2020年高考圆锥曲线中的热点问题(总结的非常好).
圆锥曲线中的直线(线段)的问题(含解析)

圆锥曲线中的直线(线段)的问题解析几何题的解题思路一般很容易觅得,实际操作时,往往不是因为难于实施,就是因为实施起来运算繁琐而被卡住,最终放弃此解法,因此方法的选择特别重要.从思想方法层面讲,解决解析几何问题主要有两种方法:.一般的,设线法是比较顺应题意的一种解法,它的参变量较少,目标集中,思路明确;而设点法要用好点在曲线上的条件,技巧性较强,但运用的好,解题过程往往会显得很简捷.对于这道题,这两种解法差别不是很大,但对于有些题目,方法选择的不同,差别会很大,因此要注意从此题的解法中体会设点法和设线法的不同. 一、题型选讲题型一 、圆锥曲线中的线段的关系例1、【2020年高考北京】设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l 于Q ,则线段FQ 的垂直平分线 A . 经过点O B . 经过点P C . 平行于直线OPD . 垂直于直线OP例2、(2019南京学情调研)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,且直线l :x =2被椭圆E 截得的弦长为2.与坐标轴不垂直的直线交椭圆E 于P ,Q 两点,且PQ 的中点R 在直线l 上.点M(1,0).(1) 求椭圆E 的方程;(2) 求证:MR⊥PQ.例3、(2016南京三模)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,1)在椭圆C 上.(1) 求椭圆C 的方程;(2) 设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点. ①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .题型二、圆锥曲线中直线的斜率问题例4、(2020届浙江省台州市温岭中学3月模拟)已知P ,Q 是椭圆2213x y +=上的两点(点Q 在第一象限),若()1,0M ,且直线PM ,QM 的斜率互为相反数,且2PM QM =,则直线QM 的斜率为____________.例5、(2020届山东省烟台市高三上期末)已知椭圆()222210x y a b a b +=>>,F 是其右焦点,直线y kx =与椭圆交于A ,B 两点,8AF BF +=. (1)求椭圆的标准方程;(2)设()3,0Q ,若AQB ∠为锐角,求实数k 的取值范围.例6、(2018苏锡常镇调研)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)经过点⎝⎛⎭⎫3,12,⎝⎛⎭⎫1,32,点A 是椭圆的下顶点.(1) 求椭圆C 的标准方程;(2) 过点A 且互相垂直的两直线l 1,l 2与直线y =x 分别相交于E ,F 两点,已知OE =OF ,求直线l 1的斜率.例7、(2019苏州期初调查)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右顶点分别为A ,B ,离心率为12,点P ⎝⎛⎭⎫1,32为椭圆上一点.(1) 求椭圆C 的标准方程;(2) 如图,过点C(0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.题型三、圆锥曲线中直线的方程例8、【2019年高考全国⊥卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |.例9、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,点B 在准线l 上的投影为E ,若C 是抛物线上一点,且AC EF⊥.(1)证明:直线BE 经过AC 的中点M ;(2)求ABC ∆面积的最小值及此时直线AC 的方程.例10、(2018南通、泰州一调)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为22,两条准线之间的距离为4 2.(1) 求椭圆的标准方程;(2) 已知椭圆的左顶点为A ,点M 在圆x 2+y 2=89上,直线AM 与椭圆相交于另一点B ,且⊥AOB 的面323AP PB=积是⊥AOM 的面积的2倍,求直线AB 的方程.二、达标训练1、(2019宿迁期末)如图所示,椭圆M :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,右准线方程为x =4,过点P(0,4)作关于y 轴对称的两条直线l 1,l 2,且l 1与椭圆交于不同两点A ,B ,l 2与椭圆交于不同两点D ,C.(1) 求椭圆M 的方程;(2) 证明:直线AC 与直线BD 交于点Q(0,1); (3) 求线段AC 长的取值范围.2、(2018扬州期末)已知椭圆E 1:x 2a 2+y 2b 2=1(a>b>0),若椭圆E 2:x 2ma 2+y 2mb 2=1(a>b>0,m>1),则称椭圆E 2与椭圆E 1“相似”.(1) 求经过点(2,1),且与椭圆E 1:x 22+y 2=1“相似”的椭圆E 2的方程.(2) 若椭圆E 1与椭圆E 2“相似”,且m =4,椭圆E 1的离心率为22,P 在椭圆E 2上,过P 的直线l 交椭圆E 1于A ,B 两点,且AP →=λAB →.①若B 的坐标为(0,2),且λ=2,求直线l 的方程; ②若直线OP ,OA 的斜率之积为-12,求实数λ的值.3、(2017南通、扬州、淮安、宿迁、泰州、徐州六市二调)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,C 为椭圆上位于第一象限内的一点. (1) 若点C 的坐标为⎝⎛⎭⎫2,53,求a ,b 的值;(2) 设A 为椭圆的左顶点,B 为椭圆上一点,且AB →=12OC →,求直线AB 的斜率.4、(2017无锡期末)已知椭圆x 24+y 23=1,动直线l 与椭圆交于B ,C 两点(点B 在第一象限).(1) 若点B 的坐标为⎝⎛⎭⎫1,32,求△OBC 的面积的最大值;(2) 设B (x 1,y 1),C (x 2,y 2),且3y 1+y 2=0,求当△OBC 的面积最大时直线l 的方程.5、(2018南京、盐城、连云港二模)如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,上顶点A 到右焦点的距离为 2.过点D(0,m)(m≠0)作不垂直于x 轴,y 轴的直线l 交椭圆E 于P ,Q 两点,C 为线段PQ 的中点,且AC⊥OC.(1) 求椭圆E 的方程;(2) 求实数m 的取值范围;(3) 延长AC 交椭圆E 于点B ,记⊥AOB 与⊥AOC 的面积分别为S 1,S 2,若S 1S 2=83,求直线l 的方程.一、题型选讲题型一 、圆锥曲线中的线段的关系例1、【2020年高考北京】设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P作PQ l ⊥于Q ,则线段FQ 的垂直平分线 A . 经过点O B . 经过点P C . 平行于直线OP D . 垂直于直线OP【答案】B【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P . 故选:B .例2、(2019南京学情调研)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,且直线l :x =2被椭圆E 截得的弦长为2.与坐标轴不垂直的直线交椭圆E 于P ,Q 两点,且PQ 的中点R 在直线l 上.点M(1,0).(1) 求椭圆E 的方程;(2) 求证:MR⊥PQ.规范解答 (1)因为椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率e =22,所以e 2=c 2a 2=1-b 2a 2=12,即a 2=2b 2. (2分) 因为直线l :x =2被椭圆E 截得的弦长为2, 所以点(2,1)在椭圆上,即4a 2+1b 2=1. 解得a 2=6,b 2=3,所以椭圆E 的方程为x 26+y 23=1.(6分)(2)解法1(设线法) 因为直线PQ 与坐标轴不垂直,故设PQ 所在直线的方程为y =kx +m. 设 P(x 1,y 1),Q(x 2, y 2) .因为PQ 的中点R 在直线 l :x =2上,故R(2,2k +m).联立方程组⎩⎨⎧y =kx +m ,x 26+y 23=1, 消去y ,并化简得 (1+2k 2)x 2+4kmx +2m 2-6=0, (9分) 所以x 1+x 2=-4km1+2k 2 .由x 1+x 2=-4km1+2k 2=4,得1+2k 2=-km.(12分) 因为M(1,0),故k MR =2k +m2-1=2k +m ,所以k MR ·k PQ =(2k +m)k =2k 2+km =2k 2-(1+2k 2)=-1,所以MR⊥PQ.(16分) 解法2(设点法) 设P(x 1,y 1),Q(x 2, y 2).因为PQ 的中点R 在直线 l :x =2上,故设R(2,t).因为点P ,Q 在椭圆E :x 26+y 23=1上,所以⎩⎨⎧x 216+y 213=1,x 226+y 223=1,两式相减得(x 1+x 2) (x 1-x 2)+2(y 1+y 2) (y 1-y 2)=0.(9分) 因为线段PQ 的中点为R ,所以x 1+x 2=4,y 1+y 2=2t. 代入上式并化简得(x 1-x 2)+t (y 1-y 2)=0.(12分) 又M(1,0),所以MR →·PQ →=(2-1)×(x 2-x 1)+(t -0)×(y 2-y 1)=0,因此 MR⊥PQ.(16分)用代数法处理圆锥曲线综合题的常见方法有两种:设点法、设线法.对于本题而言,两种方法都可以,解题时把“设线法”与“直线斜率乘积为-1”结合,把“设点法”与“向量的数量积为0”结合,其实颠倒一下也可行.例3、(2016南京三模)如图,在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,1)在椭圆C 上.(1) 求椭圆C 的方程;(2) 设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点. ①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .思路分析 (1) 由e =c a =22,得a ∶b ∶c =2∶1∶1,用b 表示a 更方便;(2) ①设直线l 的方程为y =k (x -3),由直线l 与圆O 相切可先求出k ,再求出PQ 的长即可.②设l :y =kx +m ,则只要证OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=0.联列直线与椭圆方程可得x 1+x 2,x 1x 2均可用k ,m 表示.由直线l 与圆O 相切,可得k 与m 的关系式.规范解答 (1) 由题意,得c a =22,4a 2+1b 2=1,解得a 2=6,b 2=3.所以椭圆的方程为x 26+y 23=1.(2分)(2) ①解法1 椭圆C 的右焦点F (3,0).设切线方程为y =k (x -3),即kx -y -3k =0,所以|-3k |k 2+1=2,解得k =±2,所以切线方程为y =±2(x -3).当k =2时,(4分)由方程组⎩⎪⎨⎪⎧y =2x -3,x 26+y23=1,解得⎩⎪⎨⎪⎧x =43+325,y =-6+65或⎩⎪⎨⎪⎧x =43-325,y =-6-65.所以点P ,Q 的坐标分别为43+325, -6+65, 43-325, -6-65, 所以PQ =665.(6分)因为O 到直线PQ 的距离为2,所以△OPQ 的面积为635.因为椭圆的对称性,当切线方程为y =-2(x -3)时,△OPQ 的面积也为635.综上所述,△OPQ 的面积为635.(8分)解法2 椭圆C 的右焦点F (3,0).设切线方程为y =k (x -3),即kx -y -3k =0,所以|-3k |k 2+1=2,解得k =±2,所以切线方程为y =±2(x -3).当k =2时,(4分) 把切线方程 y =2(x -3)代入椭圆C 的方程,消去y 得5x 2-83x +6=0.设P (x 1,y 1),Q (x 2,y 2),则有x 1+x 2=835.由椭圆定义可得,PQ =PF +FQ =2a -e (x 1+x 2)=2×6-22×835=665.(6分)因为O 到直线PQ 的距离为2,所以△OPQ 的面积为635.因为椭圆的对称性,当切线方程为y =-2(x -3)时,△OPQ 的面积为635. 综上所述,△OPQ 的面积为635.(8分)②解法1 (i)若直线PQ 的斜率不存在,则直线PQ 的方程为x =2或x =- 2. 当x =2时,P (2, 2),Q (2,-2).因为OP →·OQ →=0,所以OP ⊥OQ .当x =-2时,同理可得OP ⊥OQ .(10分)(ii)若直线PQ 的斜率存在,设直线PQ 的方程为y =kx +m ,即kx -y +m =0.因为直线与圆相切,所以|m |1+k 2=2,即m 2=2k 2+2.将直线PQ 方程代入椭圆方程,得(1+2k 2) x 2+4kmx +2m 2-6=0.设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2=-4km1+2k 2,x 1x 2=2m 2-61+2k 2.(12分)因为OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m 2=(1+k 2)×2m 2-61+2k 2+km ×⎝⎛⎭⎫-4km 1+2k 2+m 2.将m 2=2k 2+2代入上式可得OP →·OQ →=0,所以OP ⊥OQ . 综上所述,OP ⊥OQ .(14分)解法2 设切点T (x 0,y 0),则其切线方程为x 0x +y 0y -2=0,且x 20+y 20=2. (i)当y 0=0时,则直线PQ 的直线方程为x =2或x =- 2. 当x =2时,P (2, 2),Q (2,-2).因为OP →·OQ →=0,所以OP ⊥OQ .当x =-2时,同理可得OP ⊥OQ .(10分) (ii)当y 0≠0时,由方程组⎩⎪⎨⎪⎧x 0x +y 0y -2=0,x 26+y23=1,消去y 得(2x 20+y 20)x 2-8x 0x +8-6y 20=0.设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2=8x 02x 20+y 20,x 1x 2=8-6y 202x 20+y 20.(12分)所以OP →·OQ →=x 1x 2+y 1y 2=x 1x 2+2-x 0x 12-x 0x 2y 20=-6x 20+y 2+122x 20+y 20. 因为x 20+y 20=2,代入上式可得OP →·OQ →=0,所以OP ⊥OQ . 综上所述,OP ⊥OQ .(14分)题型二、圆锥曲线中直线的斜率问题例4、(2020届浙江省台州市温岭中学3月模拟)已知P ,Q 是椭圆2213x y +=上的两点(点Q 在第一象限),若()1,0M ,且直线PM ,QM 的斜率互为相反数,且2PM QM =,则直线QM 的斜率为____________. 【答案】1【解析】延长PM 交椭圆于N ,由对称性可知QM MN =, 设直线PM 的斜率为k ,则直线PM 的方程为()()10y k x k =-<,联立方程组()22133y k x x y ⎧=-⎨+=⎩,消元得:2212320yy k k ⎛⎫++-=⎪⎝⎭, 设()11,P x y ,()22,N x y , 则1222k13k y y -+=+,2PM QM =,122y y ∴=-.1222213ky y y k-∴+=-=+, 即22213ky k =+, 222113x k∴=++, 把22221,1313k N k k ⎛⎫+ ⎪++⎝⎭代入椭圆方程得:2222221331313k k k ⎛⎫⎛⎫++= ⎪ ⎪++⎝⎭⎝⎭, 解得21k =,1k ∴=-,∴直线QM 的斜率为1k -=.故答案为:1.例5、(2020届山东省烟台市高三上期末)已知椭圆()222210x y a b a b +=>>,F 是其右焦点,直线y kx =与椭圆交于A ,B 两点,8AF BF +=. (1)求椭圆的标准方程;(2)设()3,0Q ,若AQB ∠为锐角,求实数k 的取值范围.【答案】(1)221164x y += (2)k >k <【解析】(1)设1F 为椭圆的左焦点,连接1F B ,由椭圆的对称性可知,1AF FB =, 所以128AF BF BF BF a +=+==,所以4a =,又2c e a==,222a b c =+,解得c =,2b =, 所以椭圆的标准方程为221164x y +=(2)设点1122(,),(,)A x y B x y ,则11(3,)QA x y =-,22(3,)QB x y =-,联立221164x y y kx ⎧+=⎪⎨⎪=⎩,得22(41)160k x +-=, 所以120x x +=,1221641x x k -=+, 因为AQB ∠为锐角,所以0QA QB ⋅>, 所以1212(3)(3)QA QB x x y y ⋅=--+12121293()x x x x y y =-+++ 2121293()(1)x x k x x =-+++2216(1)9041k k +=->+,解得10k >10k <-例6、(2018苏锡常镇调研)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)经过点⎝⎛⎭⎫3,12,⎝⎛⎭⎫1,32,点A 是椭圆的下顶点.(1) 求椭圆C 的标准方程;(2) 过点A 且互相垂直的两直线l 1,l 2与直线y =x 分别相交于E ,F 两点,已知OE =OF ,求直线l 1的斜率.思路分析 (1) 由两点在椭圆上,列方程组解出a 2,b 2;(2) 设E(t ,t),则l 1的斜率k AE =t +1t . 规范解答 (1) 由⎝⎛⎭⎫3,12,⎝⎛⎭⎫1,32两点在椭圆C 上,得⎩⎨⎧3a 2+14b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.(4分) 所以椭圆C 的标准方程为x 24+y 2=1.(6分)(2) 首先A(0,-1).由E ,F 在直线y =x 上,且OE =OF ,可设E(t ,t),F(-t ,-t).(8分) 由l 1⊥l 2,得AE →·AF →=0,即t(-t)+(t +1)(-t +1)=0,得t =±22.(12分) 直线l 1的斜率为k AE =t +1t =1+1t =1± 2.(14分)例7、(2019苏州期初调查)已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右顶点分别为A ,B ,离心率为12,点P ⎝⎛⎭⎫1,32为椭圆上一点.(1) 求椭圆C 的标准方程;(2) 如图,过点C(0,1)且斜率大于1的直线l 与椭圆交于M ,N 两点,记直线AM 的斜率为k 1,直线BN 的斜率为k 2,若k 1=2k 2,求直线l 斜率的值.思路分析 (1)根据已知条件,建立方程组,求出a ,b ,即可得到椭圆的标准方程.(2)设出直线l 方程为y =kx +1,M(x 1,y 1),N(x 2,y 2),将直线l 方程与椭圆方程联立,求出x 1+x 2和x 1x 2,根据条件求出k 1和k 2,代入k 1=2k 2化简计算,得到关于k 的方程,解方程求出k 的值.规范解答 (1)因为椭圆的离心率为12,所以a =2c. 又因为a 2=b 2+c 2,所以b =3c. 所以椭圆的标准方程为x 24c 2+y 23c 2=1.(3分)又因为点P ⎝⎛⎭⎫1,32为椭圆上一点,所以14c 2+943c 2=1,解得c =1.(5分) 所以椭圆的标准方程为x 24+y 23=1.(6分)(2) 由椭圆的对称性可知直线l 的斜率一定存在,设其方程为y =kx +1. 设M(x 1,y 1),N(x 2,y 2).联立方程组⎩⎨⎧x 24+y 23=1,y =kx +1,消去y 可得(3+4k 2)x 2+8kx -8=0.所以由根与系数关系可知x 1+x 2=-8k 3+4k 2,x 1x 2=-83+4k 2.(8分) 因为k 1=y 1x 1+2,k 2=y 2x 2-2,且k 1=2k 2,所以y 1x 1+2=2y 2x 2-2.(10分) 即y 21(x 1+2)2=4y 22(x 2-2)2. ⊥又因为M(x 1,y 1),N(x 2,y 2)在椭圆上, 所以y 21=34(4-x 21),y 22=34(4-x 22).⊥将⊥代入⊥可得:2-x 12+x 1=4(2+x 2)2-x 2,即3x 1x 2+10(x 1+x 2)+12=0.(12分) 所以3⎝⎛⎭⎫-83+4k 2+10⎝⎛⎭⎫-8k 3+4k 2+12=0,即12k 2-20k +3=0.(14分) 解得k =16或k =32,又因为k>1,所以k =32.(16分)题型三、圆锥曲线中直线的方程例8、【2019年高考全国⊥卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若,求|AB |. 【答案】(1)3728y x =-;(2【解析】设直线()()11223:,,,,2l y x t A x y B x y =+. (1)由题设得3,04F ⎛⎫⎪⎝⎭,故123||||2AF BF x x +=++,由题设可得1252x x +=.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得22912(1)40x t x t +-+=,则1212(1)9t x x -+=-.从而12(1)592t --=,得78t =-. 所以l 的方程为3728y x =-.(2)由3AP PB =可得123y y =-.由2323y x t y x⎧=+⎪⎨⎪=⎩,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=. 代入C 的方程得1213,3x x ==.故||AB =. 例9、(2020届浙江省十校联盟高三下学期开学)如图,已知抛物线24y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于A ,B 两点,点B 在准线l 上的投影为E ,若C 是抛物线上一点,且AC EF ⊥.323AP PB =(1)证明:直线BE 经过AC 的中点M ;(2)求ABC ∆面积的最小值及此时直线AC 的方程.【答案】(1)详见解析;(2)面积最小值为16,此时直线方程为30x y ±-=. 【解析】(1)由题意得抛物线24y x =的焦点()1,0F ,准线方程为1x =-,设()2,2B t t ,直线AB :1x my =+, 则()1,2E t -,联立1x my =+和24y x =, 可得244y my =+,显然40A B y y +=,可得212,A tt ⎛⎫- ⎪⎝⎭,因为EF k t =-,AB EF ⊥, 所以1AC k t=, 故直线AC :2211y x t t t ⎛⎫+=- ⎪⎝⎭, 由224120y xx ty t ⎧=⎪⎨---=⎪⎩, 得224480y ty t ---=. ∴4A C y y t +=,248A C y y t =--, 所以AC 的中点M 的纵坐标2M y t =,即M B y y =,所以直线BE 经过AC 的中点M.(2)所以A C y A C =-== 设点B 到直线AC 的距离为d ,则2212t d ++==.所以1162ABCS AC d ∆=⋅=≥=,当且仅当41t =,即1t =±,1t =时,直线AD 的方程为:30x y --=, 1t =-时,直线AD 的方程为:30x y +-=.另解:2221112222ABC A C S BM y y t t t ∆=⋅-=++-3222122t t ⎛⎫=++ ⎪⎝⎭.例10、(2018南通、泰州一调)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为22,两条准线之间的距离为4 2.(1) 求椭圆的标准方程;(2) 已知椭圆的左顶点为A ,点M 在圆x 2+y 2=89上,直线AM 与椭圆相交于另一点B ,且⊥AOB 的面积是⊥AOM 的面积的2倍,求直线AB 的方程.思路分析 (1) 基本量建立方程组,求出a ,b 的值,得出椭圆的标准方程.(2) 由面积关系,分析出M 为AB 的中点,这里有两种思路,解法1,设出M(x 0,y 0),得出B 的坐标,分别代入椭圆与圆的方程,建立方程组,求出M 的坐标;解法2,设出直线的方程y =k(x +2),由直线与椭圆联立,得出M 的坐标,代入圆的方程,得到一个关于k 的方程,解得k 的值.规范解答 (1) 设椭圆的焦距为2c ,由题意得c a =22,2a 2c =42,(2分) 解得a =2,c =2,所以b = 2. 所以椭圆的方程为x 24+y 22=1.(4分)(2) 解法1(设点法) 因为S △AOB =2S △AOM ,所以AB =2AM ,所以M 为AB 的中点.(6分) 因为椭圆的方程为x 24+y 22=1,所以A(-2,0). 设M(x 0,y 0)(-2<x 0<0),则B(2x 0+2,2y 0). 所以x 20+y 20=89⊥,(2x 0+2)24+(2y 0)22=1 ⊥,(10分) 由⊥⊥得9x 20-18x 0-16=0,解得x 0=-23或x 0=83(舍去). 把x 0=-23代入⊥得y 0=±23,(12分)所以k AB =±12,因此直线AB 的方程为y =±12(x +2),即x +2y +2=0或x -2y +2=0.(14分) 解法2(设线法) 因为S △AOB =2S △AOM ,所以AB =2AM ,所以M 为AB 的中点.(6分) 由椭圆方程知A(-2,0),设B(x B ,y B ),M(x M ,y M ),设直线AB 的方程为y =k(x +2). 由⎩⎪⎨⎪⎧x 24+y 22=1,y =k (x +2),得(1+2k 2)x 2+8k 2x +8k 2-4=0, 所以(x +2)[(1+2k 2)x +4k 2-2]=0,解得x B =2-4k 21+2k 2.(8分) 所以x M =x B +(-2)2=-4k 21+2k 2,y M =k(x M +2)=2k1+2k 2,(10分) 代入x 2+y 2=89得⎝ ⎛⎭⎪⎫-4k 21+2k 22+⎝⎛⎭⎫2k 1+2k 22=89, 化简得28k 4+k 2-2=0,(12分)即(7k 2+2)(4k 2-1)=0,解得k =±12,所以直线AB 的方程为y =±12(x +2),即x +2y +2=0或x -2y +2=0.(14分) 二、达标训练1、(2019宿迁期末)如图所示,椭圆M :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,右准线方程为x =4,过点P(0,4)作关于y 轴对称的两条直线l 1,l 2,且l 1与椭圆交于不同两点A ,B ,l 2与椭圆交于不同两点D ,C.(1) 求椭圆M 的方程;(2) 证明:直线AC 与直线BD 交于点Q(0,1);(3) 求线段AC 长的取值范围.思路分析 对于(2),要求证明交于一点Q(0,1),角度一:根据图形的对称性可设A(x 1,y 1),B(x 2,y 2),则D(-x 1,y 1),C(-x 2,y 2),再设l 1方程为y =kx +4,则可由一元二次方程根与系数的关系判断出点B ,D ,Q 三点共线,同理有点A ,C ,Q 三点共线,这个角度的逻辑是借助了给出的定点(0,1),然后验证,有些不严谨;角度二:直接求直线AC 和直线BD 的方程,联立求解坐标,这个方法是逻辑严谨的首选,不过计算量稍大.对于(3),可由两点间的距离公式表示出AC 的长度,将表达式的关于x 1,x 2的结构用含有k 的式子代换掉,回归一元变量,求解最值,可直接求导. 但是解析几何中的最值,直接求导,暴力求解最值的较少,更多的是化简函数表达式,根据结构采用基本不等式(无法取等的时候就求导来解决)来求解最终的最值(或者值域),必然要有定义域,所以寻找函数的定义域是非常重要的,而解析几何中直线和曲线联立(曲直联立)以后的关于x(或者y)的一元二次方程有解,判别式就是很重要的一个点,也就是定义域的一个重要来源,有些题目甚至是唯一来源.规范解答 (1)由⎩⎨⎧e =c a =22,a 2c =4,得a =22,c =2,所以b 2=a 2-c 2=4,所以椭圆M 的方程为x 28+y 24=1.(4分)(2)解法1 设直线l 1:y =kx +4,A(x 1,y 1),B(x 2,y 2),则由对称性可知D(-x 1,y 1),C(-x 2,y 2). 联立⎩⎪⎨⎪⎧x 28+y 24=1,y =kx +4,消去y 得(1+2k 2)x 2+16kx +24=0,所以x 1+x 2=-16k 1+2k 2,x 1·x 2=241+2k 2.(6分) 又k BQ =y 2-1x 2,k DQ =y 1-1-x 1,则k BQ -k DQ =y 2-1x 2-y 1-1-x 1=kx 2+3x 2+kx 1+3x 1=2k +3(x 1+x 2)x 1x 2=2k +-48k 1+2k 2241+2k 2=2k -2k =0,(8分) 知k BQ =k DQ ,故点B ,D ,Q 三点共线,即直线BD 经过点Q(0,1). 同理可得直线AC 经过点Q(0,1).所以直线AC 与直线BD 交于点Q(0,1).(10分)解法2 设直线l 1:y =kx +4,A(x 1,y 1),B(x 2,y 2),则由对称性可知D(-x 1,y 1),C(-x 2,y 2),且k =y 2-y 1x 2-x 1.联立⎩⎪⎨⎪⎧x 28+y 24=1,y =kx +4,削去y 得(1+2k 2)x 2+16kx +24=0,Δ=(16k)2-4(1+2k 2)·24=64k 2-96>0.所以x 1+x 2=16k 1+2k 2,x 1·x 2=241+2k 2.(6分)直线AC 的方程为y =-y 2-y 1x 2+x 1(x -x 1)+y 1=-y 2-y 1x 2+x 1(x -x 1)+kx 1+4. 直线BD 的方程为y =y 2-y 1x 2+x 1(x -x 2)+y 2=y 2-y 1x 2+x 1(x -x 2)+kx 2+4.联立直线AC 和直线BD 的方程并化简得k(x 1+x 2)=y 2-y 1x 2+x 1,即k (x 1-x 2)y 2-y 1=1x 2+x 1=2x x 2+x 1-1,即k-k =-1=2xx 2+x 1-1,解得x =0.在直线AC 的方程中,令x =0,得y =-y 2-y 1x 2+x 1(-x 1)+kx 1+4=-kx 2-kx 1x 2+x 1(-x 1)+kx 1+4=2kx 2x 1x 2+x 1+4. 将x 1+x 2=-16k 1+2k 2,x 1·x 2=241+2k 2代入计算得y =2kx 2x 1x 2+x 1+4=48k 1+2k 2-16k 1+2k 2+4=-3+4=1.同理可得,在直线BD 的方程中,令x =0,得y =2kx 2x 1x 2+x 1+4=48k 1+2k 2-16k 1+2k 2+4=-3+4=1.故直线AC 与直线BD 交于点Q(0,1).(3)由(2)可知AC 2=(x 1+x 2)2+(y 1-y 2)2=(x 1+x 2)2+k 2(x 1-x 2)2=(x 1+x 2)2+k 2[](x 1+x 2)2-4x 1·x 2=162k 2(1+2k 2)2+k 2⎣⎡⎦⎤162k 2(1+2k 2)2-4×241+2k 2=16×4k 4+10k 24k 4+4k 2+1 =16⎝ ⎛⎭⎪⎫1+6k 2-14k 4+4k 2+1.(12分) 令t =6k 2-1,则k 2=t +16.又由Δ=162k 2-4×24×(1+2k 2)>0得k 2>32,所以t>8,所以AC 2=16+]=16(1+9tt 2+8t +16]=16(1+9t +16t +8).(14分) 因为⎝⎛⎭⎫t +16t +8′=1-16t 2>0在t⊥(8,+∞)上恒成立, 所以t +16t +8在t⊥(8,+∞)上单调递增,所以t +16t +8>18, 0<9t +16t +8<12,1<1+9t +16t +8<32.所以16<AC 2<24,4<AC<26,所以线段AC 长的取值范围是(4,36).(16分)2、(2018扬州期末)已知椭圆E 1:x 2a 2+y 2b 2=1(a>b>0),若椭圆E 2:x 2ma 2+y 2mb 2=1(a>b>0,m>1),则称椭圆E 2与椭圆E 1“相似”.(1) 求经过点(2,1),且与椭圆E 1:x 22+y 2=1“相似”的椭圆E 2的方程.(2) 若椭圆E 1与椭圆E 2“相似”,且m =4,椭圆E 1的离心率为22,P 在椭圆E 2上,过P 的直线l 交椭圆E 1于A ,B 两点,且AP →=λAB →.①若B 的坐标为(0,2),且λ=2,求直线l 的方程; ②若直线OP ,OA 的斜率之积为-12,求实数λ的值.规范解答 (1) 设椭圆E 2的方程为x 22m +y 2m =1,将点(2,1)代入得m =2, 所以椭圆E 2的方程为x 24+y 22=1.(3分)(2) 因为椭圆E 1的离心率为22,故a 2=2b 2,所以椭圆E 1:x 2+2y 2=2b 2.又椭圆E 2与椭圆E 1“相似”,且m =4,所以椭圆E 2:x 2+2y 2=8b 2.设A(x 1,y 1),B(x 2,y 2),P(x 0,y 0). ①解法1(设线法) 由题意得b =2,所以椭圆E 1:x 2+2y 2=8.当直线l 斜率不存在时,B(0,2),A(0,-2),P(0,4),不满足AP →=2AB →,从而直线l 斜率存在,可设直线l :y =kx +2,代入椭圆E 1:x 2+2y 2=8得(1+2k 2)x 2+8kx =0, 解得x 1=-8k1+2k 2,x 2=0,故y 1=2-4k 21+2k 2,y 2=2,所以A ⎝ ⎛⎭⎪⎫-8k 1+2k 2,2-4k 21+2k 2.(5分)又AP →=2AB →,即B 为AP 中点,所以P ⎝ ⎛⎭⎪⎫8k 1+2k 2,2+12k 21+2k 2,(6分) 代入椭圆E 2:x 2+2y 2=32得⎝⎛⎭⎫8k 1+2k 22+2⎝ ⎛⎭⎪⎫2+12k 21+2k 22=32,即20k 4+4k 2-3=0,即(10k 2-3)(2k 2+1)=0,所以k =±3010,所以直线l 的方程为y =±3010x +2.(8分)解法2(设点法) 由题意得b =2,所以椭圆E 1:x 2+2y 2=8,E 2:x 2+2y 2=32.由A(x 1,y 1),B(0,2),则P(-x 1,4-y 1).代入椭圆得⎩⎪⎨⎪⎧x 21+2y 21=8,x 21+2(4-y 1)2=32,解得y 1=12,故x 1=±302,(6分) 所以直线l 的斜率k =±3010,所以直线l 的方程为y =±3010x +2.(8分)②由题意得x 20+2y 20=8b 2,x 21+2y 21=2b 2,x 22+2y 22=2b 2,解法1(设点法) 由直线OP ,OA 的斜率之积为-12,得y 0x 0·y 1x 1=-12,即x 0x 1+2y 0y 1=0. 又AP →=λAB →,则(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+(λ-1)x 1λ,y 2=y 0+(λ-1)y 1λ,(12分)所以⎣⎢⎡⎦⎥⎤x 0+(λ-1)x 1λ2+2⎣⎢⎡⎦⎥⎤y 0+(λ-1)y 1λ2=2b 2, 则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2,(x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2,所以λ=52.(16分)解法2(设线法) 不妨设点P 在第一象限,设直线OP :y =kx(k>0),代入椭圆E 2:x 2+2y 2=8b 2, 解得x 0=22b 1+2k 2,则y 0=22bk1+2k 2.直线OP ,OA 的斜率之积为-12,则直线OA :y =-12k x ,代入椭圆E 1:x 2+2y 2=2b 2, 解得x 1=-2bk 1+2k 2,则y 1=b1+2k 2.又AP →=λAB →,则(x 0-x 1,y 0-y 1)=λ(x 2-x 1,y 2-y 1),解得⎩⎪⎨⎪⎧x 2=x 0+(λ-1)x 1λ,y 2=y 0+(λ-1)y 1λ,(12分)所以⎣⎢⎡⎦⎥⎤x 0+(λ-1)x 1λ2+2⎣⎢⎡⎦⎥⎤y 0+(λ-1)y 1λ2=2b 2, 则x 20+2(λ-1)x 0x 1+(λ-1)2x 21+2y 20+4(λ-1)y 0y 1+2(λ-1)2y 21=2λ2b 2,(x 20+2y 20)+2(λ-1)(x 0x 1+2y 0y 1)+(λ-1)2(x 21+2y 21)=2λ2b 2,所以8b 2+2(λ-1)[22b 1+2k 2·(-2bk1+2k 2)+2·22bk 1+2k 2·b1+2k 2]+(λ-1)2·2b 2=2λ2b 2,即8b 2+(λ-1)2·2b 2=2λ2b 2,即4+(λ-1)2=λ2,所以λ=52.(16分)3、(2017南通、扬州、淮安、宿迁、泰州、徐州六市二调)如图,在平面直角坐标系xOy 中,已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为23,C 为椭圆上位于第一象限内的一点. (1) 若点C 的坐标为⎝⎛⎭⎫2,53,求a ,b 的值;(2) 设A 为椭圆的左顶点,B 为椭圆上一点,且AB →=12OC →,求直线AB 的斜率.思路分析 (1) 由e =c a =23,得a 2∶b 2∶c 2=9∶5∶4.(2) 设点C 的坐标,则能用C 的坐标表示B 的坐标,由B ,C 两点在椭圆上可解出点C 的坐标.规范解答 (1) 由e =c a =23,得a 2∶b 2∶c 2=9∶5∶4.设椭圆方程为x 29λ2+y 25λ2=1(λ>0).(3分)把C 的坐标代入,得49λ2+59λ2=1,解得λ2=1,所以a =3,b = 5.(5分)(2) 由(1)可设椭圆方程为x 29λ2+y 25λ2=1(λ>0),此时A (-3λ,0).设C (3λx 0,5λy 0),其中x 0>0,y 0>0,由AB →=12OC →,得B ⎝⎛⎭⎫-3λ+32λx 0,52λy 0.(8分)由点B ,C 均在椭圆上,得⎩⎪⎨⎪⎧x 0-22+y 20=4,x 20+y 20=1,解得x 0=14,取y 0=154.(12分) 所以直线AB 的斜率k AB =k OC =5λy 03λx 0=53×15=533.(14分)4、(2017无锡期末)已知椭圆x 24+y 23=1,动直线l 与椭圆交于B ,C 两点(点B 在第一象限).(1) 若点B 的坐标为⎝⎛⎭⎫1,32,求△OBC 的面积的最大值;(2) 设B (x 1,y 1),C (x 2,y 2),且3y 1+y 2=0,求当△OBC 的面积最大时直线l 的方程.规范解答 (1) 直线OB 方程为y =32x ,即3x -2y =0,设过点C 且平行于OB 的直线l ′方程为y =32x +b .(2分)则当l ′与椭圆只有一个公共点时,△OBC 的面积最大. ⎩⎨⎧x 24+y 23=1,y =32x +b ,消去y 整理得3x 2+3bx +b 2-3=0,(4分) 此时Δ=9b 2-12(b 2-3),令Δ=0,解得b =±23,当b =23时,C ⎝⎛⎭⎫-3,32;当b =-23时,C ⎝⎛⎭⎫3,-32,(6分)所以△OBC 面积的最大值=12×1+94×|33+3|13= 3.(8分) (2) 显然,直线l 与y 轴不垂直,设直线l 的方程为x =my +n .由⎩⎪⎨⎪⎧x 24+y 23=1,x =my +n ,消去x 并整理得(3m 2+4)y 2+6mny +3n 2-12=0, 所以⎩⎪⎨⎪⎧y 1+y 2=-6nm 3m 2+4,y 1y 2=3n 2-123m 2+4. 因为3y 1+y 2=0,所以⎩⎪⎨⎪⎧y 1=3nm3m 2+4,y 21=4-n23m 2+4,从而9n 2m 23m 2+42=4-n 23m 2+4,即n 2=3m 2+43m 2+1,(10分)所以S △OBC =12|n |·|y 1-y 2|=2|n |·|y 1|=6|m |n 23m 2+4=6|m |3m 2+1.(12分)因为B 在第一象限,所以x 1=my 1+n =3m 2n3m 2+4+n >0,所以n >0. 因为y 1>0,所以m >0,所以S △OBC =6m 3m 2+1=63m +1m≤623=3当且仅当3m =1m ,即m =33时取等号,(14分)此时n =102,所以直线l 的方程为x =33y +102,即y =3x -302.(16分)5、(2018南京、盐城、连云港二模)如图,在平面直角坐标系xOy 中,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,上顶点A 到右焦点的距离为 2.过点D(0,m)(m≠0)作不垂直于x 轴,y 轴的直线l 交椭圆E 于P ,Q 两点,C 为线段PQ 的中点,且AC⊥OC.(1) 求椭圆E 的方程;(2) 求实数m 的取值范围;(3) 延长AC 交椭圆E 于点B ,记⊥AOB 与⊥AOC 的面积分别为S 1,S 2,若S 1S 2=83,求直线l 的方程.思路分析 用代数法处理圆锥曲线综合题的常见方法有两种:设点法、设线法,本题第(2),(3)问都分别采用设线法和设点法解题.第(2)问,欲求实数m 的取值范围,则需建立m 与其他参数的关系,进而借助其他参数的取值范围求解.解法1是设线法,先建立m 与直线l 斜率k 的等式关系,再由直线与椭圆相交得到的k 的取值范围来求解m 的取值范围;解法2是设点法,先建立m 与点C(x 0,y 0)坐标间的等式关系,再借助线段PQ 的中点C 在椭圆内部求解m 的取值范围.第(3)问,选取面积的表示形式是解决问题的关键,本题选择 S 1=12AO ×|x B |,S 2 =12AO ×|x C |时, S 1S 2=⎪⎪⎪⎪x B x C ,进而在第(2)问的基础上分别用k 或m 表示x B ,x C 求解.规范解答 (1) 因为⎩⎪⎨⎪⎧c a =22,a =2,所以c =1,b 2=a 2-c 2=1,所以椭圆E 的方程为x 22+y 2=1.(2分)(2) 解法1(设线法) 由(1)得A(0,1).设P(x 1,y 1),Q(x 2,y 2),C(x 0,y 0).设直线l 方程为y =kx +m(k≠0), 将其与椭圆E 的方程联立,消去y 得(1+2k 2)x 2+4kmx +2m 2-2=0 (*),所以x 1+x 2=-4km1+2k 2,(4分)所以x 0=x 1+x 22=-2km 1+2k 2,y 0=kx 0+m =m 1+2k 2,即C ⎝⎛⎭⎫-2km 1+2k 2,m 1+2k 2, 所以k AC =y 0-1x 0=m1+2k 2-1-2km 1+2k 2=2k 2+1-m2km .(6分)又因为k OC =y 0x 0=m 1+2k 2-2km 1+2k 2=-12k ,且AC⊥OC ,所以k AC ·k OC =2k 2+1-m 2km ·⎝⎛⎭⎫-12k =-1, 整理得m =2k 2+14k 2+1.(8分)因为k≠0,则m =2k 2+14k 2+1=4k 2+1-2k 24k 2+1=1-2k 24k 2+1=1-12+12k 2∈⎝⎛⎭⎫12,1,此时Δ=8(2k 2+1-m)>0,所以实数m 的取值范围为⎝⎛⎭⎫12,1.(10分)解法2(设点法) 由(1)得A(0,1).设P(x 1,y 1),Q(x 2,y 2),C(x 0,y 0),其中x 0,y 0均不为0,且x 1≠x 2.因为P ,Q 两点都在椭圆E 上,所以x 21+2y 21=2 且x 22+2y 22=2,两式相减得y 2-y 1x 2-x 1×y 0x 0=-12.(4分)又k PQ =k CD ,即y 2-y 1x 2-x 1=y 0-m x 0 ,所以y 0-m x 0×y 0x 0=-12,(6分) 即x 20=2y 0(m -y 0). ⊥又AC⊥OC ,所以y 0-1x 0×y 0x 0=-1,(8分)即x 20=y 0(1-y 0). ⊥ 由⊥⊥得y 0=2m -1,x 20=(1-2m) (2m -2)⊥(0,2), 所以12<m <1.(10分)(3) 解法1 设B(x 3,y 3),由(2)解法1知k OC =-12k . k AB =-1k OC =2k ,所以直线AB 的方程为y =2kx +1, 与椭圆E 方程联立解得x =-8k1+8k 2或x =0(舍), 即x 3=-8k1+8k 2.(12分)又因为x 0=-2km 1+2k 2=-2k 1+2k 2×2k 2+14k 2+1=-2k1+4k 2, 所以S 1S 2=12AO ×|x 3|12AO ×|x 0|=⎪⎪⎪⎪⎪⎪-8k 1+8k 2-2k1+4k 2=4+16k 21+8k 2.(14分) 因为S 1S 2=83,所以4+16k 21+8k 2=83,解得k =±12, 此时m =2k 2+14k 2+1=34,点D 坐标为⎝⎛⎭⎫0,34, 所以直线l 的方程为y =±12x +34.(16分)解法2 设B(x 3,y 3),点B 在椭圆E 上,所以x 23+2y 23=2.又AC⊥OC ,所以y 3-1x 3×y 0x 0=-1,即y 3=-x 0y 0x 3+1, 代入上式消去y 3,得x 3=4x 0y 0y 20+2x 20(x 3=0舍),(12分) 所以S 1S 2=12AO×|x 3|12AO ×|x 0|=⎪⎪⎪⎪x 3x 0=⎪⎪⎪⎪4y 0y 20+2x 20.由(2)解法2知y 0=2m -1,x 20=(1-2m) (2m -2),12<m <1,所以S 1S 2=⎪⎪⎪⎪⎪⎪4(2m -1)(2m -1)2+2(1-2m )(2m -2)=⎪⎪⎪⎪43-2m =43-2m .(14分) 因为S 1S 2=83,所以43-2m =83,解得m =34,此时y 0=2m -1=12,x 20=(1-2m) (2m -2)=14,所以x 0=±12,所以点C 坐标为⎝⎛⎭⎫±12,12,点D 坐标为⎝⎛⎭⎫0,34,所以直线l 的方程为y =±12x +34.(16分)。
2020高考—圆锥曲线(解答+答案)

2020年高考——圆锥曲线1.(20全国Ⅰ文21)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.2.(20全国Ⅰ理20)(12分)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅=,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D . (1)求E 的方程; (2)证明:直线CD 过定点.3.(20全国Ⅱ文19)(12 分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴重直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)若C 1的四个顶点到C 2的准线距离之和为12,求C 1与C 2的标准方程.4.(20全国Ⅱ理19)(12分)已知椭圆C 1:22221x y a b+=(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |. (1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.5.(20全国Ⅲ文21)(12分)已知椭圆222:1(05)25x y C m m +=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.6.(20全国Ⅲ理20)(12分)已知椭圆222:1(05)25x y C m m+=<<,A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ △的面积.7.(20新高考Ⅰ22)(12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为2,且过点A (2,1).(1)求C 的方程:(2)点M ,N 在C 上,且AM ⊥AN ,AD ⊥MN ,D 为垂足.证明:存在定点Q ,使得|DQ |为定值.8.(20天津18)(本小题满分15分)已知椭圆22221(0)x y a b a b+=>>的一个顶点为(0,3)A -,右焦点为F ,且||||OA OF =,其中O 为原点.(Ⅰ)求椭圆的方程;(Ⅱ)已知点C 满足3OC OF =,点B 在椭圆上(B 异于椭圆的顶点),直线AB 与以C 为圆心的圆相切于点P ,且P 为线段AB 的中点.求直线AB 的方程.9.(20浙江21)(本题满分15分)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于点M (B ,M 不同于A ). (Ⅰ)若116p =,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.10.(20江苏18)(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求12AF F △的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅的最小值;(3)设点M 在椭圆E 上,记OAB △与MAB △的面积分别为S 1,S 2,若213S S =,求点M 的坐标.11.(20北京20)(本小题15分)已知椭圆2222:1x y C a b+=过点(2,1)A --,且2a b =.(Ⅰ)求椭圆C 的方程:(Ⅱ)过点(4,0)B -的直线l 交椭圆C 于点,M N ,直线,MA NA 分别交直线4x =-于点,P Q .求||||PB BQ 的值.参考答案:1.解:(1)由题设得(,0),(,0),(0,1)A a B a G -.则(,1)AG a =,(,1)GB a =-.由8AG GB ⋅=得218a -=,即3a =.所以E 的方程为2219x y +=.(2)设1122(,),(,),(6,)C x y D x y P t .若0t ≠,设直线CD 的方程为x my n =+,由题意可知33n -<<. 由于直线PA 的方程为(3)9t y x =+,所以11(3)9ty x =+.直线PB 的方程为(3)3t y x =-,所以22(3)3ty x =-.可得12213(3)(3)y x y x -=+.由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0m y y m n y y n ++++++=.①将x my n =+代入2219xy +=得222(9)290m y mny n +++-=.所以212122229,99mn n y y y y m m -+=-=-++. 代入①式得2222(27)(9)2(3)(3)(9)0m n m n mn n m +--++++=. 解得3n =-(舍去),32n =. 故直线CD 的方程为32x my =+,即直线CD 过定点3(,0)2. 若0t =,则直线CD 的方程为0y =,过点3(,0)2.综上,直线CD 过定点3(,0)2.2.解:(1)由题设得A (–a ,0),B (a ,0),G (0,1).则(,1)AG a =,GB =(a ,–1).由AG GB ⋅=8得a 2–1=8,即a =3.所以E 的方程为29x +y 2=1.(2)设C (x 1,y 1),D (x 2,y 2),P (6,t ).若t ≠0,设直线CD 的方程为x =my +n ,由题意可知–3<n <3. 由于直线PA 的方程为y =9t (x +3),所以y 1=9t (x 1+3).直线PB 的方程为y =3t (x –3),所以y 2=3t(x 2–3).可得3y 1(x 2–3)=y 2(x 1+3).由于222219x y +=,故2222(3)(3)9x x y +-=-,可得121227(3)(3)y y x x =-++, 即221212(27)(3)()(3)0.m y y m n y y n ++++++=①将x my n =+代入2219xy +=得222(9)290.m y mny n +++-=所以12229mn y y m +=-+,212299n y y m -=+.代入①式得2222(27)(9)2(3)(3)(9)0.m n m n mn n m +--++++= 解得n =–3(含去),n =32.故直线CD 的方程为3=2x my +,即直线CD 过定点(32,0). 若t =0,则直线CD 的方程为y =0,过点(32,0).综上,直线CD 过定点(32,0).3.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,所以1C 的四个顶点坐标分别为(2,0)c ,(2,0)c -,),(0,),2C 的准线为x c =-. 由已知得312c c c c +++=,即2c =.所以1C 的标准方程为2211612x y +=,2C 的标准方程为28y x =.4.解:(1)由已知可设2C 的方程为24y cx =,其中c =不妨设,A C 在第一象限,由题设得,A B 的纵坐标分别为2b a ,2b a -;,C D 的纵坐标分别为2c ,2c -,故22||b AB a=,||4CD c =.由4||||3CD AB =得2843b c a=,即2322()c c a a ⨯=-,解得2c a =-(舍去),12c a =.所以1C 的离心率为12.(2)由(1)知2a c =,b =,故22122:143x y C c c+=,设00(,)M x y ,则220022143x y c c +=,2004y cx =,故20024143x x c c+=.①由于2C 的准线为x c =-,所以0||MF x c =+,而||5MF =,故05x c =-,代入①得22(5)4(5)143c c c c --+=,即2230c c --=,解得1c =-(舍去),3c =. 所以1C 的标准方程为2213627x y +=,2C 的标准方程为212y x =.5.解:(1)由题设可得54=,得22516m =,所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >, 由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ,故11APQ △的面积为1522=. 22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q的距离为26,故22AP Q △的面积为152262⨯=. 综上,APQ △的面积为52.6.解:(1)由题设可得54=,得22516m =, 所以C 的方程为221252516x y +=. (2)设(,),(6,)P P Q P x y Q y ,根据对称性可设0Q y >,由题意知0P y >,由已知可得(5,0)B ,直线BP 的方程为1(5)Qy x y =--,所以||BP y =,||BQ =, 因为||||BP BQ =,所以1P y =,将1P y =代入C 的方程,解得3P x =或3-. 由直线BP 的方程得2Q y =或8.所以点,P Q 的坐标分别为1122(3,1),(6,2);(3,1),(6,8)P Q P Q -.11||PQ 11PQ 的方程为13y x =,点(5,0)A -到直线11PQ 的距离为2,故11APQ △的面积为1522=.22||PQ =22P Q 的方程为71093y x =+,点A 到直线22P Q故22AP Q △的面积为1522=. 综上,APQ △的面积为52.7.解:(1)由题设得22411a b +=,22212a b a -=,解得26a =,23b =. 所以C 的方程为22163x y +=. (2)设11(,)M x y ,22(,)N x y .若直线MN 与x 轴不垂直,设直线MN 的方程为y kx m =+,代入22163x y +=得222(12)4260k x kmx m +++-=. 于是2121222426,1212km m x x x x k k -+=-=++.①由AM AN ⊥知0AM AN ⋅=,故1212(2)(2)(1)(1)0x x y y --+--=, 可得221212(1)(2)()(1)40k x x km k x x m ++--++-+=.将①代入上式可得22222264(1)(2)(1)401212m kmk km k m k k-+---+-+=++.整理得(231)(21)0k m k m +++-=.因为(2,1)A 不在直线MN 上,所以210k m +-≠,故2310k m ++=,1k ≠.于是MN 的方程为21()(1)33y k x k =--≠. 所以直线MN 过点21(,)33P -. 若直线MN 与x 轴垂直,可得11(,)N x y -.由0AM AN ⋅=得1111(2)(2)(1)(1)0x x y y --+---=. 又2211163x y +=,可得2113840x x -+=.解得12x =(舍去),123x =. 此时直线MN 过点21(,)33P -. 令Q 为AP 的中点,即41(,)33Q . 若D 与P 不重合,则由题设知AP 是Rt ADP △的斜边,故1||||2DQ AP ==. 若D 与P 重合,则1||||2DQ AP =. 综上,存在点41(,)33Q ,使得||DQ 为定值.8.(Ⅰ)解:由已知可得3b =.记半焦距为c ,由||||OF OA =可得3c b ==.又由222a b c =+,可得218a =.所以,椭圆的方程为221189x y +=. (Ⅱ)解:因为直线AB 与以C 为圆心的圆相切于点P ,所以AB CP ⊥.依题意,直线AB 和直线CP 的斜率均存在.设直线AB 的方程为3y kx =-.由方程组223,1,189y kx x y =-⎧⎪⎨+=⎪⎩消去y ,可得()2221120k x kx +-=,解得0x =,或21221k x k =+.依题意,可得点B 的坐标为2221263,2121k k k k ⎛⎫- ⎪++⎝⎭.因为P 为线段AB 的中点,点A 的坐标为(0,3)-,所以点P 的坐标为2263,2121k k k -⎛⎫ ⎪++⎝⎭.由3OC OF =,得点C 的坐标为(1,0),故直线CP 的斜率为2230216121k k k --+-+,即23261k k -+.又因为AB CP ⊥,所以231261k k k ⋅=--+,整理得22310k k -+=,解得12k =,或1k =. 所以,直线AB 的方程为132y x =-,或3y x =-.9.(Ⅰ)由116p =得2C 的焦点坐标是1(,0)32. (Ⅱ)由题意可设直线:(0,0)l x my t m t =+≠≠,点00(,)A x y .将直线l 的方程代入椭圆221:12x C y +=得222(2)220m y mty t +++-=, 所以点M 的纵坐标22M mt y m =-+. 将直线l 的方程代入抛物线22:2C y px =得2220y pmy pt --=,所以02M y y pt =-,解得202(2)p m y m+=, 因此22022(2)p m x m+=. 由220012x y +=得2421224()2()160m m p m m =+++≥,所以当m,t =时,p.10.解:(1)椭圆22:143x y E +=的长轴长为2a ,短轴长为2b ,焦距为2c , 则2224,3,1a b c ===.所以12AF F △的周长为226a c +=.(2)椭圆E 的右准线为4x =.设(,0),(4,)P x Q y ,则(,0),(4,)OP x QP x y ==--,2(4)(2)44,OP QP x x x ⋅=-=--≥-在2x =时取等号.所以OP QP ⋅的最小值为4-.(3)因为椭圆22:143x y E +=的左、右焦点分别为12,F F ,点A 在椭圆E 上且在第一象限内,212AF F F ⊥, 则123(1,0),(1,0),(1,)2F F A -. 所以直线:3430.AB x y -+= 设(,)M x y ,因为213S S =,所以点M 到直线AB 距离等于点O 到直线AB 距离的3倍. 由此得|343||30403|355x y -+⨯-⨯+=⨯, 则34120x y -+=或3460x y --=. 由2234120,143x y x y -+=⎧⎪⎨+=⎪⎩得2724320x x ++=,此方程无解; 由223460,143x y x y --=⎧⎪⎨+=⎪⎩得271240x x --=,所以2x =或27x =-. 代入直线:3460l x y --=,对应分别得0y =或127y =-. 因此点M 的坐标为(2,0)或212(,)77--.11.。
热点6:弦或弦长为定值、最值问题-圆锥曲线高考热点终极破解

圆锥曲线高考考查热点分析热点六:弦或弦长为定值、最值问题1、已知△OFQ 的面积为26,OF FQ m ⋅=(1646m ≤≤,求OFQ ∠正切值的取值范围;(2)设以O 为中心,F 为焦点的双曲线经过点Q (如图),26||,(1)OF c m c ==- 当 ||OQ 取得最小值时,求此双曲线的方程。
解析:(1)设OFQ θ∠=||||cos()1||||sin 62OF FQ mOF FQ πθθ⎧⋅-=⎪⎨⋅⋅=⎪⎩46tan θ⇒= 646m ≤≤4tan 1θ-≤≤-(2)设所求的双曲线方程为221111221(0,0),(,),(,)x y a b Q x y FQ x c y a b-= >> =-则∴11||||262OFQ S OF y ∆=⋅=146y = 又∵OF FQ m ⋅=,∴21116(,0)(,)()(1OF FQ c x c y x c c c ⋅=⋅-=-⋅= ) 22211126963,||12.8c x OQ x y c ∴= ∴=+=+≥当且仅当4c =时,||OQ 最小,此时Q 的坐标是(6,6)或(6,6)22222266141216a ab b a b ⎧⎧-==⎪⎪∴ ⇒⎨⎨=⎪⎩⎪+=⎩,所求方程为22 1.412x y -= 2、已知椭圆14222=+y x 两焦点分别为F 1、F 2,P 是椭圆在第一象限弧上一点,并满足121=⋅PF PF ,过P 作倾斜角互补的两条直线PA 、PB 分别交椭圆于A 、B 两点.(Ⅰ)求P 点坐标;(Ⅱ)求证直线AB 的斜率为定值;(Ⅲ)求△PAB 面积的最大值.解:(Ⅰ)由题可得)2,0(1F ,)20(2-F ,设)0,0(),(00000>>y x y x P 则)2,(001y x PF --=,)2,(001y x PF ---=,∴1)2(20221=--=⋅y x PF PF ,∵点),(00y x P 在曲线上,则1422020=+y x ,∴242020y x -=,从而1)2(242020=---y y ,得20=y .则点P 的坐标为)2,1(. (Ⅱ)由题意知,两直线PA 、PB 的斜率必存在,设PB 的斜率为)0(>k k ,则BP 的直线方程为:)1(2--x k y .由⎪⎩⎪⎨⎧=+-=-142)1(222y x x k y 得x k k x k )2(2)2(22-++ 04)2(2=--+k ,设),(B B y x B ,则2222222212)2(2,2)2(21k k k k k k x k k k x B B +--=-+-=+-=+,同理可得222)222k k k x A +-+=,则2224k kx x B A +=-,228)1()1(k kx k x k y y B A B A +=----=-.所以:AB 的斜率2=--=B A B A ABx x y y k 为定值. (Ⅲ)设AB 的直线方程:m x y +=2.由⎪⎩⎪⎨⎧=++=142222y x mx y ,得0422422=-++m mx x ,由0)4(16)22(22>--=∆m m ,得2222<<-m P 到AB 的距离为3||m d =, 则3||3)214(21||212m m d AB S PAB⋅⋅-=⋅=∆2)28(81)8(8122222=+-≤+-=m m m m 。
2020年高考山东版高考理科数学 10.4 圆锥曲线的综合问题

(1)求C的方程; (2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的 中点为M.证明:直线OM的斜率与直线l的斜率的乘积为定值.
解析
(1)由题意有
a2 a
b2
= 2 2
, a42 + b22 =1,解得a2=8,b2=4.
所以C的方程为x 2 +y 2 =1.
84
(2)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(xM,yM).将y=kx+b代
入x 2 +y 2 =1得(2k2+1)x2+4kbx+2b2-8=0.
84
故xM=x1 x2
2
= 2kb
2k 2 1
,yM=k·xM+b=2 k 2b1
.
于是直线OM的斜率kOM=xy MM =-2 1k ,即kOM·k=-12 .
消去y得(4k2+3)x2-8k2x+4k2-12=0,
得xM= 12 · 4k82k2
3
= 4k 2
4k 2
3
,yM=k(xM-1)=-4 k32k
3
,
同理可得xN= 4
4 3k
2
,yN=- 1 (xN-1)= 3k
k
4 3k
2
,
若M,N关于x轴对称后得到M',N',
则得到的直线M'N'与MN关于x轴对称,
是k>0,k≠3.
由(1)得OM的方程为y=- 9 x.
k
设点P的横坐标为xP.
由
y
9 k
【2020届】高考数学圆锥曲线专题复习:圆锥曲线之轨迹方程的求法

圆锥曲线之轨迹方程的求法(一)【复习目标】□1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤;□2. 会用直接法、定义法、相关点法(坐标代换法)求方程。
【基础练习】1.到两坐标轴的距离相等的动点的轨迹方程是( )A .y x =B .||y x =C .22y x =D .220x y +=2.已知点(,)P x y 4,则动点P 的轨迹是( )A .椭圆B .双曲线C .两条射线D .以上都不对3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a+=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________.【例题精选】一、直接法求曲线方程根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。
即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。
例1.已知ABC ∆中,2,AB BC m AC==,试求A 点的轨迹方程,并说明轨迹是什么图形.练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。
点P 的轨迹是什么曲线?二定义法若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。
例1.⊙C :22(16x y +=内部一点0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于BQ R A P o yx P ,求点P 的轨迹方程.例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12。
记点P 的轨迹为曲线C 求点P 的轨迹方程;练习.若动圆与圆1)2(:221=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 .三代入法有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。
2023年高考数学热点专题解析几何模型通关圆锥曲线中的定点问题(解析版)

圆锥曲线中的定点问题思路引导处理圆锥曲线中定点问题的方法:(1)探索直线过定点时,可设出直线方程为,然后利用条件建立,k m 等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.母题呈现考法1参数法求证定点【例1】(2022·临沂、枣庄二模联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,其左、右焦点分别为F 1,F 2,点P 为坐标平面内的一点,且|OP →|=32PF 1→·PF 2→=-34,O 为坐标原点.(1)求椭圆C 的方程;(2)设M 为椭圆C 的左顶点,A ,B 是椭圆C 上两个不同的点,直线MA ,MB 的倾斜角分别为α,β,且α+β=π2.证明:直线AB 恒过定点,并求出该定点的坐标.【解题指导】【解析】(1)设P 点坐标为(x 0,y 0),F 1(-c,0),F 2(c,0),则PF 1→=(-c -x 0,-y 0),PF 2→=(c -x 0,-y 0).由题意得x 20+y 20=94,x 0+cx 0-c+y 20=-34,解得c 2=3,∴c = 3.又e =c a =32,∴a =2.∴b 2=a 2-c 2=1.∴所求椭圆C 的方程为x 24+y 2=1.(2)设直线AB 方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2).y 2=1,kx +m ,消去y 得(4k 2+1)x 2+8kmx +4m 2-4=0.∴x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1.又由α+β=π2,∴tan α·tan β=1,设直线MA ,MB 斜率分别为k 1,k 2,则k 1k 2=1,∴y 1x 1+2·y 2x 2+2=1,即(x 1+2)(x 2+2)=y 1y 2.∴(x 1+2)(x 2+2)=(kx 1+m )(kx 2+m ),∴(k 2-1)x 1x 2+(km -2)(x 1+x 2)+m 2-4=0,∴(k 2-1)4m 2-44k 2+1+(km -2)28()41kmk -++m 2-4=0,化简得20k 2-16km +3m 2=0,解得m =2k ,或m =103k .当m =2k 时,y =kx +2k ,过定点(-2,0),不合题意(舍去).当m =103k 时,y =kx +103k 10,0)3-,∴直线AB 恒过定点10(,0)3-【例2】(2022·福建·漳州三模)已知抛物线2:4C y x =的准线为l ,M 为l 上一动点,过点M 作抛物线C 的切线,切点分别为,A B .(1)求证:MAB ∆是直角三角形;(2)x 轴上是否存在一定点P ,使,,A P B 三点共线.【解题指导】【解析】(1)由已知得直线l 的方程为1x =-,设()1,M m -,切线斜率为k ,则切线方程为()1y m k x -=+,(2分)将其与24y x =联立消x 得244()0ky y m k -++=.所以1616()0k m k ∆=-+=,化简得210k mk +-=,(4分)所以121k k =-,所以MA MB ⊥.即MAB ∆是直角三角形.(6分)(2)由(1)知1616()0k m k ∆=-+=时,方程244()0ky y m k -++=的根为2y k=设切点221212,,,44y y A y B y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则121222,y y k k ==.因为121k k =-,所以121244y y k k ==-.(10分)设:AB l x ny t =+,【点拨】由M 点出发向抛物线作量条切线,则切点A,B 所在直线与抛物线有两个焦点且其斜率不为零与24y x =联立消x 得2440y ny t --=,则124y y t =-,所以44t -=-,解得1t =,所以直线AB 过定点()1,0P .即x 轴上存在一定点()1,0P ,使,,A P B 三点共线.(12分)【解题技法】圆锥曲线中定点问题的两种解法(1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.【跟踪训练】(2020·新课标Ⅰ卷理科)已知A 、B 分别为椭圆E :2221x y a+=(a >1)的左、右顶点,G 为E 的上顶点,8AG GB ⋅= ,P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D .(1)求E 的方程;(2)证明:直线CD 过定点.【解析】(1)依据题意作出如下图象:由椭圆方程222:1(1)x E y a a+=>可得:(),0A a -,(),0B a ,()0,1G ∴(),1AG a = ,(),1GB a =-∴218AG GB a ⋅=-=,∴29a =∴椭圆方程为:2219x y +=(2)设()06,P y ,则直线AP 的方程为:()()00363y y x -=+--,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++-=,解得:3x =-或20203279y x y -+=+将20203279y x y -+=+代入直线()039y y x =+可得:02069y y y =+所以点C 的坐标为20022003276,99y y y y ⎛⎫-+ ⎪++⎝⎭.同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫-- ⎪++⎝⎭当203y ≠时,∴直线CD 的方程为:0022200002222000022006291233327331191y y y y y y y x y y y y y y ⎛⎫-- ⎪++⎛⎫⎛⎫--⎝⎭-=-⎪ ⎪-+-++⎝⎭⎝⎭-++,整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫--+=-=- ⎪ ⎪+++--⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=- ⎪---⎝⎭所以直线CD 过定点3,02⎛⎫⎪⎝⎭.当203y =时,直线CD :32x =,直线过点3,02⎛⎫ ⎪⎝⎭.故直线CD 过定点3,02⎛⎫⎪⎝⎭.考法2先求后证法求证定点【例4】(2022·全国乙T21)已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()0,2,,12A B ⎛--⎫⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【解题指导】(1)将给定点代入设出的方程求解即可;(2)斜率不存在时探究定点→设出直线方程→与椭圆C 的方程联立→求HN 的方程→是否过定点.【解析】(1)设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.(2)3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N-,代入AB方程223y x=-,可得263,3T+,由MT TH=得到265,)3H.求得HN方程:(223y x=--,过点(0,2)-.②若过点(1,2)P-的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y--+=.联立22(2)0,134kx y kx y--+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k+-+++=,可得1221226(2)343(4)34k kx xkk kx xk+⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34ky ykk ky yk-+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x yk-+=+联立1,223y yy x=⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2yT y H y x y++-可求得此时1222112:()36y yHN y y x xy x x--=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y+-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k+++---+--=显然成立,综上,可得直线HN过定点(0,2).-【解题技法】(1)定点问题,先猜后证,可先考虑运动图形是否有对称性及特殊(或极端)位置猜想,如直线的水平位置、竖直位置,即k=0或k不存在时.(2)以曲线上的点为参数,设点P(x1,y1),利用点在曲线f(x,y)=0上,即f(x1,y1)=0消参.【跟踪训练】模拟训练(2)方法一:设PQ 方程为x my =()2222234433x my m y my x y =-⎧⇒-+⎨-=⎩以PQ 为直径的圆的方程为(1x x -()(22121212x x x x x x y y y -+++-+由对称性知以PQ 为直径的圆必过()21212120x x x x x x y y -+++=,而()21212212431m x x m y y m +=+-=-()()212121222x x my my m y y =--=22222434931313m x x m m m --∴-++---()()22313510m x m x ⎡⎤⇒-+--=⎣⎦∴以PQ 为直径的圆经过定点(1,0方法二:设PQ 方程为2,x my P =-()22222311233x my m y my x y =-⎧⇒--⎨-=⎩由对称性知以PQ 为直径的圆必过设以PQ 为直径的圆过(),0E t ,()()1210EP EQ x t x t y ∴⋅=⇒--+ 而()()21212122x x my my m y =--=2229122431313m m m m m -=⋅-⋅+=--【点睛】方法定睛:过定点问题的两大类型及解法(1)动直线l过定点问题.解法:设动直线方程得y=k(x+m),故动直线过定点(-(2)动曲线C过定点问题.解法:引入参变量建立曲线等于零,得出定点.7.(2023·浙江·模拟预测)已知双曲线为双曲线E的左、右顶点,P为直线(1)求双曲线E的标准方程.(2)直线CD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.理得1112,y y y y +(或1212,x x x x +),代入交点坐标后可得结论,如果是求动直线过定点,则可以引入参数求得动直线方程后,观察直线方程得定点.。
圆锥曲线的热点问题—定点、定值、探索性问题

索引
1.定点问题 圆锥曲线中的定点问题是高考命题的一个热点,也是圆锥曲线问题中的一个 难点.解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的, 定点问题必然是在变化中所表现出来的不变的量,那么就可以用变量表示问 题中的直线方程、数量积、比例关系等,而这些直线方程、数量积、比例关 系中不受变量影响的某个点,就是要求的定点.求解这类难点问题的关键就是 引进变化的参数表示直线方程、数量积、比例关系等,根据等式恒成立、数 式变换等寻找不受参数影响的量.
索引
思维升华
圆锥曲线中定点问题的两种解法 (1)引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变 化的量与参数何时没有关系,找到定点. (2)特殊到一般法,根据动点或动线的特殊情况探索出定点,再证明该定点与 变量无关.
索引
类型二 定值问题
例 2 已知椭圆的中心为坐标原点 O,焦点在 x 轴上,斜率为 1 且过椭圆右焦点 →→
索引
代入椭圆方程整理得 λ2(x21+3y21)+μ2(x22+3y22)+2λμ(x1x2+3y1y2)=3b2. 又∵x21+3y21=3b2,x22+3y22=3b2, x1x2+3y1y2=4x1x2-3c(x1+x2)+3c2=32c2-92c2+3c2=0, ∴λ2+μ2=1,故 λ2+μ2 为定值.
索引
又∵O→N∥a,∴13=ba22,∴a2=3b2, 故椭圆方程为 x2+3y2=3b2. 又过右焦点的直线 AB 的方程为 y=x-c. 联立yx=2+x3-y2c=,3b2, 得 4x2-6cx+3c2-3b2=0. ∴x1+x2=32c,x1x2=3c2-4 3b2=38c2. 设 M(x,y),则由O→M=λO→A+μO→B可得xy==λλyx11++μμyx22,,
圆锥曲线中的最值、范围、证明问题

第九节 圆锥曲线中的最值、范围、证明问题突破点(一) 圆锥曲线中的最值问题圆锥曲线中的最值问题是高考中的热点问题,常涉及不等式、函数的值域问题,综合性比较强,解法灵活多变,但总体上主要有两种方法:一是利用几何方法,即利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数方法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.考点贯通 抓高考命题的“形”与“神”利用几何性质求最值[例1] 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( )A .9,12B .8,11C .8,12D .10,12[解析] 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|P A |+|PB |=2a =10,连接P A ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|P A |+|PB |-2R =8;连接P A ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|P A |+|PB |+2R =12,即最小值和最大值分别为8,12.[答案] C[方法技巧]利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解,也叫做几何法.建立目标函数求最值本节主要包括3个知识点: 1.圆锥曲线中的最值问题; 2.圆锥曲线中的范围问题; 3.圆锥曲线中的几何证明问题.[例2] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF =3FM .(1)若|PF |=3,求点M 的坐标; (2)求△ABP 面积的最大值.[解] (1)由题意知焦点F (0,1),准线方程为y =-1. 设P (x 0,y 0),由抛物线定义知|PF |=y 0+1,得y 0=2, 所以P (22,2)或P (-22,2),由PF =3FM ,得M ⎝⎛⎭⎫-223,23或M ⎝⎛⎭⎫223,23. (2)设直线AB 的方程为y =kx +m ,点A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),由⎩⎪⎨⎪⎧y =kx +m ,x 2=4y ,得x 2-4kx -4m =0. 于是Δ=16k 2+16m >0,x 1+x 2=4k ,x 1x 2=-4m , 所以AB 中点M 的坐标为(2k,2k 2+m ).由PF =3FM ,得(-x 0,1-y 0)=3(2k,2k 2+m -1),所以⎩⎪⎨⎪⎧x 0=-6k ,y 0=4-6k 2-3m .由x 20=4y 0得k 2=-15m +415, 由Δ>0,k 2≥0,得-13<m ≤43.又因为|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=41+k 2·k 2+m , 点F (0,1)到直线AB 的距离为d =|m -1|1+k 2,所以S △ABP =4S △ABF =8|m -1|k 2+m =16153m 3-5m 2+m +1. 记f (m )=3m 3-5m 2+m +1⎝⎛⎭⎫-13<m ≤43, 令f ′(m )=9m 2-10m +1=0, 解得m 1=19,m 2=1,可得f (m )在⎝⎛⎭⎫-13,19上是增函数,在⎝⎛⎭⎫19,1上是减函数,在⎝⎛⎭⎫1,43上是增函数, 又f ⎝⎛⎭⎫19=256243>f ⎝⎛⎭⎫43=59.所以当m =19时,f (m )取到最大值256243,此时k =±5515.所以△ABP 面积的最大值为2565135. [方法技巧](1)当题目中给出的条件有明显的几何特征,考虑用图象性质来求解.(2)当题目中给出的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值.求函数最值的常用方法有配方法、判别式法、单调性法、三角换元法等.利用基本不等式求最值[例3] 已知椭圆M :x 2a 2+y 23=1(a >0)的一个焦点为F (-1,0),左、右顶点分别为A ,B .经过点F 的直线l 与椭圆M 交于C ,D 两点.(1)当直线l 的倾斜角为45°时,求线段CD 的长;(2)记△ABD 与△ABC 的面积分别为S 1和S 2,求|S 1-S 2|的最大值. [解] (1)由题意,c =1,b 2=3, 所以a 2=4,所以椭圆M 的方程为x 24+y 23=1,易求直线方程为y =x +1,联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =x +1,消去y ,得7x 2+8x -8=0,设C (x 1,y 1),D (x 2,y 2),Δ=288,x 1+x 2=-87,x 1x 2=-87,所以|CD |=2|x 1-x 2|= 2(x 1+x 2)2-4x 1x 2=247.(2)当直线l 的斜率不存在时,直线方程为x =-1, 此时△ABD 与△ABC 面积相等,|S 1-S 2|=0;当直线l 的斜率存在时,设直线方程为y =k (x +1)(k ≠0), 联立方程,得⎩⎪⎨⎪⎧x 24+y 23=1,y =k (x +1),消去y ,得(3+4k 2)x 2+8k 2x +4k 2-12=0, Δ>0,且x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2,此时|S 1-S 2|=2||y 2|-|y 1||=2|y 2+y 1|=2|k (x 2+1)+k (x 1+1)|=2|k (x 2+x 1)+2k |=12|k |3+4k 2,因为k ≠0,上式=123|k |+4|k |≤1223|k |·4|k |=12212=3当且仅当k =±32时等号成立,所以|S 1-S 2|的最大值为 3. [方法技巧](1)求最值问题时,一定要注意对特殊情况的讨论.如直线斜率不存在的情况,二次三项式最高次项的系数的讨论等.(2)利用基本不等式求函数的最值时,关键在于将函数变形为两项和或积的形式,然后用基本不等式求出最值.能力练通 抓应用体验的“得”与“失”1.[考点一]如图所示,已知直线l :y =kx -2与抛物线C :x 2=-2py (p >0)交于A ,B 两点,O 为坐标原点,OA +OB =(-4,-12).(1)求直线l 和抛物线C 的方程;(2)抛物线上一动点P 从A 到B 运动时,求△ABP 面积的最大值.解析:(1)由⎩⎪⎨⎪⎧y =kx -2,x 2=-2py ,得x 2+2pkx -4p =0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-2pk ,y 1+y 2=k (x 1+x 2)-4=-2pk 2-4. 因为OA +OB =(x 1+x 2,y 1+y 2)=(-2pk ,-2pk 2-4)=(-4,-12),所以⎩⎪⎨⎪⎧ -2pk =-4,-2pk 2-4=-12,解得⎩⎪⎨⎪⎧p =1,k =2.所以直线l 的方程为y =2x -2,抛物线C 的方程为x 2=-2y .(2)设P (x 0,y 0),依题意,知抛物线过点P 的切线与l 平行时,△ABP 的面积最大,又y ′=-x ,所以-x 0=2,故x 0=-2,y 0=-12x 20=-2,所以P (-2,-2).此时点P 到直线l 的距离d =|2×(-2)-(-2)-2|22+(-1)2=45=455.由⎩⎪⎨⎪⎧y =2x -2,x 2=-2y ,得x 2+4x -4=0,故x 1+x 2=-4,x 1x 2=-4, 所以|AB |=1+k 2×(x 1+x 2)2-4x 1x 2=1+22×(-4)2-4×(-4)=410. 所以△ABP 面积的最大值为410×4552=8 2.2.[考点二]平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,左、右焦点分别是F 1,F 2.以F 1为圆心、以3为半径的圆与以F 2为圆心、以1为半径的圆相交,且交点在椭圆C 上.(1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b 2=1,P 为椭圆C 上任意一点.过点P 的直线y =kx +m 交椭圆E于A ,B 两点,射线PO 交椭圆E 于点Q .①求|OQ ||OP |的值;②求△ABQ 面积的最大值. 解析:(1)由题意知2a =4,则a =2. 又c a =32,a 2-c 2=b 2,可得b =1, 所以椭圆C 的方程为x 24+y 2=1.(2)由(1)知椭圆E 的方程为x 216+y 24=1.①设P (x 0,y 0),|OQ ||OP |=λ,由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2.②设A (x 1,y 1),B (x 2, y 2). 将y =kx +m 代入椭圆E 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.(*)则有x 1+x 2=-8km1+4k 2,x 1x 2=4m 2-161+4k 2.所以|x 1-x 2|=416k 2+4-m 21+4k 2.因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝⎛⎭⎫4-m 21+4k 2m 21+4k 2.设m 21+4k 2=t .将y =kx +m 代入椭圆C 的方程, 可得(1+4k 2)x 2+8kmx +4m 2-4=0, 由Δ≥0,可得m 2≤1+4k 2.(**) 由(*)(**)可知0<t ≤1,因此S =2(4-t )t =2-t 2+4t ,故S ≤2 3. 当且仅当t =1,即m 2=1+4k 2时取得最大值2 3. 由①知,△ABQ 的面积为3S , 所以△ABQ 面积的最大值为6 3.3.[考点三]定圆M :(x +3)2+y 2=16,动圆N 过点F (3,0)且与圆M 相切,记圆心N 的轨迹为E .(1)求轨迹E 的方程;(2)设点A ,B ,C 在E 上运动,A 与B 关于原点对称,且|AC |=|BC |,当△ABC 的面积最小时,求直线AB 的方程.解析:(1)∵F (3,0)在圆M :(x +3)2+y 2=16内, ∴圆N 内切于圆M . ∵|NM |+|NF |=4>|FM |,∴点N 的轨迹E 为椭圆,且2a =4,c =3,∴b =1, ∴轨迹E 的方程为x 24+y 2=1.(2)①当AB 为长轴(或短轴)时,S △ABC =12|OC |·|AB |=2.②当直线AB 的斜率存在且不为0时,设直线AB 的方程为y =kx ,A (x A ,y A ),由题意,C 在线段AB 的中垂线上,则OC 的方程为y =-1kx .联立方程⎩⎪⎨⎪⎧x 24+y 2=1,y =kx得,x 2A =41+4k 2,y 2A =4k 21+4k 2,∴|OA |2=x 2A +y 2A =4(1+k 2)1+4k 2.将上式中的k 替换为-1k ,可得|OC |2=4(1+k 2)k 2+4.∴S △ABC =2S △AOC =|OA |·|OC |=4(1+k 2)1+4k 2·4(1+k 2)k 2+4=4(1+k 2)(1+4k 2)(k 2+4). ∵(1+4k 2)(k 2+4)≤(1+4k 2)+(k 2+4)2=5(1+k 2)2,∴S △ABC ≥85,当且仅当1+4k 2=k 2+4,即k =±1时等号成立,此时△ABC 面积的最小值是85.∵2>85,∴△ABC 面积的最小值是85,此时直线AB 的方程为y =x 或y =-x .突破点(二) 圆锥曲线中的范围问题圆锥曲线中的范围问题是高考中的热点问题,常涉及不等式的恒成立问题、函数的值域问题,综合性比较强.解决此类问题常用几何法和判别式法.考点贯通 抓高考命题的“形”与“神”利用判别式构造不等关系求范围[例1] 已知A ,B ,C 是椭圆M :x 2a 2+y 2b2=1(a >b >0)上的三点,其中点A 的坐标为(23,0),BC 过椭圆的中心,且AC ·BC =0,|BC |=2|AC |. (1)求椭圆M 的方程;(2)过点(0,t )的直线l (斜率存在时)与椭圆M 交于两点P ,Q ,设D 为椭圆M 与y 轴负半轴的交点,且|DP |=|DQ |,求实数t 的取值范围.[解] (1)因为|BC |=2|AC |且BC 过(0,0),则|OC |=|AC |.因为AC ·BC =0,所以∠OCA =90°, 即C (3,3).又因为a =23,设椭圆的方程为x 212+y 212-c 2=1,将C 点坐标代入得312+312-c 2=1,解得c 2=8,b 2=4.所以椭圆的方程为x 212+y 24=1.(2)由条件D (0,-2),当k =0时,显然-2<t <2; 当k ≠0时,设l :y =kx +t ,⎩⎪⎨⎪⎧x 212+y 24=1,y =kx +t ,消去y 得(1+3k 2)x 2+6ktx +3t 2-12=0 由Δ>0可得t 2<4+12k 2,①设P (x 1,y 1),Q (x 2,y 2),PQ 中点H (x 0,y 0),则x 0=x 1+x 22=-3kt1+3k 2,y 0=kx 0+t =t1+3k 2,所以H ⎝⎛⎭⎫-3kt 1+3k 2,t1+3k 2,由|DP |=|DQ |,所以DH ⊥PQ ,即k DH =-1k ,所以t1+3k 2+2-3kt 1+3k 2-0=-1k ,化简得t =1+3k 2,②所以t >1,将②代入①得,1<t <4. 所以t 的范围是(1,4). 综上可得t ∈(1,2).[方法技巧]圆锥曲线中取值范围问题的五种常用解法(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围. (2)利用已知参数的范围,求新参数的范围,解决这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.利用函数性质求范围[例2] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过点M (1,0)的直线l 交椭圆C 于A ,B 两点,|MA |=λ|MB |,且当直线l 垂直于x 轴时,|AB |= 2.(1)求椭圆C 的方程;(2)若λ∈⎣⎡⎦⎤12,2,求弦长|AB |的取值范围.[解] (1)由已知e =22,得c a =22, 又当直线垂直于x 轴时,|AB |=2, 所以椭圆过点⎝⎛⎭⎫1,22, 代入椭圆方程得1a 2+12b2=1,∵a 2=b 2+c 2,联立方程可得a 2=2,b 2=1, ∴椭圆C 的方程为x 22+y 2=1.(2)当过点M 的直线斜率为0时,点A ,B 分别为椭圆长轴的端点, λ=|MA ||MB |=2+12-1=3+22>2或λ=|MA ||MB |=2-12+1=3-22<12,不符合题意. ∴直线的斜率不能为0.设直线方程为x =my +1,A (x 1,y 1),B (x 2,y 2), 将直线方程代入椭圆方程得:(m 2+2)y 2+2my -1=0,由根与系数的关系可得,⎩⎨⎧y 1+y 2=-2mm 2+2①,y 1y 2=-1m 2+2②,将①式平方除以②式可得:y 1y 2+y 2y 1+2=-4m 2m 2+2,由已知|MA |=λ|MB |可知,y 1y 2=-λ,∴-λ-1λ+2=-4m 2m 2+2,又知λ∈⎣⎡⎦⎤12,2, ∴-λ-1λ+2∈⎣⎡⎦⎤-12,0, ∴-12≤-4m 2m 2+2≤0,解得m 2∈⎣⎡⎦⎤0,27. |AB |2=(1+m 2)|y 1-y 2|2=(1+m 2)[(y 1+y 2)2-4y 1y 2]=8⎝ ⎛⎭⎪⎫m 2+1m 2+22=8⎝⎛⎭⎫1-1m 2+22, ∵m 2∈⎣⎡⎦⎤0,27, ∴1m 2+2∈⎣⎡⎦⎤716,12,∴|AB |∈⎣⎡⎦⎤2,928. [方法技巧]利用函数性质解决圆锥曲线中求范围问题的关键是建立求解关于某个变量的函数,通过求这个函数的值域确定目标的取值范围.在建立函数的过程中要根据题目的其他已知条件,把需要的量都用我们选用的变量表示,有时为了运算方便,在建立函数的过程中也可以采用多个变量,只要在最后结果中把多个变量化为单个变量即可,同时要特别注意变量的取值范围.1.[考点一]设F 1,F 2分别是椭圆E :x 24+y 2b 2=1(b >0)的左、右焦点,若P 是该椭圆上的一个动点,且1PF ·2PF 的最大值为1.(1)求椭圆E 的方程;(2)设直线l :x =ky -1与椭圆E 交于不同的两点A ,B ,且∠AOB 为锐角(O 为坐标原点),求k 的取值范围.解析:(1)易知a =2,c =4-b 2,b 2<4, 所以F 1(-4-b 2,0),F 2(4-b 2,0),设P (x ,y ),则1PF ·2PF =(-4-b 2-x ,-y )·(4-b 2-x ,-y )=x 2+y 2-4+b 2=x 2+b 2-b 2x 24-4+b 2=⎝⎛⎭⎫1-b 24x 2+2b 2-4.因为x ∈[-2,2],故当x =±2,即点P 为椭圆长轴端点时,1PF ·2PF 有最大值1, 即1=⎝⎛⎭⎫1-b24×4+2b 2-4,解得b 2=1. 故所求椭圆E 的方程为x 24+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x =ky -1x 24+y 2=1得(k 2+4)y 2-2ky -3=0,Δ=(-2k )2+12(4+k 2)=16k 2+48>0,故y 1+y 2=2kk 2+4,y 1·y 2=-3k 2+4.又∠AOB 为锐角,故OA ·OB =x 1x 2+y 1y 2>0,又x 1x 2=(ky 1-1)(ky 2-1)=k 2y 1y 2-k (y 1+y 2)+1,所以x 1x 2+y 1y 2=(1+k 2)y 1y 2-k (y 1+y 2)+1=(1+k 2)·-34+k 2-2k 24+k 2+1=-3-3k 2-2k 2+4+k 24+k 2=1-4k 24+k 2>0,所以k 2<14,解得-12<k <12,故k 的取值范围是⎝⎛⎭⎫-12,12. 2.[考点二]已知圆心为H 的圆x 2+y 2+2x -15=0和定点A (1,0),B 是圆上任意一点,线段AB 的中垂线l 和直线BH 相交于点M ,当点B 在圆上运动时,点M 的轨迹记为曲线C .(1)求C 的方程;(2)过点A 作两条相互垂直的直线分别与曲线C 相交于P ,Q 和E ,F ,求PE ·QF 的取值范围.解析:(1)由x 2+y 2+2x -15=0,得(x +1)2+y 2=16, 所以圆心为H (-1,0),半径为4.连接MA ,由l 是线段AB 的中垂线,得|MA |=|MB |, 所以|MA |+|MH |=|MB |+|MH |=|BH |=4, 又|AH |=2<4.根据椭圆的定义可知,点M 的轨迹是以A ,H 为焦点,4为长轴长的椭圆,所以a 2=4,c 2=1,b 2=3,所求曲线C 的方程为x 24+y 23=1.(2)由直线EF 与直线PQ 垂直,可得AP ·AE =AQ ·AF =0,于是PE ·QF =(AE -AP )·(AF -AQ )=AE ·AF +AP ·AQ .①当直线PQ 的斜率不存在时,直线EF 的斜率为零,此时可不妨取P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32,E (2,0),F (-2,0),所以PE ·QF =⎝⎛⎭⎫1,-32·⎝⎛⎭⎫-3,32=-3-94=-214. ②当直线PQ 的斜率为零时,直线EF 的斜率不存在,同理可得PE ·QF =-214. ③当直线PQ 的斜率存在且不为零时,直线EF 的斜率也存在,于是可设直线PQ 的方程为y =k (x -1),P (x P ,y P ),Q (x Q ,y Q ),AP =(x P -1,y P ),AQ =(x Q -1,y Q ),则直线EF 的方程为y =-1k(x -1).将直线PQ 的方程代入曲线C 的方程,并整理得,(3+4k 2)x 2-8k 2x +4k 2-12=0, 所以x P +x Q =8k 23+4k 2,x P ·x Q =4k 2-123+4k 2.于是AP ·AQ =(x P -1)(x Q -1)+y P ·y Q =(1+k 2)[x P x Q -(x P +x Q )+1] =(1+k 2)⎝ ⎛⎭⎪⎫4k 2-123+4k 2-8k 23+4k 2+1=-9(1+k 2)3+4k 2.将上面的k 换成-1k ,可得AE ·AF =-9(1+k 2)4+3k 2,所以PE ·QF =AE ·AF +AP ·AQ =-9(1+k 2)⎝⎛⎭⎫13+4k 2+14+3k 2. 令1+k 2=t ,则t >1,于是上式化简整理可得,PE ·QF =-9t ⎝⎛⎭⎫14t -1+13t +1=-63t 212t 2+t -1=-63494-⎝⎛⎭⎫1t -122. 由t >1,得0<1t <1,所以-214<PE ·QF ≤-367.综合①②③可知,PE ·QF 的取值范围为⎣⎡⎦⎤-214,-367.突破点(三) 圆锥曲线中的几何证明问题圆锥曲线中的几何证明问题多出现在解答题中,难度较大,多涉及线段或角相等以及位置关系的证明等.考点贯通 抓高考命题的“形”与“神”圆锥曲线中的几何证明问题[典例] 如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .[解] (1)设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). ∵|MN |=3,∴r 2=⎝⎛⎭⎫322+22,解得r 2=254. ∴r =52,圆C 的方程为(x -2)2+⎝⎛⎭⎫y -522=254. (2)证明:把x =0代入方程(x -2)2+⎝⎛⎭⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4). ①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1. 联立方程 ⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1,消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2. ∴k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x 2.若k AN +k BN =0,则∠ANM =∠BNM . ∵2kx 1x 2-3(x 1+x 2)=-12k 1+2k 2+12k1+2k 2=0, ∴∠ANM =∠BNM .1.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3.(1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB ⊥BC ,AD ∥OC ,连接AC 交DE 于点P ,求证:PD =PE .解析:(1)由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23,所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1.(2)证明:由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB ⊥BC ,所以可设C (2,y 1),所以AD =(x 0+2,y 0),OC =(2,y 1), 由AD ∥OC 可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为:y 2y 0x 0+2=x +24. 整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝⎛⎭⎫x 0,y 02,所以P 为DE 的中点,所以PD =PE .2.已知点A (-4,0),直线l :x =-1与x 轴交于点B ,动点M 到A ,B 两点的距离之比为2.(1)求点M 的轨迹C 的方程;(2)设C 与x 轴交于E ,F 两点,P 是直线l 上一点,且点P 不在C 上,直线PE ,PF 分别与C 交于另一点S ,T ,证明:A ,S ,T 三点共线.解析:(1)设点M (x ,y ),依题意,|MA ||MB |=(x +4)2+y 2(x +1)2+y 2=2,化简得x 2+y 2=4,即轨迹C 的方程为x 2+y 2=4. (2)证明:由(1)知曲线C 的方程为x 2+y 2=4,令y =0得x =±2,不妨设E (-2,0),F (2,0),如图所示.设P (-1,y 0),S (x 1,y 1),T (x 2,y 2),则直线PE 的方程为y =y 0(x +2),由⎩⎪⎨⎪⎧y =y 0(x +2),x 2+y 2=4得(y 20+1)x 2+4y 20x +4y 20-4=0, 所以-2x 1=4y 20-4y 20+1,即x 1=2-2y 20y 20+1,y 1=4y 0y 20+1.直线PF 的方程为y =-y 03(x -2),由⎩⎪⎨⎪⎧y =-y 03(x -2),x 2+y 2=4得(y 20+9)x 2-4y 20x +4y 20-36=0, 所以2x 2=4y 20-36y 20+9,即x 2=2y 20-18y 20+9,y 2=12y 0y 20+9.所以k AS =y 1x 1+4=4y 0y 20+12-2y 20y 20+1+4=2y 0y 20+3, k AT =y 2x 2+4=12y 0y 20+92y 20-18y 20+9+4=2y 0y 20+3,所以k AS =k AT ,所以A ,S ,T 三点共线.[全国卷5年真题集中演练——明规律] 1.(2014·新课标全国卷Ⅰ)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆E 的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程. 解析:(1)设F (c,0),由条件知,2c =233,得c = 3.又c a =32,所以a =2,b 2=a 2-c 2=1. 故E 的方程为x 24+y 2=1.(2)当l ⊥x 轴时不合题意,故设l :y =kx -2,P (x 1,y 1),Q (x 2,y 2). 将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0. 当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-34k 2+1.从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-34k 2+1.又点O 到直线PQ 的距离d =2k 2+1. 所以△OPQ 的面积S △OPQ =12d ·|PQ |=44k 2-34k 2+1.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t.因为t +4t ≥4,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以,当△OPQ 的面积最大时,l 的方程为y =72x -2或y =-72x -2. 2.(2013·新课标全国卷Ⅱ)平面直角坐标系xOy 中,过椭圆M :x 2a 2+y 2b 2=1 (a >b >0)右焦点的直线x +y -3=0交M 于A ,B 两点,P 为AB 的中点,且OP 的斜率为12.(1)求M 的方程;(2)C ,D 为M 上的两点,若四边形ACBD 的对角线CD ⊥AB ,求四边形ACBD 面积的最大值.解析:(1)设A (x 1,y 1),B (x 2,y 2),P (x 0,y 0),则x 21a 2+y 21b 2=1,x 22a 2+y 22b 2=1,y 2-y 1x 2-x 1=-1, 由此可得b 2(x 2+x 1)a 2(y 2+y 1)=-y 2-y 1x 2-x 1=1.因为x 1+x 2=2x 0,y 1+y 2=2y 0,y 0x 0=12,所以a 2=2b 2.又由题意知,M 的右焦点为(3,0),故a 2-b 2=3. 因此a 2=6,b 2=3.所以M 的方程为x 26+y 23=1.(2)由⎩⎪⎨⎪⎧x +y -3=0,x 26+y 23=1,解得⎩⎨⎧x =433,y =-33,或⎩⎨⎧x =0,y = 3.因此|AB |=463.由题意可设直线CD 的方程为y =x +n ⎝⎛⎭⎫-533<n <3, 设C (x 3,y 3),D (x 4,y 4).由⎩⎪⎨⎪⎧y =x +n ,x 26+y 23=1得3x 2+4nx +2n 2-6=0. 于是x 3,4=-2n ±2(9-n 2)3.因为直线CD 的斜率为1, 所以|CD |=2|x 4-x 3|=439-n 2. 由已知,四边形ACBD 的面积S =12|CD |·|AB |=8699-n 2.当n =0时,S 取得最大值,最大值为863.所以四边形ACBD 面积的最大值为863.[课时达标检测] 难点增分课时——设计3级训练,考生据自身能力而选 一、全员必做题1.已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为F 2(1,0),且该椭圆过定点M ⎝⎛⎭⎫1,22.(1)求椭圆E 的标准方程;(2)设点Q (2,0),过点F 2作直线l 与椭圆E 交于A ,B 两点,且2F A =λ2F B ,λ∈[-2,-1],以QA ,QB 为邻边作平行四边形QACB ,求对角线QC 长度的最小值.解析:(1)由题易知c =1,1a 2+12b 2=1,又a 2=b 2+c 2,解得b 2=1,a 2=2,故椭圆E 的标准方程为x 22+y 2=1.(2)设直线l :x =ky +1,由⎩⎪⎨⎪⎧x =ky +1,x 22+y 2=1得(k 2+2)y 2+2ky -1=0, Δ=4k 2+4(k 2+2)=8(k 2+1)>0.设A (x 1,y 1),B (x 2,y 2),则可得y 1+y 2=-2k k 2+2,y 1y 2=-1k 2+2.QC =QA +QB =(x 1+x 2-4,y 1+y 2)=⎝ ⎛⎭⎪⎫-4(k 2+1)k 2+2,-2k k 2+2,∴|QC |2=|QA +QB |2=16-28k 2+2+8(k 2+2)2,由此可知,|QC |2的大小与k 2的取值有关.由2F A =λ2F B 可得y 1=λy 2,λ=y 1y 2,1λ=y 2y 1(y 1y 2≠0).从而λ+1λ=y 1y 2+y 2y 1=(y 1+y 2)2-2y 1y 2y 1y 2=-6k 2-4k 2+2,由λ∈[-2,-1]得⎝⎛⎭⎫λ+1λ∈⎣⎡⎦⎤-52,-2,从而-52≤-6k 2-4k 2+2≤-2,解得0≤k 2≤27. 令t =1k 2+2,则t ∈⎣⎡⎦⎤716,12,∴|QC |2=8t 2-28t +16=8⎝⎛⎭⎫t -742-172, ∴当t =12时,|QC |min =2.2.已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3. (1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.解析:(1)由抛物线的定义得|AF |=2+p2.因为|AF |=3,即2+p2=3,解得p =2,所以抛物线E 的方程为y 2=4x .(2)证明:设以点F 为圆心且与直线GA 相切的圆的半径为r. 因为点A(2,m)在抛物线E :y2=4x 上, 所以m =±2 2.由抛物线的对称性,不妨设A(2,22). 由A(2,22),F(1,0)可得直线AF 的方程为 y =22(x -1).由⎩⎨⎧y =22x -1,y2=4x ,得2x2-5x +2=0,解得x =2或x =12,从而B ⎝⎛⎭⎫12,-2. 又G(-1,0),故直线GA 的方程为22x -3y +22=0, 从而r =|22+22|8+9=4 217 .又直线GB 的方程为22x +3y +22=0, 所以点F 到直线GB 的距离 d =|22+22|8+9=4217=r.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.3.已知中心在原点,焦点在y 轴上的椭圆C ,其上一点P 到两个焦点F 1,F 2的距离之和为4,离心率为32. (1)求椭圆C 的方程;(2)若直线y =kx +1与曲线C 交于A ,B 两点,求△OAB 面积的取值范围. 解析:(1)设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),由条件知,⎩⎪⎨⎪⎧2a =4,e =c a =32,a 2=b 2+c 2,解得a =2,c =3,b =1,故椭圆C 的方程为y 24+x 2=1.(2)设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x 2+y 24=1,y =kx +1得(k 2+4)x 2+2kx -3=0, 故x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4,设△OAB 的面积为S ,由x 1x 2=-3k 2+4<0,知S =12×1×|x 1-x 2|=12(x 1+x 2)2-4x 1x 2=2k 2+3(k 2+4)2,令k 2+3=t ,知t ≥3, ∴S =21t +1t+2. 对函数y =t +1t (t ≥3),知y ′=1-1t 2=t 2-1t 2>0,∴y =t +1t 在t ∈[3,+∞)上单调递增,∴t +1t ≥103,∴0<1t +1t+2≤316,∴0<S ≤32. 故△OAB 面积的取值范围为⎝⎛⎦⎤0,32. 二、重点选做题1.过离心率为22的椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F (1,0)作直线l 与椭圆C 交于不同的两点A ,B ,设|F A |=λ|FB |,T (2,0).(1)求椭圆C 的方程;(2)若1≤λ≤2,求△ABT 中AB 边上中线长的取值范围. 解析:(1)∵e =22,c =1,∴a =2,b =1, 即椭圆C 的方程为:x 22+y 2=1.(2)①当直线的斜率为0时,显然不成立. ②设直线l :x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x 2+2y 2-2=0,x =my +1得(m 2+2)y 2+2my -1=0,则y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2,由|F A |=λ|FB |,得y 1=-λy 2, ∵-λ+1-λ=y 1y 2+y 2y 1,∴-λ+1-λ+2=(y 1+y 2)2y 1y 2=-4m 2m 2+2,∴m 2≤27,又∵AB 边上的中线长为12 |TA +TB |=12(x 1+x 2-4)2+(y 1+y 2)2=4m 4+9m 2+4(m 2+2)2= 2(m 2+2)2-7m 2+2+4∈⎣⎡⎦⎤1,13216.2.如图所示,已知直线l 过点M (4,0)且与抛物线y 2=2px (p >0)交于A ,B 两点,以弦AB 为直径的圆恒过坐标原点O .(1)求抛物线的标准方程;(2)设Q 是直线x =-4上任意一点,求证:直线QA ,QM ,QB 的斜率依次成等差数列. 解析:(1)设直线l 的方程为x =ky +4, 代入y 2=2px 得y 2-2kpy -8p =0.设A (x 1,y 1),B (x 2,y 2),则有y 1+y 2=2kp ,y 1y 2=-8p ,而AB 为直径,O 为圆上一点,所以OA ·OB =0, 故0=x 1x 2+y 1y 2=(ky 1+4)(ky 2+4)-8p =k 2y 1y 2+4k (y 1+y 2)+16-8p , 即0=-8k 2p +8k 2p +16-8p ,得p =2, 所以抛物线方程为y 2=4x .(2)设Q (-4,t )由(1)知y 1+y 2=4k ,y 1y 2=-16,所以y 21+y 22=(y 1+y 2)2-2y 1y 2=16k 2+32.因为k QA =y 1-t x 1+4=y 1-t y 214+4=4(y 1-t )y 21+16,k QB =y 2-t x 2+4=y 2-t y 224+4=4(y 2-t )y 22+16,k QM =t -8,所以k QA +k QB =4(y 1-t )y 21+16+4(y 2-t )y 22+16=4×(y 1-t )(y 22+16)+(y 2-t )(y 21+16)(y 21+16)(y 22+16)=4×y 1y 22+16y 1-ty 22-16t +y 2y 21+16y 2-ty 21-16t y 21y 22+16(y 21+y 22)+16×16=-t (y 21+y 22)-32t 8×16+4(y 21+y 22)=-t (16k 2+32)-32t 8×16+4(16k 2+32) =-t 4=2k QM . 所以直线QA ,QM ,QB 的斜率依次成等差数列.三、冲刺满分题1.已知椭圆C :x 24+y 2b 2=1(0<b <2)的离心率为32,与坐标轴不垂直且不过原点的直线l 1与椭圆C 相交于不同的两点A ,B (如图所示),过AB 的中点M 作垂直于l 1的直线l 2,设l 2与椭圆C 相交于不同的两点C ,D ,且CN =12CD . (1)求椭圆C 的方程;(2)设原点O 到直线l 1的距离为d ,求d |MN |的最大值. 解析:(1)依题意得,⎩⎪⎨⎪⎧a =2,c a =32,c 2=a 2-b 2,解得b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)设直线l 1:y =kx +m (k ≠0,m ≠0), 由⎩⎪⎨⎪⎧ x 24+y 2=1,y =kx +m 得(1+4k 2)x 2+8kmx +4m 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧ x 1+x 2=-8mk 1+4k 2,x 1x 2=4m 2-41+4k 2.故M ⎝⎛⎭⎫-4mk 1+4k 2,m 1+4k 2. l 2:y -m 1+4k 2=-1k ⎝⎛⎭⎫x +4mk 1+4k 2,即y =-1k x -3m 1+4k 2.由⎩⎨⎧ y =-1k x -3m 1+4k 2,x 24+y 2=1, 得⎝⎛⎭⎫1+4k 2x 2+24m k (1+4k 2)x +36m 2(1+4k 2)2-4=0, 设C (x 3,y 3),D (x 4,y 4),则x 3+x 4=-24mk (1+4k 2)(k 2+4), 故N ⎝⎛⎭⎫-12mk (1+4k 2)(k 2+4),-3mk 2(1+4k 2)(k 2+4). 故|MN |=|x M -x N | 1+1k 2=4|m |(k 2+1)k 2+1(1+4k 2)(k 2+4). 又d =|m |1+k 2,所以d |MN |=(1+4k 2)(k 2+4)4(k 2+1)2. 令t =k 2+1(t >1),则d |MN |=4t 2+9t -94t 2=-94t 2+94t +1=-94⎝⎛⎭⎫1t -122+2516≤2516(当且仅当t =2时取等号), 所以d |MN |的最大值为2516. 2.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=6,直线y =kx 与椭圆交于A ,B 两点.(1)若△AF 1F 2的周长为16,求椭圆的标准方程;(2)若k =24,且A ,B ,F 1,F 2四点共圆,求椭圆离心率e 的值; (3)在(2)的条件下,设P (x 0,y 0)为椭圆上一点,且直线P A 的斜率k 1∈(-2,-1),试求直线PB 的斜率k 2的取值范围.解析:(1)由题意得c =3,根据2a +2c =16,得a =5. 结合a 2=b 2+c 2,解得a 2=25,b 2=16.所以椭圆的方程为x 225+y 216=1. (2)法一:由⎩⎨⎧x 2a 2+y 2b 2=1,y =24x ,得⎝⎛⎭⎫b 2+18a 2x 2-a 2b 2=0. 设A (x 1,y 1),B (x 2,y 2).所以x 1+x 2=0,x 1x 2=-a 2b 2b 2+18a 2,由AB ,F 1F 2互相平分且共圆,易知,AF 2⊥BF 2,因为2F A =(x 1-3,y 1),2F B =(x 2-3,y 2), 所以2F A ·2F B =(x 1-3)(x 2-3)+y 1y 2=⎝⎛⎭⎫1+18x 1x 2+9=0. 即x 1x 2=-8,所以有-a 2b 2b 2+18a 2=-8, 结合b 2+9=a 2,解得a 2=12(a 2=6舍去), 所以离心率e =32.(若设A (x 1,y 1),B (-x 1,-y 1)相应给分) 法二:设A (x 1,y 1),又AB ,F 1F 2互相平分且共圆,所以AB ,F 1F 2是圆的直径,所以x 21+y 21=9,又由椭圆及直线方程综合可得:⎩⎨⎧ x 21+y 21=9,y 1=24x 1,x 21a 2+y 21b 2=1.由前两个方程解得x 21=8,y 21=1, 将其代入第三个方程并结合b 2=a 2-c 2=a 2-9, 解得a 2=12,故e =32. (3)由(2)的结论知,椭圆方程为x 212+y 23=1, 由题可设A (x 1,y 1),B (-x 1,-y 1),k 1=y 0-y 1x 0-x 1,k 2=y 0+y 1x 0+x 1,所以k 1k 2=y 20-y 21x 20-x 21, 又y 20-y 21x 20-x 21=3⎝⎛⎭⎫1-x 2012-3⎝⎛⎭⎫1-x 2112x 20-x 21=-14, 即k 2=-14k 1,由-2<k 1<-1可知,18<k 2<14. 即直线PB 的斜率k 2的取值范围是⎝⎛⎭⎫18,14.。
2020版高考数学(浙江专用)一轮总复习检测:10.6 圆锥曲线的综合问题 含解析

10.6圆锥曲线的综合问题挖命题【考情探究】分析解读 1.圆锥曲线的综合问题是高考的热点之一,主要考查两大问题:一是根据条件求出平面曲线的方程;二是通过方程研究平面曲线的性质.2.考查点主要有:(1)圆锥曲线的基本概念和性质;(2)与圆锥曲线有关的最值、对称、位置关系等综合问题;(2)有关定点、定值问题,以及存在性等探索性问题.3.预计2020年高考试题中,圆锥曲线的综合问题仍是压轴题之一,复习时应高度重视.炼技法【方法集训】方法1圆锥曲线中的最值和范围问题的求解方法1.(2018浙江9+1高中联盟期中,21)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:+=作两条切线,分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.(1)求证:k1k2为定值;(2)求四边形OPMQ面积的最大值.解析(1)证明:因为直线OP:y=k1x,OQ:y=k2x与圆M相切,所以=,=,可知k1,k2是方程(3-2)k2-6x0y0k+3-2=0的两个不相等的实数根,所以3-2≠0,k 1k2=,因为点M(x0,y0)在椭圆C上,所以=1-,所以k1k2==-.(2)易知直线OP,OQ都不能落在坐标轴上,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以+1=0,即=,因为P(x1,y1),Q(x2,y2)在椭圆C上,所以==,整理得+=2,所以+=1,所以OP2+OQ2=3.因为S四边形OPMQ= (OP+OQ)·=(OP+OQ),OP+OQ≤=,所以S四边形OPMQ的最大值为1.2.(2018浙江台州高三期末质检,21,15分)已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,左顶点为A,点P(,)在椭圆C上,且△PF1F2的面积为2.(1)求椭圆C的方程;(2)过原点O且与x轴不重合的直线交椭圆C于E,F两点,直线AE,AF分别与y轴交于点M,N.求证:以MN为直径的圆恒过焦点F1,F2,并求出△F1MN面积的取值范围.解析(1)∵=×2c×=2,∴c=2,(2分)又点P(,)在椭圆C上,∴+=1,∴a4-9a2+8=0,解得a2=8或a2=1(舍去),又a2-b2=4,∴b2=4,∴椭圆C的方程为+=1.(5分)(2)由(1)可得A(-2,0),F1(-2,0),F2(2,0),当直线EF的斜率不存在时,E,F为短轴的两个端点,不妨设M(0,2),N(0,-2), ∴F1M⊥F1N,F2M⊥F2N,∴以MN为直径的圆恒过焦点F 1,F2.(7分)当直线EF的斜率存在且不为零时,设直线EF的方程为y=kx(k≠0),设点E(x0,y0)(不妨设x0>0),则点F(-x0,-y0),由消去y得x2=,∴x0=,y0=,∴直线AE的方程为y=(x+2),∵直线AE与y轴交于点M,∴令x=0,得y=,即点M,同理可得点N,∴=,=,∴·=0,∴F1M⊥F1N,同理,F2M⊥F2N,则以MN为直径的圆恒过焦点F1,F2,(12分)当直线EF的斜率存在且不为零时,|MN|===2·>4,∴△F1MN的面积S=|OF1|·|MN|>4,又当直线EF的斜率不存在时,|MN|=4,∴△F1MN的面积为|OF1|·|MN|=4,∴△F1MN面积的取值范围是[4,+∞).(15分)方法2 定点、定值问题的求法1.(2017浙江镇海中学模拟卷(四),21)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到其焦点的距离的最小值为1.(1)求a,b的值;(2)过点P(3,0)作直线l交C于A,B两点,①求△AOB面积S的最大值;②设Q为线段AB上的点,且满足=,证明:点Q的横坐标x Q为定值.解析(1)由题意知,所以a=2,c=1,因此b==,故a=2,b=.(4分)(2)显然直线l的斜率存在且不为0,故可设l:y=k(x-3)(k≠0),联立消去y,并整理,得(3+4k2)x2-24k2x+36k2-12=0,其中Δ=48(3-5k2)>0.设A(x1,y1),B(x2,y2),则有x1+x2=,x1·x2=.(6分)①原点O到直线l的距离d=,|AB|=|x1-x2|=·,所以S△AOB=|AB|·d=6·|k|·=6·.(8分)设t=,则k2=,其中t∈,则S=6·=·≤·=.当且仅当9-27t=27t-5,即t=时,取等号.(10分)故△AOB面积S的最大值为.②证明:设==λ,则=-λ,=λ,(12分)所以3-x1=-λ(x2-3),x Q-x1=λ(x2-x Q),消去λ得,x Q===,故点Q的横坐标x Q为定值.(15分)2.(2017浙江五校联考(5月),21)如图,已知椭圆Γ:+=1(a>b>0)经过不同的三点A,B,C(C在第三象限),线段BC的中点在直线OA上.(1)求椭圆Γ的方程及点C的坐标;(2)设点P是椭圆Γ上的动点(异于点A,B,C),且直线PB,PC分别交直线OA于M,N两点,问|OM|·|ON|是不是定值?若是,求该值;若不是,请说明理由.解析(1)由点A,B在椭圆Γ上,得解得所以椭圆Γ的方程为+=1.设点C(m,n),则BC中点为,由已知,求得直线OA的方程为x-2y=0,从而m=2n-1.①又点C在椭圆Γ上,故2m2+8n2=5.②由①②得n= (舍去)或n=-,从而m=-,所以点C的坐标为.(2)设P(x0,y0),M(2y1,y1),N(2y2,y2).当x0≠-且x0≠-时,因为P,B,M三点共线,所以=,整理得y1=.因为P,C,N三点共线,所以=,整理得y2=.因为点P在椭圆Γ上,所以2+8=5,即=-4.从而y1y2=====.所以|OM|·|ON|=|y1|·|y2|=5|y1y2|=,为定值.当x0=-或x0=-时,易求得|OM|·|ON|=,为定值.综上,|OM|·|ON|是定值,为.方法3存在性问题的解法1.(2018浙江“七彩阳光”联盟期中,21)已知抛物线C1:x2=4y的焦点为F,过抛物线C2:y=-x2+3上一点M作抛物线C2的切线l,与抛物线C1交于A,B两点.(1)记直线AF,BF的斜率分别为k1,k2,若k1·k2=-,求直线l的方程;(2)是否存在正实数m,使得对任意点M,都有|AB|=m(|AF|+|BF|)成立?若存在,求出m的值;若不存在,请说明理由.解析(1)设M(x0,y0),由y=-+3,得y'=-,则切线l的斜率为k=-.切线l的方程为y=-(x-x0)+y0=-x++y0=-x-2y0+6+y0,即y=-x-y0+6.(3分)与x2=4y联立,消去y得x2+x0x+4y0-24=0.(4分)设A(x1,y1),B(x2,y2),则有x1+x2=-x0,x1x2=4y0-24,(5分)则y1+y2=-(x1+x2)-2y0+12=-2y0+12=-4y0+18,y1y2==,则由k1·k2=×===-,得5-28y0+23=0,解得y0=1或y0=.(8分)∵=-8(y0-3)≥0,∴y0≤3,故y0=1,∴x0=±4.则直线l的方程为y=±x+5.(9分)(2)由(1)知直线l的方程为y=-x-y0+6,且x1+x2=-x0,x1x2=4y0-24,则|AB|=|x1-x2|=·=·,即|AB|=·=2(5-y0),(11分)而|AF|+|BF|=(y1+1)+(y2+1)=-4y0+20=4(5-y0),(13分)则|AB|=(|AF|+|BF|),(14分)故存在正实数m=,使得对任意点M,都有|AB|=(|AF|+|BF|)成立.(15分)2.(2017浙江镇海中学模拟卷(六),21)椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,M为椭圆C上任意一点,|MF1|-|MF2|的最大值为2,离心率为.(1)若N为椭圆C上任意一点,且F2M⊥F2N,求·的最小值;(2)若过椭圆C右焦点F2的直线l与椭圆C相交于A,B两点,且=3,试问:在椭圆C上是否存在点P,使得线段OP与线段AB 的交点恰为四边形OAPB的对称中心?若存在,求点P的坐标;若不存在,说明理由.解析(1)由题意知,∴故b=,∴椭圆C的方程是+=1,其右焦点F2的坐标为(1,0).∵·=·(+)=·+·=,∴===4-2.(2)由题意知,直线l的斜率不为0.假设符合条件的点P存在,则=+.设A(x1,y1),B(x2,y2),则点P的坐标为(x1+x2,y1+y2),根据=3,得(1-x1,-y1)=2(x2-1,y2),∴y1=-2y2.设直线l的方程为x=my+1,代入椭圆方程整理得(2m2+3)y2+4my-4=0,故y1+y2=-,y1y2=-.易得-y2=-,-2=-,消去y2,得=,解得m2=,即m=±.当m=时,y1+y2=-,x1+x2=m(y1+y2)+2=-+2=,此时P.当m=-时,y1+y2=,x1+x2=m(y1+y2)+2=-+2=,此时P.经检验,点,都在椭圆C上,故C上存在点P,使得线段OP与线段AB的交点恰为四边形OAPB的对称中心.过专题【五年高考】A组自主命题·浙江卷题组考点圆锥曲线的综合问题1.(2018浙江,21,15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.解析本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.(1)设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程=4·即y2-2y0y+8x0-=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)由(1)可知所以|PM|= (+)-x0=-3x0,|y1-y2|=2.因此,△PAB的面积S=|PM|·|y1-y2|=(-4x0.因为+=1(x0<0),所以-4x0=-4-4x0+4∈[4,5].因此,△PAB面积的取值范围是.疑难突破解析几何中“取值范围”与“最值”问题在解析几何中,求某个量(直线斜率,直线在x、y轴上的截距,弦长,三角形或四边形面积等)的取值范围或最值问题的关键是利用条件把所求量表示成关于某个变量(通常是直线斜率,动点的横、纵坐标等)的函数,并求出这个变量的取值范围(即函数的定义域),将问题转化为求函数的值域或最值.2.(2017浙江,21,15分)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.解析本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)解法一:联立直线AP与BQ的方程解得点Q的横坐标是x Q=.因为|PA|==(k+1),|PQ|=(x Q-x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3,令f(k)=-(k-1)(k+1)3.因为f '(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.解法二:如图,连接BP,|AP|·|PQ|=|AP|·|PB|·cos∠BPQ=·(-)=·-.易知P(x,x2),则·=2x+1+2x2-=2x2+2x+,=+=x2+x++x4-x2+=x4+x2+x+.∴|AP|·|PQ|=-x4+x2+x+.设f(x)=-x4+x2+x+,则f '(x)=-4x3+3x+1=-(x-1)(2x+1)2,∴f(x)在上为增函数,在上为减函数,∴f(x)max=f(1)=.故|AP|·|PQ|的最大值为.方法总结在解析几何中,遇到求两线段长度之积的最值或取值范围时,一般用以下方法进行转化.1.直接法:求出各点坐标,用两点间的距离公式,转化为某个参变量(如直线斜率、截距,点的横、纵坐标等)的函数,再求函数的最值或值域.2.向量法:三点共线时,转化为两向量的数量积,再转化为动点的横(或纵坐标)的函数,最后求函数的最值或值域.3.参数法:把直线方程化为参数方程,与曲线方程联立,由根与系数的关系转化为直线的斜率(或直线的截距)的函数,最后求函数的最值或值域.3.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)证明:由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以点P到直线l1的距离的最大值为a-b.评析本题主要考查椭圆的几何性质、点到直线的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式的应用等综合解题能力.B组统一命题、省(区、市)卷题组考点圆锥曲线的综合问题1.(2018北京理,19,14分)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证: +为定值.解析(1)因为抛物线y2=2px过点(1,2),所以2p=4,即p=2.故抛物线C的方程为y2=4x,由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)2-4×k2×1>0,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2),由(1)知x1+x2=-,x1x2=.直线PA的方程为y-2=(x-1).令x=0,得点M的纵坐标为y M=+2=+2.同理得点N的纵坐标为y N=+2.由=λ,=μ得λ=1-y M,μ=1-y N.所以+=+=+=·=·=2.所以+为定值.方法总结圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式有关的等式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用两点间的距离公式求得线段长度的表达式,再依据条件对表达式进行化简、变形即可求得.2.(2017山东理,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l 的斜率.解析本题考查椭圆的方程,直线与椭圆、圆的位置关系,考查最值的求解方法和运算求解能力.(1)由题意知e==,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=·.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立得x2=,y2=,因此|OC|==.由题意可知sin==,而==,令t=1+2,则t>1,∈(0,1),因此=·=·=·≥1,当且仅当=,即t=2时等号成立,此时k1=±,所以sin≤,因此≤,所以∠SOT的最大值为.综上所述,∠SOT的最大值为,取得最大值时直线l的斜率k1=±.思路分析(1)由离心率和焦距,利用基本量运算求解;(2)联立直线l与椭圆方程,利用距离公式求|AB|,联立直线OC与椭圆方程求|OC|,进而建立sin与k1之间的函数关系,利用二次函数的性质求解.解题反思最值问题一般利用函数的思想方法求解,利用距离公式建立sin与k1之间的函数关系是解题关键.牢固掌握基础知识和方法是求解的前提.本题的完美解答体现了数学知识、能力、思想、方法的完美结合.3.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=.由(1)知F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-或k≥.所以直线l的斜率的取值范围为∪.评析本题主要考查椭圆的标准方程和几何性质、直线方程、一元二次不等式等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.4.(2016北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.解析(1)由题意得解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=.直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=.所以|AN|·|BM|=·===4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.一题多解(2)点P在曲线+=1上,不妨设P(2cos θ,sin θ),当θ≠kπ且θ≠kπ+ (k∈Z)时,直线AP的方程为y-0=(x-2),令x=0,得y M=;直线BP的方程为y-1=(x-0),令y=0,得x N=.∴|AN|·|BM|=2·=2=2×2=4(定值).当θ=kπ或θ=kπ+ (k∈Z)时,M,N是定点,易得|AN|·|BM|=4.综上,|AN|·|BM|=4.评析本题考查椭圆的标准方程,直线与圆锥曲线的位置关系及定值问题,方法常规,运算量大,对学生的运算能力要求较高.5.(2016四川,20,13分)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.解析(1)由题意得,a=b,则椭圆E的方程为+=1.由方程组得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x=2,所以椭圆E的方程为+=1,点T的坐标为(2,1).(2)由已知可设直线l'的方程为y=x+m(m≠0),由方程组可得所以P点坐标为,|PT|2=m2.设点A,B的坐标分别为A(x1,y1),B(x2,y2).由方程组可得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2),由Δ>0,解得-<m<.由②得x1+x2=-,x1x2=.所以|PA|==,同理|PB|=.所以|PA|·|PB|====m2.故存在常数λ=,使得|PT|2=λ|PA|·|PB|.评析本题考查了直线与圆锥曲线相交的问题,这类题中常用的方法是方程法,并结合根与系数的关系,两点间的距离公式进行考查,难点是运算量比较大,注意运算技巧.6.(2015课标Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由. 解析(1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M==,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由得=,即x P=.将代入l的方程得b=,因此x M=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.评析本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.C组教师专用题组考点圆锥曲线的综合问题1.(2017山东文,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.解析本题考查椭圆的标准方程及圆锥曲线的相关最值.(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,等号当且仅当t=3时成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述,当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.方法总结求解圆锥曲线相关最值的常用方法:1.几何性质法;2.二次函数最值法;3.基本不等式法;4.三角函数最值法;5.导数法.2.(2017课标全国Ⅰ理,20,12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析本题考查了圆锥曲线的方程以及圆锥曲线与直线位置关系中的定点问题.(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+>+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,.则k1+k2=-=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)·+(m-1)·=0.解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).3.(2016山东,21,14分)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(1)求椭圆C的方程;(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(i)设直线PM,QM的斜率分别为k,k',证明为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为c.由题意知2a=4,2c=2,所以a=2,b==.所以椭圆C的方程为+=1.(2)(i)证明:设P(x0,y0)(x0>0,y0>0). 由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k==,直线QM的斜率k'==-.此时=-3.所以为定值-3.(ii)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=,可得x1=.所以y1=kx1+m=+m.同理x2=,y2=+m.所以x2-x1=-=,y2-y1=+m--m=,所以k AB===.由m>0,x0>0,可知k>0,所以6k+≥2,等号当且仅当k=时取得.此时=,即m=,符合题意.所以直线AB的斜率的最小值为.4.(2015山东,21,14分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)由题意知+=1,又=,解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m), 所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ的面积为3S,所以△ABQ面积的最大值为6.5.(2015陕西,20,12分)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.解析(1)由题设知=,b=1,结合a2=b2+c2,解得a=.所以椭圆E的方程为+y2=1.(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知可知Δ>0.设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=.从而直线AP,AQ的斜率之和k AP+k AQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.评析本题考查椭圆标准方程与简单性质的同时,重点考查直线与椭圆的位置关系.6.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=x,所以x M=,即M.(2)存在.因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足=|x M||x N|.因为x M=,x N=,+n2=1,所以=|x M||x N|==2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ,点Q的坐标为(0,)或(0,-).7.(2015四川,20,13分)如图,椭圆E:+=1(a>b>0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点.当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.解析(1)由已知得,点(,1)在椭圆E上.因此,解得a=2,b=.所以椭圆E的方程为+=1.(2)当直线l与x轴平行时,设直线l与椭圆相交于C,D两点.如果存在定点Q满足条件,则有==1,即|QC|=|QD|.所以Q点在y轴上,可设Q点的坐标为(0,y0).当直线l与x轴垂直时,设直线l与椭圆相交于M,N两点,则M,N的坐标分别为(0,),(0,-).由=,有=,解得y0=1或y0=2.所以,若存在不同于点P的定点Q满足条件,则Q点坐标只可能为(0,2).下面证明:对任意直线l,均有=.当直线l的斜率不存在时,由上可知,结论成立.当直线l的斜率存在时,可设直线l的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立得得(2k2+1)x2+4kx-2=0.其Δ=(4k)2+8(2k2+1)>0,所以,x1+x2=-,x1x2=-.因此+==2k.易知,点B关于y轴对称的点B'的坐标为(-x2,y2).又k QA===k-,k QB'===-k+=k-,所以k QA=k QB',即Q,A,B'三点共线.所以===.故存在与P不同的定点Q(0,2),使得=恒成立.评析本题主要考查椭圆的标准方程与几何性质,直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.8.(2014重庆,21,12分)如图,设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(1)求该椭圆的标准方程;(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程.若不存在,请说明理由.解析(1)设F1(-c,0),F2(c,0),其中c2=a2-b2.由=2得|DF1|== c.从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2得|DF2|2=|DF1|2+|F1F2|2=,因此|DF2|=.所以2a=|DF1|+|DF2|=2,故a=,b2=a2-c2=1.因此,所求椭圆的标准方程为+y2=1.(2)如图,设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2.由圆和椭圆的对称性,易知,x2=-x1,y1=y2.由(1)知F1(-1,0),F2(1,0),所以=(x1+1,y1),=(-x1-1,y1).再由F1P1⊥F2P2得-(x1+1)2+=0.由椭圆方程得1-=(x1+1)2,即3+4x1=0,解得x1=-或x1=0.当x1=0时,P1,P2重合,不存在满足题设要求的圆.当x1=-时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1⊥F1P1,得·=-1.而y1=|x1+1|=,故y0=.圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.评析本题考查椭圆的标准方程、圆的方程的求法以及椭圆的几何性质,直线与圆的位置关系的应用.本题考查了学生分析问题,解决问题的能力、逻辑推理能力、运算求解能力以及利用分类讨论思想解决问题的能力.9.(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O 为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知, =,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.评析本题主要考查椭圆的标准方程、几何性质,直线的方程以及直线与椭圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的综合问题,考查方程思想、函数思想、整体代换以及换元法的应用.考查学生的逻辑推理能力和运算求解能力.10.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0. 由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2.而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.11.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)证明:由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).评析本题主要考查椭圆的标准方程、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、转化与化归、分类与整合等数学思想.12.(2014江西,20,13分)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2.证明:|MN2|2-|MN1|2为定值,并求此定值.解析(1)证明:依题意可设直线AB的方程为y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.设A(x1,y1),B(x2,y2),则有x1x2=-8,。
2020届高考数学(理)解析几何高频考点11圆锥曲线定值问题(含解析)

11 圆锥曲线 定值问题
【考点讲解】
一、 具体目标:了解直线与圆锥曲线的位置关系,圆锥曲线的位置关系,理解与圆锥曲线与关和定值,定
点问题,能解决与圆锥曲线有关的定值、定点问题
.
二、知识概述: 1. 圆锥曲线中的定值问题的常见类型及解题策略 (1) 求代数式为定值.依题意设条件,得出与代数式参数有关的等式,代入代数式、化简即可得出定值; (2) 求点到直线的距离为定值.利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求 得; (3) 求某线段长度为定值.利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.
∴ x1+
x2=
3+8k42k2,
x1x2=
4k2- 12 3+ 4k2
,又由
→→ MA= λAF,
∴ (x1 ,y1+ k)=λ(1-
x1,-
y1),∴
λ=
1
x1 ,同理 - x1
μ= x2 , 1- x2
∴ λ+ μ= x1 + x2 = x1+ x2- 2x1x2 1- x1 1- x2 1-( x1+ x2)+ x1x2
=
3
+8k42k2-
2(
4k2-12) 3+ 4k2
1
-
3+8k42k2+
4k2- 3+ 4
12 k2
=-
8 3.
所以当直线
l 的倾斜角变化时,
λ+ μ的值为定值-
8 3.
( 2)与双曲线有关的定值问题:
已知点 F1 、 F2 为双曲线 C : x 2
y2 b2
1 (b
0) 的左、右焦点,过
F2 作垂直于 x 轴的直线,在 x 轴上方交
圆锥曲线中的热点问题(总结的非常好)

第3讲圆锥曲线中的热点问题【高考考情解读】 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.1.直线与圆锥曲线的位置关系(1)直线与椭圆的位置关系的判定方法:将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.(2)直线与双曲线的位置关系的判定方法:将直线方程与双曲线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①若a≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.②若a=0时,直线与渐近线平行,与双曲线有一个交点.(3)直线与抛物线的位置关系的判定方法:将直线方程与抛物线方程联立,消去y(或x),得到一个一元方程ax2+bx+c=0(或ay2+by+c=0).①当a≠0时,用Δ判定,方法同上.②当a=0时,直线与抛物线的对称轴平行,只有一个交点.2.有关弦长问题有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.(1)斜率为k的直线与圆锥曲线交于两点P1(x1,y1),P2(x2,y2),则所得弦长|P1P2|=1+k2|x2-x1|或|P1P2|=1+1k2|y2-y1|,其中求|x2-x1|与|y2-y1|时通常使用根与系数的关系,即作如下变形:|x2-x1|=x1+x22-4x1x2,|y2-y1|=y1+y22-4y1y2.(2)当斜率k不存在时,可求出交点坐标,直接运算(利用两点间距离公式).3.弦的中点问题有关弦的中点问题,应灵活运用“点差法”,“设而不求法”来简化运算.考点一圆锥曲线的弦长及中点问题例1已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点(22,0),斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求△PAB 的面积.解 (1)由已知得c =22,c a =63. 解得a =23,又b 2=a 2-c 2=4. 所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m . 由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1.得4x 2+6mx +3m 2-12=0.①设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2),AB 中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m 4; 因为AB 是等腰△PAB 的底边, 所以PE ⊥AB .所以PE 的斜率k =2-m 4-3+3m 4=-1.解得m =2.此时方程①为4x 2+12x =0. 解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2. 所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322,所以△PAB 的面积S =12|AB |·d =92.解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.椭圆x 22+y 2=1的弦被点⎝⎛⎭⎫12,12平分,则这条弦所在的直线方程是____________.答案 2x +4y -3=0解析 设弦的两个端点为A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=1,y 1+y 2=1.∵A ,B 在椭圆上,∴x 212+y 21=1,x 222+y 22=1. x 1+x 2x 1-x 22+(y 1+y 2)(y 1-y 2)=0, 即y 1-y 2x 1-x 2=-x 1+x 22y 1+y 2=-12, 即直线AB 的斜率为-12.∴直线AB 的方程为y -12=-12⎝⎛⎭⎫x -12,即2x +4y -3=0.考点二 圆锥曲线中的定值、定点问题例2已知椭圆C :x 2a 2+y 2b 2=1经过点(0,3),离心率为12,直线l 经过椭圆C 的右焦点F 交椭圆于A 、B 两点,点A 、F 、B 在直线x =4上的射影依次为D 、K 、E . (1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且MA →=λAF →,MB →=μBF →,当直线l 的倾斜角变化时,探求λ+μ的值是否为定值若是,求出λ+μ的值;否则,说明理由;(3)连接AE 、BD ,试探索当直线l 的倾斜角变化时,直线AE 与BD 是否相交于定点若是,请求出定点的坐标,并给予证明;否则,说明理由.(1)待定系数法;(2)用直线的斜率为参数建立直线方程,代入椭圆方程消y 后可得点A ,B 的横坐标的关系式,然后根据向量关系式MA →=λAF →,MB →=μBF →把λ,μ用点A ,B 的横坐标表示出来,只要证明λ+μ的值与直线的斜率k 无关即证明了其为定值,否则就不是定值;(3)先根据直线l 的斜率不存在时的特殊情况,看两条直线AE ,BD 的交点坐标,如果直线AE ,BD 相交于定点的话,这个特殊位置时的交点就是这个定点,这样只要证明直线AE ,BD 都经过这个定点即证明了两直线相交于定点,否则两直线就不相交于定点. 解 (1)依题意得b =3,e =c a =12,a 2=b 2+c 2, ∴a =2,c =1,∴椭圆C 的方程为x 24+y 23=1.(2)因直线l 与y 轴相交,故斜率存在,设直线l 方程为 y =k (x -1),求得l 与y 轴交于M (0,-k ),又F 坐标为(1,0),设l 交椭圆于A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =kx -1,x 24+y 23=1,消去y 得(3+4k 2)x 2-8k 2x +4k 2-12=0, ∴x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k 2,又由MA →=λAF →,∴(x 1,y 1+k )=λ(1-x 1,-y 1), ∴λ=x 11-x 1,同理μ=x 21-x 2,∴λ+μ=x 11-x 1+x 21-x 2=x 1+x 2-2x 1x 21-x 1+x 2+x 1x 2=8k 23+4k 2-24k 2-123+4k 21-8k 23+4k 2+4k 2-123+4k 2=-83. 所以当直线l 的倾斜角变化时,直线λ+μ的值为定值-83.(3)当直线l 斜率不存在时,直线l ⊥x 轴,则ABED 为矩形,由对称性知,AE 与BD 相交于FK 的中点N ⎝⎛⎭⎫52,0, 猜想,当直线l 的倾斜角变化时,AE 与BD 相交于定点N ⎝⎛⎭⎫52,0,证明:由(2)知A (x 1,y 1),B (x 2,y 2),∴D (4,y 1),E (4,y 2),当直线l 的倾斜角变化时,首先证直线AE 过定点⎝⎛⎭⎫52,0,∵l AE :y -y 2=y 2-y 14-x 1(x -4),当x =52时,y =y 2+y 2-y 14-x 1·⎝⎛⎭⎫-32=24-x 1·y 2-3y 2-y 124-x 1=24-x 1·kx 2-1-3kx 2-x 124-x 1=-8k -2kx 1x 2+5kx 1+x 224-x 1=-8k 3+4k 2-2k 4k 2-12+5k ·8k 224-x 1·3+4k 2=0.∴点N ⎝⎛⎭⎫52,0在直线l AE 上. 同理可证,点N ⎝⎛⎭⎫52,0也在直线l BD 上.∴当直线l 的倾斜角变化时,直线AE 与BD 相交于定点⎝⎛⎭⎫52,0.(1)定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.(2)由直线方程确定定点,若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2013·陕西)已知动圆过定点A (4,0),且在y 轴上截得弦MN 的长为8.(1)求动圆圆心的轨迹C 的方程;(2)已知点B (-1,0),设不垂直于x 轴的直线l 与轨迹C 交于不同的两点P ,Q ,若x 轴是∠PBQ 的角平分线,证明:直线l 过定点.(1)解 如图,设动圆圆心为O 1(x ,y ),由题意,得|O 1A |=|O 1M |, 当O 1不在y 轴上时,过O 1作O 1H ⊥MN 交MN 于H ,则H 是MN 的中 点,∴|O 1M |=x 2+42, 又|O 1A |=x -42+y 2, ∴x -42+y 2=x 2+42,化简得y 2=8x (x ≠0).又当O 1在y 轴上时,O 1与O 重合,点O 1的坐标为(0,0)也满足方程y 2=8x , ∴动圆圆心的轨迹C 的方程为y 2=8x .(2)证明 由题意,设直线l 的方程为y =kx +b (k ≠0), P (x 1,y 1),Q (x 2,y 2), 将y =kx +b 代入y 2=8x 中, 得k 2x 2+(2bk -8)x +b 2=0. 其中Δ=-32kb +64>0.由根与系数的关系得,x 1+x 2=8-2bkk 2, ① x 1x 2=b 2k 2,②因为x 轴是∠PBQ 的角平分线,所以y 1x 1+1=-y 2x 2+1,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0 ③将①,②代入③得2kb2+(k+b)(8-2bk)+2k2b=0,∴k=-b,此时Δ>0,∴直线l的方程为y=k(x-1),即直线l过定点(1,0).考点三圆锥曲线中的最值范围问题例3(2013·浙江)如图,点P(0,-1)是椭圆C1:x2 a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径.l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A,B两点,l2交椭圆C1于另一点D.(1)求椭圆C 1的方程;(2)求△ABD 面积取最大值时直线l 1的方程.解 (1)由题意得⎩⎪⎨⎪⎧b =1,a =2.所以椭圆C 1的方程为x 24+y 2=1. (2)设A (x 1,y 1),B (x 2,y 2),D (x 0,y 0). 由题意知直线l 1的斜率存在,不妨设其为k , 则直线l 1的方程为y =kx -1. 又圆C 2:x 2+y 2=4, 故点O 到直线l 1的距离 d =1k 2+1,所以|AB |=24-d 2=24k 2+3k 2+1. 又l 2⊥l 1,故直线l 2的方程为x +ky +k =0.由⎩⎪⎨⎪⎧x +ky +k =0,x 2+4y 2=4. 消去y ,整理得(4+k 2)x 2+8kx =0, 故x 0=-8k 4+k 2.所以|PD |=8k 2+14+k 2.设△ABD 的面积为S ,则S =12·|AB |·|PD | =84k 2+34+k 2,所以S =324k 2+3+134k 2+3≤3224k 2+3·134k 2+3=161313,当且仅当k =±102时取等号.所以所求直线l 1的方程为y =±102x -1.求最值及参数范围的方法有两种:①根据题目给出的已知条件列出一个关于参数的函数关系式,将其代入由题目列出的不等式(即为消元),然后求解不等式;②由题目条件和结论建立目标函数,进而转化为求函数的值域.已知椭圆C 1与抛物线C 2的焦点均在x轴上且C 1的中心和C 2的顶点均为坐标原点O ,从每条曲线上的各取两个点,其坐标如下表所示:(1)求C 1,C 2(2)过点A (m,0)作倾斜角为π6的直线l 交椭圆C 1于C ,D 两点,且椭圆C 1的左焦点F 在以线段CD 为直径的圆的外部,求m 的取值范围.解 (1)先判断出(-6,0)在椭圆上,进而断定点(1,-3)和(4,-6)在抛物线上,故(3,1)在椭圆上,所以椭圆C 1的方程为x 26+y 22=1,抛物线C 2的方程为y 2=9x . (2)设C (x 1,y 1),D (x 2,y 2),直线l 的方程为y =33(x -m ), 由⎩⎪⎨⎪⎧y =33x -m x 26+y 22=1,消去y 整理得2x 2-2mx +m 2-6=0, 由Δ>0得Δ=4m 2-8(m 2-6)>0, 即-23<m <23,①而x 1x 2=m 2-62,x 1+x 2=m , 故y 1y 2=33(x 1-m )·33(x 2-m ) =13[x 1x 2-m (x 1+x 2)+m 2] =m 2-66.欲使左焦点F 在以线段CD 为直径的圆的外部, 则FC →·FD →>0,又F (-2,0),即FC →·FD →=(x 1+2,y 1)·(x 2+2,y 2) =x 1x 2+2(x 1+x 2)+y 1y 2+4>0. 整理得m (m +3)>0, 即m <-3或m >0.②由①②可得m 的取值范围是(-23,-3)∪(0,23).1. 求轨迹与轨迹方程的注意事项(1)求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变.(2)求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解(即轨迹上的某些点未能用所求的方程表示).检验方法:研究运动中的特殊情形或极端情形. 2. 定点、定值问题的处理方法定值包括几何量的定值或曲线过定点等问题,处理时可以直接推理求出定值,也可以先通过特定位置猜测结论后进行一般性证明.对于客观题,通过特殊值法探求定点、定值能达到事半功倍的效果.3. 圆锥曲线的最值与范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决;(2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决最值与范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.设直线l :y =k (x +1)与椭圆x 2+3y 2=a 2(a >0)相交于A 、B 两个不同的点,与x 轴相交于点C ,记O 为坐标原点. (1)证明:a 2>3k 21+3k 2; (2)若AC →=2CB →,求△OAB 的面积取得最大值时的椭圆方程. (1)证明 依题意,直线l 显然不平行于坐标轴, 故y =k (x +1)可化为x =1k y -1.将x =1k y -1代入x 2+3y 2=a 2,消去x ,得⎝⎛⎭⎫3+1k 2y 2-2y k +1-a 2=0,①由直线l 与椭圆相交于两个不同的点,得 Δ=4k 2-4⎝⎛⎭⎫1k 2+3(1-a 2)>0,整理得⎝⎛⎭⎫1k 2+3a 2>3,即a 2>3k 21+3k 2. (2)解 设A (x 1,y 1),B (x 2,y 2)由①, 得y 1+y 2=2k1+3k 2, 因为AC →=2CB →,得y 1=-2y 2, 代入上式,得y 2=-2k1+3k 2.于是,△OAB 的面积S =12|OC |·|y 1-y 2|=32|y 2| =3|k |1+3k 2≤3|k |23|k |=32. 其中,上式取等号的条件是3k 2=1,即k =±33. 由y 2=-2k 1+3k 2,可得y 2=±33. 将k =33,y 2=-33及k =-33, y 2=33这两组值分别代入①, 均可解出a 2=5.所以,△OAB 的面积取得最大值的椭圆方程是x 2+3y 2=5.(推荐时间:70分钟)一、选择题1. 已知方程x 2k +1+y 23-k=1(k ∈R )表示焦点在x 轴上的椭圆,则k 的取值范围是 ( )A .k <1或k >3B .1<k <3C .k >1D .k <3答案 B解析 若椭圆焦点在x 轴上,则⎩⎪⎨⎪⎧k +1>03-k >0k +1>3-k ,解得1<k <3.选B.2. △ABC 的顶点A (-5,0)、B (5,0),△ABC 的内切圆圆心在直线x =3上,则顶点C 的轨迹方程是( )-y 216=1-y 29=1 -y 216=1(x >3)-y 29=1(x >4)答案 C解析 如图|AD |=|AE |=8,|BF |=|BE |=2,|CD |=|CF |, 所以|CA |-|CB |=8-2=6.根据双曲线定义,所求轨迹是以A 、B 为焦点,实轴长为6的双曲线 的右支,方程为x 29-y 216=1(x >3).3. 设M (x 0,y 0)为抛物线C :x 2=8y 上一点,F 为抛物线C 的焦点,以F 为圆心,|FM |为半径的圆和抛物线的准线相交,则y 0的取值范围是( )A .(0,2)B .[0,2]C .(2,+∞)D .[2,+∞)答案 C解析 依题意得:F (0,2),准线方程为y =-2,又∵以F 为圆心,|FM |为半径的圆和抛物线的准线相交,且|FM |=|y 0+2|, ∴|FM |>4,即|y 0+2|>4, 又y 0≥0,∴y 0>2.4. 若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP→的最大值为( )A .2B .3C .6D .8 答案 C解析 设P (x 0,y 0),则 x 204+y 203=1,即y 20=3-3x 204,又因为F (-1,0),所以OP →·FP →=x 0·(x 0+1)+y 20=14x 20+x 0+3 =14(x 0+2)2+2,又x 0∈[-2,2],即OP →·FP →∈[2,6], 所以(OP →·FP →)max =6.5. 已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F 1、F 2,且两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形,若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1·e 2的取值范围是( )A .(0,+∞)B .(13,+∞) C .(15,+∞)D .(19,+∞)答案 B解析 设椭圆与双曲线的半焦距为c , PF 1=r 1,PF 2=r 2.由题意知r 1=10,r 2=2c , 且r 1>r 2,2r 2>r 1, ∴2c <10,2c +2c >10, ∴52<c <51<25c 2<4,∴e 2=2c 2a 双=2c r 1-r 2=2c 10-2c =c5-c ;e 1=2c 2a 椭=2c r 1+r 2=2c 10+2c =c 5+c. ∴e 1·e 2=c 225-c2=125c 2-1>13. 二、填空题6. 直线y =kx +1与椭圆x 25+y 2m =1恒有公共点,则m 的取值范围是________.答案 m ≥1且m ≠5解析 ∵方程x 25+y 2m =1表示椭圆, ∴m >0且m ≠5.∵直线y =kx +1恒过(0,1)点,∴要使直线与椭圆总有公共点,应有: 025+12m ≤1,m ≥1,∴m 的取值范围是m ≥1且m ≠5.7. 设F 1、F 2为椭圆x 24+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2面积最大时,PF →1·PF →2的值等于________. 答案 -2解析 易知当P ,Q 分别在椭圆短轴端点时,四边形PF 1QF 2面积最大. 此时,F 1(-3,0),F 2(3,0),不妨设P (0,1), ∴PF →1=(-3,-1),PF →2=(3,-1), ∴PF →1·PF →2=-2.8. 已知抛物线方程为y 2=4x ,直线l 的方程为x -y +4=0,在抛物线上有一动点P 到y 轴的距离为d 1,P 到直线l 的距离为d 2,则d 1+d 2的最小值为________. 答案522-1解析 过点P 作抛物线的准线的垂线,垂足为A ,交y 轴于B ,由抛物线方程为y 2=4x 得焦点F 的坐标为(1,0),准线为x =-1,则由抛物线的定义可得 d 1+d 2=|PA |-|AB |+d 2=|PF |-1+d 2, |PF |+d 2大于或等于焦点F 点P 到直线l , 即|PF |+d 2的最小值为|1-0+4|2=522,所以d 1+d 2的最小值为522-1.9. (2013·安徽)已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB为直角,则a 的取值范围为________. 答案 [1,+∞)解析 以AB 为直径的圆的方程为x 2+(y -a )2=a ,由⎩⎪⎨⎪⎧y =x2x 2+y -a 2=a 得y 2+(1-2a )y +a 2-a =0. 即(y -a )[y -(a -1)]=0,由已知⎩⎪⎨⎪⎧a >0a -1≥0,解得a ≥1.三、解答题10.已知直线x -2y +2=0经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 和上顶点D ,椭圆C的右顶点为B ,点S 是椭圆C 上位于x 轴上方的动点,直线AS ,BS 与直线l :x =103分别交于M ,N 两点. (1)求椭圆C 的方程;(2)求线段MN 的长度的最小值.解 (1)如图,由题意得椭圆C 的左顶点为A (-2,0),上顶点为 D (0,1),即a =2,b =1. 故椭圆C 的方程为x 24+y 2=1.(2)直线AS 的斜率显然存在且不为0,设直线AS 的方程为y =k (x +2)(k >0),解得M (103,16k3),且将直线方程代入椭圆C 的方程,得(1+4k 2)x 2+16k 2x +16k 2-4=0.设S (x 1,y 1),由根与系数的关系得(-2)·x 1=16k 2-41+4k 2.由此得x 1=2-8k 21+4k 2,y 1=4k 1+4k 2,即S (2-8k 21+4k 2,4k1+4k 2). 又B (2,0),则直线BS 的方程为y =-14k (x -2), 联立直线BS 与l 的方程解得N (103,-13k ). ∴|MN |=⎪⎪⎪⎪16k 3+13k =16k 3+13k ≥216k 3·13k =83.当且仅当16k 3=13k ,即k =14时等号成立,故当k =14时,线段MN 的长度的最小值为83. 11.在平面直角坐标系中,点P (x ,y )为动点,已知点A (2,0),B (-2,0),直线PA 与PB的斜率之积为-12.(1)求动点P 的轨迹E 的方程;(2)过点F (1,0)的直线l 交曲线E 于M ,N 两点,设点N 关于x 轴的对称点为Q (M 、Q 不重合),求证:直线MQ 过x 轴上一定点. (1)解 由题知:y x +2·y x -2=-12.化简得x 22+y 2=1(y ≠0).(2)证明 方法一 设M (x 1,y 1),N (x 2,y 2),Q (x 2,-y 2),l :x =my +1,代入x 22+y 2=1(y ≠0)整理得 (m 2+2)y 2+2my -1=0. y 1+y 2=-2m m 2+2,y 1y 2=-1m 2+2, MQ 的方程为y -y 1=y 1+y 2x 1-x 2(x -x 1),令y =0, 得x =x 1+y 1x 2-x 1y 1+y 2=my 1+1+my 1y 2-y 1y 1+y 2=2my 1y 2y 1+y 2+1=2.∴直线MQ 过定点(2,0).方法二 设M (x 1,y 1),N (x 2,y 2),Q (x 2,-y 2), l :y =k (x -1),代入x 22+y 2=1(y ≠0)整理得 (1+2k 2)x 2-4k 2x +2k 2-2=0, x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k 2,MQ 的方程为y -y 1=y 1+y 2x 1-x 2(x -x 1),令y =0,得x =x 1+y 1x 2-x 1y 1+y 2=x 1+kx 1-1x 2-x 1kx 1+x 2-2=2x 1x 2-x 1+x 2x 1+x 2-2=2.∴直线MQ 过定点(2,0).12.(2013·课标全国Ⅰ)已知圆M :(x +1)2+y 2=1,圆N :(x -1)2+y 2=9,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C . (1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A 、B 两点,当圆P 的半径最长时,求|AB |.解 (1)设圆P 的半径为r , 则|PM |=1+r ,|PN |=3-r , ∴|PM |+|PN |=4>|MN |,∴P 的轨迹是以M 、N 为焦点的椭圆,左顶点除外,且2a =4,2c =2,∴a =2,c =1,∴b 2=a 2-c 2=3.∴P 的轨迹曲线C 的方程为x 24+y 23=1(x =-2).(2)由(1)知:2r =(|PM |-|PN |)+2≤|MN |+2=4, ∴圆P 的最大半径为r =2.此时P 的坐标为(2,0). 圆P 的方程为(x -2)2+y 2=4.①当l 的方程为x =0时,|AB |=23, ②设l 的方程为y =kx +b (k ∈R ), ⎩⎪⎨⎪⎧ |-k +b |1+k 2=1|2k +b |1+k 2=2 解之得:⎩⎪⎨⎪⎧ k =24b =2或⎩⎪⎨⎪⎧k =-24b =-2. ∴l 的方程为y =24x +2,y =-24x - 2. 联立方程⎩⎪⎨⎪⎧ x 24+y 23=1y =24x +2化简:7x 2+8x -8=0 ∴x 1+x 2=-87,x 1x 2=-87,∴|AB |=1+k 2x 1+x 22-4x 1x 2=187.。
高中数学选择性必修第一册 专题研究四 圆锥曲线中的定点、定值问题

思考题 1 已知抛物线 C 的顶点在原点,焦点在坐标轴上,点 A(1,2)是
抛物线 C 上一点. (1)求 C 的方程; (2)若点 B(1,-2)在 C 上,过点 B 作 C 的两弦 BP 与 BQ,若 kBP·kBQ=-2,
求证:直线 PQ 过定点.
【解析】 (1)由题得 C 的方程为 y2=4x 或 x2=12y. (2)证明:∵点 B(1,-2)在 C 上,∴曲线 C 的方程为 y2=4x. 设点 P(x1,y1),Q(x2,y2),直线 PQ:x=my+b(b≥0),与方程 y2=4x 联立, 消去 x 得 y2-4my-4b=0,易知 Δ>0,∴y1+y2=4m,y1·y2=-4b. ∵kBP·kBQ=-2,∴yx11+ -21·yx22+ -21=-2,∴y1-4 2·y2-4 2=-2,即 y1y2-2(y1 +y2)+12=0.∴-4b-8m+12=0,即 b=3-2m. 直线 PQ:x=my+b=my+3-2m,即 x-3=m(y-2). ∴直线 PQ 过定点(3,2).
直线 PB 的方程为 y=3t (x-3), 所以 y2=3t (x2-3). 可得 3y1(x2-3)=y2(x1+3). 由于x922+y22=1,故 y22=-(x2+3)9(x2-3),可得 27y1y2=-(x1+3)(x2 +3),即(27+m2)y1y2+m(n+3)(y1+y2)+(n+3)2=0.① 将 x=my+n 代入x92+y2=1 得 (m2+9)y2+2mny+n2-9=0,所以 y1+y2=-m22m+n9,y1y2=mn22-+99.
【解析】 (1)由题意得 a=2,b=1, 所以椭圆 C 的方程为x42+y2=1. 又 c= a2-b2= 3,
所以椭圆 C 的离心率 e=ac= 23. (2)证明:设 P(x0,y0)(x0<0,y0<0),则 x02+4y02=4. 又 A(2,0),B(0,1), 所以直线 PA 的方程为 y=x0y-0 2(x-2). 令 x=0,得 yM=-x02-y02,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲 圆锥曲线中的热点问题
【高考考情解读】 1.本部分主要以解答题形式考查,往往是试卷的压轴题之一,一般以椭圆或抛物线为背景,考查弦长、定点、定值、最值、范围问题或探索性问题,试题难度较大.2.求轨迹方程也是高考的热点与重点,若在客观题中出现通常用定义法,若在解答题中出现一般用直接法、代入法、参数法或待定系数法,往往出现在解答题的第(1)问中.
1. 直线与圆锥曲线的位置关系
(1)直线与椭圆的位置关系的判定方法:
将直线方程与椭圆方程联立,消去一个未知数,得到一个一元二次方程.若Δ>0,则直线与椭圆相交;若Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.
(2)直线与双曲线的位置关系的判定方法:
将直线方程与双曲线方程联立,消去y (或x ),得到一个一元方程ax 2+bx +c =0(或ay 2+by +c =0).
①若a ≠0,当Δ>0时,直线与双曲线相交;当Δ=0时,直线与双曲线相切;当Δ<0时,直线与双曲线相离.
②若a =0时,直线与渐近线平行,与双曲线有一个交点.
(3)直线与抛物线的位置关系的判定方法:
将直线方程与抛物线方程联立,消去y (或x ),得到一个一元方程ax 2+bx +c =0(或ay 2+by +c =0).
①当a ≠0时,用Δ判定,方法同上.
②当a =0时,直线与抛物线的对称轴平行,只有一个交点.
2. 有关弦长问题
有关弦长问题,应注意运用弦长公式及根与系数的关系,“设而不求”;有关焦点弦长问题,要重视圆锥曲线定义的运用,以简化运算.
(1)斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长|P 1P 2|=1+k 2
|x 2-x 1|或|P 1P 2|=|y 2-y 1|,其中求|x 2-x 1|与|y 2-y 1|时通常使用根与系数的关系,即1+1k
2作如下变形:
|x 2-x 1|=,
(x 1+x 2)2-4x 1x 2|y 2-y 1|=.
(y 1+y 2)2-4y 1y 2(2)当斜率k 不存在时,可求出交点坐标,直接运算(利用两点间距离公式).。