个数in_n = size(data, 2); % 求出data的第二维(columns)数,即特征值长度% 默认操作参数default_options = [2; % 隶属度矩阵U的指数100; % 最大迭代次数1e-5; % 隶属度最小变化量,迭代终止条件1]; % 每次迭代是否输出信息标志if nargin == 2,options = default_options;else %分析有options做参数时候的情况% 如果输入参数个数是二那么就调用默认的option;if length(options) < 4, %如果用户给的opition数少于4个那么其他用默认值;tmp = default_options;tmp(1:length(options)) = options;options = tmp;end% 返回options中是数的值为0(如NaN),不是数时为1nan_index = find(isnan(options)==1);%将denfault_options中对应位置的参数赋值给options中不是数的位置.options(nan_index) = default_options(nan_index);if options(1) <= 1, %如果模糊矩阵的指数小于等于1error('The exponent should be greater than 1!');endend%将options 中的分量分别赋值给四个变量;expo = options(1); % 隶属度矩阵U的指数max_iter = options(2); % 最大迭代次数min_impro = options(3); % 隶属度最小变化量,迭代终止条件display = options(4); % 每次迭代是否输出信息标志obj_fcn = zeros(max_iter, 1); % 初始化输出参数obj_fcnU = initfcm(cluster_n, data_n); % 初始化模糊分配矩阵,使U满足列上相加为1,% Main loop 主要循环for i = 1:max_iter,%在第k步循环中改变聚类中心ceneter,和分配函数U的隶属度值;[U, center, obj_fcn(i)] = stepfcm(data, U, cluster_n, expo);if display,fprintf('FCM:Iteration count = %d, obj. fcn = %f\n', i, obj_fcn(i));end% 终止条件判别if i > 1,if abs(obj_fcn(i) - obj_fcn(i-1)) < min_impro,break;end,endenditer_n = i; % 实际迭代次数obj_fcn(iter_n+1:max_iter) = [];[center, U, obj_fcn] = FCMClust(Data,N_cluster,options)data=[94.4304 98 60 0 8592.8068 70 70 0 75.286.3522 100 75 24.87 91.580.5512 50 90 0 65.480.494 76 100 0 9888.1528 100 60 80 78.484.567 55 80 0 8587.722 30 60 0 4988.0056 95 70 46.459 45.885.948 100 60 0 55.683.9578 10 90 0 78.490.0822 5 60 0 58.876.7448 10 60 0 39.295.062 100 70 62.37 94.8];N_cluster=4;options(1)=[2];options(2)=[100];options(3)=[1e-5];options(4)=[1];。

数学建模里的聚类分析

数学建模里的聚类分析

聚类分析聚类,或称分集,即所谓“物以类聚”,它是按某种相似规则对给定样本集、指标簇进行某种性质的划分,使之成为不同的类.将数据抽象化为样本矩阵()ij n m X X ⨯=,ij X 表示第i 个样本的第j 个变量的值.聚类目的,就是从数据出发,将样本或变量分成类.其方法大致有如下几个.(1) 聚类法.即谱系聚类法.将n 个样本看成n 类,将性质最接近的两类并为一新类,得1-n 类;再从1-n 类中找出最接近的两类加以合并,得2-n 类;继之,最后所有样本都成一类,得一聚类谱系,从谱系中可确定划分多少类,每类含有哪些样本.(2) 分解法.它是系统聚类的逆过程,将所有样本视为一类,按某种最优准则将它分成两类,继之,每一类都分到只含一个样本为止.(3) 动态聚类.即快速聚类法.将n 个样本粗糙地分成若干类,然后用某种最优准则进行调整,直至不能调整为止.(4) 有序样本聚类.按时间顺序,聚在一类的样本必须是次序相邻的样本.(5) 模糊聚类.它是将模糊数学用于样本聚类.(6) 运筹学聚类.它是将聚类问题化为线性规划、动态规划、整数规划模型的聚类.(7) 神经网络聚类.它是将样本按自组织特征映射的方法进行,也是我们要加以叙述的一个重点.(8) 预测中聚类.它是聚类在预测中的应用,以弥补非稳定信号回归的预测与分析.这里主要介绍谱系聚类法和快速聚类法. 一、距离定义样本矩阵()ij n m X x ⨯=,是m 维空间中n 个点,以距离度量样本之间的贴近度,就是距离聚类方法.最常用的第i 个与第j个样本的Minkowski 距离为p mk p jk ik ijx x d /11)||(∑=-=式中p 为一正整数.当2=p , ij d 就是欧几里德距离;当1=p ,ij d 就是绝对距离,或称“布洛克(cityblock )”距离.而切比雪夫距离为||max 1jk ik mk ij x x d -=≤≤设m m C ⨯是变量的协方差矩阵,i x ,j x 为第i 行与第j 行m 个变量构成的向量,则马哈兰罗比斯距离定义为1()()T ij i j i j d x x C x x -=-- 根据距离的定义,就获得距离矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n d d d d d d d d d d 212222111211 由距离性质可知,d 为实对称矩阵,ij d 越小,两样本就越相似,其中01211====nn d d d ,根据)(j i d ij ≠的n 个点分类,依聚类准则分为不同的类.对d 常用的系统聚类准则有: 1、类间距离定义(1) 最短距离;,min p qpq ij i Gj GD d ∈∈= (2) 最长距离;,maxpqpq ij i G j GD d ∈∈=(3) 质心距离;(,)pq p q D d x x = (4) 平均距离;1p qpq iji G j G p qD d n n ∈∈=∑∑(5) 平方距离:2()()p q T pqp q p q p qn n D x x x x n n =--+2.类间距离的递推公式(1)最短距离:min{,}rk pk qk D D D = (2)最长距离:max{,}rk pk qk D D D = (3)类平均距离:p q rk pk qk rrn n D D D n n =+(4)重心距离:2222pqp q rkpkqkpq r r r rn n n n D D D D n n n n =+-⋅(5)离差平方和距离:2222p k q k krkpk qk pq r kr kr kn n n n n D D D D n n n n n n ++=+-+++二、谱系聚类法例: 假如抽取5个样本,每个样本只测一个指标,即数据为x =[1,0;2,0;4.5,0;6,0;8,0] 试以最短距离准则进行距离聚类说明.解 这时,样本间的绝对距离、欧几里德距离或切比雪夫距离均一致,见表3.1.以最短距离准则聚类.根据定义,当令p Ω与q Ω中分别有pn 与q n 个样本,则最短距离为:},|min{),(q p ij nearj i d q p Ω∈Ω∈=δ于是,对于某步,假定具有样本为p n 的第p 集合与样本为q n 的第q 集合,聚成为具有样本为q p s n n n +=的第s 集合,则第k 集合与第s 集合的最短距离,可写为)},(),,(min{),(q k p k s k near near nearδδδ=(1)表1 绝对距离数据表中数据1、2、4.5、6、8视为二叉树叶子,编号为1、2、3、4、5.当每一个样本看成一类时,则式子(1)变为ij neard j i =),(δ,最小距离为1,即1与2合聚于6号,得表2.表中5.2)5.2,5.3min()}2,3(),1,3(min{)6,3(===δδδnear near near表2 一次合聚表2中最小距离为1.5,即4.5与6合聚于7,得表3.表中(6,7)min{(6,4.5),(6,6)}min(2.5,4) 2.5near nearnearδδδ===.表3 二次合聚表3中最小距离为2,即{4.5,6}元素(为7号)与8(为5号)合聚于8号,得表4.表中5.2)6,4,5.2min()}8,6(),6,6(),5.4,6(min{)8,6(===δδδδnear near near near表4 三次合聚最后集合{1,2}与{4.5,6,8}聚成一集丛.此例的Matlab 程序如下:x =[1,0;2,0;4.5,0;6,0;8,0])();'sin ',();'',(z dendrogram gle y linkage z CityBlock x pdist y ==绘得最短距离聚类谱系如图1所示,由图看出分两类比较合适.1号、2号数据合聚于6号,最小聚距为1;3号、4号数据合聚于7号,最小聚距为1.5;7号于5号数据合聚于8号,最小聚距为2;最后6号和8号合聚,最小聚距为2.5。

模糊数学实验报告

模糊数学实验报告

数学实验报告
实验序号:模糊数学日期:2013年10 月06 日
实验过程记录(含:基本步骤、主要程序清单及异常情况记录等):
1.求解相似矩阵:
相似矩阵为R2;其中c=256.8561。

n表示的是数据的个数,这里,我们选取的是50个数据,n 可以根据你选取的数据的多少进行调整。

可以根据你的数据的存储位置进行相应的改变,但必须是文本文档形式。

2.求相似矩阵的传递闭包矩阵:
传递闭包矩阵为R。

3.进行聚类分析与聚类图:
对截集的确定
d是的个数,lamd是所有组成的行矩阵。

结果如下页:
聚类的程序如下:
聚类结果如下:
聚类图:
要画出聚类图,先要将50种白酒进行顺序排列,程序如下:
排序的结果在C中,结果如下页:
聚类图的程序如下:
聚类图如下所示:。

基于MatLab的文本模糊聚类分析及应用

基于MatLab的文本模糊聚类分析及应用

于模糊聚类的文本聚类 。 目前 , 国内外学者 己经把模糊 聚类分析用 于文本模糊聚类 的研究 。该文也通过 尝试性 的实验研究来探索
文 本 模 糊 聚类 。
1知识 准备
在实际进行实验之前我们有必要清楚进行文本模糊 聚类 的关键步骤 , 以及聚类 所采用 的编程工具。
11文本模糊聚类的关键步骤 .
C mp tr n we g n e h oo y电脑 知 识 与技术 o ue o ld e dT c n l K a g
Vo . ,No2 ,S p e 1 8 .5 e t mb r 2 2 e 01 .
基于 Ma L b的文 本模 糊 聚 类分 析及 应 用 ta
常 艳王 芬 李 ,雪
( 南京大学金陵学院 信息科学与工程学 院, 江苏 南京 2 0 8 ) 10 9
摘要: 典型的 文本 聚类无 法解决文本 的不确 定类别属性 的 1题 , 以有必要将模 糊聚类分析 引入文本 聚类。 文章 采用 9 所 tbY具对从 中国知 网中获取 的 2 篇文献进行文本模糊 聚类 , l . a - O 以期通过 尝试 性的 实验研 究来探 索文本模糊聚 类, 了解
( p. fnoma o c n e n n ier gJnn ol eo Naj g iesy Naj g 10 9 C ia Deto Ifr t nSi c d g e n ,il gC lg f ni v rt, ni 0 8 , hn ) i e a E n i i e n Un i n2
文本模糊聚类分析过程主要包含 以下几个方面 : 文本特征建 立与抽取 、 标定 、 聚类。
11 .. 本 特 征建 立与 抽 取 1文
文本信 息源的非结构化特性使得现有 的数据 发现技术 无法 直接应用于其上 。因此 , 我们 必须对文本进行预处理 , 取代 表其 抽

直觉模糊集计算的matlab代码

直觉模糊集计算的matlab代码

直觉模糊集是模糊数学中的一个重要概念,它通过区间估计的方式描述模糊性,对于一些复杂的实际问题有着重要的应用价值。

在实际问题中,我们经常需要对直觉模糊集进行计算和处理,而Matlab作为一个功能强大的数学计算软件,为我们提供了便利的工具和函数来实现直觉模糊集的计算。

在本文中,我们将介绍在Matlab中如何使用代码来进行直觉模糊集的计算。

1. 定义直觉模糊集我们需要了解直觉模糊集的定义。

直觉模糊集是指在实际问题中,人们在将模糊概念用语言描述时所使用的模糊集合。

它不同于数学中对模糊集的抽象描述,而是基于人们的主观直觉和经验,使用自然语言描述的模糊集合。

“很快”、“比较大”等词语就可以被看作是直觉模糊集的表达。

2. 直觉模糊集的表示在Matlab中,可以使用向量或矩阵来表示直觉模糊集。

对于一个直觉模糊集“很快”,可以使用一个包含速度范围的向量来表示。

假设速度范围为[60, 100],则可以用Matlab代码表示为:```V = [60, 100];3. 直觉模糊集的运算在Matlab中,可以通过内置函数来对直觉模糊集进行运算。

对于两个直觉模糊集A和B,如果需要计算它们的交集,可以使用Matlab中的min函数来实现。

具体代码如下:```C = min(A, B);```这段代码将直觉模糊集A和B的每个元素分别进行比较,取最小值作为交集C的对应元素。

通过类似的方式,可以实现并集、差集等运算。

4. 直觉模糊集的可视化在实际应用中,通常需要将直觉模糊集进行可视化,以便更直观地理解和分析。

Matlab提供了丰富的绘图函数,可以方便地实现直觉模糊集的可视化。

可以使用plot函数来绘制直觉模糊集的图形,使用fill函数来填充直觉模糊集的范围等。

5. 示例代码下面给出一个简单的示例代码,展示了如何在Matlab中实现直觉模糊集的计算和可视化。

```matlab% 定义直觉模糊集A和BA = [60, 100];B = [80, 120];% 计算交集C = min(A, B);% 可视化x = [A(1), A(2), A(2), A(1)];y = [0, 0, 1, 1];fill(x, y, 'b', 'FaceAlpha', 0.3);hold on;x = [B(1), B(2), B(2), B(1)];fill(x, y, 'r', 'FaceAlpha', 0.3);xlabel('速度');ylabel('隶属度');legend('A', 'B');```通过上面的示例代码,我们可以看到,利用Matlab的强大功能,我们可以轻松地实现直觉模糊集的计算和可视化,为实际问题的分析和处理提供了便利和支持。

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法

matlab模糊c均值聚类算法matlab模糊c均值聚类算法模糊C均值聚类算法是一种广泛应用于数据挖掘、图像分割等领域的聚类算法。

相比于传统的C均值聚类算法,模糊C均值聚类算法能够更好地处理噪声数据和模糊边界。

模糊C均值聚类算法的基本思想是将样本集合分为K个聚类集合,使得每个样本点属于某个聚类集合的概率最大。

同时,每个聚类集合的中心点被计算为该聚类集合中所有样本的均值。

具体实现中,模糊C均值聚类算法引入了模糊化权重向量来描述每个样本点属于各个聚类集合的程度。

这些权重值在每次迭代中被更新,直至达到预设的收敛精度为止。

模糊C均值聚类算法的目标函数可以表示为:J = ∑i∑j(wij)q||xi-cj||2其中,xi表示样本集合中的第i个样本,cj表示第j个聚类集合的中心点,wij表示第i个样本点属于第j个聚类集合的权重,q是模糊指数,通常取2。

不同于C均值聚类算法,模糊C均值聚类算法对每个样本点都考虑了其属于某个聚类集合的概率,因此能够更好地处理模糊边界和噪声数据。

同时,模糊C均值聚类算法可以自适应地确定聚类的数量,从而避免了事先设定聚类数量所带来的限制。

在MATLAB中,可以使用fcm函数实现模糊C均值聚类算法。

具体来说,fcm函数的使用方法如下:[idx,center] = fcm(data,k,[options]);其中,data表示样本矩阵,k表示聚类数量,options是一个包含算法参数的结构体。

fcm函数的输出包括聚类标签idx和聚类中心center。

MATLAB中的fcm函数还提供了其他参数和选项,例如模糊权重阈值、最大迭代次数和收敛精度等。

可以根据具体应用需求来设置这些参数和选项。

如何在Matlab中进行模糊聚类分析

如何在Matlab中进行模糊聚类分析

如何在Matlab中进行模糊聚类分析在数据分析领域,模糊聚类分析是一种常用的技术,它可以应用于各种领域的数据处理和模式识别问题。

而Matlab作为一种功能强大的数据分析工具,也提供了丰富的函数和工具箱,以支持模糊聚类分析的实施。

1. 引言模糊聚类分析是一种基于模糊集理论的聚类方法,与传统的硬聚类方法不同,它允许样本属于多个聚类中心。

这种方法的优势在于可以更好地应对数据中的不确定性和复杂性,对于某些模糊或模糊边界问题具有更好的解释能力。

2. 模糊聚类算法概述Matlab提供了多种模糊聚类算法的实现,其中最常用的是基于模糊C均值(Fuzzy C-Means,FCM)算法。

FCM算法的基本思想是通过最小化聚类后的模糊划分矩阵与原始数据之间的距离来确定每个样本所属的聚类中心。

3. 数据预处理与特征提取在进行模糊聚类分析之前,需要对原始数据进行预处理和特征提取。

预处理包括数据清洗、缺失值处理和异常值处理等;特征提取则是从原始数据中抽取出具有代表性和区分性的特征,用于模糊聚类分析。

4. 模糊聚类分析步骤在Matlab中,进行模糊聚类分析通常包括以下步骤:(1) 初始化聚类中心:通过随机选择或基于某种准则的方法初始化聚类中心。

(2) 计算模糊划分矩阵:根据当前的聚类中心,计算每个样本属于各个聚类中心的隶属度。

(3) 更新聚类中心:根据当前的模糊划分矩阵,更新聚类中心的位置。

(4) 判断终止条件:通过设置一定的终止条件,判断是否达到停止迭代的条件。

(5) 输出最终结果:得到最终的聚类结果和每个样本所属的隶属度。

5. 模糊聚类结果评估在进行模糊聚类分析后,需要对聚类结果进行评估以验证其有效性和可解释性。

常用的评估指标包括模糊划分矩阵的聚类有效性指标、外部指标和内部指标等。

通过这些指标的比较和分析,可以选择合适的模糊聚类算法和参数设置。

6. 模糊聚类的应用模糊聚类分析在诸多领域中都有广泛的应用。

例如,在图像处理中,可以利用模糊聚类方法对图像进行分割和识别;在生物信息学中,可以应用于基因表达数据的分类和模式识别等。

matlab模糊聚类f统计量最佳阈值

matlab模糊聚类f统计量最佳阈值

matlab模糊聚类f统计量最佳阈值下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!MATLAB模糊聚类中的F统计量与最佳阈值选择策略在数据分析和机器学习领域,模糊聚类是一种强大的工具,它允许数据点在多个类别中具有一定程度的“隶属度”。

Matlab中的模糊聚类分析方法探究

Matlab中的模糊聚类分析方法探究

Matlab中的模糊聚类分析方法探究一、引言近年来,随着数据科学和机器学习的迅速发展,模糊聚类分析成为了处理模糊和不确定性数据的一种重要方法。

而在众多的模糊聚类算法中,Matlab中提供的模糊C-均值聚类算法(Fuzzy C-Means clustering)无疑是其中最受瞩目的。

本文旨在探究Matlab中的模糊聚类分析方法,并对其应用进行深入剖析。

二、模糊聚类分析方法概述模糊聚类分析是一种基于模糊数学的聚类方法。

与传统的硬聚类方法不同,模糊聚类允许数据点属于多个聚类中心,以概率形式给出。

这种灵活性使得模糊聚类能够更好地处理存在模糊性和不确定性的数据。

模糊C-均值算法是模糊聚类中的一种经典算法,也是Matlab中常用的模糊聚类算法。

该算法的基本思想是:通过迭代地分配数据点到聚类中心,并更新聚类中心,不断优化聚类结果。

具体而言,算法的步骤包括初始化聚类中心、计算数据点与聚类中心的距离、根据距离更新模糊划分矩阵和聚类中心等。

三、Matlab中的模糊聚类分析方法在Matlab中,模糊C-均值算法可以通过fuzzy方法或fcm方法进行实现。

这两个方法均提供了一系列参数和选项,以满足不同应用场景的需求。

1. fuzzy方法fuzzy方法是Matlab中的基于模糊理论的聚类方法。

通过设置模糊聚类的目标函数和约束条件,可以实现不同的聚类分析。

该方法对应的函数为fcm函数。

在调用fcm函数时,需要指定数据集、聚类数、迭代次数等参数。

同时,还可以通过设置模糊度指数和终止条件等参数控制聚类的具体过程。

值得一提的是,该方法还支持自动确定聚类数的操作,为聚类分析提供了更大的灵活性。

2. fcm方法fcm方法也是Matlab中的模糊C-均值算法的一种实现方式。

与fuzzy方法相比,fcm方法更加灵活,并且在处理大规模数据时速度更快。

该方法对应的函数为fcm函数。

在使用fcm函数时,需要设置与fuzzy方法类似的参数,例如数据集、聚类数和迭代次数等。

模糊数学MATLAB应用

模糊数学MATLAB应用

第6章模糊逻辑6.1 隶属函数6.1.1 高斯隶属函数函数gaussmf格式y=gaussmf(x,[sig c])说明高斯隶属函数的数学表达式为: , 其中为参数, x为自变量, sig为数学表达式中的参数。

例6-1>>x=0:0.1:10;>>y=gaussmf(x,[2 5]);>>plot(x,y)>>xlabel('gaussmf, P=[2 5]')结果为图6-1。

图6-16.1.2 两边型高斯隶属函数函数gauss2mf格式y = gauss2mf(x,[sig1 c1 sig2 c2])说明sig1.c1.sig2.c2为命令1中数学表达式中的两对参数例6-2>>x = (0:0.1:10)';>>y1 = gauss2mf(x, [2 4 1 8]);>>y2 = gauss2mf(x, [2 5 1 7]);>>y3 = gauss2mf(x, [2 6 1 6]);>>y4 = gauss2mf(x, [2 7 1 5]);>>y5 = gauss2mf(x, [2 8 1 4]);>>plot(x, [y1 y2 y3 y4 y5]);>>set(gcf, 'name', 'gauss2mf', 'numbertitle', 'off');结果为图6-2。

6.1.3 建立一般钟型隶属函数函数 gbellmf格式 y = gbellmf(x,params)说明 一般钟型隶属函数依靠函数表达式b 2|ac x |11)c ,b ,a ;x (f -+=这里x 指定变量定义域范围, 参数b 通常为正, 参数c 位于曲线中心, 第二个参数变量params 是一个各项分别为a, b 和c 的向量。

模糊神经和模糊聚类的MATLAB实现

模糊神经和模糊聚类的MATLAB实现

模糊神经和模糊聚类的MATLAB实现模糊神经网络(Fuzzy Neural Networks)是一种结合了模糊逻辑和神经网络的方法,用于处理不确定性和模糊性问题。

它具有模糊逻辑的灵活性和神经网络的学习和优化能力。

在MATLAB中,可以使用Fuzzy Logic Toolbox来实现模糊神经网络。

下面将介绍如何使用MATLAB实现模糊神经网络。

首先,我们需要定义输入和输出的模糊集合。

可以使用Fuzzy Logic Toolbox提供的各种方法来定义模糊集合的隶属函数,例如使用trimf定义三角隶属函数或者使用gaussmf定义高斯隶属函数。

```input1 = trimf(inputRange, [a1, b1, c1]);input2 = gaussmf(inputRange, [mean, sigma]);output = trapmf(outputRange, [d1, e1, f1, g1]);```接下来,可以使用FIS Editor界面来创建和训练模糊神经网络。

在MATLAB命令窗口中输入fuzzy命令即可打开FIS Editor界面。

在FIS Editor界面中,可以添加输入和输出变量,并设置它们的隶属函数。

然后,可以添加规则来定义输入与输出之间的关系。

规则的形式可以使用自然语言或者模糊规则表达式(Fuzzy Rule Expression)。

训练模糊神经网络可以使用基于模糊神经网络的系统识别方法。

在MATLAB中,可以使用anfis函数来进行自适应网络训练。

anfis函数可以根据训练数据自动调整隶属函数参数和规则权重,以优化模糊神经网络的性能。

```fis = anfis(trainingData);```使用trainfis命令可以将训练好的模糊神经网络应用于新的数据。

trainfis命令将输入数据映射到输出模糊集中,并使用模糊推理进行预测。

输出结果是一个模糊集,可以使用defuzz命令对其进行模糊化。

模糊数学聚类分析

模糊数学聚类分析

农村经济状况聚类分析随着我国经济的发展,各地区农村的经济也有了相应的发展。

拥有的生产性固定资产数量随之提高,几乎所有的指标都在上升。

本文应用MATLAB软件采用动态聚类法,从大量固定资产中提取出数据并对地区进行分类,以便得出较合理的结论。

1原始数据选取8个固定资产作为评价对象,具体指标如下表:表农村居民家庭平均每百户拥有主要生产性固定资产数量(年底数)数据来源:《国家统计年鉴2010》网址:/tjsj/ndsj/2010/indexch.htm将数据初始化为矩阵4.5300 1.33005.3300 0.1300 0.1300 2.5300 0.2700 35.3300 7.3300 2.8300 16.6700 1.3300 2.1700 21.6700 6.8300 54.5000 3.7700 2.4800 32.8000 2.3800 6.3500 27.13008.8800 36.3300 3.5700 2.1000 14.8100 1.1400 4.8600 6.1900 16.0700 77.0500 1.8900 4.5600 50.1200 3.9800 30.5800 37.3800 62.2300 245.7800 2.7000 4.0700 11.1600 3.0200 15.9300 40.6100 27.3500 59.8900 2.6300 9.3800 42.8800 6.1600 15.2500 29.5600 35.1900 96.6300 1.5200 17.9000 53.1400 3.8400 3.7500 26.8800 11.6500 45.0900 2.2800 1.2100 17.1100 10.2600 13.3500 19.0700 1.5900 21.5300 2.3300 1.3000 2.4100 17.2200 2.7100 23.5700 7.4800 104.6300 1.3300 4.8500 39.7300 15.5200 5.1900 54.2200 5.6100 19.6100 2.6900 0.7700 4.4500 9.0500 1.2600 14.2900 7.4000 78.8500 1.7500 0.6900 4.3500 26.9800 9.8800 22.6100 32.3300 12.9000 3.6100 3.7300 24.0900 2.5500 13.4500 44.8600 6.6300 34.0700 2.4300 11.6800 34.6600 4.7300 8.1000 36.0000 7.5500 33.0200 1.3000 1.8500 16.0600 2.5800 9.7000 25.6900 25.2300 18.0100 1.3600 0.3800 2.1900 22.2000 4.0700 27.8900 17.4000 21.2400 1.8400 0.7200 6.0900 19.4000 2.9900 20.1300 24.8300 22.0700 1.1900 1.3400 19.3500 22.3900 3.6800 20.7700 46.9700 37.5300 1.7300 0.7300 2.5000 28.3300 1.6800 34.2500 22.1100 42.5800 1.8300 0.3100 1.3400 6.9600 1.1600 7.3200 61.0300 34.2900 2.8300 1.3800 9.0600 8.0400 4.0400 11.2900 63.6300 67.2500 1.8900 4.1400 11.1700 4.5600 18.0600 15.8700 15.9000 47.2100 0.8900 3.7200 32.2200 5.8300 16.7800 10.4400 64.8300 42.9400 4.3300 3.1700 56.2500 6.7700 3.6700 0.5000 61.5000 121.8300 5.0000 1.3300 57.5000 3.7900 4.8300 22.3300 34.3300 37.3300 2.6500 6.5800 28.3900 2.1300 47.6800 3.5500 61.0300 487.3500标准化后的矩阵X=0 0.1939 0.5499 0.2021 0.3502 0.1850 1.0000 0.06330.5342 0.1626 0.9777 0.2355 0.0744 0 0.9484 0.2296 0.6382 0.0580 1.0000 0.1298 0.0988 0.4064 0.5276 0.0515 0.2733 0.3565 0.4817 0.0709 1.0000 0.0568 0.9411 1.00001.0000 0.1433 0.2730 0.0426 0.0429 0.3941 0.1016 0.0877 0.4472 0.1234 0.5602 0.0798 0.1308 0.4957 0.1334 0.0494 0.4161 0.1018 0.2399 0.0358 0.0995 0.1059 0.2447 0.1352 0.1553 0.2416 0.8686 0.1365 0.6404 0.6865 0.9597 0.4908 0.2811 0.2138 0.1749 0.1025 0.3323 0.7466 0.4195 0.0990 0.2702 0.5156 0.7397 0.2138 0.3180 0.5410 0.5409 0.1765 0.0978 1.0000 0.9224 0.1316 0.0761 0.4911 0.1763 0.0678 0.2158 0.0512 0.2808 0.3592 0.2780 0.3457 0.0204 0.0182 0.2236 0.0563 0.0191 0.6060 0.0543 0.4294 0.1117 0.1933 0.0683 0.2581 0.6836 0.5457 0.1064 1.0000 0.0827 0.0141 0.2795 0.0262 0.0554 0.3163 0.0238 0.2567 0.1104 0.1390 0.1335 0.0216 0.0536 0.9521 0.2050 0.4116 0.4966 0 0.4224 0.1944 0.4051 0.0858 0.2801 0.8258 0.0985 0.0446 0.2391 0.6464 0.5933 0.1631 0.1676 0.6608 0.1128 0.0424 0.0637 0.0875 0.2621 0.0869 0.2013 0.4689 0.3866 0.0108 0.0730 0.0040 0.0151 0.7826 0.0829 0.5099 0.2653 0.0176 0.1475 0.0233 0.0846 0.6833 0.0601 0.3654 0.3804 0.0193 0.0466 0.0586 0.3207 0.7894 0.0747 0.3773 0.7234 0.0519 0.1304 0.0239 0.0207 1.0000 0.0326 0.6283 0.3383 0.0626 0.1460 0 0 0.2422 0.0217 0.1270 0.9411 0.04510.3012 0.0608 0.1375 0.2805 0.0822 0.2009 0.9814 0.1146 0.1553 0.2177 0.1750 0.1571 0.3771 0.2861 0.2421 0.07230.5652 0.0580 0.0710 0 0 0.0378 0 0.0473模糊相似矩阵R=动态聚类图Kmeans 算法聚类输入命令kmeans(R,5)将R 分为五类1.0000 0.9423 0.6158 0.7979 0.2169 0.3725 0.3570 0.2370 0.4091 0.3348 0.1793 0.5899 0.1418 0.5033 0.3637 0.1918 0.1113 0.9423 1.0000 0.8233 0.8805 0.4538 0.6354 0.5885 0.4338 0.6140 0.5056 0.4710 0.7331 0.3112 0.7540 0.6017 0.4839 0.3120 0.6158 0.8233 1.0000 0.8334 0.7615 0.8021 0.86630.73290.8199 0.5592 0.8199 0.7029 0.4371 0.9320 0.8604 0.7893 0.4567 0.7979 0.8805 0.8334 1.0000 0.7437 0.6990 0.7929 0.5591 0.6267 0.4839 0.4734 0.7081 0.4218 0.7010 0.6423 0.6477 0.3360 0.2169 0.4538 0.7615 0.7437 1.0000 0.8363 0.9234 0.6650 0.6818 0.4918 0.6823 0.5625 0.5453 0.7302 0.7229 0.9136 0.4798 0.3725 0.6354 0.8021 0.6990 0.8363 1.0000 0.8 417 0.5988 0.7614 0.6654 0.7767 0.7224 0.6166 0.9154 0.7948 0.9426 0.6337 0.3570 0.5885 0.8663 0.79290.92340.84171.0000 0.87400.7609 0.5541 0.79810.63040.5602 0.8166 0.9111 0.8866 0.5171 0.2370 0.4338 0.7329 0.5591 0.6650 0.5988 0.8740 1.0000 0.5795 0.3550 0.7403 0.3896 0.2974 0.6747 0.9420 0.6377 0.3012 0.4091 0.6140 0.8199 0.6267 0.6818 0.7614 0.7609 0.5795 1.0000 0.8109 0.8637 0.8157 0.7514 0.8426 0.7553 0.7339 0.7682 0.3348 0.5056 0.5592 0.4839 0.4918 0.6654 0.5541 0.3550 0.8109 1.0000 0.7429 0.9494 0.8927 0.6348 0.5485 0.5841 0.9428 0.仃 0.4710 0.8199 0.4734 0.6823 0.7767 0.7981 0.7403 0.8637 0.7429 1.0000 0.7032 0.6521 0.8640 0.8690 0.8075 0.7394 0.5899 0.7331 0.7029 0.7081 0.5625 0.7224 0.6304 0.3896 0.81570.94940.7032 1.0000 0.81470.71690.5896 0.6199 0.8382 0.1418 0.3112 0.4371 0.4218 0.5453 0.6166 0.5602 0.2974 0.7514 0.8927 0.6521 0.8147 1.0000 0.4814 0.4381 0.6421 0.9684 0.5033 0.7540 0.9320 0.7010 0.7302 0.9154 0.8166 0.6747 0.8426 0.6348 0.8640 0.7169 0.4814 1.0000 0.8740 0.8418 0.5472 0.3637 0.6017 0.8604 0.6423 0.7229 0.7948 0.9111 0.9420 0.7553 0.5485 0.8690 0.5896 0.4381 0.8740 1.0000 0.7723 0.4768 0.1918 0.4839 0.7893 0.6477 0.9136 0.9426 0.8866 0.6377 0.7339 0.5841 0.8075 0.6199 0.6421 0.8418 0.7723 1.0000 0.6313 0.1113 0.3120 0.4567 0.3360 0.4798 0.6337 0.5171 0.3012 0.7682 0.9428 0.7394 0.8382 0.9684 0.5472 0.4768 0.6313 1.0000 0.2076 0.3918 0.5154 0.4826 0.5719 0.6573 0.6058 0.3532 0.7621 0.9171 0.7076 0.8624 0.9887 0.5437 0.4979 0.6805 0.9732 0.10140.30370.52820.52240.71060.6497 0.7075 0.4504 0.69250.7852 0.69010.74570.9359 0.4972 0.5214 0.75660.87810.1449 0.3373 0.4613 0.3573 0.4688 0.6208 0.5164 0.3090 0.7533 0.9545 0.7329 0.8592 0.9638 0.5386 0.4782 0.6129 0.9970 0.1565 0.2742 0.3098 0.5543 0.6406 0.5661 0.5367 0.1914 0.2817 0.4336 0.2590 0.4967 0.6628 0.2696 0.2357 0.6550 0.5333 0.3097 0.4438 0.4898 0.7134 0.7500 0.6745 0.6783 0.3330 0.4331 0.5209 0.3835 0.6171 0.6957 0.4292 0.3934 0.7408 0.5711 0.3427 0.5518 0.7448 0.7206 0.8718 0.8990 0.8896 0.6675 0.8296 0.6314 0.7063 0.6682 0.6591 0.8093 0.7935 0.8646 0.6043 0.0843 0.2725 0.5538 0.6429 0.8960 0.6689 0.8237 0.5621 0.5015 0.3636 0.4980 0.4179 0.5957 0.4712 0.5448 0.8254 0.4590 0.4504 0.5601 0.71210.8523 0.8066 0.5412 0.8141 0.6019 0.5175 0.3626 0.4691 0.5264 0.47120.49070.5623 0.6654 0.3390 0.5732 0.7414 0.9266 0.8788 0.8017 0.6803 0.8599 0.6759 0.7001 0.4423 0.6818 0.6176 0.4414 0.7542 0.7267 0.7580 0.3874 0.2464 0.3439 0.4699 0.6932 0.84680.6043 0.71000.43810.4659 0.34490.2954 0.43110.3881 0.43280.44950.6087 0.25980.2076 0.1014 0.1449 0.1565 0.3097 0.3427 0.0843 0.4504 0.5732 0.2464 0.3918 0.3037 0.3373 0.2742 0.4438 0.5518 0.2725 0.5601 0.7414 0.3439 0.5154 0.5282 0.4613 0.3098 0.4898 0.7448 0.5538 0.7121 0.9266 0.4699 0.4826 0.5224 0.3573 0.5543 0.7134 0.7206 0.6429 0.8523 0.8788 0.6932 0.5719 0.7106 0.4688 0.6406 0.7500 0.8718 0.8960 0.8066 0.8 0仃 0.8468 0.6573 0.6497 0.6208 0.5661 0.6745 0.8990 0.6689 0.5412 0.6803 0.6043 0.6058 0.70750.51640.53670.67830.8896 0.8237 0.8141 0.8599 0.7100 0.3532 0.4504 0.3090 0.1914 0.3330 0.6675 0.5621 0.6019 0.6759 0.4381 0.7621 0.6925 0.7533 0.2817 0.4331 0.8296 0.5015 0.5175 0.7001 0.4659 0.9仃1 0.7852 0.9545 0.4336 0.5209 0.6314 0.3636 0.3626 0.4423 0.3449 0.7076 0.6901 0.7329 0.2590 0.3835 0.7063 0.4980 0.4691 0.6818 0.2954 0.8624 0.7457 0.8592 0.4967 0.6171 0.6682 0.4179 0.5264 0.6176 0.4311 0.9887 0.9359 0.9638 0.6628 0.6957 0.6591 0.5957 0.4712 0.4414 0.3881 0.5437 0.4972 0.5386 0.2696 0.4292 0.8093 0.4712 0.4907 0.7542 0.4328 0.4979 0.5214 0.4782 0.2357 0.3934 0.7935 0.5448 0.5623 0.7267 0.4495 0.6805 0.7566 0.6129 0.6550 0.7408 0.8646 0.8254 0.6654 0.7580 0.6087 0.9732 0.8781 0.9970 0.5333 0.5711 0.6043 0.4590 0.3390 0.3874 0.2598 1.0000 0.9495 0.9763 0.6781 0.7227 0.6526 0.6019 0.5222 0.5160 0.3703 0.9495 1.00000.87970.79120.82700.6747 0.7948 0.6911 0.61540.49610.9763 0.8797 1.0000 0.5398 0.5805 0.5829 0.4477 0.3567 0.3975 0.2543 0.6781 0.7912 0.5398 1.0000 0.9764 0.5264 0.8313 0.6938 0.4973 0.5618 0.7227 0.8270 0.5805 0.9764 1.0000 0.6514 0.87570.80150.6498 0.6573 0.6526 0.6747 0.5829 0.5264 0.6514 1.0000 0.7527 0.6177 0.6700 0.7738 0.6019 0.7948 0.4477 0.8313 0.8757 0.7527 1.0000 0.8563 0.7207 0.7565 0.5222 0.6911 0.3567 0.6938 0.8015 0.6177 0.8563 1.0000 0.9062 0.6854 0.5160 0.6154 0.39750.4973 0.6498 0.6700 0.7207 0.9062 1.0000 0.5416 0.3703 0.4961 0.25430.5618 0.65730.77380.7565 0.68540.5416 1.0000用传递闭包求得动态聚类图A1D&97D.SBB7 ?9_G1D 97E30.9545 j 9 :匸D 9-194S.SJi CD.94231F1J7 ]!l-^ )916:1*234 」站弭 0.3126-.n-G :?S :9 ?8:A D.BBte....... D.8757 iseolEiEr)EM 豹2數27262S 242322212O19畀1S柘U131211109HT晶543Z1S 7 S第一类:山西内蒙古青海宁夏;第二类:河北辽宁吉林黑龙江江苏山东河南湖北陕西;第三类:北京天津;第四类:浙江福建江西湖南广东四川贵州;第五类:西藏甘肃新疆。

在Matlab中实现数据聚类和聚类分析的方法

在Matlab中实现数据聚类和聚类分析的方法

在Matlab中实现数据聚类和聚类分析的方法在Matlab中实现数据聚类和聚类分析数据聚类和聚类分析是在数据挖掘和机器学习领域中非常重要的技术。

它们能够帮助我们将相似的数据点分组,从而揭示出数据之间的内在关系和模式。

在Matlab中,有多种方法可以实现数据聚类和聚类分析,本文将介绍其中的一些常用方法。

首先,我们需要导入数据。

在Matlab中,可以使用`readtable`函数来读取.csv 或.txt文件中的数据。

如果数据是存储在Excel文件中,可以使用`xlsread`函数来读取数据。

另外,也可以手动将数据存储在一个变量中。

在进行聚类之前,我们需要对数据进行预处理。

在预处理阶段,常见的操作包括数据去噪、数据标准化、缺失值处理等。

Matlab提供了一系列函数来实现这些操作,例如`Smooth`函数用于平滑数据,`zscore`函数用于数据标准化。

完成数据预处理后,我们可以开始进行聚类算法的选择和运行。

在Matlab中,有多种聚类算法可供选择,如K-means聚类算法、层次聚类算法、高斯混合模型等。

这些算法各有特点,可根据实际问题选择。

在选择了合适的聚类算法后,我们可以使用相应的函数进行聚类。

以K-means聚类算法为例,可以使用`kmeans`函数来进行聚类操作。

聚类完成后,我们需要进行聚类结果的评估和分析。

在Matlab中,可以使用一些评估指标来度量聚类效果,如聚类轮廓系数、Davies–Bouldin指数等。

这些指标能够帮助我们评估聚类结果的紧密度和分离度。

此外,我们还可以使用可视化工具来展示聚类结果,如散点图、热力图等。

Matlab提供了许多绘图函数用于可视化,如`scatter`函数可以绘制散点图,`heatmap`函数可以绘制热力图。

除了单一的聚类算法外,我们还可以将多个聚类算法进行组合,形成集成聚类模型。

集成聚类模型能够充分发挥各种聚类算法的优势,提高聚类效果。

在Matlab中,可以使用`fitensemble`函数来构建集成聚类模型。

MATLAB实现FCM 聚类算法

MATLAB实现FCM 聚类算法

本文在阐述聚类分析方法的基础上重点研究FCM 聚类算法。

FCM 算法是一种基于划分的聚类算法,它的思想是使得被划分到同一簇的对象之间相似度最大,而不同簇之间的相似度最小。

最后基于MATLAB实现了对图像信息的聚类。

第 1 章概述聚类分析是数据挖掘的一项重要功能,而聚类算法是目前研究的核心,聚类分析就是使用聚类算法来发现有意义的聚类,即“物以类聚” 。

虽然聚类也可起到分类的作用,但和大多数分类或预测不同。

大多数分类方法都是演绎的,即人们事先确定某种事物分类的准则或各类别的标准,分类的过程就是比较分类的要素与各类别标准,然后将各要素划归于各类别中。

确定事物的分类准则或各类别的标准或多或少带有主观色彩。

为获得基于划分聚类分析的全局最优结果,则需要穷举所有可能的对象划分,为此大多数应用采用的常用启发方法包括:k-均值算法,算法中的每一个聚类均用相应聚类中对象的均值来表示;k-medoid 算法,算法中的每一个聚类均用相应聚类中离聚类中心最近的对象来表示。

这些启发聚类方法在分析中小规模数据集以发现圆形或球状聚类时工作得很好,但当分析处理大规模数据集或复杂数据类型时效果较差,需要对其进行扩展。

而模糊C均值(Fuzzy C-means, FCM)聚类方法,属于基于目标函数的模糊聚类算法的范畴。

模糊C均值聚类方法是基于目标函数的模糊聚类算法理论中最为完善、应用最为广泛的一种算法。

模糊c均值算法最早从硬聚类目标函数的优化中导出的。

为了借助目标函数法求解聚类问题,人们利用均方逼近理论构造了带约束的非线性规划函数,以此来求解聚类问题,从此类内平方误差和WGSS(Within-Groups Sum of Squared Error)成为聚类目标函数的普遍形式。

随着模糊划分概念的提出,Dunn [10] 首先将其推广到加权WGSS 函数,后来由Bezdek 扩展到加权WGSS 的无限族,形成了FCM 聚类算法的通用聚类准则。

(完整word版)模糊聚类分析及matlab程序实现

(完整word版)模糊聚类分析及matlab程序实现

模糊聚类分析及matlab 程序实现采用模糊数学语言对按一定的要求进行描述和分类的数学方法称为模糊聚类分析。

聚类分析主要经过标定和聚类两步骤。

【1】 1 标定(建立模糊相似矩阵)城市居民食品零售价格,第t 时刻第i 种食品的零售价记为),(t i x 。

相似矩阵R 的构建方法:NTV 法设时间序列),(j i A 表示食品i 在时间t 的价格,其中i=1,2…42;t=1,2…39。

∑∑==--=mk jk ik m k jk ik x xx x j i R 11),max (1),((其中i,j,k=1,2…42,m=39) 42*42),(j i R R = 2 聚类2.1 计算R 的传递闭包:对模糊相似矩阵R,依次用平方法计算,2R ,4R ,…,t2R ,…,当第一次出现k k k R R R =*时,则称k R 为传递闭包。

【1】2.2 开始聚类:【2】 (1)令T={1,2,3…42},取)1(xi T ∈ ,令X 、Q 为空集;(2)令0=j ;(3)若λ>=),(j xi R 且X x j ∉,则令}{j X X ⋃=,}{j Q Q ⋃=;(4)1+=j j ;(5)若n j <,返回(1);(6)若Q 为空集,怎输出聚类x,X -T T =;(7))1(xi Q =,}{xi Q Q -=,返回(2)。

设置不同的置信水平λ值,就可以得到不同的分类。

Matlab 程序实现:A=data;[N M] = size(A);for i = 1:Nfor j = 1:NR(i,j)=abs(1-sum(abs(A(i,:)-A(j,:)))/sum(max([A(i,:);A(j,:)])));endendfor j=1:42for i=1:42y(i,j)=0;for k=1:42mn(k)=min(R(i,k),R(k,j));endy(i,j)=max(mn);endendnumda=[1 0.9 0.95 0.85 0.8 0.75 0.55 0.7 0.655 0.65 0.6 0.55 0.5 0.45 0.454 0.4 0.45 0.3 0.35 0.255 0.25 0.2 0.15 0.1];for i=1:42TT(i)=i;endfor i=1:length(numda)disp ('当分类系数是');disp(numda(i));a=numda(i);T=TT;disp ('分类为');while 1if ~isempty(T)xi=T(1);endX=[];Q=[];while 1for j=1:42if (y(xi,j)>=a)&isempty(intersect(X,j))X=union(X,j);Q(length(Q)+1)=j;endendif isempty(Q)disp(X);breakelsexi=Q(1);Q(1)=[];endendT=setdiff(T,X); if isempty(T) breakendendend。

MATLAB模糊c均值算法FCM分类全解

MATLAB模糊c均值算法FCM分类全解

1));
%求隶属度
end
end
end
if max(max(abs(U-U0)))<e
a=0;
end
Z=Z+1
if Z>100
break
end
end
%输出图像
t=max(U,[],2); t=repmat(t,1,c); %最大值排成1*c U=double(t==U); for i=1:N
F(i)= find(U(i,:)==1); end F=reshape(F,n1,n2); map=[1,1,1;0,0,0;1,0,0;0,1,0;0,0,1] figure,imshow(uint8(F),map)
A=reshape(A,n1*n2,1);
N=n1*n2;
%样本数
U0=rand(N,c);
U1=sum(U0,2 ); %求出每一行的元素总数
U2=repmat(U1,1,c);%将每一行总数复制成n*c矩阵
U=U0./U2;
clear U0 U1 U2;
U0=U;
a=1;
Z=0;
while a
for j=1:c
V(j)=sum(U(:,j).^m.*A)/sum(U(:,j).^m); %求聚类中心
W(:,j)=abs(repmat(V(j),N,1)-A); %距离
end
for i=1:N
for j=1:c;
if W(i,j)==0
U(i,:)=zeros(1,c);
U(i,j)=1;
else
U(i,j)=1/sum(repmat(W(i,j),1,c)./W(i,:)).^(2/(m-
FCM算法是一种基于划分的聚类算法,它的思想就是使 得被划分到同一簇的对象之间相似度最大,而不同簇之间的相 似度最小。模糊C均值算法是普通C均值算法的改进,普通C 均值算法对于数据的划分是硬性的,而FCM则是一种 %functio n [U,z,U1]=SARFCM %读入并显示图像 clear,clc
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

function [M,N] = Example8_11X=[1.8 2.1 3.2 2.2 2.5 2.8 1.9 2.0;95 99 101 103 98 102 120 130;0.15 0.21 0.18 0.17 0.16 0.20 0.09 0.11]; X=X'%X=[80 10 6 2;50 1 6 4;90 6 4 6;40 5 7 3;10 1 2 4][M,N]=fuzzy_jlfx(4,5,X);end%%function [M,N]=fuzzy_jlfx(bzh,fa,X)%得到聚类结果[X]=F_JlSjBzh(bzh,X);%数据标准化[R]=F_JlR(fa,X);%建立相似矩阵[A]=fuzzy_cdbb(R);%得到传递闭包矩阵[Alamd]=fuzzy_lamdjjz(A);%得到lamdf截矩阵从而得到聚类结果[M,N]=F_JlDtjl(R);%动态聚类并画出聚类图%%function [M,N]=F_JlDtjl(R)%clc;[A]=fuzzy_cdbb(R);U=unique(A);L=length(U);M=1:L;for i=L-1:-1:1[m,n]=find(A==U(i));N{i,1}=n;N{i,2}=m;A(m(1),:)=0;mm=unique(m);N{i,3}=mm;len=length(find(m==mm(1)));depth=length(find(m==mm(2)));index1=find(M==mm(1));MM=[M(1:index1-1),M(index1+depth:L)]; %index2=find(MM==mm(2));M=M(index1:index1+depth-1);M=[MM(1:index2-1),M,MM(index2:end)];endM=[1:L;M;ones(1,L)];h=(max(U)-min(U))/L;figuretext(L,1,sprintf('%d',M(2,L)));text(L+1,1-h,sprintf('%d',L));text(0,1,sprintf('%3.2f',1));text(0,(1+min(U))/2,sprintf('%3.2f',(1+min(U))/2));text(0,min(U),sprintf('%3.2f',min(U)));hold onfor i=L-1:-1:1m=N{i,2};n=N{i,1};mm=N{i,3};k=find(M(2,:)==mm(1));l=find(M(2,:)==mm(2));x1=M(1,k);y1=M(3,k);x2=M(1,l);y2=M(3,l);x=[x1,x1,x2,x2];M(3,[k,l])=U(i);M(1,[k,l])=sum(M(1,[k,l]))/length(M(1,[k,l]));y=[y1,U(i),U(i),y2];plot(x,y);text(i,1,sprintf('%d',M(2,i)));text(M(1,k(1)),U(i)+h*0.1,sprintf('%3.2f',U(i)));text(L+1,1-i*h-h,sprintf('%d',L-i));endaxis([0 L+1 min(U) max(U)])axis offhold offendend%%function[X]=F_JlSjBzh(cs,X)%定义函数%模糊聚类分析数据标准化变换: [X]=F_JlSjBzh(cs,X)%X,数据矩阵%cs=0,不变换;cs=1,标准差变换;cs=2,极差变换;cs=其它,最大值规格化if(cs==0)return;end[n,m]=size(X);%获得矩阵的行列数if(cs==1)%平移?标准差变换for(k=1:m)xk=0;for(i=1:n)xk=xk+X(i,k);endxk=xk/n;sk=0;for(i=1:n)sk=sk+(X(i,k)-xk)^2;endsk=sqrt(sk/n);for(i=1:n)X(i,k)=(X(i,k)-xk)/sk;endendelseif(cs==2)%平移?极差变换for(k=1:m)xmin=X(1,k);xmax=X(1,k);for(i=1:n)if(xmin>X(i,k))xmin=X(i,k);endif(xmax<X(i,k))xmax=X(i,k);endendfor(i=1:n)X(i,k)=(X(i,k)-xmin)/(xmax-xmin);end endelse%最大值规格化A=max(X);for(i=1:m)X(:,i)=X(:,i)/A(i);endendend%%function[R]=F_JlR(cs,X)%定义函数%模糊聚类分析建立模糊相似矩阵: [R]=F_JlR(cs,X)%X,数据矩阵%cs=1,数量积法%cs=2,夹角余弦法%cs=3,相关系数法%cs=4,指数相似系数法%cs=5,最大最小法%cs=6,算术平均最小法%cs=7,几何平均最小法%cs=8,一般欧式距离法%cs=9,一般海明距离法%cs=10,一般切比雪夫距离法%cs=11,倒数欧式距离法%cs=12,倒数海明距离法%cs=13,倒数切比雪夫距离法%cs=14,指数欧式距离法%cs=15,指数海明距离法%cs=16,指数切比雪夫距离法[n,m]=size(X);%获得矩阵的行列数R=[];if(cs==1)maxM=0;pd=0;%数量积法for(i=1:n)for(j=1:n)if(j~=i)x=0;for(k=1:m)x=x+X(i,k)*X(j,k);endif(maxM<x)maxM=x;endend;end;endif(maxM<0.000001)return;endfor(i=1:n)for(j=1:n)if(i==j)R(i,j)=1;else R(i,j)=0;for(k=1:m)R(i,j)=R(i,j)+X(i,k)*X(j,k);endR(i,j)=R(i,j)/maxM;if(R(i,j)<0)pd=1;endendend;endif(pd)for(i=1:n)for(j=1:n)R(i,j)=(R(i,j)+1)/2;end;end;end elseif(cs==2)%夹角余弦法for(i=1:n)for(j=1:n)xi=0;xj=0;for(k=1:m)xi=xi+X(i,k)^2;xj=xj+X(j,k)^2;ends=sqrt(xi*xj);R(i,j)=0;for(k=1:m)R(i,j)=R(i,j)+X(i,k)*X(j,k);endR(i,j)=R(i,j)/s;end;endelseif(cs==3)%相关系数法for(i=1:n)for(j=1:n)xi=0;xj=0;for(k=1:m)xi=xi+X(i,k);xj=xj+X(j,k);endxi=xi/m;xj=xj/m;xis=0;xjs=0;for(k=1:m)xis=xis+(X(i,k)-xi)^2;xjs=xjs+(X(j,k)-xj)^2;ends=sqrt(xis*xjs);R(i,j)=0;for(k=1:m)R(i,j)=R(i,j)+abs((X(i,k)-xi)*(X(j,k)-xj));endR(i,j)=R(i,j)/s;end;endelseif(cs==4)%指数相似系数法for(i=1:n)for(j=1:n)R(i,j)=0;for(k=1:m)xk=0;for(z=1:n)xk=xk+X(z,k);endxk=xk/n;sk=0;for(z=1:n)sk=sk+(X(z,k)-xk)^2;endsk=sk/n;R(i,j)=R(i,j)+exp(-0.75*((X(i,k)-X(j,k))/sk)^2);endR(i,j)=R(i,j)/m;end;endelseif(cs<=7)%最大最小法算术平均最小法几何平均最小法for(i=1:n)for(j=1:n)fz=0;fm=0;for(k=1:m)if(X(j,k)<0)R=[];return;endif(X(j,k)>X(i,k))x=X(i,k);else x=X(j,k);endfz=fz+x;endif(cs==5)%最大最小法for(k=1:m)if(X(i,k)>X(j,k))x=X(i,k);else x=X(j,k);endfm=fm+x;endelseif(cs==6)for(k=1:m)fm=fm+(X(i,k)+X(j,k))/2;end%算术平均最小法else for(k=1:m)fm=fm+sqrt(X(i,k)*X(j,k));end;end%几何平均最小法R(i,j)=fz/fm;end;endelseif(cs<=10)C=0;%一般距离法for(i=1:n)for(j=i+1:n)d=0;if(cs==8)for(k=1:m)d=d+(X(i,k)-X(j,k))^2;endd=sqrt(d);%欧式距离elseif(cs==9)for(k=1:m)d=d+abs(X(i,k)-X(j,k));end%海明距离else for(k=1:m)if(d<abs(X(i,k)-X(j,k)))d=abs(X(i,k)-X(j,k));end;end;end%切比雪夫距离if(C<d)C=d;endend;endC=1/(1+C);for(i=1:n)for(j=1:n)d=0;if(cs==8)for(k=1:m)d=d+(X(i,k)-X(j,k))^2;endd=sqrt(d);%欧式距离elseif(cs==9)for(k=1:m)d=d+abs(X(i,k)-X(j,k));end%海明距离else for(k=1:m)if(d<abs(X(i,k)-X(j,k)))d=abs(X(i,k)-X(j,k));end;end;end%切比雪夫距离R(i,j)=1-C*d;end;endelseif(cs<=13)minM=Inf;%倒数距离法for(i=1:n)for(j=i+1:n)d=0;if(cs==11)for(k=1:m)d=d+(X(i,k)-X(j,k))^2;endd=sqrt(d);%欧式距离elseif(cs==12)for(k=1:m)d=d+abs(X(i,k)-X(j,k));end%海明距离else for(k=1:m)if(d<abs(X(i,k)-X(j,k)))d=abs(X(i,k)-X(j,k));end;end;end%切比雪夫距离if(minM>d)minM=d;endend;endminM=0.9999*minM;if(minM<0.000001)return;endfor(i=1:n)for(j=1:n)d=0;if(j==i)R(i,j)=1;continue;endif(cs==11)for(k=1:m)d=d+(X(i,k)-X(j,k))^2;endd=sqrt(d);%欧式距离elseif(cs==12)for(k=1:m)d=d+abs(X(i,k)-X(j,k));end%海明距离else for(k=1:m)if(d<abs(X(i,k)-X(j,k)))d=abs(X(i,k)-X(j,k));end;end;end%切比雪夫距离R(i,j)=minM/d;end;endelse for(i=1:n)for(j=1:n)d=0;%指数距离法if(cs==14)for(k=1:m)d=d+(X(i,k)-X(j,k))^2;endd=sqrt(d);%欧式距离elseif(cs==15)for(k=1:m)d=d+abs(X(i,k)-X(j,k));end%海明距离else for(k=1:m)if(d<abs(X(i,k)-X(j,k)))d=abs(X(i,k)-X(j,k));end;end;end%切比雪夫距离R(i,j)=exp(-d);end;end;endend%%function [A]=fuzzy_cdbb(R) %由模糊相似矩阵求传递闭包js0=0;while(1)A=Max_Min(R,R);js0=js0+1;if(A==R)break;elseR=A;endendend%%function[C]=Max_Min(A,B) %模糊矩阵的合成,先取小后取大C=[];[m,s1]=size(A);[s2,n]=size(B);if(s1~=s2)disp('A的列不等于B的行');elsefor(i=1:m)for(j=1:n)C(i,j)=0;for(k=1:s1)x=0;if(A(i,k)<B(k,j))x=A(i,k);elsex=B(k,j);endif(C(i,j)<x)C(i,j)=x;endendendendendend%%function[Alamd]=fuzzy_lamdjjz(A) %求矩阵的lamd截矩阵并输出聚类结果[m,n]=size(A);p=m*n;%矩阵A中总的元素个数C=A(1:p);%把矩阵变成一个行向量D=sort(C);%把向量C中的元素从小到大排序for(i=1:p)for(j=i+1:p)if(D(i)==D(j))D(j)=0;%把向量C中相同元素只保留一个其他的变为零endendendE=sort(D);%将D按从小到大进行排序x=0;for(i=1:p)if(E(i)==0)x=x+1;%统计E中零的个数endendF=E(p:(-1):(x+1));%从E中挑出非零元素并按从大到小的顺序排列s=length(F);for(i=1:s)disp('-------------------');lamd=F(i)%顺次从F中从大到小取lamddisp('所对应的截矩阵是');Alamd=A>=F(i)%得到lamd截矩阵[C]=fuzzy_jl(Alamd)%得到聚类结果endend%%function [C]=fuzzy_jl(A)%聚类结果B=[];[m1,n1]=size(A);for(i=1:m1)x=0;for(j=1:n1)if(A(i,j)==1)%找到每一行的元素1x=x+1;B(i,x)=j;%把每一行找到的元素1的列下标顺次储存在矩阵的每一行中endendendB;[m2,n2]=size(B);for(i=1:m2)for(j=2:n2)if(B(i,j)~=0)B(B(i,j),:)=0;%将相同行只保留一个其他变为零行endendendB;C=[];y=0;for(i=1:m2)if(sum(B(i,:))~=0)%找到非零行y=y+1;C(y,:)=B(i,:);%用非零行构成矩阵C,得到聚类结果endendend%%。

相关文档
最新文档