人教版中考数学压轴题 复习

合集下载

2022-2023学年人教版中考数学复习 圆综合压轴题 专题提升训练

2022-2023学年人教版中考数学复习 圆综合压轴题 专题提升训练

2022-2023学年人教版中考数学复习《圆综合压轴题》专题提升训练(附答案)1.锐角三角形△ABC的外心为O,外接圆直径为d,延长AO,BO,CO,分别与对边BC,CA,AB交于D,E,F.(1)求的值;(2)求证:.2.如图,AB是⊙O的直径,点C在⊙O上,CP是⊙O的切线.点P在AB的延长线上.(1)求证:∠COB=2∠PCB;(2)若M是弧AB的中点,CM交AB于点N,若AB=6.求MC•MN的值.3.如图,AC为⊙O的直径,CF切⊙O于点C,AF交⊙O于点D,点B在DF上,BC交⊙O于点E,且∠CAF=2∠BCF,BG⊥CF于点G,连接AE.(1)求∠AEB的度数;(2)求证:△CBG∽△ABE;(3)若∠F=60°,GF=2,求⊙O的半径长.4.如图,△ABC内接于⊙O,BC是⊙O的直径,E是上一点,弦BE交AC于点F,弦AD⊥BE于点G,连接CD、CG,且∠CBE=∠ACG.(1)求证:∠CAG=∠ABE;(2)求证:CG=CD;(3)若AB=4,BC=2,求GF的长.5.如图,△ABC为⊙O的内接三角形,AD⊥BC,垂足为D,直径AE平分∠BAD,交BC于点F,连结BE.(1)求证:∠AEB=∠AFD;(2)若AB=10,BF=5,求DF的长;(3)若点G为AB的中点,连结DG,若点O在DG上,求BF:FC的值.6.如图,△ABC为⊙O的内接等腰三角形,AB=AC,CD为⊙O的直径,DF∥AC交AB、BC于点E、F.(1)求证:DE=EF;(2)若sin∠B=,⊙O的半径为5,求CF的长.7.如图,⊙O为△ABC的外接圆,AB为⊙O直径,AC=BC,点D在劣弧BC上,CE⊥CD交AD于E,连接BD.(1)求证:△ACE≌△BCD.(2)若CD=2,BD=3,求⊙O的半径.8.如图,在△ABC中,∠ACB=90°,点D在BC边上(不包括端点B,C),过A,C,D三点的⊙O交AB于另一点E,连接AD,DE,CE,且CE⊥AD于点G,过点C作CF∥DE交AD于点F,连接EF.(1)求证:四边形DCFE是菱形;(2)当tan∠AEF=,AC=4时,求⊙O的直径长.9.如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F,连接BE.(1)求证:DC=DE;(2)若AE=4,.求:①BE的长;②cos∠BDF的值.10.如图,AB是半圆的直径,AC为半圆的切线,AC=AB、在半圆上任取一点D,作DE⊥CD,交直线AB 于点F,BF⊥AB,交线段AD的延长线于点F.(1)设是x°的弧,并要使点E在线段BA的延长线上,则x的取值范围是;(2)不论D点取在半圆什么位置,图中除AB=AC外,还有两条线段一定相等,指出这两条相等的线段,并予证明.11.如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接P A,PB,AB,已知∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2,求BC的长.12.如图,点C是以AB为直径的圆O上一点,直线AC与过B点的切线相交于D,点E是BD的中点,直线CE交直线AB于点F.(1)求证:CF是⊙O的切线;(2)若ED=3,cos F=,求⊙O的半径.13.如图①,AB为⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)连接AE并延长与BC的延长线交于点G(如图②所示).若AB=,CD=9,求线段BC和EG 的长.14.如图,AB为⊙O的直径,AB=10,C为⊙O上一点,AD⊥CD,垂足为D,且交⊙O于E,C是的中点.(1)求证:DC是⊙O的切线;(2)若AC=8,请直接写出CD的长.(3)若DC+DE=6,求AE的长.15.如图,AB为⊙O的直径,点P是⊙O外一点,PD与⊙O相切于点C,与BA的延长线交于点D,DE ⊥PO,交PO的延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)若PB=3,DB=4,求⊙O的半径.16.如图,点P是⊙O外一点,P A切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O 于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=cm,AC=8cm,点E是的中点,连接CE,求CE的长.17.如图,点O是等腰△ABC的外心,AD是圆O的切线,切点为A,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,连接AD,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=12,BC=8.求PC的长.18.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.(1)求证:ED为⊙O的切线;(2)如果⊙O的半径为,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.19.如图1,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E(1)判断直线PD是否为⊙O的切线,并说明理由;(2)如图2,如果∠BED=60°,PD=,求P A的长.20.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且=,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.21.如图,AB是⊙O的直径,延长BA至点P,过点P作⊙O的切线PC,切点为C,过点B向PC的延长线作垂线BE交该延长线于点E,BE交⊙O于点D,已知P A=1,PC=OC,(1)求BE的长;(2)连接DO,延长DO交⊙O于F,连接PF,①求DE的长;②求证:PF是⊙O的切线.参考答案1.(1)解:由于AD,BE,CF交于点O,∴=,=,=,∴++=1;(2)证明:如图,延长AD交⊙O于M,设R为△ABC的外接圆半径,AD,BE,CF交于点O.∵==1﹣=1﹣,同理有:=1﹣,=1﹣,代入++=1,得(1﹣)+(1﹣)+(1﹣)=1,∴++=2,∴++==.2.(1)证明:∵CP是⊙O的切线,∴OC⊥CP,∴∠PCB+∠OCB=90°,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠ACO=∠PCB,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠COB=2∠A=2∠PCB;(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴=,∴AM2=MC•MN,∵AB是⊙O的直径,∴∠AMB=90°,∵AM=BM,AB=6.∴2AM2=62,∴AM2=18,∴MC•MN=18.3.解:(1)如图,∵AC是⊙O的直径,∴∠AEC=∠AEB=90°.(2)如图∵CF与⊙O相切,∴∠ACF=90°.∴∠BCF=90°﹣∠ACE=∠CAE.∵∠CAF=2∠BCF.∴∠CAF=2∠CAE.∴∠CAE=∠BAE.∴∠BCF=∠BAE.∵BG⊥BF,AE⊥BC,∴∠CGB=∠AEB=90°.∵∠BCF=∠BAE,∠CGB=∠AEB,∴△CBG∽△ABE.(3)连接BD,如图2所示.∵∠DAE=∠DCE,∠DAE=∠BCF,∴∠DCE=∠BCF.∵AC是⊙O的直径,∴∠ADC=90°.∴CD⊥AF.∵∠DCB=∠BCF,CD⊥AF,BGCBF,∴BD=BG.∵∠F=60°,GF=2,∠BGF=90°,∴tan∠F==BG=tan60°=,∵BG=2,∴BD=BG=2.∵∠AFC=60°,∠ACF=90°,∴∠CAF=30°.∵∠ADC=90°,∠CAF=30°,∴AC=2CD.∵∠CAE=∠BAE,∠AEC=∠AEB,∴∠ACE=∠ABE.∴AB=AC.设⊙O的半径为r,则AC=AB=2r,CD=r.∵∠ADC=90°,∴AD=r.∴DB=AB﹣AD=2r﹣r=(2﹣)r=2.∴r=4+6.∴⊙O的半径长为4+6.4.(1)证明:∵BC是⊙O的直径,∴∠CAB=90°,∴∠CAG+∠BAG=90°,∵AD⊥BE,∴∠AGB=90°,∴∠BAG+∠ABE=90°,∴∠CAG=∠ABE;(2)证明:∵∠CGD=∠CAG+∠ACG,∠ABC=∠ABE+∠CBE,由(1)知,∠CAG=∠ABE,∵∠CBE=∠ACG,∴∠CGD=∠ABC,∵∠ABC=∠D,∴∠DGC=∠D,∴CG=CD;(3)解:连接AE、CE,∵BC是直径,∴∠BEC=90°,∴∠AGE=∠BEC,∴AD∥CE,∵∠CAE=∠EBC,∠ACG=∠EBC,∴∠CAE=∠ACG,∴AE∥CG,∴四边形AGCE是平行四边形,∴AF=AC,∵AC2=BC2﹣AB2,∴AC2=﹣42,∴AC=6,∴AF=×6=3,∵BF2=AF2+AB2,∴BF2=32+42,∴BF=5,∵∠ABG=∠ABF,∠AGB=∠BAF,∴△BAG∽△BF A,∴BA:BF=BG:BA,∴4:5=BG:4,∴BG=,∵FG=BF﹣BG,∴FG=5﹣=.5.(1)证明:∵AE为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵AE平分∠BAD,∴∠BAE=∠F AD,∴∠AEB=∠AFD;(2)解:如图1,过点F作BM⊥AB于点M.则∠AMF=90°,∵∠AFD=∠BFE,∠AFD=∠AEB,∴∠BFE=∠AEB,∴BF=BE=5,∵∠ABE=∠AMF=90°,∠BAE=∠MAF,∴△AMF∽△ABE,∴,即,设MF=x,则AM=2x,∴BM=10﹣2x,∵BM2+MF2=BF2,∴(10﹣2x)2+x2=52,解得x=3,即MF=3,∵AE平分∠ABD,AD⊥BC,∴DF=MF=3;(3)解:∵∠ADB=90°,G为AB的中点,∴AG=DG=BG,OG⊥AB,∴∠BGD=∠AGD=90°,∴△ADG为等腰直角三角形,∴∠GAD=45°,∴∠ABD=45°,过点F作FH⊥AB于点H,如图2,∵AF平分∠BAD,∴FD=FH,∵∠ABD=45°,∴BF=FH=FD,∵∠AFD=∠AEB,∠AEB=∠C,∴∠AFD=∠C,∴AF=AC,又∵AD⊥BC,∴FD=DC,设FD=DC=x,则BF=x,∴.6.(1)证明:如图,连接DB,∵CD为⊙O的直径,∴∠DBC=90°,∵DF∥AC,AB=AC,∴∠ABC=∠ACB=∠DFB,∴EB=EF,∵∠DBF=90°,∴∠DBE+∠EBF=∠EDB+∠EFB,∴∠DBE=∠EDB,∴DE=EB,∴DE=EF;(2)解:如图,连接AO,EO,延长AO交BC于点G,∵AB=AC,∴AG⊥BC,∵OC=OD,DE=EF,∴OE∥FC,FC=2OE,∴∠AEO=∠B,∵OE⊥OA,在Rt△AEO中,sin∠AEO=,∵sin∠B=,⊙O的半径为5,∴=,∴AE=,∴OE===.∴CF=2OE=.7.解:(1)证明:∵AB为⊙O直径,∴∠ACB=90°,∵CE⊥CD,∴∠ECD=90°,∴∠ACE=90°﹣∠ECB=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(ASA);(2)∵△ACE≌△BCD,∴CE=CD,AE=BD,∵CE⊥CD,∴△ECD是等腰直角三角形,∵CD=2,BD=3,∴DE=2,AE=3,∴AD=5,∵AB为⊙O直径,∴∠ADB=90°,∴AB==2,∴⊙O的半径为.8.解:(1)证明:∵CE⊥AD,∴EG=CG,∵CF∥DE,∴∠DEG=∠FCG,∵∠FGC=∠DGE,∴△DEG≌△FCG(ASA),∴ED=FC,∴四边形DCFE为平行四边形,又∵CE⊥DF,∴四边形DCFE是菱形;(2)∵AG⊥EC,EG=CG,∴AE=AC=4,∵四边形AEDC内接于⊙O,∴∠BED=∠BCA=90°,∵四边形DCFE是菱形,∴EF∥DC,DE=DC,∴∠AEF=∠ABC,∴tan∠ABC=tan∠AEF=,在Rt△BED中,设DE=3a,则BE=4a,∴DC=3a,BD==5a,∵BC2+AC2=AB2,∴(5a+3a)2+42=(4a+4)2,解得a=或a=0(舍去),∴DE=DC=2,∴AD===2.即⊙O的直径长为2.9.解:(1)证明:连接OD,BE,∵OD⊥AC,且DH是⊙O的切线,∴∠ODH=∠DHA=90°,∴OD∥CA,∴∠C=∠ODB,∵OD=OB,∴∠OBD=∠ODB,∴∠OBD=∠C,∵∠OBD=∠DEC,∴∠C=∠DEC,∴DC=DE;(2)①由(1)可知:OD∥AC,∴∠AEF=∠ODF,∴∠AFE=∠OFD,∴△AFE∽△OFD,∴,∵AE=4,∴OD=6,∵AB为⊙O的直径,∴;∴BE的长为8;②在Rt△AEB中,,∵∠BDF=∠BAE,∴.10.解:(1)0<x<90,(2)连接BD,可证△BDF∽△ADB,得=,∵∠DBE=∠DAC,∴∠BDE=∠ADC=90°﹣∠ADE,∴△BDE∽△ADC,∴=,∴=,∴BE=BF.11.(1)证明:连接OB,如图所示:∵AC是⊙O的直径,∴∠ABC=90°,∴∠C+∠BAC=90°,∵OA=OB,∴∠BAC=∠OBA,∵∠PBA=∠C,∴∠PBA+∠OBA=90°,即PB⊥OB,∴PB是⊙O的切线;(2)解:∵⊙O的半径为2,∴OB=2,AC=4,∵OP∥BC,∴∠C=∠BOP,又∵∠ABC=∠PBO=90°,∴△ABC∽△PBO,∴=,即=,∴BC=2.12.(1)证明:连CB、OC,如图,∵BD为⊙O的切线,∴DB⊥AB,∴∠ABD=90°,∵AB是直径,∴∠ACB=90°,∴∠BCD=90°,∵E为BD的中点,∴CE=BE,∴∠BCE=∠CBE,而∠OCB=∠OBC,∴∠OBC+∠CBE=∠OCB+∠BCE=90°,∴OC⊥CF,∴CF是⊙O的切线;(2)解:CE=BE=DE=3,在Rt△BFE中,cos F=,tan F==,∴BF=4,∴EF==5,∴CF=CE+EF=8,在Rt△OCF中,tan F==,∴OC=6,即⊙O的半径为6.13.(1)证明:如图1,连接OE,OC;∵CB=CE,OB=OE,OC=OC∴△OEC≌△OBC(SSS)∴∠OBC=∠OEC又∵DE与⊙O相切于点E∴∠OEC=90°∴∠OBC=90°∴BC为⊙O的切线.(2)解:如图2,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∵AD,DC,BG分别切⊙O于点A,E,B∴DA=DE,CE=CB,在Rt△DFC中,CF==1,设AD=DE=BF=x,则x+x+1=9,x=4,∵AD∥BG,∴∠DAE=∠EGC,∵DA=DE,∴∠DAE=∠AED;∵AD∥BG,∵∠AED=∠CEG,∴∠EGC=∠CEG,∴CG=CE=CB=5,∴BG=10,在Rt△ABG中,AG==6,∵AD∥CG,∴==,∴EG=×6=.14.(1)证明:连接OC.∵C是的中点,∴AC平分∠DAB,∴∠DAC=∠OAC,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OCA,∴DA∥OC,∵AD⊥DC,∴∠ADC=90°,∴∠OCD=90°,即OC⊥DC,∵OC为半径,∴DC为⊙O的切线.(2)解:∵AB是⊙O的直径,∴AB=10,∠ACB=90°=∠ADC,∴BC==6,又∵∠DAC=∠OAC,∴△ACD∽△ABC,∴=,即=,解得:CD=4.8.(3)如图,连接EC,作CF⊥AB于F.∵CA平分∠BAD,CD⊥AD,CF⊥AB,∴CD=CF,∵=,∴CE=BC,∴Rt△CDE≌Rt△CFB,∴DE=BF,∴CF+BF=CD+DE=6,设BF=x,则CF=6﹣x,由△ACF∽△CBF,可得CF2=AF•BF,∴(6﹣x)2=(10﹣x)•x,解得x=2或9(舍弃),∴BF=DE=2,CD=CF=4,易证AF=AD=8,∴AE=AD﹣DE=6.15.(1)证明:∵∠EDB=∠EPB,∠DOE=∠POB,∴∠DEO=∠PBO,∵DE⊥PE,∴∠DEO=90°,∴∠PBO=90°,∴PB是⊙O的切线;(2)由(1)知,PB是⊙O的切线,∴∠PBD=90°,∵PB=3,DB=4,∴PD=5,∵PC和PB都是⊙O的切线,∴PC=PB=3,∠OCD=90°,∴CD=2,设⊙O的半径为x,则OC=x,OD=4﹣x,则22+x2=(4﹣x)2,解得,x=,即⊙O的半径是.16.(1)证明:如图,连接OC,∵P A切⊙O于A.∴OA⊥P A,∴∠P AO=90°,∵OP∥BC,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△P AO和△PCO中,∴△P AO≌△PCO(SAS),∴∠P AO=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:连接EA、EB,作BH⊥CE于H,如图,∵AB是⊙O的直径,∴∠ACB=∠AEB=90°,∵OP∥BC,∴PO⊥AC,∴AD=CD=AC=4,在Rt△P AD中,P A===,∵∠APO=∠DP A,∴Rt△P AD∽Rt△POA,∴P A:PO=PD:P A,即:PO=:,解得PO=,∴OD=PO﹣PD=3,∵AO=BO,OD∥BC,∴BC=2OD=6,在Rt△ACB中,AB==10,∵点E是的中点,∴∠BCE=∠ACE=∠ACB=45°,∴AE=BE,∴△BCH和△ABE都是等腰直角三角形,∴CH=BH=BC=3,BE=AB=5,在Rt△BEH中,EH==4,∴CE=CH+EH=3+4=7.17.解:(1)直线PC与圆O相切,理由为:过C点作直径CE,连接EB,如图,∵CE为直径,∴∠EBC=90°,即∠E+∠BCE=90°,∵AB∥DC,∴∠ACD=∠BAC,∵∠BAC=∠E,∠BCP=∠ACD.∴∠E=∠BCP,∴∠BCP+∠BCE=90°,即∠PCE=90°,∴CE⊥PC,∴PC与圆O相切;(2)∵AD是⊙O的切线,切点为A,∴OA⊥AD,∵BC∥AD,∴AM⊥BC,∴BM=CM=BC=4,∴AC=AB=12,在Rt△AMC中,AM==8,设圆O的半径为r,则OC=r,OM=AM﹣r=8﹣r,在Rt△OCM中,OM2+CM2=OC2,即42+(8﹣r)2=r2,解得:r=,∴CE=2r==9,OM=8﹣=,∴BE=2OM=7,∵∠E=∠MCP,∴Rt△PCM∽Rt△CEB,∴=,即=∴PC=.18.解:(1)证明:连接OD,∵OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD,交OE于M,在Rt△ODE中,∵OD=,DE=2,∴OE===,∵OE∥AB,∴△COE∽△CAB,∴=,∴AB=5,∵AC是直径,∴∠ADC=90°,∴cos∠BAC===,∴AD=,∴CD==,∵EF∥AB,∴,∴CM=DM=CD=,∴EF=OE+OF=4,BD=AB﹣AD=5﹣=,∴S△ADF=S梯形ABEF﹣S梯形DBEF=(AB+EF)•DM﹣(BD+EF)•DM=×(5+4)×﹣×(+4)×=.∴△ADF的面积为.19.解:(1)直线PD是否为⊙O的切线.理由如下:连接OD,如图1,∵OD=OB,∴∠1=∠OBD,∵∠PDA=∠PBD,∴∠1=∠PDA,∵AB为直径,∴∠ADB=90°,即∠2+∠1=90°,∴∠PDA+∠2=90°,即∠PDO=90°,∴OD⊥PD,∴PD为⊙O的切线;(2)如图2,连接OD,∵ED和EB为⊙O的切线,∴ED=EB,而∠BED=60°,∴△EDB为等边三角形,∴∠EBD=60°,∴∠PBD=30°,∴∠PDA=30°,而∠ADB=90°,∴∠P=30°,在Rt△OAD中,OD=PD=×=1,OP=2OD=2,∴P A=PO﹣OA=2﹣1=1.20.证明:(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;解:(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.21.解:(1)设圆的半径是r,则OP=P A+r=1+r,OC=r,PC=r.∵PC是圆的切线,∴∠PCO=90°,∴在直角△PCO中,PC2+OC2=OP2,即(r)2+r2=(1+r)2,解得:r=1或r=﹣(舍去负值).在直角△OPC中,cos∠POC==,∴∠POC=60°,∵∠PCO=90°,BE⊥BC,∴BE∥OC,∴△OPC∽△BPE,∠B=∠POC=60°,∴==,∴BE=OC=;(2)①在△OBD中,OB=OD,∠B=60°,∴△OBD是等边三角形,BD=OB=1,∠BOD=60°.∴DE=BE﹣BD=﹣1=;②∵在△OPC和△OPF中,,∴△OPC≌△OPF(SAS),∴∠OFP=∠OCP=90°,∴PF是⊙O的切线.。

人教版中考数学中考压轴题突破 一、选填题压轴题突破 重难点突破六 多结论选填题

人教版中考数学中考压轴题突破 一、选填题压轴题突破 重难点突破六 多结论选填题

B.②④
C.③④
D.②③
3.★(2022·广元)二次函数y=ax2+bx+c(a≠0)的部分图象如图所
示,图象过点(-1, 0),对称轴为直线x=2,下列结论:①abc<0;② 1
4a+c>2b;③ 3b- 2c>0;④若点A(-2,y1),点B -2,y2 ,点 7
C 2,y3 在该函数图象上,则y1<y3<y2;⑤ 4a+2b≥m (am+b) (m为常 数).
2.(2022·临沂)二次函数y=ax2+bx+c (a≠0)的部分图象如图所示,
1 其对称轴为直线x=- 2 ,且与x轴的一个交点坐标为(-2,0).下列结
论:①abc>0;②a=b;③2a+c=0;④关于x的一元二次方程ax2+bx+
c-1=0有两个相等的实数根.其中正确结论的序号是
( D)
A.①③
其中正确的结论有 A.5个 B.4个 C.3个 D.2个
(C)
4.★(2021·荆门)抛物线y=ax2+bx+c(a,b,c为常数)开口向下且过
点A(1,0),B(m,0)(-2<m<-1),下列结论:① 2b+c>0;② 2a+
c<0;③ a(m+1)-b+c>0;④若方程a(x-m)(x-1)-1=0有两个不等
对称轴x=-
b 2a
=1,得b=-2a,∴y=ax2-
2ax-1,
确 当x=-1时,
y>0,∴aa++2a2-a-1>0, 1
11 ∴a>33
,故②正正确;当m=1时,m(am+b)= 确
aa++b,故③错错误 ;∵点(-2, y1)到对称轴的距离大大于点(2, y3)到

人教版2024—2025学年九年级下册中考数学二轮复习专题压轴题解题方法专题训练

人教版2024—2025学年九年级下册中考数学二轮复习专题压轴题解题方法专题训练

人教版2024—2025学年九年级下册中考数学二轮复习专题压轴题解题方法专题训练一、工具法例1.如图,将正方形ABCD折叠,使顶点A与CD边上的一点H重合(H不与端点C,D重合),折痕交AD 于点E,交BC于点F,边AB折叠后与边BC交于点G.设正方形ABCD的周长为m,△CHG的周长为n,则的值为()A.B. C.D.随H点位置的变化而变化例1 变式1变式1:点P是正方形ABCD边AB上一点(不与A、B重合),连接PD并将线段PD绕点P顺时针旋转90°,得线段PE,连接BE,则∠CBE等于()A.75° B.60° C.45° D.30°二、极值法例2.若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5),则符合条件的点P()A.有1个B.有2个C.有3个D.有无穷多个变式2:在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a<0)与线段MN有一个交点,则a的取值范围是()A.a≤﹣1 B.﹣1<a<0 C.a<﹣1 D.﹣1≤a<0三、特殊值法例3.若实数a,b满足ab=1,设M=,N=,则M,N的大小关系是()A.M>N B.M=N C.M<N D.不确定变式3:无论m为何值,二次函数y=x2+(2﹣m)x+m的图象总经过定点.四、特殊位置法:特殊点,特殊线,特殊角,特殊模型例4.如图,已知点A(12,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D.当OD=AD=8时,这两个二次函数的最大值之和等于()A.5 B.2C.8 D.6变式4:(1)如图,在菱形ABCD和菱形BEFG中,点A、B、E在同一直线上,P是线段DF的中点,连接PG,PC.若∠ABC=∠BEF=60°,则=()A. B. C. D.(2)如图,E是边长为4的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2B.2 C.2D.五、排除法例5.如图,△ABC中,∠ACB=90°,AB=10,tanA=.点P是斜边AB上一个动点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为()A.B.C.D.例5 变式5变式5:如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是﹣2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当﹣3<x<2时,ax2+kx<b,其中正确的结论是()A.①②④B.①②⑤C.②③④D.③④⑤六、转化法例6.如图,△ABC中,AB=AC=10,tanA=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD 的最小值是.(1)如图,在△ABC中,∠BAC=60°,∠ACB=75°,AB=2,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB、AC于点E、F,连接EF,则线段EF长度的最小值为.(2)如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC的中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最小值是.例6变式6(1)变式6(2)七、综合分析法例7.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:①该抛物线的对称轴在y轴左侧;②关于x的方程ax2+bx+c+2=0无实数根;③a﹣b+c≥0;④的最小值为3.其中,正确结论的个数为()A.1个B.2个C.3个D.4个变式7:如图,正方形ABCD的边长为4,点E、F分别从点A、点D以相同速度同时出发,点E从点A向点D运动,点F从点D向点C运动,点E运动到D点时,E、F停止运动.连接BE、AF相交于点G,连接CG.有下列结论:①AF⊥BE;②点G随着点E、F的运动而运动,且点G的运动路径的长度为π;③线段DG的最小值为2﹣2;④当线段DG最小时,△BCG的面积S=8+.其中正确的命题有.(填序号)八、特征分析法例8.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B 两点.若点A的坐标为(n,1),则k的值为()A.B.C.D.变式8:如图,两个反比例函数y=和y=﹣的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为()A.3 B.4 C.D.5例8变式8。

人教版中考数学解答题压轴题突破 重难点突破七 二次函数的实际应用 类型二:抛物线型问题

人教版中考数学解答题压轴题突破 重难点突破七 二次函数的实际应用 类型二:抛物线型问题

解:∵a=-510,b=190,∴y=-510x2+190x+66, ∵基准点K到起跳台的水平距离为75m, ∴y=-510×752+190×75+66=21, ∴基准点K的高度h为21 m.
9 ②若a=-510时,运动员落地点要超过K点,则b的取值范围为bb>>10 ; 【分层分析】运动员落地点要超过K点,即是x=75时,y>221 1,故- 510×752+75b+66>2211 ,即可解得答案;
(1)求抛物线的解析式; 解:由题意知, 点(5,3.2)是抛物线 y=a(x-h)2 +k的顶点,∴y=a(x-5)2 +3.2. 又∵抛物线经过点(0,0.7), ∴ 0.7=a(0-5)2 + 3.2,解得a=- 0.1. ∴抛物线的解析式为 y=-0.1(x-5)2 +3.2(或y=-0.1x2 +x +0.7).
解: b=6,c=1.
(2)求大棚的最高处到地面的距离;
解:∵y=-16x2+76x+1=-16x-722+7234, ∴当x=72时,y有最大值7234,
73 即大棚最高处到地面的距离为24 m.
37 (3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为 24 m的竹竿支架若 干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共 需要准备多少根竹竿?
【分层分析】运动员飞行的水平距离为25m时,恰好达到最大高度76 m,即是抛物线的顶点为((225,5,76)7,6)设抛物线解析式为y==a(xa-(x225)25+ ,可得抛物线解析式为y=--1225((xx--2255))2+2+7676,当x=777556时,y= 3366,从而可知他的落地点能超超 过K点.
解:令y=-16x2+76x+1=3274, 1 13
解得x1=2,x2= 2 , 1 11

人教版中考数学压轴题型24道:二次函数专题

人教版中考数学压轴题型24道:二次函数专题

人教版中考数学压轴题24道:二次函数专题1.如图,直线y=﹣x+4与x轴交于点B,与y轴交于点C,抛物线y=﹣x2+bx+c经过B,C两点,与x轴另一交点为A.点P以每秒个单位长度的速度在线段BC上由点B向点C运动(点P不与点B和点C重合),设运动时间为t秒,过点P作x轴垂线交x轴于点E,交抛物线于点M.(1)求抛物线的解析式;(2)如图①,过点P作y轴垂线交y轴于点N,连接MN交BC于点Q,当=时,求t的值;(3)如图②,连接AM交BC于点D,当△PDM是等腰三角形时,直接写出t的值.2.如图,抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点.(1)求抛物线的函数表达式;(2)如图1,P为抛物线上在第二象限内的一点,若△P AC面积为3,求点P的坐标;(3)如图2,D为抛物线的顶点,在线段AD上是否存在点M,使得以M,A,O为顶点的三角形与△ABC相似?若存在,求点M的坐标;若不存在,请说明理由.3.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、P A,当点P运动到某一位置时,PC+P A的值最小,请求出这个最小值,并说明理由.4.已知函数y=(n为常数)(1)当n=5,①点P(4,b)在此函数图象上,求b的值;②求此函数的最大值.(2)已知线段AB的两个端点坐标分别为A(2,2)、B(4,2),当此函数的图象与线段AB只有一个交点时,直接写出n的取值范围.(3)当此函数图象上有4个点到x轴的距离等于4,求n的取值范围.5.在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x2﹣2x的“不动点”的坐标;②平移抛物线y=x2﹣2x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.6.如图,抛物线C1:y=x2﹣2x与抛物线C2:y=ax2+bx开口大小相同、方向相反,它们相交于O,C两点,且分别与x轴的正半轴交于点B,点A,OA=2OB.(1)求抛物线C2的解析式;(2)在抛物线C2的对称轴上是否存在点P,使P A+PC的值最小?若存在,求出点P的坐标,若不存在,说明理由;(3)M是直线OC上方抛物线C2上的一个动点,连接MO,MC,M运动到什么位置时,△MOC面积最大?并求出最大面积.7.已知:如图,抛物线y=ax2+bx+3与坐标轴分别交于点A,B(﹣3,0),C(1,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线解析式;(2)当点P运动到什么位置时,△P AB的面积最大?(3)过点P作x轴的垂线,交线段AB于点D,再过点P作PE∥x轴交抛物线于点E,连接DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求点P的坐标;若不存在,说明理由.8.如图,抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C,直线y=﹣x与该抛物线交于E,F两点.(1)求抛物线的解析式.(2)P是直线EF下方抛物线上的一个动点,作PH⊥EF于点H,求PH的最大值.(3)以点C为圆心,1为半径作圆,⊙C上是否存在点M,使得△BCM是以CM为直角边的直角三角形?若存在,直接写出M点坐标;若不存在,说明理由.9.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.10.如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=﹣x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大?最大值是多少?(3)若点M是平面内的任意一点,在x轴上方是否存在点P,使得以点P,M,E,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.11.已知二次函数y=ax2(a≠0)的图象过点(2,﹣1),点P(P与O不重合)是图象上的一点,直线l过点(0,1)且平行于x轴.PM⊥l于点M,点F(0,﹣1).(1)求二次函数的解析式;(2)求证:点P在线段MF的中垂线上;(3)设直线PF交二次函数的图象于另一点Q,QN⊥l于点N,线段MF的中垂线交l 于点R,求的值;(4)试判断点R与以线段PQ为直径的圆的位置关系.12.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N (点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.13.如图,抛物线y=x2+bx+c的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y 轴交于点C,且点A的坐标为(﹣1,0).(1)求抛物线的函数表达式;(2)将抛物线y=x2+bx+c图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;(3)在抛物线y=x2+bx+c上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x 的取值范围.14.把函数C1:y=ax2﹣2ax﹣3a(a≠0)的图象绕点P(m,0)旋转180°,得到新函数C2的图象,我们称C2是C1关于点P的相关函数.C2的图象的对称轴与x轴交点坐标为(t,0).(1)填空:t的值为(用含m的代数式表示)(2)若a=﹣1,当≤x≤t时,函数C1的最大值为y1,最小值为y2,且y1﹣y2=1,求C2的解析式;(3)当m=0时,C2的图象与x轴相交于A,B两点(点A在点B的右侧).与y轴相交于点D.把线段AD原点O逆时针旋转90°,得到它的对应线段A′D′,若线A′D′与C2的图象有公共点,结合函数图象,求a的取值范围.15.如图1,在平面直角坐标系中,一次函数y=﹣x+3的图象与x轴交于点A,与y轴交于B点,抛物线y=﹣x2+bx+c经过A,B两点,在第一象限的抛物线上取一点D,过点D作DC⊥x轴于点C,交直线AB于点E.(1)求抛物线的函数表达式(2)是否存在点D,使得△BDE和△ACE相似?若存在,请求出点D的坐标,若不存在,请说明理由;(3)如图2,F是第一象限内抛物线上的动点(不与点D重合),点G是线段AB上的动点.连接DF,FG,当四边形DEGF是平行四边形且周长最大时,请直接写出点G的坐标.16.如图,已知抛物线y=ax2+bx﹣1与x轴的交点为A(﹣1,0),B(2,0),且与y轴交于C点.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由.(3)已知点P是直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.17.两条抛物线C1:y1=3x2﹣6x﹣1与C2:y2=x2﹣mx+n的顶点相同.(1)求抛物线C2的解析式;(2)点A是抛物线C2在第四象限内图象上的一动点,过点A作AP⊥x轴,P为垂足,求AP+OP的最大值;(3)设抛物线C2的顶点为点C,点B的坐标为(﹣1,﹣4),问在C2的对称轴上是否存在点Q,使线段QB绕点Q顺时针旋转90°得到线段QB′,且点B′恰好落在抛物线C2上?若存在,求出点Q的坐标;若不存在,请说明理由.18.如图,直线y=﹣x+3与x轴、y轴分别交于B、C两点,抛物线y=﹣x2+bx+c经过点B、C,与x轴另一交点为A,顶点为D.(1)求抛物线的解析式;(2)在x轴上找一点E,使EC+ED的值最小,求EC+ED的最小值;(3)在抛物线的对称轴上是否存在一点P,使得∠APB=∠OCB?若存在,求出P点坐标;若不存在,请说明理由.19.已知,如图,抛物线y=ax2+bx+c(a≠0)的顶点为M(1,9),经过抛物线上的两点A (﹣3,﹣7)和B(3,m)的直线交抛物线的对称轴于点C.(1)求抛物线的解析式和直线AB的解析式.(2)在抛物线上A、M两点之间的部分(不包含A、M两点),是否存在点D,使得S△DAC=2S△DCM?若存在,求出点D的坐标;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点A,M,P,Q为顶点的四边形是平行四边形时,直接写出满足条件的点P的坐标.20.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.21.如图,抛物线y=(x﹣1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,﹣3).P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.22.已知抛物线y=ax2+bx+3的对称轴为直线x=,交x轴于点A、B,交y轴于点C,且点A坐标为A(﹣2,0).直线y=﹣mx﹣n(m>0)与抛物线交于点P、Q(点P在点Q 的右边),交y轴于点H.(1)求该抛物线的解析式;(2)若n=﹣5,且△CPQ的面积为3,求m的值;(3)当m≠1时,若n=﹣3m,直线AQ交y轴于点K.设△PQK的面积为S,求S与m 之间的函数解析式.23.综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4)若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.24.如图,在直角坐标系中,直线y=﹣x+3与x轴,y轴分别交于点B,点C,对称轴为x=1的抛物线过B,C两点,且交x轴于另一点A,连接AC.(1)直接写出点A,点B,点C的坐标和抛物线的解析式;(2)已知点P为第一象限内抛物线上一点,当点P到直线BC的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案1.解:(1)直线y=﹣x+4中,当x=0时,y=4∴C(0,4)当y=﹣x+4=0时,解得:x=4∴B(4,0)∵抛物线y=﹣x2+bx+c经过B,C两点∴解得:∴抛物线解析式为y=﹣x2+3x+4(2)∵B(4,0),C(0,4),∠BOC=90°∴OB=OC∴∠OBC=∠OCB=45°∵ME⊥x轴于点E,PB=t∴∠BEP=90°∴Rt△BEP中,sin∠PBE=∴BE=PE=PB=t∴x M=x P=OE=OB﹣BE=4﹣t,y P=PE=t∵点M在抛物线上∴y M=﹣(4﹣t)2+3(4﹣t)+4=﹣t2+5t∴MP=y M﹣y P=﹣t2+4t∵PN⊥y轴于点N∴∠PNO=∠NOE=∠PEO=90°∴四边形ONPE是矩形∴ON=PE=t∴NC=OC﹣ON=4﹣t∵MP∥CN∴△MPQ∽△NCQ∴∴解得:t1=,t2=4(点P不与点C重合,故舍去)∴t的值为(3)∵∠PEB=90°,BE=PE∴∠BPE=∠PBE=45°∴∠MPD=∠BPE=45°①若MD=MP,则∠MDP=∠MPD=45°∴∠DMP=90°,即DM∥x轴,与题意矛盾②若DM=DP,则∠DMP=∠MPD=45°∵∠AEM=90°∴AE=ME∵y=﹣x2+3x+4=0时,解得:x1=﹣1,x2=4∴A(﹣1,0)∵由(2)得,x M=4﹣t,ME=y M=﹣t2+5t∴AE=4﹣t﹣(﹣1)=5﹣t∴5﹣t=﹣t2+5t解得:t1=1,t2=5(0<t<4,舍去)③若MP=DP,则∠PMD=∠PDM如图,记AM与y轴交点为F,过点D作DG⊥y轴于点G∴∠CFD=∠PMD=∠PDM=∠CDF∴CF=CD∵A(﹣1,0),M(4﹣t,﹣t2+5t),设直线AM解析式为y=ax+m ∴解得:∴直线AM:y=tx+t∴F(0,t)∴CF=OC﹣OF=4﹣t∵tx+t=﹣x+4,解得:x=∴DG=x D=∵∠CGD=90°,∠DCG=45°∴CD=DG=∴4﹣t=解得:t=﹣1综上所述,当△PDM是等腰三角形时,t=1或t=﹣1.2.解:(1)把A(﹣3,0),B(1,0),C(0,3)代入抛物线解析式y=ax2+bx+c得,解得,所以抛物线的函数表达式为y=﹣x2﹣2x+3.(2)如解(2)图1,过P点作PQ平行y轴,交AC于Q点,∵A(﹣3,0),C(0,3),∴直线AC解析式为y=x+3,设P点坐标为(x,﹣x2﹣2x+3.),则Q点坐标为(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△P AC=,∴,解得:x1=﹣1,x2=﹣2.当x=﹣1时,P点坐标为(﹣1,4),当x=﹣2时,P点坐标为(﹣2,3),综上所述:若△P AC面积为3,点P的坐标为(﹣1,4)或(﹣2,3),(3)如解(3)图1,过D点作DF垂直x轴于F点,过A点作AE垂直BC于E点,∵D为抛物线y=﹣x2﹣2x+3的顶点,∴D点坐标为(﹣1,4),又∵A(﹣3,0),∴直线AD为y=2x+6,AF=2,DF=4,tan∠DAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直线BC解析式为y=﹣3x+3.∵AB=4,∴AE=AB•sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠P AB=2,∴∠ACB=∠P AB,∴使得以M,A,O为顶点的三角形与△ABC相似,则有两种情况,如解(3)图2Ⅰ.当∠AOM=∠CAB=45°时,△ABC∽△OMA,即OM为y=﹣x,设OM与AD的交点M(x,y)依题意得:,解得,即M点为(﹣2,2).Ⅱ.若∠AOM=∠CBA,即OM∥BC,∵直线BC解析式为y=﹣3x+3.∴直线OM为y=﹣3x,设直线OM与AD的交点M(x,y).则依题意得:,解得,即M点为(,),综上所述:存在使得以M,A,O为顶点的三角形与△ABC相似的点M,其坐标为(﹣2,2)或(,),3.解:(1)直线y=﹣5x+5,x=0时,y=5∴C(0,5)y=﹣5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点∴解得:∴抛物线解析式为y=x2﹣6x+5当y=x2﹣6x+5=0时,解得:x1=1,x2=5∴B(5,0)(2)如图1,过点M作MH⊥x轴于点H∵A(1,0),B(5,0),C(0,5)∴AB=5﹣1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2﹣6m+5)(1<m<5)∴MH=|m2﹣6m+5|=﹣m2+6m﹣5∴S△ABM=AB•MH=×4(﹣m2+6m﹣5)=﹣2m2+12m﹣10=﹣2(m﹣3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[﹣2(m﹣3)2+8]=﹣2(m﹣3)2+18∴当m=3,即M(3,﹣4)时,四边形AMBC面积最大,最大面积等于18(3)如图2,在x轴上取点D(4,0),连接PD、CD∴BD=5﹣4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴∴PD=AP∴PC+P A=PC+PD∴当点C、P、D在同一直线上时,PC+P A=PC+PD=CD最小∵CD=∴PC+P A的最小值为4.解:(1)当n=5时,y=,①将P(4,b)代入y=﹣x2+x+,∴b=;②当x≥5时,当x=5时有最大值为5;当x<5时,当x=时有最大值为;∴函数的最大值为;(2)将点(4,2)代入y=﹣x2+nx+n中,∴n=,∴<n<4时,图象与线段AB只有一个交点;将点(2,2)代入y=﹣x2+nx+n中,∴n=2,将点(2,2)代入y=﹣x2+x+中,∴n=,∴2≤n<时图象与线段AB只有一个交点;综上所述:<n<4,2≤n<时,图象与线段AB只有一个交点;(3)n>0时,n>,函数图象如图实线所示.①如图1中,当点A的纵坐标为4时,则有﹣++=+=4时,解得n=4或n=﹣8(舍去),观察图象可知:n=4时,满足条件的点恰好有四个,分别是A,B,C,D.②如图2中,观察图象可知,当n≥8时,恰好有四个点满足条件,分别是图中A,B,C,D.n<0时,n<,函数图象如图中实线.③如图3中,当点A的纵坐标为4时,恰好有四个点满足条件,分别是图中A,B,C,D.则有:﹣++n=4时,解得n=﹣2﹣2或n=﹣2+2(舍弃)④如图4中,当n≤﹣8时,观察图象可知,恰好有四个点满足条件,分别是图中A,B,C,D.综上所述,函数图象上有4个点到x轴的距离等于4时,n≤﹣8或n=﹣2﹣2或n=4或n≥8.5.解:(1)∵a=1>0,故该抛物线开口向上,顶点A的坐标为(1,﹣1);(2)①设抛物线“不动点”坐标为(t,t),则t=t2﹣2t,解得:t=0或3,故“不动点”坐标为(0,0)或(3,3);②∵新抛物线顶点B为“不动点”,则设点B(m,m),∴新抛物线的对称轴为:x=m,与x轴的交点C(m,0),∵四边形OABC是梯形,∴直线x=m在y轴左侧,∵BC与OA不平行,∴OC∥AB,又∵点A(1,﹣1),点B(m,m),∴m=﹣1,故新抛物线是由抛物线y=x2﹣2x向左平移2个单位得到的,∴新抛物线的表达式为:y=(x+1)2﹣1.6.解:(1)令:y=x2﹣2x=0,则x=0或2,即点B(2,0),∵C1、C2:y=ax2+bx开口大小相同、方向相反,则a=﹣1,则点A(4,0),将点A的坐标代入C2的表达式得:0=﹣16+4b,解得:b=4,故抛物线C2的解析式为:y=﹣x2+4x;(2)联立C1、C2表达式并解得:x=0或3,故点C(3,3),作点C关于C2对称轴的对称点C′(1,3),连接AC′交函数C2的对称轴与点P,此时P A+PC的值最小为:线段AC′的长度=3,此时点P(2,2);(3)直线OC的表达式为:y=x,过点M作y轴的平行线交OC于点H,设点M(x,﹣x2+4x),则点H(x,x),则S△MOC=MH×x C=(﹣x2+4x﹣x)=﹣x2+x,∵﹣<0,故x=,S△MOC最大值为.7.解:(1)∵抛物线y=ax2+bx+3过点B(﹣3,0),C(1,0)∴解得:∴抛物线解析式为y=﹣x2﹣2x+3(2)过点P作PH⊥x轴于点H,交AB于点F∵x=0时,y=﹣x2﹣2x+3=3∴A(0,3)∴直线AB解析式为y=x+3∵点P在线段AB上方抛物线上∴设P(t,﹣t2﹣2t+3)(﹣3<t<0)∴F(t,t+3)∴PF=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∴S△P AB=S△P AF+S△PBF=PF•OH+PF•BH=PF•OB=(﹣t2﹣3t)=﹣(t+)2+∴点P运动到坐标为(﹣,),△P AB面积最大(3)存在点P使△PDE为等腰直角三角形设P(t,﹣t2﹣2t+3)(﹣3<t<0),则D(t,t+3)∴PD=﹣t2﹣2t+3﹣(t+3)=﹣t2﹣3t∵抛物线y=﹣x2﹣2x+3=﹣(x+1)2+4∴对称轴为直线x=﹣1∵PE∥x轴交抛物线于点E∴y E=y P,即点E、P关于对称轴对称∴=﹣1∴x E=﹣2﹣x P=﹣2﹣t∴PE=|x E﹣x P|=|﹣2﹣2t|∵△PDE为等腰直角三角形,∠DPE=90°∴PD=PE①当﹣3<t≤﹣1时,PE=﹣2﹣2t∴﹣t2﹣3t=﹣2﹣2t解得:t1=1(舍去),t2=﹣2∴P(﹣2,3)②当﹣1<t<0时,PE=2+2t∴﹣t2﹣3t=2+2t解得:t1=,t2=(舍去)∴P(,)综上所述,点P坐标为(﹣2,3)或(,)时使△PDE为等腰直角三角形.8.解:(1)∵抛物线y=ax2+bx﹣2(a≠0)与x轴交于A(﹣3,0),B(1,0)两点,∴,∴,∴抛物线的解析式为y=x2+x﹣2;(2)如图1,过点P作直线l,使l∥EF,过点O作OP'⊥l,当直线l与抛物线只有一个交点时,PH最大,等于OP',∵直线EF的解析式为y=﹣x,设直线l的解析式为y=﹣x+m①,∵抛物线的解析式为y=x2+x﹣2②,联立①②化简得,x2+x﹣2﹣m=0,∴△=﹣4××(﹣2﹣m)=0,∴m=﹣,∴直线l的解析式为y=﹣x﹣,令y=0,则x=﹣,∴M(﹣,0),∴OM=,在Rt△OP'M中,OP'==,∴PH最大=.(3)①当∠CMB=90°时,如图2,∴BM是⊙O的切线,∵⊙C半径为1,B(1,0),∴BM2∥y轴,∴∠CBM2=∠BCO,M2(1,﹣2),∴BM2=2,∵BM1与BM2是⊙C的切线,∴BM1=BM2=2,∠CBM1=∠BCM2,∴∠CBM1=∠BCO,∴BD=CD,在Rt△BOD中,OD2+OB2=BD2,∴OD2+1=(2﹣OD)2,∴OD=,∴BD=,∴DM1=过点M1作M1Q⊥y轴,∴M1Q∥x轴,∴△BOD∽△M1QD,∴,∴,∴M1Q=,DQ=,∴OQ=+=,∴M1(﹣,﹣),②当∠BCM=90°时,如图3,∴∠OCM3+∠OCB=90°,∵∠OCB+∠OBC=90°,∴∠OCM3=∠OBC,在Rt△BOC中,OB=1,OC=2,∴tan∠OBC==2,∴tan∠OCM3=2,过点M3作M3H⊥y轴于H,在Rt△CHM3中,CM3=1,设CH=m,则M3H=2m,根据勾股定理得,m2+(2m)2=1,∴m=,∴M3H=2m=,OH=OC﹣CH=2﹣,∴M3(﹣,﹣2),而点M4与M3关于点C对称,∴M4(,﹣﹣2),即:满足条件的点M的坐标为(﹣,﹣)或(1,﹣2)或(﹣,﹣2)或(,﹣﹣2).9.解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)设直线PD与y轴交于点G,设点P(m,m2﹣2m﹣3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx﹣3﹣2m,则OG=3+2m,S△POD=×OG(x D﹣x P)=(3+2m)(2﹣m)=﹣m2+m+3,∵﹣1<0,故S△POD有最大值,当m=时,其最大值为;(3)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=,故点Q1(,﹣2),Q2(﹣,2)②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q3(,),Q4(,);综上,当△OBE与△ABC相似时,Q1(,﹣2),Q2(﹣,2),Q3(,),Q4(,).10.解:(1)将点C、E的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+2x+3,则点A(1,4);(2)将点A、C的坐标代入一次函数表达式并解得:直线AC的表达式为:y=﹣2x+6,点P(1,4﹣t),则点D(,4﹣t),设点Q(,4﹣),S△ACQ=×DQ×BC=﹣t2+t,∵﹣<0,故S△ACQ有最大值,当t=2时,其最大值为1;(3)设点P(1,m),点M(x,y),①当EC是菱形一条边时,当点M在x轴下方时,点E向右平移3个单位、向下平移3个单位得到C,则点P平移3个单位、向下平移3个单位得到M,则1+3=x,m﹣3=y,而MP=EP得:1+(m﹣3)2=(x﹣1)2+(y﹣m)2,解得:y=m﹣3=,故点M(4,);当点M在x轴上方时,同理可得:点M(﹣2,3+);②当EC是菱形一对角线时,则EC中点即为PM中点,则x+1=3,y+m=3,而PE=PC,即1+(m﹣3)2=4+(m﹣2)2,解得:m=1,故x=2,y=3﹣m=3﹣1=2,故点M(2,2);综上,点M(4,)或(﹣2,3+)或M(2,2).11.解:(1)∵y=ax2(a≠0)的图象过点(2,﹣1),∴﹣1=a×22,即a=,∴y=﹣x2;(2)设二次函数的图象上的点P(x1,y1),则M(x1,1),y1=﹣x12,即x12=﹣4y1,PM=|1﹣y1|,又PF===|y1﹣1|=PM,即PF=PM,∴点P在线段MF的中垂线上;(3)连接RF,∵R在线段MF的中垂线上,∴MR=FR,又∵PM=PF,PR=PR,∴△PMR≌△PFR(SAS),∴∠PFR=∠PMR=90°,∴RF⊥PF,连接RQ,又在Rt△RFQ和Rt△RNQ中,∵Q在y=﹣x2的图象上,由(2)结论知∴QF=QN,∵RQ=RQ,∴Rt△RFQ≌Rt△RNQ(HL),即RN=FR,即MR=FR=RN,∴=1;(4)在△PQR中,由(3)知PR平分∠MRF,QR平分∠FRN,∴∠PRQ=(∠MRF+∠FRN)=90°,∴点R在以线段PQ为直径的圆上.12.解:(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y=﹣x+1,设点P(x,﹣x2+x+2),则点H(x,﹣x+1),S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO=2+2(﹣x2+x+2+x﹣1)=7,解得:x=2或,故点P(2,3)或(,);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接P A″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线A″P的表达式为:y=﹣3x+9…③,联立①③并解得:x=,即点M(,),点M沿ED向下平移2个单位得:N(,﹣).13.解:(1)抛物线的对称轴是x=2,且过点A(﹣1,0)点,∴,解得:,∴抛物线的函数表达式为:y=x2﹣4x﹣5;(2)y=x2﹣4x﹣5=(x﹣2)2﹣9,则x轴下方图象翻折后得到的部分函数解析式为:y=﹣(x﹣2)2+9=﹣x2+4x+5,(﹣1<x<5),其顶点为(2,9).∵新图象与直线y=t恒有四个交点,∴0<t<9,设E(x1,y1),F(x2,y2).由解得:x=2,∵以EF为直径的圆过点Q(2,1),∴EF=2|t﹣1|=x2﹣x1,即2=2|t﹣1|,解得t=,又∵0<t<9,∴t的值为;(3)①当m、n在函数对称轴左侧时,m≤n≤2,由题意得:x=m时,y≤7,x=n时,y≥m,即:,解得:﹣2≤x;②当m、n在对称轴两侧时,x=2时,y的最小值为﹣9,不合题意;③当m、n在对称轴右侧时,同理可得:≤x≤6;故x的取值范围是:﹣2≤x或≤x≤6.14.解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,顶点(1,﹣4a)围绕点P(m,0)旋转180°的对称点为(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函数的对称轴为:x=2m﹣1,t=2m﹣1,故答案为:2m﹣1;(2)a=﹣1时,C1:y=(x﹣1)2+4,①当t<1时,x=时,有最小值y2=,x=t时,有最大值y1=﹣(t﹣1)2+4,则y1﹣y2=﹣(t﹣1)2+4﹣=1,无解;②1≤t时,x=1时,有最大值y1=4,x=时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③当t时,x=1时,有最大值y1=4,x=t时,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,点A、B、D、A′、D′的坐标分别为(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),当a>0时,a越大,则OD越大,则点D′越靠左,当C2过点A′时,y=﹣a(0+1)2+4a=1,解得:a=,当C2过点D′时,同理可得:a=1,故:0<a或a≥1;当a<0时,当C2过点D′时,﹣3a=1,解得:a=﹣,故:a≤﹣;综上,故:0<a或a≥1或a≤﹣.15.解:(1)在y=﹣x+3中,令x=0,得y=3,令y=0,得x=4,∴A(4,0),B(0,3),将A(4,0),B(0,3)分别代入抛物线y=﹣x2+bx+c中,得:,解得:,∴抛物线的函数表达式为:y=﹣x2+x+3.(2)存在.如图1,过点B作BH⊥CD于H,设C(t,0),则D(t,),E(t,),H(t,3);∴EC=,AC=4﹣t,BH=t,DH=﹣t2+t,DE=﹣t2+4t∵△BDE和△ACE相似,∠BED=∠AEC∴△BDE∽△ACE或△DBE∽△ACE①当△BDE∽△ACE时,∠BDE=∠ACE=90°,∴=,即:BD•CE=AC•DE∴t()=(4﹣t)×(﹣t2+4t),解得:t1=0(舍去),t2=4(舍去),t3=,∴D(,3)②当△DBE∽△ACE时,∠BDE=∠CAE∵BH⊥CD∴∠BHD=90°,∴=tan∠BDE=tan∠CAE=,即:BH•AC=CE•DH∴t(4﹣t)=()(﹣t2+t),解得:t1=0(舍),t2=4(舍),t3=,∴D(,);综上所述,点D的坐标为(,3)或(,);(3)如图3,∵四边形DEGF是平行四边形∴DE∥FG,DE=FG设D(m,),E(m,),F(n,),G(n,),则:DE=﹣m2+4m,FG=﹣n2+4n,∴﹣m2+4m=﹣n2+4n,即:(m﹣n)(m+n﹣4)=0,∵m﹣n≠0∴m+n﹣4=0,即:m+n=4过点G作GK⊥CD于K,则GK∥AC∴∠EGK=∠BAO∴=cos∠EGK=cos∠BAO=,即:GK•AB=AO•EG∴5(n﹣m)=4EG,即:EG=(n﹣m)∴DEGF周长=2(DE+EG)=2[(﹣m2+4m)+(n﹣m)]=﹣2+∵﹣2<0,∴当m=时,∴▱DEGF周长最大值=,∴G(,).16.解:(1)将A(﹣1,0),B(2,0)分别代入抛物线y=ax2+bx﹣1中,得,解得:∴该抛物线的表达式为:y=x2﹣x﹣1.(2)在y=x2﹣x﹣1中,令x=0,y=﹣1,∴C(0,﹣1)∵点C关于x轴的对称点为C1,∴C1(0,1),设直线C1B解析式为y=kx+b,将B(2,0),C1(0,1)分别代入得,解得,∴直线C1B解析式为y=﹣x+1,设M(t,+1),则E(t,0),F(0,+1)∴S矩形MFOE=OE×OF=t(﹣t+1)=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,S矩形MFOE最大值=,此时,M(1,);即点M为线段C1B中点时,S最大.矩形MFOE(3)由题意,C(0,﹣1),C1(0,1),以C、C1、P、Q为顶点的四边形为平行四边形,分以下两种情况:①C1C为边,则C1C∥PQ,C1C=PQ,设P(m,m+1),Q(m,﹣m﹣1),∴|(﹣m﹣1)﹣(m+1)|=2,解得:m1=4,m2=﹣2,m3=2,m4=0(舍),P1(4,3),Q1(4,5);P2(﹣2,0),Q2(﹣2,2);P3(2,2),Q3(2,0)②C1C为对角线,∵C1C与PQ互相平分,C1C的中点为(0,0),∴PQ的中点为(0,0),设P(m,m+1),则Q(﹣m,+m﹣1)∴(m+1)+(+m﹣1)=0,解得:m1=0(舍去),m2=﹣2,∴P4(﹣2,0),Q4(2,0);综上所述,点P和点Q的坐标为:P1(4,3),Q1(4,5)或P2(﹣2,0),Q2(﹣2,2)或P3(2,2),Q3(2,0)或P4(﹣2,0),Q4(2,0).17.解:(1)y1=3x2﹣6x﹣1的顶点为(1,﹣4),∵抛物线C1:y1=3x2﹣6x﹣1与C2:y2=x2﹣mx+n的顶点相同∴m=2,n=﹣3,∴y2=x2﹣2x﹣3;(2)作AP⊥x轴,设A(a,a2﹣2a﹣3),∵A在第四象限,∴0<a<3,∴AP=﹣a2+2a+3,PO=a,∴AP+OP=﹣a2+3a+3=﹣∵0<a<3,∴AP+OP的最大值为;(3)假设C2的对称轴上存在点Q,过点B'作B'D⊥l于点D,∴∠B'DQ=90°,①当点Q在顶点C的下方时,∵B(﹣1,﹣4),C(1,﹣4),抛物线的对称轴为x=1,∴BC⊥l,BC=2,∠BCQ=90°,∴△BCQ≌△QDB'(AAS)∴B'D=CQ,QD=BC,设点Q(1,b),∴B'D=CQ=﹣4﹣b,QD=BC=2,可知B'(﹣3﹣b,2+b),∴(﹣3﹣b)2﹣2(﹣3﹣b)﹣3=2+b,∴b2+7b+10=0,∴b=﹣2或b=﹣5,∵b<﹣4,∴Q(1,﹣5),②当点Q在顶点C的上方时,同理可得Q(1,﹣2);综上所述:Q(1,﹣5)或Q(1,﹣2);18.解:(1)直线y=﹣x+3与x轴、y轴分别交于B、C两点,则点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式得:,解得:,故函数的表达式为:y=﹣x2+2x+3,令y=0,则x=﹣1或3,故点A(﹣1,0);(2)如图1,作点C关于x轴的对称点C′,连接CD′交x轴于点E,则此时EC+ED 为最小,函数顶点D坐标为(1,4),点C′(0,﹣3),将CD的坐标代入一次函数表达式并解得:直线CD的表达式为:y=7x﹣3,当y=0时,x=,故点E(,0),则EC+ED的最小值为DC′=;(3)①当点P在x轴上方时,如下图2,∵OB=OC=3,则∠OCB=45°=∠APB,过点B作BH⊥AP于点H,设PH=BH=m,则PB=P A=m,由勾股定理得:AB2=AH2+BH2,16=m2+(m﹣m)2,解得:m2=8+4,则PB2=2m2=16+8则y P==2+2;②当点P在x轴下方时,则y P=﹣(2);故点P的坐标为(1,2)或(1,﹣2﹣2).19.解:(1)二次函数表达式为:y=a(x﹣1)2+9,将点A的坐标代入上式并解得:a=﹣1,故抛物线的表达式为:y=﹣x2+2x+8…①,则点B(3,5),将点A、B的坐标代入一次函数表达式并解得:直线AB的表达式为:y=2x﹣1;(2)存在,理由:二次函数对称轴为:x=1,则点C(1,1),过点D作y轴的平行线交AB于点H,设点D(x,﹣x2+2x+8),点H(x,2x﹣1),∵S△DAC=2S△DCM,则S△DAC=DH(x C﹣x A)=(﹣x2+2x+8﹣2x+1)(1+3)=(9﹣1)(1﹣x)×2,解得:x=﹣1或5(舍去5),故点D(﹣1,5);(3)设点Q(m,0)、点P(s,t),t=﹣s2+2s+8,①当AM是平行四边形的一条边时,点M向左平移4个单位向下平移16个单位得到A,同理,点Q(m,0)向左平移4个单位向下平移16个单位为(m﹣4,﹣16),即为点P,即:m﹣4=s,﹣6=t,而t=﹣s2+2s+8,解得:s=6或﹣4,故点P(6,﹣16)或(﹣4,﹣16);②当AM是平行四边形的对角线时,由中点公式得:m+s=﹣2,t=2,而t=﹣s2+2s+8,解得:s=1,故点P(1,2)或(1﹣,2);综上,点P(6,﹣16)或(﹣4,﹣16)或(1,2)或(1﹣,2).20.解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=2,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(|2﹣m|)(|2﹣﹣2|)=5,解得:m=5或﹣3,故点P(2,﹣3)或(2,5);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)2=()2+4,解得:m=0或(0舍去),②当CP=PF时,同理可得:m=,③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2)或(2,)或(2,)21.解:(1)将点C(0,﹣3)代入y=(x﹣1)2+k,得k=﹣4,∴y=(x﹣1)2﹣4=x2﹣2x﹣3;(2)令y=0,x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴AB=4;抛物线顶点为(1,﹣4),当P位于抛物线顶点时,△ABP的面积有最大值,S==8;(3)①当0<m≤1时,h=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m;当1<m≤2时,h=﹣1﹣(﹣4)=1;当m>2时,h=m2﹣2m﹣3﹣(﹣4)=m2﹣2m+1;②当h=9时若﹣m2+2m=9,此时△<0,m无解;若m2﹣2m+1=9,则m=4,∴P(4,5),∵B(3,0),C(0,﹣3),∴△BCP的面积=8×4﹣5×1﹣(4+1)×3=6;22.解:(1)将点A(﹣2,0)代入解析式,得4a﹣2b+3=0,∵x=﹣=,∴a=﹣,b=;∴y=﹣x2+x+3;(2)设点Q横坐标x1,点P的横坐标x2,则有x1<x2,把n=﹣5代入y=﹣mx﹣n,∴y=﹣mx+5,联立y=﹣mx+5,y=﹣x2+x+3得:﹣mx+5=﹣x2+x+3,∴x2﹣(2m+1)x+4=0,∴x1+x2=2m+1,x1x2=4,∵△CPQ的面积为3;∴S△CPQ=S△CHP﹣S△CHQ,即HC(x2﹣x1)=3,∴x2﹣x1=3,∴﹣4x1x2=9,∴(2m+1)2=25,∴m=2或m=﹣3,∵m>0,∴m=2;(3)当n=﹣3m时,PQ解析式为y=﹣mx+3m,∴H(0,3m),∵y=﹣mx+3m与y=﹣x2+x+3相交于点P与Q,∴﹣mx+3m=﹣x2+x+3,∴x=3或x=2m﹣2,当2m﹣2<3时,有0<m<,∵点P在点Q的右边,∴P(3,0),Q(2m﹣2,﹣2m2+5m),∴AQ的直线解析式为y=x+5﹣2m,∴K(0,5﹣2m),∴HK=|5m﹣5|=5|m﹣1|,①当0<m<1时,如图①,HK=5﹣5m,∴S△PQK=S△PHK+S△QHK=HK(x P﹣x Q)=(5﹣5m)(5﹣2m)=5m2﹣m+,②当1<m<时,如图②,HK=5m﹣5,∴S△PQK=﹣5m2+m﹣,③当2m﹣2>3时,如图③,有m>,∴P(2m﹣2,﹣2m2+5m),Q(3,0),K(0,0),∴S△PQK=×KQ|y P|=(2m2﹣5m)=3m2﹣m,综上所述,S=;23.解:(1)∵OA=2,OC=6∴A(﹣2,0),C(0,﹣6)∵抛物线y=x2+bx+c过点A、C ∴解得:∴抛物线解析式为y=x2﹣x﹣6(2)∵当y=0时,x2﹣x﹣6=0,解得:x1=﹣2,x2=3∴B(3,0),抛物线对称轴为直线x=∵点D在直线x=上,点A、B关于直线x=对称∴x D=,AD=BD∴当点B、D、C在同一直线上时,C△ACD=AC+AD+CD=AC+BD+CD=AC+BC最小设直线BC解析式为y=kx﹣6∴3k﹣6=0,解得:k=2∴直线BC:y=2x﹣6∴y D=2×﹣6=﹣5∴D(,﹣5)故答案为:(,﹣5)(3)过点E作EG⊥x轴于点G,交直线BC与点F设E(t,t2﹣t﹣6)(0<t<3),则F(t,2t﹣6)∴EF=2t﹣6﹣(t2﹣t﹣6)=﹣t2+3t∴S△BCE=S△BEF+S△CEF=EF•BG+EF•OG=EF(BG+OG)=EF•OB=×3(﹣t2+3t)=﹣(t﹣)2+∴当t=时,△BCE面积最大∴y E=()2﹣﹣6=﹣∴点E坐标为(,﹣)时,△BCE面积最大,最大值为.(4)存在点N,使以点A、C、M、N为顶点的四边形是菱形.∵A(﹣2,0),C(0,﹣6)∴AC=①若AC为菱形的边长,如图3,则MN∥AC且,MN=AC=2∴N1(﹣2,2),N2(﹣2,﹣2),N3(2,0)②若AC为菱形的对角线,如图4,则AN4∥CM4,AN4=CN4设N4(﹣2,n)∴﹣n=解得:n=﹣∴N4(﹣2,﹣)综上所述,点N坐标为(﹣2,2),(﹣2,﹣2),(2,0),(﹣2,﹣).24.解:(1)y=﹣x+3,令x=0,则y=3,令y=0,则x=6,故点B、C的坐标分别为(6,0)、(0,3),抛物线的对称轴为x=1,则点A(﹣4,0),则抛物线的表达式为:y=a(x﹣6)(x+4)=a(x2﹣2x﹣24),即﹣24a=3,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+3…①;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,则∠HPG=∠CBA=α,tan∠CAB===tanα,则cosα=,设点P(x,﹣x2+x+3),则点G(x,﹣x+3),则PH=PG cosα=(﹣x2+x+3+x﹣3)=﹣x2+x,∵<0,故PH有最小值,此时x=3,则点P(3,);(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(2,3);②∠BAQ=∠CAB,时,△QAB∽△BAC,。

人教中考数学——二次函数的综合压轴题专题复习附详细答案

人教中考数学——二次函数的综合压轴题专题复习附详细答案

一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图,已知顶点为(0,3)C -的抛物线2(0)y ax b a =+≠与x 轴交于A ,B 两点,直线y x m =+过顶点C 和点B .(1)求m 的值;(2)求函数2(0)y ax b a =+≠的解析式;(3)抛物线上是否存在点M ,使得15MCB ∠=︒?若存在,求出点M 的坐标;若不存在,请说明理由.【答案】(1)﹣3;(2)y 13=x 2﹣3;(3)M 的坐标为(3632). 【解析】【分析】 (1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可; (3)分M 在BC 上方和下方两种情况进行解答即可.【详解】(1)将C (0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:390b a b =-⎧⎨+=⎩, 解得:133a b ⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为:y 13=x 2﹣3; (3)存在,分以下两种情况:①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan30°3=设DC 为y =kx ﹣33,0),可得:k 3= 联立两个方程可得:233133y x y x ⎧=-⎪⎨=-⎪⎩, 解得:121203336x x y y ⎧=⎧=⎪⎨⎨=-=⎪⎩⎩, 所以M 1(36);②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°,∴OE =OC •tan60°=3设EC 为y =kx ﹣3,代入(30)可得:k 3= 联立两个方程可得:2333133y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得:12120332x x y y ⎧=⎧=⎪⎨⎨=-=-⎪⎩⎩, 所以M 23,﹣2).综上所述M 的坐标为(3,63,﹣2).【点睛】此题是一道二次函数综合题,熟练掌握待定系数法求函数解析式等知识是解题关键.2.在平面直角坐标系xOy 中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=14x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.【答案】(1)抛物线的解析式为y=14x2﹣x+1.(2)点P的坐标为(2813,﹣1).(3)定点F的坐标为(2,1).【解析】分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.详解:(1)∵抛物线的顶点坐标为(2,0),设抛物线的解析式为y=a(x-2)2.∵该抛物线经过点(4,1),∴1=4a,解得:a=14,∴抛物线的解析式为y=14(x-2)2=14x2-x+1.(2)联立直线AB与抛物线解析式成方程组,得:214114y x y x x ⎧⎪⎪⎨⎪-+⎪⎩==,解得:11114x y ⎧⎪⎨⎪⎩==,2241x y ⎧⎨⎩==, ∴点A 的坐标为(1,14),点B 的坐标为(4,1). 作点B 关于直线l 的对称点B′,连接AB′交直线l 于点P ,此时PA+PB 取得最小值(如图1所示).∵点B (4,1),直线l 为y=-1,∴点B′的坐标为(4,-3).设直线AB′的解析式为y=kx+b (k≠0),将A (1,14)、B′(4,-3)代入y=kx+b ,得: 1443k b k b ⎧+⎪⎨⎪+-⎩==,解得:131243k b ⎧-⎪⎪⎨⎪⎪⎩==, ∴直线AB′的解析式为y=-1312x+43, 当y=-1时,有-1312x+43=-1, 解得:x=2813, ∴点P 的坐标为(2813,-1). (3)∵点M 到直线l 的距离与点M 到点F 的距离总是相等,∴(m-x 0)2+(n-y 0)2=(n+1)2,∴m 2-2x 0m+x 02-2y 0n+y 02=2n+1.∵M (m ,n )为抛物线上一动点,∴n=14m2-m+1,∴m2-2x0m+x02-2y0(14m2-m+1)+y02=2(14m2-m+1)+1,整理得:(1-12-12y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.∵m为任意值,∴00220001110222220230yx yx y y⎧--⎪⎪-+⎨⎪+--⎪⎩===,∴021xy⎧⎨⎩==,∴定点F的坐标为(2,1).点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.3.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(14,y1),D(34,y2)都在二次函数图象上,试比较y1与y2的大小.【答案】(1)点M在直线y=4x+1上;理由见解析;(2)x的取值范围是x<0或x>5;(3)①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【解析】【分析】(1)根据顶点式解析式,可得顶点坐标,根据点的坐标代入函数解析式检验,可得答案;(2)根据待定系数法,可得二次函数的解析式,根据函数图象与不等式的关系:图象在下方的函数值小,可得答案;(3)根据解方程组,可得顶点M的纵坐标的范围,根据二次函数的性质,可得答案.【详解】(1)点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,∴M的坐标是(b,4b+1),把x=b代入y=4x+1,得y=4b+1,∴点M在直线y=4x+1上;(2)如图1,直线y=mx+5交y轴于点B,∴B点坐标为(0,5)又B在抛物线上,∴5=﹣(0﹣b)2+4b+1=5,解得b=2,二次函数的解析是为y=﹣(x﹣2)2+9,当y=0时,﹣(x﹣2)2+9=0,解得x1=5,x2=﹣1,∴A(5,0).由图象,得当mx+5>﹣(x﹣b)2+4b+1时,x的取值范围是x<0或x>5;(3)如图2,∵直线y=4x+1与直线AB交于点E,与y轴交于F,A(5,0),B(0,5)得直线AB的解析式为y=﹣x+5,联立EF,AB得方程组415 y xy x=+⎧⎨=-+⎩,解得45215xy⎧=⎪⎪⎨⎪=⎪⎩,∴点E(45,215),F(0,1).点M在△AOB内,1<4b+1<215,∴0<b<45.当点C,D关于抛物线的对称轴对称时,b﹣14=34﹣b,∴b=12,且二次函数图象开口向下,顶点M在直线y=4x+1上,综上:①当0<b<12时,y1>y2,②当b=12时,y1=y2,③当12<b<45时,y1<y2.【点睛】本题考查了二次函数综合题,解(1)的关键是把点的坐标代入函数解析式检验;解(2)的关键是利用函数图不等式的关系:图象在上方的函数值大;解(3)的关键是解方程组得出顶点M的纵坐标的范围,又利用了二次函数的性质:a<0时,点与对称轴的距离越小函数值越大.4.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.【答案】(1)抛物线的解析式为y=﹣x2﹣2x+3;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).【解析】【分析】(1)根据正切函数,可得OB ,根据旋转的性质,可得△DOC ≌△AOB ,根据待定系数法,可得函数解析式;(2)分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点;②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,得到△EFC ∽△EMP ,根据相似三角形的性质,可得PM 与ME 的关系,解方程,可得t 的值,根据自变量与函数值的对应关系,可得答案.【详解】(1)在Rt △AOB 中,OA =1,tan ∠BAO OBOA ==3,∴OB =3OA =3. ∵△DOC 是由△AOB 绕点O 逆时针旋转90°而得到的,∴△DOC ≌△AOB ,∴OC =OB =3,OD =OA =1,∴A ,B ,C 的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为 09303a b c a b c c ++=⎧⎪-+=⎨⎪=⎩,解得:123a b c =-⎧⎪=-⎨⎪=⎩,抛物线的解析式为y =﹣x 2﹣2x +3; (2)∵抛物线的解析式为y =﹣x 2﹣2x +3,∴对称轴为l 2b a=-=-1,∴E 点坐标为(﹣1,0),如图,分两种情况讨论:①当∠CEF =90°时,△CEF ∽△COD ,此时点P 在对称轴上,即点P 为抛物线的顶点,P (﹣1,4);②当∠CFE =90°时,△CFE ∽△COD ,过点P 作PM ⊥x 轴于M 点,∵∠CFE=∠PME=90°,∠CEF=∠PEM ,∴△EFC ∽△EMP ,∴13EM EF OD MP CF CO ===,∴MP =3ME . ∵点P 的横坐标为t ,∴P (t ,﹣t 2﹣2t +3). ∵P 在第二象限,∴PM =﹣t 2﹣2t +3,ME =﹣1﹣t ,t <0,∴﹣t 2﹣2t +3=3(﹣1﹣t ),解得:t 1=﹣2,t 2=3(与t <0矛盾,舍去).当t =﹣2时,y =﹣(﹣2)2﹣2×(﹣2)+3=3,∴P (﹣2,3).综上所述:当△CEF 与△COD 相似时,P 点的坐标为(﹣1,4)或(﹣2,3).【点睛】本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC ,OD 的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP =3ME .5.如图,已知点A (0,2),B (2,2),C (-1,-2),抛物线F :y=x 2-2mx+m 2-2与直线x=-2交于点P .(1)当抛物线F 经过点C 时,求它的解析式;(2)设点P 的纵坐标为y P ,求y P 的最小值,此时抛物线F 上有两点(x 1,y 1),(x 2,y 2),且x 1<x 2≤-2,比较y 1与y 2的大小.【答案】(1) 221y x x =+-;(2)12y y >.【解析】【分析】 (1)根据抛物线F :y=x 2-2mx+m 2-2过点C (-1,-2),可以求得抛物线F 的表达式; (2)根据题意,可以求得y P 的最小值和此时抛物线的表达式,从而可以比较y 1与y 2的大小.【详解】(1) ∵抛物线F 经过点C (-1,-2),∴22122m m -=++-.∴m 1=m 2=-1.∴抛物线F 的解析式是221y x x =+-.(2)当x=-2时,2442P y m m =++-=()222m +-. ∴当m=-2时,P y 的最小值为-2.此时抛物线F 的表达式是()222y x =+-.∴当2x ≤-时,y 随x 的增大而减小.∵12x x <≤-2,∴1y >2y .【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征、待定系数法求二次函数解析式,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.6.已知抛物线2(5)6y x m x m =-+-+-.(1)求证:该抛物线与x 轴总有交点;(2)若该抛物线与x 轴有一个交点的横坐标大于3且小于5,求m 的取值范围;(3)设抛物线2(5)6y x m x m =-+-+-与y 轴交于点M ,若抛物线与x 轴的一个交点关于直线y x =-的对称点恰好是点M ,求m 的值.【答案】(1)证明见解析;(2)1?<?m?3<;(3)56m m ==或【解析】【分析】(1)本题需先根据判别式解出无论m 为任何实数都不小于零,再判断出物线与x 轴总有交点.(2)根据公式法解方程,利用已有的条件,就能确定出m 的取值范围,即可得到结果. (3)根据抛物线y=-x 2+(5-m )x+6-m ,求出与y 轴的交点M 的坐标,再确定抛物线与x 轴的两个交点关于直线y=-x 的对称点的坐标,列方程可得结论.【详解】(1)证明:∵()()()222454670b ac m m m ∆=-=-+-=-≥∴抛物线与x 轴总有交点.(2)解:由(1)()27m ∆=-,根据求根公式可知, 方程的两根为:257m m x ()-±-= 即1216x x m =-=-+, 由题意,有 3<-m 6<5+1<?m 3∴<(3)解:令 x = 0, y =6m -+∴ M (0,6m -+)由(2)可知抛物线与x 轴的交点为(-1,0)和(6m -+,0),它们关于直线y x =-的对称点分别为(0 , 1)和(0, 6m -),由题意,可得:6166m m m 或-+=-+=-56m m ∴==或【点睛】本题考查对抛物线与x 轴的交点,解一元一次方程,解一元一次不等式,根的判别式,对称等,解题关键是熟练理解和掌握以上性质,并能综合运用这些性质进行计算.7.(10分)(2015•佛山)如图,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数y=﹣x 2+4x 刻画,斜坡可以用一次函数y=x 刻画.(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标;(2)联立两解析式,可求出交点A的坐标;(3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛物线的解析式联立,得到方程组,解方程组即可求出点M的坐标.试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函数图象的最高点P的坐标为(2,4);(2)联立两解析式可得:,解得:,或.故可得点A的坐标为(,);(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=×2×4+×(+4)×(﹣2)﹣××=4+﹣=;(4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积.设直线PM的解析式为y=x+b,∵P的坐标为(2,4),∴4=×2+b,解得b=3,∴直线PM的解析式为y=x+3.由,解得,,∴点M的坐标为(,).考点:二次函数的综合题8.在平面直角坐标系中,我们定义直线y=ax-a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“衍生直线”;有一个顶点在抛物线上,另有一个顶点在y 轴上的三角形为其“衍生三角形”.已知抛物线2234323y x x =--+与其“衍生直线”交于A 、B 两点(点A 在点B 的左侧),与x 轴负半轴交于点C .(1)填空:该抛物线的“衍生直线”的解析式为 ,点A 的坐标为 ,点B 的坐标为 ;(2)如图,点M 为线段CB 上一动点,将△ACM 以AM 所在直线为对称轴翻折,点C 的对称点为N ,若△AMN 为该抛物线的“衍生三角形”,求点N 的坐标;(3)当点E 在抛物线的对称轴上运动时,在该抛物线的“衍生直线”上,是否存在点F ,使得以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请直接写出点E 、F 的坐标;若不存在,请说明理由.【答案】(1)2323y=;(-2,231,0); (2)N 点的坐标为(0,3-3),(0,23+3);(3)E (-1,43F (023)或E (-1,43),F (-4103) 【解析】【分析】(1)由抛物线的“衍生直线”知道二次函数解析式的a 即可;(2)过A 作AD ⊥y 轴于点D ,则可知AN=AC ,结合A 点坐标,则可求出ON 的长,可求出N 点的坐标;(3)分别讨论当AC 为平行四边形的边时,当AC 为平行四边形的对角线时,求出满足条件的E 、F 坐标即可【详解】(1)∵2234323y x x =-+a=233-,则抛物线的“衍生直线”的解析式为2323y=;联立两解析式求交点2234323332323y=x+33y x x⎧=--+⎪⎪⎨⎪-⎪⎩,解得x=-2y=23⎧⎪⎨⎪⎩或x=1y=0⎧⎨⎩,∴A(-2,23),B(1,0);(2)如图1,过A作AD⊥y轴于点D,在2234323y x x=--+中,令y=0可求得x= -3或x=1,∴C(-3,0),且A(-2,23),∴AC=22-++2133=(23)()由翻折的性质可知AN=AC=13,∵△AMN为该抛物线的“衍生三角形”,∴N在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN=22AN-AD=13-4=3,∵OD=23,∴ON=23-3或ON=23+3,∴N点的坐标为(0,23-3),(0,23+3);(3)①当AC为平行四边形的边时,如图2 ,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,则有AC∥EF且AC=EF,∴∠ ACK=∠ EFH,在△ ACK和△ EFH中ACK=EFHAKC=EHFAC=EF∠∠⎧⎪∠∠⎨⎪⎩∴△ ACK≌△ EFH,∴FH=CK=1,HE=AK=23∵抛物线的对称轴为x=-1,∴ F点的横坐标为0或-2,∵点F在直线AB上,∴当F点的横坐标为0时,则F(0,233),此时点E在直线AB下方,∴E到y轴的距离为EH-OF=23-23=43,即E的纵坐标为-43,∴ E(-1,-43);当F点的横坐标为-2时,则F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵ C(-3,0),且A(-2,23),∴线段AC的中点坐标为(-2.5,3),设E(-1,t),F(x,y),则x-1=2×(-2.5),y+t=23,∴x= -4,y=23-t,23-t=-23×(-4)+23,解得t=43-,∴E(-1,43-),F(-4,1033);综上可知存在满足条件的点F,此时E(-1,-433)、(0,233)或E(-1,43-),F(-4,103)【点睛】本题是对二次函数的综合知识考查,熟练掌握二次函数,几何图形及辅助线方法是解决本题的关键,属于压轴题9.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当2﹣1时,点P的坐标为(02)和(0,223);当m=2时,点P的坐标为(0,1)和(0,2).【解析】【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;(2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=12BG•x N﹣12BG•x M=1得出x N﹣x M=1,联立直线和抛物线解析式求得x=2282k k-±-,根据x N﹣x M=1列出关于k的方程,解之可得;(3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.【详解】(1)由题意知()1211bc⎧-=⎪⨯-⎨⎪=⎩,解得:21bc=⎧⎨=⎩,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,设M点的横坐标为x M,N点的横坐标为x N,∵y=kx ﹣k+4=k (x ﹣1)+4,∴当x=1时,y=4,即该直线所过定点G 坐标为(1,4),∵y=﹣x 2+2x+1=﹣(x ﹣1)2+2,∴点B (1,2),则BG=2,∵S △BMN =1,即S △BNG ﹣S △BMG =12BG•(x N ﹣1)-12BG•(x M -1)=1, ∴x N ﹣x M =1,由2421y kx k y x x =-+⎧⎨=--+⎩得:x 2+(k ﹣2)x ﹣k+3=0, 解得:x=()()22243k k k -±---=228k k -±-, 则x N =228k k -+-、x M =228k k ---, 由x N ﹣x M =1得28k -=1,∴k=±3,∵k <0,∴k=﹣3;(3)如图2,设抛物线L 1的解析式为y=﹣x 2+2x+1+m ,∴C (0,1+m )、D (2,1+m )、F (1,0),设P (0,t ),(a )当△PCD ∽△FOP 时,PC FO CD OP =, ∴112m t t+-=, ∴t 2﹣(1+m )t+2=0①; (b)当△PCD ∽△POF 时,PC PO CD OF =, ∴121m t t +-=, ∴t=13(m+1)②; (Ⅰ)当方程①有两个相等实数根时,△=(1+m )2﹣8=0,解得:1(负值舍去),此时方程①有两个相等实数根t 1=t 2,方程②有一个实数根t=3, ∴﹣1,此时点P 的坐标为(0)和(0,3); (Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:19(m+1)2﹣13(m+1)+2=0, 解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t 1=1、t 2=2,方程②有一个实数根t=1,∴m=2,此时点P 的坐标为(0,1)和(0,2);综上,当﹣1时,点P 的坐标为(0)和(0); 当m=2时,点P 的坐标为(0,1)和(0,2).【点睛】本题主要考查二次函数的应用,涉及到待定系数法求函数解析式、割补法求三角形的面积、相似三角形的判定与性质等,(2)小题中根据三角形BMN 的面积求得点N 与点M 的横坐标之差是解题的关键;(3)小题中运用分类讨论思想进行求解是关键.10.如图①,抛物线2(1)y x a x a =-++-与x 轴交于A 、B 两点(点A 位于点B 的左侧),与y 轴交于点C ,已知ABC ∆的面积为6.(1)求a 的值;(2)求ABC ∆外接圆圆心的坐标;(3)如图②,P 是抛物线上一点,点Q 为射线CA 上一点,且P 、Q 两点均在第三象限内,Q 、A 是位于直线BP 同侧的不同两点,若点P 到x 轴的距离为d ,QPB ∆的面积为2d ,且PAQ AQB ∠=∠,求点Q 的坐标.【答案】(1)-3;(2)坐标(-1,1);(3)Q ()4,1-.【解析】【分析】(1)利用抛物线解析式得到A 、B 、C 三点坐标,然后利用三角形面积公式列出方程解出a ;(2)利用第一问得到A 、B 、C 三点坐标,求出AC 解析式,找到AC 垂直平分线的解析式,与AB 垂直平分线解析式联立,解出x 、y 即为圆心坐标;(3)过点P 做PD ⊥x 轴,PD =d ,发现△ABP 与△QBP 的面积相等,得到A 、D 两点到PB 得距离相等,可得AQ PB ∥,求出PB 解析式,与二次函数解析式联立得到P 点坐标,又易证ABQ QPA ∆∆≌,得到BQ =AP 26Q 点坐标,点与点的距离列出方程,解出Q 点坐标即可【详解】(1)解:由题意得()()1y x x a =---由图知:0a <所以A (,0a ),()10B ,,()0,C a - ()()112ABC S a a ∆=-⋅-=6 34()a a =-=或舍∴3a =-(2)由(1)得A (-3,0),()10B ,,()0,3C ∴直线AC 得解析式为:3y x AC 中点坐标为33,22⎛⎫- ⎪⎝⎭∴AC 的垂直平分线为:y x =-又∵AB 的垂直平分线为:1x =-∴1y x x =-⎧⎨=-⎩ 得11x y =-⎧⎨=⎩ABC ∆外接圆圆心的坐标(-1,1).(3)解:过点P 做PD ⊥x 轴由题意得:PD =d ,∴12ABP S PD AB ∆=⋅ =2d∵QPB ∆的面积为2d∴ABP BPQ S S ∆∆=,即A 、D 两点到PB 得距离相等∴AQ PB ∥设PB 直线解析式为;y x b =+过点(1,0)B∴1y x =-∴2123y x y x x =-⎧⎨=--+⎩易得45x y =-⎧⎨=⎩ 1()0x y =⎧⎨=⎩舍 所以P (-4,-5),由题意及PAQ AQB ∠=∠易得:ABQ QPA ∆∆≌∴BQ =AP 26设Q (m ,-1)(0m <)∴()221126m -+= 4m =-∴Q ()4,1-.【点睛】本题考查二次函数综合性问题,涉及到一次函数、三角形外接圆圆心、全等三角形等知识点,第一问关键在于用a 表示出A 、B 、C 三点坐标;第二问关键在于找到AC 垂直平分线的解析式,与AB 垂直平分线解析式;第三问关键在于能够求出PB 的解析式。

人教版2023中考专题复习 解答题压轴题新定义题型

人教版2023中考专题复习 解答题压轴题新定义题型

专题17 解答题压轴题新定义题型(原卷版)模块一 2022中考真题集训类型一 函数中的新定义问题1.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”. (1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2.(2022•湘西州)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C 1:y =x 2+2x ﹣3与抛物线C 2:y =ax 2+2ax +c 组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A (﹣3,0)、B (点B 在点A 右侧),与y 轴的交点分别为G 、H (0,﹣1).(1)求抛物线C 2的解析式和点G 的坐标.(2)点M 是x 轴下方抛物线C 1上的点,过点M 作MN ⊥x 轴于点N ,交抛物线C 2于点D ,求线段MN 与线段DM 的长度的比值.(3)如图②,点E 是点H 关于抛物线对称轴的对称点,连接EG ,在x 轴上是否存在点F ,使得△EFG 是以EG 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<√3,请直接写出a的取值范围.4.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.5.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=;②min|−√14,﹣4|=.(2)如图,已知反比例函数y1=kx和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|kx,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.6.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc ≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.类型二几何图形中的新定义问题7.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】如图①,用S△ABC,S△A'B'C′分别表示△ABC和△A′B′C′的面积,则S△ABC=12BC•AD,S△A'B'C′=12B′C′•A′D′,∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=,S△CDE=;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=.8.(2022•北京)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a |个单位长度,再向上(b ≥0)或向下(b <0)平移|b |个单位长度,得到点P ′,点P ′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上.若点P (﹣2,0),点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t (12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在⊙O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).模块二 2023中考押题预测9.(2023•义乌市校级模拟)定义:在平面直角坐标系中,有一条直线x =m ,对于任意一个函数,作该函数自变量大于m 的部分关于直线x =m 的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x =m 的“镜面函数”.例如:图①是函数y =x +1的图象,则它关于直线x =0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y ={x +1(x ≥0)−x +1(x <0),也可以写成y =|x |+1.(1)在图③中画出函数y =﹣2x +1关于直线x =1的“镜面函数”的图象.(2)函数y =x 2﹣2x +2关于直线x =﹣1的“镜面函数”与直线y =﹣x +m 有三个公共点,求m 的值.(3)已知A (﹣1,0),B (3,0),C (3,﹣2),D (﹣1,﹣2),函数y =x 2﹣2nx +2(n >0)关于直线x =0的“镜面函数”图象与矩形ABCD 的边恰好有4个交点,求n 的取值范围.10.(2023•秦皇岛一模)定义:如果二次函数y=a1x2+b1x+c1,(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函致互为“旋转函数”.例如:求函数y=2x2﹣3x+1的“旋转函数”,由函数y=2x2﹣3x+1可知,a1=2,b1=3,c1=1.根据a1+a2=0,b1=b2,c1+c2=0求出a2、b2、c2就能确定这个函数的“旋转函数”.请思考并解决下面问题:(1)写出函数y=x2﹣4x+3的“旋转函数”;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2023的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.11.(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(﹣1,1)是函数y=x+2的图象的“好点”.(1)在函数①y=﹣x+5,②y=6x,③y=x2+2x+1的图象上,存在“好点”的函数是(填序号).(2)设函数y=4x(x<0)与y=kx﹣1的图象的“好点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求k的值;(3)若将函数y=2x2+4x的图象在直线y=m下方的部分沿直线y=m翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m的值.12.(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y 轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+l的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y={x+1(x≥0)−x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=﹣2x+l的“新生函数“的图象.(2)函数y=x2﹣2x+2的“新生函数“与直线y=﹣x+m有三个公共点,求m的值.(3)已知A(﹣1,0),B(3,0),C(3,﹣2),D(﹣1,﹣2),函数y=x2﹣2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.13.(2022•宁南县模拟)新定义:在平面直角坐标系xOy中,若一条直线与二次函数图象抛物线有且仅有一个公共点,且抛物线位于这条直线同侧,则称该直线与此抛物线相切,公共点为切点.现有一次函数y=﹣4x﹣1与二次函数y=x2+mx图象相切于第二象限的点A.(1)求二次函数的解析式及切点A的坐标;(2)当0<x<3时,求二次函数函数值的取值范围;(3)记二次函数图象与x轴正半轴交于点B,问在抛物线上是否存在点C(异于A)使∠OBC=∠OBA,若有则求出C坐标,若无则说明理由.14.(2022•天宁区校级二模)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(t,0)与(t+6,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点”.(1)当t=1时,①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为;②若点P为线段AB的“等角点”,并且在y轴上,则点P的坐标为;(2)已知直线y=﹣0.5x+4上总存在线段AB的“等角点”,则t的范围是.15.(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2﹣4x+3的“旋转函数”是;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.16.(2022•甘井子区校级模拟)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为.②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m=.(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.17.(2022•庐阳区校级三模)定义:对于给定的两个函数,任取自变量x的一个值;当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为关联函数.例如:一次函数y=x﹣1,它的关联函数为y={−x+1(x<0)x−1(x≥0).已知二次函数y=﹣x2+4x−12.(1)当第二象限点B(m,32)在这个函数的关联函数的图象上时,求m的值;(2)当﹣3≤x≤﹣1时求函数y=﹣x2+4x−12的关联函数的最大值和最小值.18.(2022•江都区二模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“梅岭点”.(1)若点P (3,p )是一次函数y =mx +6的图象上的“梅岭点”,则m = ; 若点P (m ,m )是函数y =3x−2的图象上的“梅岭点”,则m = ;(2)若点P (p ,﹣2)是二次函数y =x 2+bx +c 的图象上唯一的“梅岭点”,求这个二次函数的表达式; (3)若二次函数y =ax 2+bx +c (a ,b 是常数,a >0)的图象过点(0,2),且图象上存在两个不同的“梅岭点”A (x 1,x 1),B (x 2,x 2),且满足﹣1<x 1<1,|x 1﹣x 2|=2,如果k =﹣b 2+2b +2,请直接写出k 的取值范围.19.(2022•海淀区校级模拟)在平面直角坐标系xOy 中,⊙O 的半径为1,对于线段AB ,给出如下定义:若将线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′(A ′,B ′分别为A ,B 的对应点),则称线段AB 是⊙O 的以直线l 为对称轴的对称的“反射线段”,直线l 称为“反射轴”.(1)如图1,线段CD 、EF 、GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点的坐标为(0,2),B 点坐标为(1,1).①如图2,若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,画出图形,反射轴l 与y 轴的交点M 的坐标是 .②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M ≤136,求S 的取值范围.(3)已知点M 、N 是在以(2,0)为圆心,半径为√13的圆上的两个动点,且满足MN =√2,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,反射轴l 与y 轴的交点的纵坐标的取值范围是 .20.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.21.(2022•寻乌县二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,∠B=∠C,则四边形ABCD为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形得是.①平行四边形②矩形③菱形④等腰梯形(2)深入探究:①已知四边形ABCD为“等邻角四边形”,且∠A=120°,∠B=100°,则∠D=°.②如图②,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC,求证:四边形ABDE为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD中,∠B=∠C,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,PM+PN的值是否会发生变化?请说明理由.22.(2022•东胜区二模)【概念理解】定义:我们把对角线互相垂直的四边形叫做垂美四边形如图①.我们学习过的四边形中是垂美四边形的是;(写出一种即可)【性质探究】利用图①,垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系是;【性质应用】(1)如图②,在△ABC中,BC=6,AC=8,D,E分别是AB,BC的中点,连接AE,CD,若AE⊥CD,则AB的长为;(2)如图③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC与BD交于O点,BD与CE交于点F,AC与DE交于点G.若BE=6,AE=8,AB=12,求CD的长;【拓展应用】如图④,在▱ABCD中,点E、F、G分别是AD、AB、CD的中点,EF⊥CF,AD=6,AB =8,求BG的长.23.(2022•修水县一模)定义:有一组对角互补的四边形叫做“对补四边形”.例如:在四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.概念理解.(1)如图1,已知四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D的度数为;②若∠B=90°,且AB=3,AD=2,则CD2﹣CB2=.拓展延伸.(2)如图2,已知四边形ABCD是“对补四边形”.当AB=CB,且∠EBF=12∠ABC时,试猜想AE,CF,EF之间的数量关系,并证明.24.(2022•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,2√3),Q3(﹣2,2√3),Q4(2√2,﹣2√2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.25.(2022•寿阳县模拟)所谓“新定义”试题指给出一个从未接触过的新规定,源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等.在解决它们的过程中又可产生了许多新方法、新观念,增强了学生创新意识.主要包括以下类型:①概念的“新定义”;②运算的“新定义”;③新规则的“新定义”;④实验操作的“新定义”;⑤几何图形的新定义.如果我们新定义一种四边形:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,请你利用所学知识求出∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA 于点E,连接DE并延长交AC于点F,若∠AFE=2∠EAF.请你判断四边形DBCF是不是半对角四边形?并说明理由.26.(2022•泗洪三模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)选择:下列四边形中,一定是圆美四边形的是A.平行四边形B.矩形C.菱形D.正方形(2)如图1,在等腰Rt△ABC中,∠BAC=90°,AB=1,经过点A,B的⊙O交AC边于点D,交BC 于点E,连接DE,若四边形ABED为圆美四边形,求DE的长;(3)如图2,AD是△ABC外接圆⊙O的直径,交BC于点E,点P在AD上,延长BP交⊙O于点F,已知PB2=PE•P A.问四边形ABFC是圆美四边形吗?为什么?27.(2022•淮阴区校级一模)定义:在平行四边形中,若有一条对角线长是一边长的两倍,则称这个平行四边形叫做和谐四边形,其中这条对角线叫做和谐对角线,这条边叫做和谐边.【概念理解】(1)如图1,四边形ABCD是和谐四边形,对角线AC与BD交于点G,BD是和谐对角线,AD是和谐边.①△ADG与△BCG的形状是三角形.②若AD=4,则BD=.【问题探究】(2)如图2,四边形ABCD是矩形,过点B作BE∥AC交DC的延长线于点E,连接AE交BC于点F,AD=4,AB=k.①当k=2时,请说明四边形ABEC是和谐四边形;②是否存在值k,使得四边形ABCD是和谐四边形,若存在,求出k的值,若不存在,请说明理由.【应用拓展】(3)如图3,四边形ABCD与四边形ABEC都是和谐四边形,其中BD与AE分别是和谐对角线,AD与AC分别是和谐边,AB=4,AD=k,请直接写出k的值.28.(2022•亭湖区校级模拟)问题:A4纸给我们矩形的印象,这个矩形是特殊矩形吗?思考:通过度量、上网查阅资料,小丽同学发现A4纸的长与宽的比是一个特殊值“√2”定义:如图1,点C把线段AB分成两部分,如果ACBC=√2,那么点C为线段AB的“白银分割点”如图2,矩形ABCD中,BCAB=√2,那么矩形ABCD叫做白银矩形.应用:(1)如图3,矩形ABCD是白银矩形,AD>AB,将矩形沿着EF对折,求证:矩形ABFE也是白银矩形.(2)如图4,矩形ABCD中,AB=1,BC=√2,E为CD上一点,将矩形ABCD沿BE折叠,使得点C 落在AD边上的点F处,延长BF交CD的延长线于点G,说明点E为线段GC的”白银分制点”.(3)已知线段AB(如图5),作线段AB的一个“白银分割点”.(要求:尺规作图,保留作图痕迹,不写作法)29.(2022•盐田区二模)定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P的“垂直图形”.例如:在图中,点D为点C关于点P的“垂直图形”.(1)点A关于原点O的“垂直图形”为点B.①若点A的坐标为(0,2),直接写出点B的坐标;②若点B的坐标为(2,1),直接写出点A的坐标;(2)已知E(﹣3,3),F(﹣2,3),G(a,0).线段EF关于点G的“垂直图形”记为E'F',点E的对应点为E',点F的对应点为F'.①求点E'的坐标;②当点G运动时,求FF'的最小值.30.(2022•高新区校级二模)在数学课上,当老师讲到直线与圆的位置关系时,张明同学突发奇想,特殊线与圆在不同的位置情况下会有怎样的数量关系呢?于是在课下他查阅了老师推荐他的《几何原本》,这本书是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.其中第三卷命题36﹣2圆幂定理(切割线定理)内容如下:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(比例中项的定义:如果a、b、c三个量成连比例即a:b=b:c,则b叫做a和c的比例中项)(1)为了说明材料中定理的正确性,需要对其进行证明,下面已经写了不完整的“已知”和“求证”,请补充完整,并写出证明过程.已知:如图,A是圆O外一点,AB是圆O的切线,直线ACD为圆O的割线.求证:证明:(2)如图,已知AC=2,CD=4,则AB的长度是.31.(2022•江北区模拟)定义:若连结三角形一个顶点及其对边上一点的线段将该三角形分割成的两个小三角形中,有一个与原三角形相似,则称该线段为三角形的相似分割线;若分割成的两个小三角形都与原三角形相似,则称该线段为全相似分割线.(1)如图1,在△ABC中,∠ABC为钝角,相似分割线AD是BC边上的中线,求证:BC=√2AB.(2)如图2,在△ABC中,AD是△ABC的全相似分割线,求证:1AD2=1AB2+1AC2;(3)在△ABC中,AD是△ABC的全相似分割线,将△BAD绕B点顺时针旋转,D点旋转到E点,A点旋转到F点,当旋转到如图3的位置时,E,F,C三点共线,BF恰好是△BEC的相似分割线,求CDBD值.32.(2022•巢湖市二模)定义:如果一个三角形中有一个角是另一个角的2倍,那么我们称这样的三角形为倍角三角形.根据上述定义可知倍角三角形中有一个角是另一个角的2倍,所以我们就可以通过作出其中的2倍角的角平分线,得出一对相似三角形,再利用我们学过的相似三角形的性质解决相关问题.请通过这种方法解答下列问题:(1)如图1,△ABC中,AD是角平分线,且AB2=BD•BC,求证:△ABC是倍角三角形;(2)如图2,已知△ABC是倍角三角形,且∠A=2∠C,AB=8,BC=10,求AC的长;(3)如图3,已知△ABC中,∠A=3∠C,AB=8,BC=10,求AC的长.。

人教版九年级数学中考几何压轴题专题提升训练(含答案)

人教版九年级数学中考几何压轴题专题提升训练(含答案)

人教版九年级数学中考几何压轴题专题提升训练1.如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD=y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B的值等于()A.B.C.D.2.如图①,E为矩形ABCD的边AD上一点,BE<BC,点P从点B出发沿折线B﹣E﹣D运动到点D停止,点Q从点B出发沿BC运动到点C停止,它们的运动速度都是1cm/s.现P,Q两点同时出发,设运动时间为x(s),△BPQ的面积为y(cm2),若y与x的对应关系如图②所示,则矩形ABCD的面积是()A.96cm2B.84cm2C.72cm2D.56cm23.如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A.B.2C.2D.34.如图,在四边形ABCD中(AB>CD),∠ABC=∠BCD=90°,AB=3,BC=,把Rt△ABC 沿着AC翻折得到Rt△AEC,若tan∠AED=,则线段DE的长度()A.B.C.D.5.如图,等边△ABC的边长为3,点D在边AC上,AD=,线段PQ在边BA上运动,PQ=,有下列结论:①CP与QD可能相等;②△AQD与△BCP可能相似;③四边形PCDQ面积的最大值为;④四边形PCDQ周长的最小值为3+.其中,正确结论的序号为()A.①④B.②④C.①③D.②③6.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.7.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD 于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个8.如图,在正方形ABCD中,AB=3,点E,F分别在边AB,CD上,∠EFD=60°.若将四边形EBCF沿EF折叠,点B′恰好落在AD边上,则BE的长度为()A.1 B.C.D.29.如图,在△ABC中,BC=3,将△ABC平移5个单位长度得到△A1B1C1,点P、Q分别是AB、A1C1的中点,PQ的最小值等于.10.如图,∠MON=30°,在OM上截取OA1=.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于.11.在△ABC中,若AB=6,∠ACB=45°.则△ABC的面积的最大值为.12.如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.13.如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED 并延长至点F,使得DF=DE,以EC、EF为邻边构造▱EFGC,连接EG,则EG的最小值为.14.如图,在平面直角坐标系xOy中,半径为2的⊙O与x轴的正半轴交于点A,点B是⊙O 上一动点,点C为弦AB的中点,直线y=x﹣3与x轴、y轴分别交于点D、E,则△CDE 面积的最小值为.15.如图,在Rt△ABC中,∠ACB=90°,AB=4,点D,E分别在边AB,AC上,且DB=2AD,AE=3EC,连接BE,CD,相交于点O,则△ABO面积最大值为.16.如图,正方形ABCD中,△ABC绕点A逆时针旋转到△AB'C',AB',AC'分别交对角线BD 于点E,F,若AE=4,则EF•ED的值为.17.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.18.有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,∠ABC=90°,点M,N分别在射线BA,BC上,MN长度始终保持不变,MN=4,E为MN的中点,点D到BA,BC的距离分别为4和2.在此滑动过程中,猫与老鼠的距离DE的最小值为.19.四边形ABCD是边长为2的正方形,E是AB的中点,连接DE,点F是射线BC上一动点(不与点B重合),连接AF,交DE于点G.(1)如图1,当点F是BC边的中点时,求证:△ABF≌△DAE;(2)如图2,当点F与点C重合时,求AG的长;(3)在点F运动的过程中,当线段BF为何值时,AG=AE?请说明理由.20.矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.(1)如图①,若点P恰好在边BC上,连接AP,求的值;(2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.21.【了解概念】有一组对角互余的凸四边形称为对余四边形,连接这两个角的顶点的线段称为对余线.【理解运用】(1)如图①,对余四边形ABCD中,AB=5,BC=6,CD=4,连接AC.若AC =AB,求sin∠CAD的值;(2)如图②,凸四边形ABCD中,AD=BD,AD⊥BD,当2CD2+CB2=CA2时,判断四边形ABCD 是否为对余四边形.证明你的结论;【拓展提升】(3)在平面直角坐标系中,点A(﹣1,0),B(3,0),C(1,2),四边形ABCD是对余四边形,点E在对余线BD上,且位于△ABC内部,∠AEC=90°+∠ABC.设=u,点D的纵坐标为t,请直接写出u关于t的函数解析式.22.我们知道:如图①,点B把线段AC分成两部分,如果=,那么称点B为线段AC 的黄金分割点.它们的比值为.(1)在图①中,若AC=20cm,则AB的长为cm;(2)如图②,用边长为20cm的正方形纸片进行如下操作:对折正方形ABCD得折痕EF,连接CE,将CB折叠到CE上,点B对应点H,得折痕CG.试说明:G是AB的黄金分割点;(3)如图③,小明进一步探究:在边长为a的正方形ABCD的边AD上任取点E(AE>DE),连接BE,作CF⊥BE,交AB于点F,延长EF、CB交于点P.他发现当PB与BC满足某种关系时,E、F恰好分别是AD、AB的黄金分割点.请猜想小明的发现,并说明理由.23.如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.24.[初步尝试](1)如图①,在三角形纸片ABC中,∠ACB=90°,将△ABC折叠,使点B与点C重合,折痕为MN,则AM与BM的数量关系为;[思考说理](2)如图②,在三角形纸片ABC中,AC=BC=6,AB=10,将△ABC折叠,使点B与点C 重合,折痕为MN,求的值;[拓展延伸](3)如图③,在三角形纸片ABC中,AB=9,BC=6,∠ACB=2∠A,将△ABC沿过顶点C 的直线折叠,使点B落在边AC上的点B′处,折痕为CM.①求线段AC的长;②若点O是边AC的中点,点P为线段OB′上的一个动点,将△APM沿PM折叠得到△A′PM,点A的对应点为点A′,A′M与CP交于点F,求的取值范围.25.如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.(1)若OE=,求EF的长;(2)判断四边形AECF的形状,并说明理由.26.如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.(1)求证:OC∥AD;(2)如图2,若DE=DF,求的值;(3)当四边形ABCD的周长取最大值时,求的值.27.如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.28.(1)如图1,点P为矩形ABCD对角线BD上一点,过点P作EF∥BC,分别交AB、CD于点E、F.若BE=2,PF=6,△AEP的面积为S1,△CFP的面积为S2,则S1+S2=;(2)如图2,点P为▱ABCD内一点(点P不在BD上),点E、F、G、H分别为各边的中点.设四边形AEPH的面积为S1,四边形PFCG的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(3)如图3,点P为▱ABCD内一点(点P不在BD上),过点P作EF∥AD,HG∥AB,与各边分别相交于点E、F、G、H.设四边形AEPH的面积为S1,四边形PGCF的面积为S2(其中S2>S1),求△PBD的面积(用含S1、S2的代数式表示);(4)如图4,点A、B、C、D把⊙O四等分.请你在圆内选一点P(点P不在AC、BD上),设PB、PC、围成的封闭图形的面积为S1,PA、PD、围成的封闭图形的面积为S2,△PBD的面积为S3,△PAC的面积为S4,根据你选的点P的位置,直接写出一个含有S1、S2、S3、S4的等式(写出一种情况即可).29.如图,正方形ABCD的边长为6,M为AB的中点,△MBE为等边三角形,过点E作ME的垂线分别与边AD、BC相交于点F、G,点P、Q分别在线段EF、BC上运动,且满足∠PMQ =60°,连接PQ.(1)求证:△MEP≌△MBQ.(2)当点Q在线段GC上时,试判断PF+GQ的值是否变化?如果不变,求出这个值,如果变化,请说明理由.(3)设∠QMB=α,点B关于QM的对称点为B',若点B'落在△MPQ的内部,试写出α的范围,并说明理由.30.问题1:如图①,在四边形ABCD中,∠B=∠C=90°,P是BC上一点,PA=PD,∠APD =90°.求证:AB+CD=BC.问题2:如图②,在四边形ABCD中,∠B=∠C=45°,P是BC上一点,PA=PD,∠APD =90°.求的值.31.如图,在△ABC和△A'B'C'中,D、D'分别是AB、A'B'上一点,=.(1)当==时,求证△ABC∽△A'B'C'.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当==时,判断△ABC与△A'B'C′是否相似,并说明理由.32.(1)如图①,点D在AB上,点E在AC上,AD=AE,∠B=∠C.求证:AB=AC.(2)如图②,A为⊙O上一点,按以下步骤作图:①连接OA;②以点A为圆心,AO长为半径作弧,交⊙O于点B;③在射线OB上截取BC=OA;④连接AC.若AC=3,求⊙O的半径.33.如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.(1)求证:四边形ABEO为菱形;(2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.34.如图,⊙O是△ABC的外接圆,AB是⊙O的直径,∠DCA=∠B.(1)求证:CD是⊙O的切线;(2)若DE⊥AB,垂足为E,DE交AC于点F,求证:△DCF是等腰三角形.35.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=8cm.动点P 从点A出发,以1cm/s的速度沿AO水平向左做匀速运动,与此同时,动点Q从点O出发,也以1cm/s的速度沿ON竖直向上做匀速运动.连接PQ,交OT于点B.经过O、P、Q三点作圆,交OT于点C,连接PC、QC.设运动时间为t(s),其中0<t<8.(1)求OP+OQ的值;(2)是否存在实数t,使得线段OB的长度最大?若存在,求出t的值;若不存在,说明理由.(3)求四边形OPCQ的面积.36.如图,在矩形ABCD中,AB=2,AD=1,点E为边CD上的一点(与C、D不重合),四边形ABCE关于直线AE的对称图形为四边形ANME,延长ME交AB于点P,记四边形PADE的面积为S.(1)若DE=,求S的值;(2)设DE=x,求S关于x的函数表达式.37.已知∠MPN的两边分别与⊙O相切于点A,B,⊙O的半径为r.(1)如图1,点C在点A,B之间的优弧上,∠MPN=80°,求∠ACB的度数;(2)如图2,点C在圆上运动,当PC最大时,要使四边形APBC为菱形,∠APB的度数应为多少?请说明理由;(3)若PC交⊙O于点D,求第(2)问中对应的阴影部分的周长(用含r的式子表示).38.如图,⊙O为等边△ABC的外接圆,半径为2,点D在劣弧上运动(不与点A,B重合),连接DA,DB,DC.(1)求证:DC是∠ADB的平分线;(2)四边形ADBC的面积S是线段DC的长x的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M,N分别在线段CA,CB上运动(不含端点),经过探究发现,点D运动到每一个确定的位置,△DMN的周长有最小值t,随着点D的运动,t的值会发生变化,求所有t值中的最大值.39.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.40.背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE =DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB =8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.参考答案1.解:∵AM∥BN,PQ∥AB,∴四边形ABQP是平行四边形,∴AP=BQ=x,由图②可得当x=9时,y=2,此时点Q在点D下方Q'处,且BQ'=x=9时,y=2,如图①所示,∴BD=BQ'﹣Q'D=x﹣y=7,∵将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,∴BC=CD=BD=,AC⊥BD,∴cos B===,故选:D.2.解:从函数的图象和运动的过程可以得出:当点P运动到点E时,x=10,y=30,过点E作EH⊥BC于H,由三角形面积公式得:y==30,解得EH=AB=6,∴AE===8(cm),由图2可知当x=14时,点P与点D重合,∴AD=AE+DE=8+4=12(cm),∴矩形的面积为12×6=72(cm2).故选:C.3.解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC===,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.4.解:方法一:如图,延长ED交AC于点M,过点M作MN⊥AE于点N,设MN=x,∵tan∠AED=,∴=,∴NE=2x,∵∠ABC=90°,AB=3,BC=,∴∠CAB=30°,∴AC=2,由翻折可知:∠EAC=30°,∴AM=2MN=2x,∴AN=MN=3x,∵AE=AB=3,∴5x=3,∴x=,∴AN=,MN=,AM=,∵AC=2,∴CM=AC﹣AM=,∵MN=,NE=2x=,∴EM==,∵∠ABC=∠BCD=90°,∴CD∥AB,∴∠DCA=30°,由翻折可知:∠ECA=∠BCA=60°,∴∠ECD=30°,∴CD是∠ECM的角平分线,∴==,∴=,解得,ED=.方法二:如图,过点D作DM⊥CE,由折叠可知:∠AEC=∠B=90°,∴AE∥DM,∴∠AED=∠EDM,∴tan∠AED=tan∠EDM=,∵∠ACB=60°,∠ECD=30°,设EM=m,由折叠性质可知,EC=CB=,∴CM=﹣m,由翻折可知:∠ECA=∠BCA=60°,∴∠ECD=30°,∴tan∠ECD==,∴DM=(﹣m)×=1﹣m,∴tan∠EDM==,即=解得,m=,∴DM=,EM=,在直角三角形EDM中,DE2=DM2+EM2,解得,DE=.故选:B.5.解:①利用图象法可知PC>DQ,或通过计算可知DQ的最大值为,PC的最小值为,所以PC>DQ,故①错误.②设AQ=x,则BP=AB﹣AQ﹣PQ=3﹣x﹣=﹣x,∵∠A=∠B=60°,∴当=或=时,△ADQ与△BPC相似,即或=,解得x=1或或,∴当AQ=1或或时,两三角形相似,故②正确③设AQ=x,则四边形PCDQ的面积=S△ABC﹣S△ADQ﹣S△BCP=×32﹣×x××﹣×3×(3﹣x﹣)×=+x,∵x的最大值为3﹣=,∴x=时,四边形PCDQ的面积最大,最大值=,故③正确,如图,作点D关于AB的对称点D′,作D′F∥PQ,使得D′F=PQ,连接CF交AB于点P′,在射线P′A上取P′Q′=PQ,此时四边形P′CDQ′的周长最小.过点C作CH⊥D′F交D′F的延长线于H,交AB于J.由题意,DD′=2AD•sin60°=,HJ=DD′=,CJ=,FH=﹣﹣=,∴CH=CJ+HJ=,∴CF===,∴四边形P′CDQ′的周长的最小值=3+,故④错误,故选:D.6.解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,∴S△AOD=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.7.解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,∵BG平分∠EGF,∴DG≠GH,由角平分线定理,,∵DK≠KH,∴S△GDK≠S△GKH,故③错误;故选:C.8.解:∵四边形ABCD是正方形,∴AB∥CD,∠A=90°,∴∠EFD=∠BEF=60°,∵将四边形EBCF沿EF折叠,点B'恰好落在AD边上,∴∠BEF=∠FEB'=60°,BE=B'E,∴∠AEB'=180°﹣∠BEF﹣∠FEB'=60°,∴B'E=2AE,设BE=x,则B'E=x,AE=3﹣x,∴2(3﹣x)=x,解得x=2.故选:D.9.解:取AC的中点M,A1B1的中点N,连接PM,MQ,NQ,PN,∵将△ABC平移5个单位长度得到△A1B1C1,∴B1C1=BC=3,PN=5,∵点P、Q分别是AB、A1C1的中点,∴NQ=B1C1=,∴5﹣≤PQ≤5+,即≤PQ≤,∴PQ的最小值等于,故答案为:.10.解:∵B1O=B1A2,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=A2B2,∴A2B2=2A1B1,同法可得A3B3=2A2B2=22•A1B1,…,由此规律可得A20B20=219•A1B1,∵A1B1=OA1•tan30°=×=1,∴A20B20=219,故答案为219.11.解:作△ABC的外接圆⊙O,过C作CM⊥AB于M,∵弦AB已确定,∴要使△ABC的面积最大,只要CM取最大值即可,如图所示,当CM过圆心O时,CM最大,∵CM⊥AB,CM过O,∴AM=BM(垂径定理),∴AC=BC,∵∠AOB=2∠ACB=2×45°=90°,∴OM=AM=AB==3,∴OA==3,∴CM=OC+OM=3+3,∴S△ABC=AB•CM=×6×(3+3)=9+9.故答案为:9+9.12.解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,∵AC=2BC,∴设AC=2a,BC=a,∴CE=2a,CG=a,∴tan∠CEG==,故答案为:.13.解:作CH⊥AB于点H,∵在▱ABCD中,∠B=60°,BC=8,∴CH=4,∵四边形ECGF是平行四边形,∴EF∥CG,∴△EOD∽△GOC,∴=,∵DF=DE,∴,∴,∴,∴当EO取得最小值时,EG即可取得最小值,当EO⊥CD时,EO取得最小值,∴CH=EO,∴EO=4,∴GO=5,∴EG的最小值是,故答案为:9.14.解:如图,连接OB,取OA的中点M,连接CM,过点M作MN⊥DE于N.∵AC=CB,AM=OM,∴MC=OB=1,∴点C的运动轨迹是以M为圆心,1为半径的⊙M,设⊙M交MN于C′.∵直线y=x﹣3与x轴、y轴分别交于点D、E,∴D(4,0),E(0,﹣3),∴OD=4,OE=3,∴DE===5,∵∠MDN=∠ODE,∠MND=∠DOE,∴△DNM∽△DOE,∴=,∴=,∴MN=,当点C与C′重合时,△C′DE的面积最小,△C′DE的面积最小值=×5×(﹣1)=2,故答案为2.15.解:如图,过点D作DF∥AE,则==,∵=,∴DF=2EC,∴DO=2OC,∴DO=DC,∴S△ADO=S△ADC,S△BDO=S△BDC,∴S△ABO=S△ABC,∵∠ACB=90°,∴C在以AB为直径的圆上,设圆心为G,当CG⊥AB时,△ABC的面积最大为:4×2=4,此时△ABO的面积最大为:×4=.故答案为:.16.解:∵四边形ABCD是正方形,∴∠BAC=∠ADB=45°,∵把△ABC绕点A逆时针旋转到△AB'C',∴∠EAF=∠BAC=45°,∵∠AEF=∠DEA,∴△AEF∽△DEA,∴=,∴EF•ED=AE2,∵AE=4,∴EF•ED的值为16,故答案为:16.17.解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设BC=4a,由==得,DM=3a,∴AB=2a,DN=a,AN=a,∴NB=AB+AN=2a+a=a,∴===.故答案为:.18.解:如图,连接BE,BD.由题意BD==2,∵∠MBN=90°,MN=4,EM=NE,∴BE=MN=2,∴点E的运动轨迹是以B为圆心,2为半径的弧,∴当点E落在线段BD上时,DE的值最小,∴DE的最小值为2﹣2.(也可以用DE≥BD﹣BE,即DE≥2﹣2确定最小值)故答案为2﹣2.19.(1)证明:∵四边形ABCD是正方形,∴∠B=∠DAE=90°,AB=AD=BC,∵点E,F分别是AB、BC的中点,∴AE=AB,BF=BC,∴AE=BF,∴△ABF≌△DAE(SAS);(2)在正方形ABCD中,AB∥CD,∠ADC=90°,AD=CD=2,∴AC===2,∵AB∥CD,∴△AGE∽△CGD,∴=,即=,∴AG=;(3)当BF=时,AG=AE,理由如下:如图所示,设AF交CD于点M,若使AG=AE=1,则有∠1=∠2,∵AB∥CD,∴∠1=∠4,又∵∠2=∠3,∴∠3=∠4,∴DM=MG,在Rt△ADM中,AM2﹣DM2=AD2,即(DM+1)2﹣DM2=22,解得DM=,∴CM=CD﹣DM=2﹣=,∵AB∥CD,∴△ABF∽△MCF,∴=,即=,∴BF=,故当BF=时,AG=AE.20.解:(1)如图①中,取DE的中点M,连接PM.∵四边形ABCD是矩形,∴∠BAD=∠C=90°,由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,在Rt△EPD中,∵EM=MD,∴PM=EM=DM,∴∠3=∠MPD,∴∠1=∠3+∠MPD=2∠3,∵∠ADP=2∠3,∴∠1=∠ADP,∵AD∥BC,∴∠ADP=∠DPC,∴∠1=∠DPC,∵∠MOP=∠C=90°,∴△POM∽△DCP,∴===,∴==.解法二:证明△ABP和△DAE相似,==.(2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG =x,则BG=4﹣x∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,∴∠EPG=∠PDH,∴△EGP∽△PHD,∴====,∴PH=3EG=3x,DH=AG=4+x,在Rt△PHD中,∵PH2+DH2=PD2,∴(3x)2+(4+x)2=122,解得x=(负值已经舍弃),∴BG=4﹣=,在Rt△EGP中,GP==,∵GH∥BC,∴△EGP∽△EBF,∴=,∴=,∴BF=3.21.解:(1)过点A作AE⊥BC于E,过点C作CF⊥AD于F.∵AC=AB,∴BE=CE=3,在Rt△AEB中,AE===4,∵CF⊥AD,∴∠D+∠FCD=90°,∵∠B+∠D=90°,∴∠B=∠DCF,∵∠AEB=∠CFD=90°,∴△AEB∽△DFC,∴=,∴=,∴CF=,∴sin∠CAD===.(2)如图②中,结论:四边形ABCD是对余四边形.理由:过点D作DM⊥DC,使得DM=DC,连接CM.∵四边形ABCD中,AD=BD,AD⊥BD,∴∠DAB=∠DBA=45°,∵∠DCM=∠DMC=45°,∴∠CDM=∠ADB=90°,∴∠ADC=∠BDM,∵AD=DB,CD=DM,∴△ADC≌△BDM(SAS),∴AC=BM,∵2CD2+CB2=CA2,CM2=DM2+CD2=2CD2,∴CM2+CB2=BM2,∴∠BCM=90°,∴∠DCB=45°,∴∠DAB+∠DCB=90°,∴四边形ABCD是对余四边形.(3)如图③中,过点D作DH⊥x轴于H.∵A(﹣1,0),B(3,0),C(1,2),∴OA=1,OB=3,AB=4,AC=BC=2,∴AC2+BC2=AB2,∴∠ACB=90°,∴∠CBA=∠CAB=45°,∵四边形ABCD是对余四边形,∴∠ADC+∠ABC=90°,∴∠ADC=45°,∵∠AEC=90°+∠ABC=135°,∴∠ADC+∠AEC=180°,∴A,D,C,E四点共圆,∴∠ACE=∠ADE,∵∠CAE+∠ACE=∠CAE+∠EAB=45°,∴∠EAB=∠ACE,∴∠EAB=∠ADB,∵∠ABE=∠DBA,∴△ABE∽△DBA,∴=,∴=,∴u=,设D(x,t),∵四边形ABCD是对余四边形,可得BD2=2CD2+AD2,∴(x﹣3)2+t2=2[(x﹣1)2+(t﹣2)2]+(x+1)2+t2,整理得(x+1)2=4t﹣t2,在Rt△ADH中,AD===2,∴u==(0<t<4),即u=(0<t<4).22.解:(1)∵点B为线段AC的黄金分割点,AC=20cm,∴AB=×20=(10﹣10)cm.故答案为:(10﹣10).(2)延长EA,CG交于点M,∵四边形ABCD为正方形,∴DM∥BC,∴∠EMC=∠BCG,由折叠的性质可知,∠ECM=∠BCG,∴∠EMC=∠ECM,∴EM=EC,∵DE=10,DC=20,∴EC===10,∴EM=10,∴DM=10+10,∴tan∠DMC==.∴tan∠BCG=,即,∵AB=BC,∴,∴G是AB的黄金分割点;(3)当BP=BC时,满足题意.理由如下:∵四边形ABCD是正方形,∴AB=BC,∠BAE=∠CBF=90°,∵BE⊥CF,∴∠ABE+∠CFB=90°,又∵∠BCF+∠BFC=90°,∴∠BCF=∠ABE,∴△ABE≌△BCF(ASA),∴BF=AE,∵AD∥CP,∴△AEF∽△BPF,∴,当E、F恰好分别是AD、AB的黄金分割点时,∵AE>DE,∴,∵BF=AE,AB=BC,∴,∴,∴BP=BC.23.解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,法二:∵∠ECF=∠FCD=30°,FD⊥CD,FE⊥CE,∴DF=EF,∵EF=BC=1,∴DF=1.故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH﹣OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.解法二:作OG⊥EC于G,设OG=x,则OC=2x,CG=x,在Rt△OBC中,利用勾股定理,构建方程,求出x,可得结论.24.解:(1)如图①中,∵△ABC折叠,使点B与点C重合,折痕为MN,∴MN垂直平分线段BC,∴CN=BN,∵∠MNB=∠ACB=90°,∴MN∥AC,∵CN=BN,∴AM=BM.故答案为AM=BM.(2)如图②中,∵CA=CB=6,∴∠A=∠B,由题意MN垂直平分线段BC,∴BM=CM,∴∠B=∠MCB,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴=,∴=,∴BM=,∴AM=AB﹣BM=10﹣=,∴==.(3)①如图③中,由折叠的性质可知,CB=CB′=6,∠BCM=∠ACM,∵∠ACB=2∠A,∴∠BCM=∠A,∵∠B=∠B,∴△BCM∽△BAC,∴==∴=,∴BM=4,∴AM=CM=5,∴=,∴AC=.②如图③﹣1中,∵∠A=∠A′=∠MCF,∠PFA′=∠MFC,PA=PA′,∴△PFA′∽△MFC,∴=,∵CM=5,∴=,∵点P在线段OB上运动,OA=OC=,AB′=﹣6=,∴≤PA′≤,∴≤≤.25.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AO=CO,∴∠FCO=∠EAO,又∵∠AOE=∠COF,∴△AOE≌△COF(ASA),∴OE=OF=,∴EF=2OE=3;(2)四边形AECF是菱形,理由:∵△AOE≌△COF,又∵AE∥CF,∴四边形AECF是平行四边形,又∵EF⊥AC,∴四边形AECF是菱形.26.(1)证明:∵AO=OD,∴∠OAD=∠ADO,∵OC平分∠BOD,∴∠DOC=∠COB,又∵∠DOC+∠COB=∠OAD+∠ADO,∴∠ADO=∠DOC,∴CO∥AD;(2)解:如图1,∵OA=OB=OD,∴∠ADB=90°,设∠DAC=α,则∠ACO=∠DAC=α.∵OA=OD,DA∥OC,∴∠ODA=∠OAD=2α,∴∠DFE=3α,∴∠DEF=∠DFE=3α,∴4α=90°,∴α=22.5°,∴∠DAO=45°,∴△AOD和△ABD为等腰直角三角形,∴AD=AO,∴,∵DE=DF,∴∠DFE=∠DEF,∵∠DFE=∠AFO,∴∠AFO=∠AED,又∠ADE=∠AOF=90°,∴△ADE∽△AOF,∴.(3)解:如图2,∵OD=OB,∠BOC=∠DOC,∴△BOC≌△DOC(SAS),∴BC=CD,设BC=CD=x,CG=m,则OG=2﹣m,∵OB2﹣OG2=BC2﹣CG2,∴4﹣(2﹣m)2=x2﹣m2,解得:m=,∴OG=2﹣,∵OD=OB,∠DOG=∠BOG,∴G为BD的中点,又∵O为AB的中点,∴AD=2OG=4﹣,∴四边形ABCD的周长为2BC+AD+AB=2x+4﹣+4=﹣+2x+8=﹣+10,∵﹣<0,∴x=2时,四边形ABCD的周长有最大值为10.∴BC=2,∴△BCO为等边三角形,∴∠BOC=60°,∵OC∥AD,∴∠DAO=∠COB=60°,∴∠ADF=∠DOC=60°,∠DAE=30°,∴∠AFD=90°,∴,DF=DA,∴.27.(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.28.解:(1)如图1中,过点P作PM⊥AD于M,交BC于N.∵四边形ABCD是矩形,EF∥BC,∴四边形AEPM,四边形MPFD,四边形BNPE,四边形PNCF都是矩形,∴BE=PN=CF=2,S△PFC=×PF×CF=6,S△AEP=S△APM,S△PEB=S△PBN,S△PDM=S△PFD,S△PCN =S△PCF,S△ABD=S△BCD,∴S矩形AEPM=S矩形PNCF,∴S1=S2=6,∴S1+S2=12,故答案为12.(2)如图2中,连接PA,PC,在△APB中,∵点E是AB的中点,∴可设S△APE=S△PBE=a,同理,S△APH=S△PDH=b,S△PDG=S△PGC=c,S△PFC=S△PBF=d,∴S四边形AEPH+S四边形PFCG=a+b+c+d,S四边形PEBF+S四边形PHDG=a+b+c+d,∴S四边形AEPH+S四边形PFCG=S四边形PEBF+S四边形PHDG=S1+S2,∴S△ABD=S平行四边形ABCD=S1+S2,∴S△PBD=S△ABD﹣(S1+S△PBE+S△PHD)=S1+S2﹣(S1+a+S1﹣a)=S2﹣S1.(3)如图3中,由题意四边形EBGP,四边形HPFD都是平行四边形,∴S四边形EBGP=2S△EBP,S四边形HPFD=2S△HPD,∴S△ABD=S平行四边形ABCD=(S1+S2+2S△EBP+2S△HPD)=(S1+S2)+S△EBP+S△HPD,∴S△PBD=S△ABD﹣(S1+S△EBP+S△HPD)=(S2﹣S1).(4)如图4﹣1中,结论:S2﹣S1=S3+S4.理由:设线段PB,线段PA,弧AB围成的封闭图形的面积为x,线段PC,线段PD,弧CD 的封闭图形的面积为y.由题意:S1+x+S4=S1+y+S3,∴x﹣y=S3﹣S4,∵S1+S2+x+y=2(S1+x+S4),∴S2﹣S1=x﹣y+2S4=S3+S4.同法可证:图4﹣2中,有结论:S1﹣S=S3+S4.图4﹣3中和图4﹣4中,有结论:|S1﹣S2|=|S3﹣S4|.29.证明:(1)∵正方形ABCD的边长为6,M为AB的中点,∴∠A=∠ABC=90°,AB=BC=6,AM=BM=3,∵△MBE是等边三角形,∴MB=ME=BE,∠BME=∠PMQ=60°,∴∠BMQ=∠PME,又∵∠ABC=∠MEP=90°,∴△MBQ≌△MEP(ASA);(2)PF+GQ的值不变,理由如下:如图1,连接MG,过点F作FH⊥BC于H,∵ME=MB,MG=MG,∴Rt△MBG≌Rt△MEG(HL),∴BG=GE,∠BMG=∠EMG=30°,∠BGM=∠EGM,∴MB=BG=3,∠BGM=∠EGM=60°,∴GE=,∠FGH=60°,∵FH⊥BC,∠C=∠D=90°,∴四边形DCHF是矩形,∴FH=CD=6,∵sin∠FGH===,∴FG=4,∵△MBQ≌△MEP,∴BQ=PE,∴PE=BQ=BG+GQ,∵FG=EG+PE+FP=EG+BG+GQ+PF=2+GQ+PF,∴GQ+PF=2;(3)如图2,当点B'落在PQ上时,∵△MBQ≌△MEP,∴MQ=MP,∵∠QMP=60°,∴△MPQ是等边三角形,当点B'落在PQ上时,点B关于QM的对称点为B',∴△MBQ≌△MB'Q,∴∠MBQ=∠MB'Q=90°∴∠QME=30°∴点B'与点E重合,点Q与点G重合,∴∠QMB=∠QMB'=α=30°,如图3,当点B'落在MP上时,同理可求:∠QMB=∠QMB'=α=60°,∴当30°<α<60°时,点B'落在△MPQ的内部.30.证明:(1)∵∠B=∠APD=90°,∴∠BAP+∠APB=90°,∠APB+∠DPC=90°,∴∠BAP=∠DPC,又PA=PD,∠B=∠C=90°,∴△BAP≌△CPD(AAS),∴BP=CD,AB=PC,∴BC=BP+PC=AB+CD;(2)如图2,过点A作AE⊥BC于E,过点D作DF⊥BC于F,由(1)可知,EF=AE+DF,∵∠B=∠C=45°,AE⊥BC,DF⊥BC,∴∠B=∠BAE=45°,∠C=∠CDF=45°,∴BE=AE,CF=DF,AB=AE,CD=DF,∴BC=BE+EF+CF=2(AE+DF),∴==.31.(1)证明:∵=,∴=,∵==,∴==,∴△ADC∽△A′D′C',∴∠A=∠A′,∵=,∴△ABC∽△A′B′C′.故答案为:==,∠A=∠A′.(2)结论:∴△ABC∽△A′B′C′.理由:如图,过点D,D′分别作DE∥BC,D′E′∥B′C′,DE交AC于E,D′E′交A′C′于E′.∵DE∥BC,∴△ADE∽△ABC,∴==,同理,==,∵=,∴=,∴=,同理,=,∴=,即=,∴=,∵==,∴==,∴△DCE∽△D′C′E′,∴∠CED=∠C′E′D′,∵DE∥BC,∴∠CED+∠ACB=180°,同理,∠C′E′D′+∠A′C′B′=180°,∴∠ACB=∠A′C′B′,∵=,∴△ABC∽△A′B′C′.32.(1)证明:在△ABE和△ACD中,∴△ABE≌△ACD(AAS),∴AB=AC;(2)解:连接AB,如图②,。

2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练

2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练

2022-2023学年人教版中考数学复习《圆综合压轴题》解答题专题突破训练(附答案)1.如图,AB是⊙O的直径,且AB=10,弦CD⊥AB于点E,G是弧AC上一点,连接AD,AG,GD,BC.(1)若G是弧AC上任意一动点,请找出图中和∠G相等的角(不在原图中添加线段或字母),并说明理由.(2)当点C是弧BG的中点时,①若∠G=60°,求弦DG的长,②连接BG,交CD于点F,若BE=2,求线段CF的长.2.如图,等腰△ABC内接于⊙O,AB=AC,连结OC,过点B作AC的垂线,交⊙O于点D,交OC于点M,交AC于点E,连结AD.(1)若∠D=α,请用含α的代数式表示∠OCA;(2)求证:CE2=EM•EB;(3)连接CD,若BM=4,DM=3,求tan∠BAC的值及四边形ABCD的面积与△BMC 面积的比值.3.已知:AB为⊙O的直径,=,D为弦AC上一动点(不与A、C重合).(1)如图1,若BD平分∠CBA,连接OC交BD于点E.①求证:CE=CD;②若OE=2,求AD的长.(2)如图2,若BD绕点D顺时针旋转90°得DF,连接AF.求证:AF为⊙O的切线.4.如图,点D是以AB为直径的⊙O上一点,过点B作⊙O的切线,交AD的延长线于点C,E是BC的中点,连接DE并延长与AB的延长线交于点F.(1)求证:DF是⊙O的切线;(2)若OB=BF,EF=4.求⊙O的半径;(3)在(2)条件下,求BE、DE、弧围成的阴影部分的面积.5.如图1,⊙O的弦BC=6,A为BC所对优弧上一动点且sin∠BAC=,△ABC的外角平分线AP交⊙O于点P,直线AP与直线BC交于点E.(1)求证:点P为的中点;(2)如图2,求⊙O的半径和PC的长;(3)若△ABC不是锐角三角形,求P A•AE的最大值.6.如图,点P在y轴的正半轴上,⊙P交x轴于B、C两点,以AC为直角边作等腰Rt△ACD,BD分别交y轴和⊙P于E、F两点,连接AC、FC,AC与BD相交于点G.(1)求证:∠ACF=∠ADB;(2)求证:CF=DF;(3)∠DBC=°;(4)若OB=3,OA=6,则△GDC的面积为.7.如图,⊙O是直角三角形ABC的外接圆,直径AC=4,过C点作⊙O的切线,与AB延长线交于点D,M为CD的中点,连接BM,OM,且BC与OM相交于点N.(1)求证:BM与⊙O相切;(2)当∠BAC=60°时,求弦AB和弧AB所夹图形的面积;(3)在(2)的条件下,在弧AB上取一点F,使∠ABF=15°,连接OF交弦AB于点H,求FH的长度是多少?8.如图,AB是⊙O的直径,AC是弦,P为AB延长线上一点,∠BCP=∠BAC.∠ACB的平分线交⊙O于点D,交AB于点E,(1)求证:PC是⊙O的切线;(2)求证:△PEC是等腰三角形;(3)若AC+BC=2时,求CD的长.9.圆内接四边形ABCD,AB为⊙O的直径.(1)如图1,若D为弧AB中点,AB=4.①求∠DCB的度数;②求四边形ABCD面积的最大值.(2)如图2,对角线AC,BD交于点E,连结OE并延长交CD于点F,若OE=3EF=3,求AB的长.10.已知:∠MBN=90°,点A在射线BM上,点C在射线BN上,D在线段BA上,⊙O 是△ACD的外接圆;(1)若⊙O与BN的另一个交点为E,如图1,当,BD=1,AD=2时,求CE的长;(2)如图2,当∠BCA=∠BDC时,判断BN与⊙O的位置关系,并说明理由;(3)如图3,在BN上作出C点,使得∠ACD最大,并求当AD=2,时,⊙O 的半径.11.如图1,C、D为半圆O上的两点,且点D是弧BC的中点.连结AC并延长,与BD 的延长线相交于点E.(1)求证:CD=ED;(2)连结AD与OC、BC分别交于点F、H.①若CF=CH,如图2,求证:CH=CE;②若圆的半径为2,BD=1,如图3,求AC的值.12.如图,线段AB=6,以AB为直径作⊙O,C为⊙O上一点,过点B作⊙O的切线交AC 的延长线于点D,连接BC.(1)求证:△BCD∽△ABD;(2)若∠D=50°,求的长.(3)点P在线段AC上运动,直接写出△PBD的外心运动的路径长.13.如图,在平面直角坐标系中,已知A(0,3),点B在x轴正半轴上,且∠ABO=30°,C为线段OB上一点,作射线AC交△AOB的外接圆于点D,连接OD,∠COD=∠OAD.(1)求∠BAD的度数;(2)在射线AD上是否存在点P,使得直线BP与△AOB的外接圆相切?若存在,请求出点P的坐标;若不存在,请说明理由.14.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,直径AE交BC于点H,点D 在弧AC上,过点E作EF∥BC交AD的延长线于点F,延长BC交AF于点G.(1)求证:EF是⊙O的切线;(2)若BC=2,AH=CG=3,求EF的长;(3)在(2)的条件下,直接写出CD的长.15.如图,AB是⊙O的直径,P A是⊙O的切线,连接OP交⊙O于点E,点C在⊙O上,四边形OBCE为菱形,连接PC.(1)求证:PC是⊙O的切线;(2)连接BP交⊙O于点F,交CE于点G.①连接OG,求证:OG⊥CG;②若OB=3,求BF的长.16.如图,在平面直角坐标系xOy中,直线m:y=x+与x轴交于点A,与y轴交于点B,点P在直线m上,以点O为圆心,OP为半径的⊙O交x轴于点C、D(点C 在点D的左侧),与y轴负半轴交于点E,连接PE,交x轴于点F,且AF=AP.(1)判断直线m与⊙O的位置关系,并说明理由;(2)求∠PEB的度数;(3)若点Q是直线m上位于第一象限内的一个动点,连接EQ交x轴于点G,交⊙O于点H,判断EG•EH是否为定值,若是,求出该定值;若不是,请说明理由.17.如图,线段AB是⊙O的直径,过点B作一条射线BC与AB垂直,点P是射线BC上的一个动点,连接PO交⊙O于点F,连接AF并延长交线段BP于点E,设⊙O的半径为r,PB的长为t(t>0).(1)当r=3时,①若∠F AO=∠EPF,求的长,②若t=4,求PE的长;(2)设PE=n2t,其中n为常数,且0<n<1,若t﹣r为定值,求n的值及∠EAB的度数.18.如图,在Rt△ABC中,∠ACB=90°,D为AB边上的一点,以AD为直径作⊙O,⊙O 与BC相切于点E,连结AE,过点C作CG⊥AB于点G,交AE于点F,过点E作EP⊥AB于点P.(1)求证:∠BED=∠EAD;(2)求证:CE=EP;(3)连接PF,若CG=8,PG=6,求四边形CFPE的面积.19.如图,以△ABC的边AB为直径作⊙O交BC于点D,过点D作⊙O的切线交AC于点E,AB=AC.(1)求证:DE⊥AC;(2)延长CA交⊙O于点F,点G在上,.①连接BG,求证:AF=BG;②经过BG的中点M和点D的直线交CF于点N,连接DF交AB于点H,若AH:BH=3:8,AN=7,试求出DE的长.20.如图,△ABC为⊙O的内接三角形,AD⊥BC,垂足为D,直径AE平分∠BAD,交BC 于点F,连结BE.(1)求证:∠AEB=∠AFD.(2)若AB=10,BF=5,求AD的长.(3)若点G为AB中点,连结DG,若点O在DG上,求BF:FC的值.参考答案1.解:(1)∠AGD=∠B,理由如下:连接AC,∵AB是直径,∴∠ACB=90°,∴∠ACD+∠BCD=90°,∵CD⊥AB,∴∠CEB=90°,∴∠BCD+∠B=90°,∴∠ACD=∠B,∵∠AGD=∠ACD,∴∠AGD=∠B;(2)连接OC,OG,OD,OC交CD于M,∵∠AGD=∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠BOC=60°,∵点C是的中点,∴∠COG=∠COB=∠BOD=60°,∴CD是⊙O的直径,∴CD=AB=10;(3)连接BG,交CD于F,连接AC,∵==,∴∠BCD=∠GBC,∴CF=BF,∵∠ACD=∠ABC,∠AEC=∠BEC,∴△ACE∽△CBE,∴CE2=AE×BE=8×2=16,∵CE>0,∴CE=4,设BF=CF=x,则EF=4﹣x,∴(4﹣x)2+22=x2,解得x=,∴CF=.2.(1)解:如图,连接OA,OB,在△AOB与△AOC中,,∴△AOB≌△AOC(SSS),∴∠OAB=∠OAC=,∵,∴∠ACB=∠D=α,∵AB=AC,∴∠ABC=∠ACB=α,∴∠BAC=180°﹣2α,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α;(2)证明:∵BD⊥AC,∴∠BEC=90°,∴∠CBE=90°﹣∠ACB=90°﹣α,∴∠OCA=∠CBE,∵∠CEM=∠CEB,∴△CEM∽△BEC,∴,∴CE2=EM•EB;(3)解:如图,连接AO并延长交BD于点N,连接CN,CD,∵AB=AC,∠OAB=∠OAC,∴AO垂直平分BC,∴BN=CN,∵∠OCA=∠DAC,∴OC∥AD,∴∠DMC=∠ABD=∠ACB,∵,∴∠BAC=∠CDM,∴∠DCM=∠ABC,∴∠DCM=∠DMC,∴CD=DM=3,∵AC⊥BD,∴∠AED=∠AEN,∵∠OAC=∠DAC,AE=AE,∴△AEN≌△AED(ASA),∴EN=ED,∴AC垂直平分DN,∴CN=CD=3,∴BN=CN=3,∴MN=BM﹣BN=4﹣3=1,由EN=DE得:MN+EM=DM﹣EM,∴1+EM=3﹣EM,∴EM=1,∴EB=BM+EM=4+1=5,DE=DM﹣EM=3﹣1=2,由(2)知,CE2=EM•EB=1×5=5,∴CE=(负值已舍),∵∠BAC=∠BDC,∠DEC=∠AEB,∴△DEC∽△AEB,∴,∴AE=,在Rt△ABE中,tan∠BAC=,由(2)知,∠OCA=∠CBE=∠CAD,∴AD∥OC,∴=,∴CE=,∴S四边形ABCD=AC×BD==,S△BMC===2,∴四边形ABCD的面积与△BMC面积的比值为.3.(1)①证明:∵AB为⊙O的直径,∴∠BCA=90°,∵=,∴∠CBA=∠BAC=45°,∠BOC=90°,∴∠BCO=45°,∵BD平分∠CBA,∴∠CBD=∠DBA=22.5°,∵∠CED=∠CBD+∠BCE=67.5°,∠CDE=∠ABD+∠BAC=67.5°,∴∠CED=∠CDE,∴CE=CD;②解:如图1,取BD中点G,连接OG,∵O为AB的中点,∴OG∥AD,AD=2OG,∴∠OGE=∠CDE,∵∠OEG=∠CED,∠CED=∠CDE,∴∠OGE=∠OEG,∴OG=OE=2,∴AD=2OG=4;(2)证明:如图2,在BC上截取BP=AD,连接DP,∵=,∴BC=AC,∴CP=CD,∵∠ACB=90°∴∠CPD=45°,∴∠BPD=135°,由旋转性质得,∠BDF=90°,BD=FD,∴∠BDC+∠FDA=90°,∵∠BDC+∠CBD=90°,∴∠CBD=∠ADF,∴△DF A≌△BDP(SAS),∴∠F AD=∠BPD=135°,∴∠F AB=∠F AD﹣∠BAC=135°﹣45°=90°,∴OA⊥AF,又∵OA为半径,∴AF为⊙O的切线.4.解:(1)连接OD,BD,∵AB为⊙O的直径,∴∠ADB=∠BDC=90°,在Rt△BCD中,BE=EC,∴DE=EC=BE,∴∠EBD=∠EDB,∵BC是⊙O的切线,∴AB⊥BC,∴∠EBD+∠DBO=90°,∴∠EDB+∠DBO=90°,∵OD=OB,∴∠DBO=∠BDO,∴∠EDB+∠BDO=90°,即∠ODF=90°,∴DF⊥OD,∵OD为⊙O的半径,∴DF为⊙O的切线;(2)∵OB=BF,∴OF=2OB=2OD,∴sin F==,∴∠F=30°,∴OB=BF=EF•cos F=4×cos30°=2,即⊙O的半径为2;(3)由(2)知,OD=2,∠BOD=90°﹣∠F=60°,∴DF=OD•tan∠BOD=2×=6,∵EF=4,∠F=30°,∴BE=EF•sin30°=2,∵阴影部分的面积=三角形ODF的面积﹣三角形FEB的面积﹣扇形BOD的面积,∴S阴=S△ODF﹣S△FEB﹣S扇形BOD=OD•DF﹣BF•BE﹣π•OD2==4﹣2π,∴阴影部分的面积为4﹣2π.5.(1)证明:①如图1,连接OC,AB,∵AP平分∠BAF,∴∠BAP=∠P AF,∵∠P AF+∠P AC=180°,∠P AC+∠PBC=180°,∴∠P AF=∠PBC,又∠BAP=∠PCB,∴∠PBC=∠PCB,∴PB=PC,∴=,∴点P为的中点;(2)解:连接OB,OC,过O作OM⊥BC于M,∴OM垂直平分BC,∴BM=CM=BC=3,∠BOM=∠BOC=∠BAC,∵sin∠BAC=,∴sin∠BOM==,∴OB=5,∴⊙O的半径是5,在Rt△OMC中,OM==4,在Rt△PMC中,PM=OM+OP=9,∴PC==3;(3)∵∠ACE+∠BCA=∠BPE+∠BCA=180°,∴∠ACE=∠BPE,同理,∠CAE=∠PBC=∠P AB,∴△ACE∽△APB,∴=,∴P A•AE=AC•AB,如图4,过C作CQ⊥AB于Q,∵sin∠BAC=,∴CQ=AC•sin∠BAC,∴S△ABC=AB•CQ=AB•AC,∴P A•AE=S△ABC,∵△ABC非锐角三角形,且BC=6,∴当A运动到使∠ACB=90°时,△ABC面积最大,在Rt△ABC中,BC=6,AB=10,∴AC==8,∴S△ABC=BC•AC=24,∴此时,P A•AE=80,即P A•AE的最大值为80.6.(1)证明:连接AB,∵OP⊥BC,∴BO=CO,∴AB=AC,又∵AC=AD,∴AB=AD,∴∠ABD=∠ADB,又∵∠ABD=∠ACF,∴∠ACF=∠ADB;(2)证明:∵AC=AD,∴∠ACD=∠ADC,∵∠ACF=∠ADF,∵∠ACD﹣∠ACF=∠ADC﹣∠ADF,即∠FCD=∠FDC,∴CF=DF;(3)解:连接AF,由(2)知CF=DF,则点F在CD的垂直平分线上,∵AC=AD,∴点A在CD的垂直平分线上,∴AF是CD的垂直平分线,∴AF平分∠CAD,∴∠CAF=45°,∴∠CBD=45°,故答案为:45;(4)解:作CH⊥BD于H,∵OB=OC=3,∠DBC=45°,∴CH=BH=3,∵OA=6,OC=3,∴AC=3,∴CD=AC=3,∴DH=,∴DB=BH+DH=9,∵∠ACD=∠DBC,∠CDG=∠BDC,∴△DCG∽△DBC,∴DC2=DG•DB,∴(3)2=DG•9,∴DG=5,∴△GDC的面积为=15,故答案为:15.7.(1)证明:如图,连接OB,∵⊙O是直角三角形ABC的外接圆,∴∠ABC=∠DBC=90°.在Rt△DBC中,M为CD的中点,∴BM=MC,∴∠MBC=∠MCB.又∵OB=OC,∴∠OCB=∠OBC.∵CD为⊙O的切线,∴∠ACD=90°.∴∠MCB+∠OCB=∠MBC+∠OBC=90°,即OB⊥BM.又∵OB为⊙O的半径,∴BM与⊙O相切;(2)解:∵∠BAC=60°,OA=OB,∴△ABO为等边三角形,∴∠AOB=60°.∵AC=4,∴OA=2,∴弦AB和弧AB所夹图形的面积=S扇形AOB﹣S△AOB=.(3)解:连接OB,∠ABF=15°时,∠AOF=30°,∴等边△ABO中,OF平分∠AOB,∴OF⊥AB.在Rt△AOH中,AO=2,∠AOH=30°,∴AH=1,∴OH=,∴FH=.8.(1)证明:连接OC,∵AB为直径,∴∠ACB=90°,∴∠ACO+∠OCB=90°,∵OA=OC,∴∠BAC=∠ACO,∠BCP=∠BAC,∴∠BCP=∠ACO,∴∠BCP+∠OCB=90°,∴OC⊥PC,∵OC为半径,∴PC是⊙O的切线;(2)证明:∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD,∵∠PCE=∠PCB+∠BCD,∠PEC=∠BAC+∠ACD,∴∠PEC=∠PCE,∴△PEC是等腰三角形;(3)解:作DM⊥AC于M,DN⊥CB交CB的延长线于N,∵CD平分∠ACB,DM⊥∠AC,DN⊥CB,∴DM=DN,,∵∠AMD=∠BND=90°,∴Rt△AMD≌Rt△BND(HL),∴AM=BN,∵∠DMC=∠MCN=∠CND=90°,∴四边形CMDN为矩形,∵DM=DN,∴矩形CMDN为正方形,∴CN=,∵AC+BC=CM+AB+CB=2CN,∴AC+BC=CD,∵AC+BC=2,∴CD=.9.解:(1)①∵AB为直径,D为的中点,∴∠DCB=180°﹣∠A=180°﹣45°=135°,②连接BD,AC交于点E,当四边形ABCD面积最大时,即△BCD面积最大,当OC⊥BD时,CE最大,∵AB=4,∴BD=AD=2,∴OE=,∴S,∴S四边形ABCD的最大值为:S;(2)直线OF交⊙O于点M,N,过F作PQ∥AB交直线BD,AC于点P,Q,∵∠Q=∠A=∠CDE,∴△PFD∽△CFQ,∴PF•FQ=FD•FC,∵∠N=∠MDF,∠MFD=∠CFN,∴△MFD∽△CFN,∴MF•FN=FD•FC,∴PF•FQ=MF•FN,∴,∴FP=FQ=,设半径为r,∴(r﹣4)(r+4)=,∵r>0,∴r=3,∴AB=6.10.解:(1)连接AE,∵∠AEC+∠ADC=180°,∠BDC+∠ADC=180°,∴∠BDC=∠AEC,∵∠CBD=∠ABE,∴△ABE∽△CBD,∴,∵BC=,AD=2,BD=1,∴AB=AD+BD=2+1=3,∴,∴BE=2,∴CE=BE﹣BC=;(2)BN是⊙O的切线,理由如下:连接CO并延长交⊙O于点F,连接DF,则∠CDF=90°,∴∠CFD+∠FCD=90°,∵∠BCA=∠BDC,∠B=∠B,∴∠BAC=∠BCD,∵∠CAD=∠CFD,∴∠CFD=∠BCD,∴∠FCB=∠FCD+∠BCD=∠FCD+∠CFD=90°,∴BC⊥OC,∵OC是半径,∴BC是⊙O的切线,即BN是⊙O的切线;(3)过点A,C,D三点作⊙O,当BC是⊙O的切线时,∠ACD最大,连接CO并延长交⊙O于点G,连接AG,DG,则∠CDG=90°,∠CAG=90°,∴∠CGD+∠DCG=90°,∵BC是⊙O的切线,∴BC⊥OC,∴∠BCO=90°,∴∠BCD+∠DCG=90°,∴∠BCD=∠CGD,∵∠CGD=∠CAD,∴∠BCD=∠BAC,∵∠B=∠B,∴△BCD∽△BAC,∴,∴BC2=BD•BA,∵AD=2,∴BA=BD+AD=BD+2,∴BC2=BD(BD+2)=BD2+2BD,∵BC2+BA2=AC2,AC=2BD,∴BC2=AC2﹣BA2=(2BD)2﹣(BD+2)2=11BD2﹣4BD﹣4,∴11BD2﹣4BD﹣4=BD2+2BD,∴5BD2﹣3BD﹣2=0,∴BD=﹣(舍去)或BD=1,∴BD=1,∴BA=BD+AD=1+2=3,AC=2BD=2,∵∠B=90°,∴AB⊥BC,∵CG⊥BC,∴CG∥AB,∴∠BAC=∠ACG,∵∠B=∠CAG=90°,∴△BAC∽△ACG,∴,∴,∴CG=4,∴OC=2,即⊙O的半径为2.11.(1)证明:如图1中,连接BC.∵点D是弧BC的中点.∴=,∴∠DCB=∠DBC,∵AB是直径,∴∠ACB=∠BCE=90°,∴∠E+∠DBC=90°,∠ECD+∠DCB=90°,∴∠E=∠DCE,∴CD=ED;(2)①证明:如图2中,∵CF=CH,∴∠CFH=∠CHF,∵∠CFH=∠CAF+∠ACF,∠CHA=∠BAH+∠ABH,∵∠CAD=∠BAH,∴∠ACO=∠OBC,∵OC=OB,∴∠OCB=∠OBC,∴∠ACO=∠BCO=∠ACB=45°,∴∠CAB=∠ABC=45°,∴AC=BC,∵∠ACH=∠BCE=90°,∠CAH=∠CBE,∴△ACH≌△BCE(ASA),∴CH=CE;②解:如图3中,连接OD交BC于G.设OG=x,则DG=2﹣x.∵=,∴∠COD=∠BOD,∵OC=OB,∴OD⊥BC,CG=BG,在Rt△OCG和Rt△BGD中,则有22﹣x2=12﹣(2﹣x)2,∴x=,即OG=,∵OA=OB,∴OG是△ABC的中位线,∴OG=AC,∴AC=.12.(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∴∠DCB=90°,∵BD切⊙O于点B,∴∠ABD=90°,∴∠DCB=∠ABD,∵∠D=∠D,∴△BCD∽△ABD;(2)解:连接OC,∵∠D=50°,∠ABD=90°,∴∠A=40°,∴∠COB=2∠A=80°,∵直径AB=6,∴半径r=3,∴的长为=;(3)解:取BD的中点E,AD的中点F,连接EF,当点P在点C处时,△PBD为直角三角形,E为△PBD的外心,当点P在点A处时,△ABD为直角三角形,F为△PBD的外心,∵AB=6,EF为△ABD的中位线,∴EF=AB=3,∴△PBD的外心运动的路径长为3.13.解:(1)∵∠AOB=90°,∠ABO=30°,∴∠OAB=90°﹣∠ABO=60°,∵=,∴∠COD=∠BAD,∵∠COD=∠OAD,∴∠BAD=∠OAD=,即∠BAD的度数为30°;(2)如图,存在点P,使得直线BP与△AOB的外接圆相切,∵∠AOB=90°,∴AB是△AOB外接圆的直径,∴AB⊥PB,∴∠ABP=90°,∴∠PBC=90°﹣∠ABO=90°﹣30°=60°,由(1)得,∠OAC=30°,∴∠ACO=90°﹣∠OAC=60°,∴∠PCB=∠ACO=60°,∴△PBC是等边三角形,∵A(0,3),∴OA=3,∴OC=OA•tan∠OAC=3×=,在Rt△AOB中,OA=3,∠OAB=60°,∴OB=OA•tan60°=3,∴BC=OB﹣OC=3﹣=2,作PQ⊥BC于Q,∴PQ=CQ•tan∠PCB=×=3,∴OQ=OC+CQ=2,∴P(3,﹣2).即:存在点P,使得直线BP与△AOB的外接圆相切,此时点P(3,﹣2).14.(1)证明:∵AB=AC,∴,∵AE是直径,∴,∴∠BAE=∠CAE,又∵AB=AC,∴AE⊥BC,又∵EF∥BC,∴EF⊥AE,∵OE是半径,∴EF是⊙O的切线;(2)解:连接OC,设⊙O的半径为r,∵AE⊥BC,∴HG=HC+CG=4,∴AG===5,在Rt△OHC中,OH2+CH2=OC2,∴(3﹣r)2+1=r2,解得:r=,∴AE=,∵EF∥BC,∴△AEF∽△AHG,∴,∴,∴EF=;(3)解:∵AH=3,BH=1,∴AB===,∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC+∠CDG=180°,∴∠B=∠CDG,又∵∠DGC=∠AGB,∴△DCG∽△BAG,∴,∴,∴CD=.15.(1)证明:连接OC,∵四边形OBCE为菱形,∴OB=BC,OB∥CE,∴OB=OC=BC,∴△OBC是等边三角形,∴∠BOC=∠COE=60°,∴∠AOP=∠COP=60°,∵OA=OC,OP=OP,∴△APO≌△CPO(SAS),∴∠PCO=∠BAP,∵AB是⊙O的直径,P A是⊙O的切线,∴∠P AO=90°,∴∠PCO=90°,∵OC是⊙O的半径,∴PC是⊙O的切线;(2)①证明:由(1)知,∠AOP=60°,∠P AO=90°,∴∠APO=30°,∵OA=OP,∴OE=PE,∴PE=BC,∵PO∥BC,∴∠PEG=∠BCG,∠EPG=∠CBG,∴△PEG≌△BCG(ASA),∴EG=CG,∴OG⊥CG;②解:∵OB=3,∴OA=OB=3,∴OP=2OA=6,∴AP==3,∴PB===3,连接AF,∵AB是⊙O的直径,∴AF⊥PB,∵S△APB=AP•AB=PB•AF,∴AF===,∴BF===.16.解:(1)直线m与⊙O相切,理由:连接PO,∵AP=AF,∴∠APF=∠AFP,∵∠AFP=∠EFO,∴∠APF=∠EFO,∵OP=OE,∴∠OPF=∠OEF,∵∠FOE=90°,∴∠OFE+∠OEF=∠OPF+∠APF=90°,∴∠APO=90°,∴PO⊥直线AB,∵OP是⊙O的半径,∴直线m与⊙O相切;(2)∵y=x+与x轴交于点A,与y轴交于点B,∴令y=0,得x=﹣2,令x=0,得y=,∴A(﹣2,0),B(0,),∴OA=2,OB=,∴tan∠BAO==,∴∠BAO=30°,∴∠AOP=60°,∵∠AOB=90°,∴∠BOP=30°,∵OP=OE,∴∠OPE=∠EOP,∵∠BOP=∠OPE+∠OEP=2∠PEB=30°,∴;(3)连接CE、CH,∵CD⊥BE,∴∠COE=∠DOE=90°,∴∠CHE=∠ECG=90°=45°,∵∠CEG=∠HEC,∴△CEG∽△HEC,∴.∴EG•EG=CE•EC=2.17.解:(1)①∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠POB=2∠EPF,∵BC⊥AB,∴∠OBP=90°,∴∠POB+∠EPF=90°,∴2∠EPF+∠EPF=90°,∴∠EPF=30°,∴∠POB=60°,∴n=60,∵r=OB=3,∴的长为;②延长FO交⊙O于点G,连接BF,BG,∵FG是⊙O的直径,∴∠FBG=90°,∵AB是⊙O的直径,∴∠AFB=90°,∴∠AFB+∠GBF=180°,∴AF∥BG,∴,∵OP==5,∴PF=OP﹣OF=2,∵PB=4,∴,∴PE=1;(2)∵t﹣r的值为定值,∴t﹣r=0,∴t=r,∴OB=BP,∴∠POB==45°,∵OA=OF,∴∠OAF=∠OF A,∴∠POB=∠OAF+∠OF A=2∠OAF,∴∠EAB=∠OAF==22.5°,由②同理得AF∥BG,∴,∵OP===r,∴PF=OP﹣OF=(﹣1)r,PG=OP+OG=(+1)r,∴,∴n,∵0<n<1,∴n=﹣1,∴∠EAB=22.5°.18.(1)证明:连结OE,∵BC与⊙O相切于点E,∴OE⊥BC,∴∠BED+∠OED=90°,∵AD是直径,∴∠AED=90°,∴∠EAD+∠ADE=90°,∵OE=OD,∴∠OED=∠ADE,∴∠BED=∠EAD;(2)证明:∵AC⊥BC,OE⊥BC,∴AC∥OE,∴∠CAE=∠AEO,∵OA=OE,∴∠EAO=∠AEO,∴∠CAE=∠EAO,又∵EP⊥AB,EC⊥AC,∴CE=EP;(3)解:连结PF,∵∠ACB=90°,CG⊥AB,∴∠CAE+∠AEC=∠AFG+∠EAP=90°,∵∠CAE=∠EAP,∴∠AEC=∠AFG=∠CFE,∴CF=CE,∵CE=EP,∴CF=PE,∵CG⊥AB,EP⊥AB,∴CF∥EP,∴四边形CFPE是平行四边形,又∵CE=EP,∴平行四边形CFPE是菱形,∴CF=PF,设CF=x,则PF=x,FG=8﹣x,在Rt△PFG中,由勾股定理可得:x2=(8﹣x)2+62,解得:x=,∴四边形CFPE的面积=CF•PG=.19.(1)证明:如图1,连接OD,∵DE为⊙O的切线,∴∠ODE=90°,∵AB=AC,∴∠B=∠C,又∵OB=OD,∴∠B=∠ODB,∴∠C=∠ODB,∴OD∥AC,∴∠DEC=∠ODE=90°,∴DE⊥AC;(2)①证明:如图2,连接BF,AG,∵AB为⊙O的直径,∴∠AFB=∠BGA=90°,∵.∴∠ABD=∠DBG,∵∠ABC=∠C,∴∠C=∠DBG,∴CF∥BG,∴∠FNG+∠BF A=180°,∴∠FBG=90°,∵∠FBG=∠AFB=∠BGA=90°,∴四边形AFBG为矩形,∴AF=BG;②解:如图3,连接AD,∵AB为⊙O的直径,∴∠BDA=90°,∵AB=AC,∴BD=DC,∵CF∥BG,∴∠NCD=∠MBD,在△BDM和△CDN中,,∴△BDM≌△CDN(ASA),∴BM=CN,过点C作CP∥DH交BA的延长线于点P,∴=,∴BH=HP,∵AH:BH=3:8,∴AH:AP=3:5,∵FH∥CP,∴==,∵AB=AC,∴=,设AB=5k,则AC=5k,F A=BG=3k,连接FB,∵∠BF A=90°,∴BF==4k,∵M为BG中点,∴BM=BG=k,∴CN=k,∴AN=AC﹣CN=5k﹣k=k=7,则k=2,∵∠DEC=∠BFC=90°,∴DE∥BF,∴=,∴EF=EC,∴DE=BF=2k,∴DE=4.20.(1)证明:∵AE为⊙O的直径,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∵AD⊥BC,∴∠ADF=90°,∴∠AFD+∠F AD=90°,∵AE平分∠BAD,∴∠BAE=∠AFD,∴∠AEB=∠AFD;(2)解:如图1,过点B作BM⊥AE于点M.∵∠AFD=∠BFE,∠AFD=∠AEB,∴∠BFE=∠AEB,∴BF=BE=5,∵AB=10,∠ABE=90°,∴AE===5,∵,∴BM==2,∴EM=FM===,∴AF=AE﹣EF=5﹣2=3,∵∠BMF=∠ADF=90°,∠AFD=∠BFM,∴△BFM∽△AFD,∴,∴,∴AD=6;(3)解:∵∠ADB=90°,G为AB的中点,∴AG=DG=BG,∵O为AE的中点,G为AB的中点,∴OG∥BE,∵∠ABE=90°,∴∠AGD=90°,∴△ADG为等腰直角三角形,∴∠GAD=45°,∴∠ABD=45°,过点F作FH⊥AB于点H,如图2,∵AF平分∠BAD,∴FD=FH,∵∠ABD=45°,∴BF=FH=FD,∵∠AFD=∠AEB,∠AEB=∠C,∴∠AFD=∠C,∴AF=AC,又∵AD⊥BC,∴FD=DC,设FD=DC=x,则BF=x,∴.。

中考数学压轴试题复习 第三部分 专题一 代数计算及通过代数计算进行说理问题-人教版初中九年级全册数学

中考数学压轴试题复习 第三部分 专题一 代数计算及通过代数计算进行说理问题-人教版初中九年级全册数学

§3.1 代数计算及通过代数计算进行说理问题课前导学计算说理是通过计算得到结论;说理计算侧重说理,说理之后进行代入求值.压轴题中的代数计算题,主要是函数类题.函数计算题必考的是待定系数法求函数的解析式,按照设、列、解、验、答五步完成,一般来说,解析式中待定几个字母,就要代入几个点的坐标.还有一类计算题,就是从特殊到一般,通过计算寻找规律.代数计算和说理较多的一类题目,是确定直线与抛物线的交点个数.联立直线和抛物线的解析式组成方程组,消去y ,得到关于x 的一元二次方程,然后根据∆确定交点的个数.我们介绍一下求函数图像交点坐标的几何方法.如图1,已知直线y =x +1与x 轴交于点A ,抛物线y =x 2-2x -3与直线y =x +1交于A 、B 两点,求点B 的坐标的代数方法,就是联立方程组,方程组的一个解是点A 的坐标,另一个解计算点的坐标.几何法是这样的:设直线AB 与y 轴分别交于C ,那么tan ∠AOC =1.作BE ⊥x 轴于E ,那么1BE AE=.设B(x , x 2-2x -3),于是22311x x x --=+. 请注意,这个分式的分子因式分解后,(1)(3)11x x x +-=+.这个分式能不能约分,为什么?因为x =-1的几何意义是点A ,由于点B 与点A 不重合,所以x ≠-1,因此约分以后就是x -3=1.这样的题目一般都是这样,已知一个交点求另一个交点,经过约分,直接化为一元一次方程,很简便.图1例 1 2014年某某省某某市中考第25题在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),,…,都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2, m)是反比例函数nyx=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s-1(k、s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a、b是常数,a>0)的图象上存在两个“梦之点”A(x1, x1)、B(x2, x2),且满足-2<x1<2,| x1-x2|=2,令2157 248t b b=-+,试求t的取值X围.动感体验请打开几何画板文件名“14某某25”,拖动y轴正半轴上表示实数a的点,可以体验到,A、B两点位于y轴同侧,A、B两点间的水平距离、竖直距离都是2,并且对于同一个a,有两个对应的b和b′,但是t随b、t随b′变化时对应的t的值保持相等.思路点拨1.“梦之点”都在直线y=x上.2.第(2)题就是讨论两条直线的位置关系,分重合、平行和相交三种情况.3.第(3)题放弃了也是明智的选择.求t关于b的二次函数的最值,b的取值X围由“梦之点”、-2<x1<2和| x1-x2|=2三个条件决定,而且-2<x1<2还要分两段讨论.图文解析(1)因为点P(2, m)是“梦之点”,所以P(2, 2).所以4yx =.(2)“梦之点”一定在直线y=x上,直线y=3kx+s-1与直线y=x的位置关系有重合、平行、相交.图1 图2 图3①如图1,当直线y =3kx +s -1与直线y =x 重合时,有无数个“梦之点”.此时k =13,s =1.②如图2,当直线y =3kx +s -1与直线y =x 平行时,没有“梦之点”.此时k =13,s ≠1.③如图3,当直线y =3kx +s -1与直线y =x 相交时,有1个“梦之点”.此时k ≠13,“梦之点”的坐标为11(,)3131s s k k ----. (3)因为A (x 1,x 1)、B (x 2,x 2)两点是抛物线与直线y =x 的交点,联立y =ax 2+bx +1和y =x ,消去y ,整理,得ax 2+(b -1)x +1=0.所以x 1x 2=1a>0.所以A 、B 两点在y 轴的同侧. 如图4,由| x 1-x 2|=2,可知A 、B 两点间的水平距离、竖直距离都是2.已知-2<x 1<2,我们分两种情况来探求a 的取值X 围:①当A 、B 两点在y 轴右侧时,0<x 1<2,2<x 2<4.所以0<x 1x 2<8.②当A 、B 两点在y 轴左侧时,-2<x 1<0,-4<x 2<-2.所以0<x 1x 2<8. 综合①、②,不论0<x 1<2或-2<x 1<0,都有0<x 1x 2<8.所以0<1a <8.所以a >18. 由ax 2+(b -1)x +1=0,得x 1+x 2=1b a -,x 1x 2=1a. 由| x 1-x 2|=2,得(x 1-x 2)2=4.所以(x 1+x 2)2-4x 1x 2=4.所以22(1)44b a a--=.整理,得22(1)44b a a -=+. 所以2157248t b b =-+=2109(1)48b -+=21094448a a ++=261(21)48a ++.如图5,这条抛物线的开口向上,对称轴是直线12a =-,在对称轴右侧,t 随a 的增大而增大.因此当18a =时,t 取得最小值,t =2161(1)448++=176. 所以t 的取值X 围是t >176.图4 图5考点伸展第(3)题我们也可以这样来讨论:一方面,由| x 1-x 2|=2,得(x 1-x 2)2=4.所以(x 1+x 2)2-4x 1x 2=4. 所以22(1)44b a a--=.整理,得22(1)44b a a -=+. 另一方面,由f (2)>0,f (-2)<0,得f (2)f (-2)<0. 所以[42(1)1][42(1)1]a b a b +-+--+<0.所以22(41)4(1)a b +--=22(41)4(44)a a a +-+=18a -<0.所以a >18.例 2 2014年某某省某某市中考第23题设m 是不小于-1的实数,使得关于x 的方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根x 1,x 2.(1)若12111x x +=,求132m-的值; (2)求2121211mx mx m x x +---的最大值. 动感体验请打开几何画板文件名“14某某23”,拖动x 轴上表示实数m 的点运动,可以体验到,当m 小于1时,抛物线与x 轴有两点交点A 、B .观察点D 随m 运动变化的图像,可以体验到,当m =-1时,点D 到达最高点.思路点拨1.先确定m 的取值X 围,由两个条件决定.2.由根与系数的关系,把第(1)题的已知条件转化为关于m 的方程.3.第(2)题首先是繁琐的式子变形,把m 提取出来,可以使得过程简便一点. 图文解析(1)因为方程x 2+2(m -2)x +m 2-3m +3=0有两个不相等的实数根,所以∆>0. 由∆=4(m -2)2-4(m 2-3m +3)=-4m +4>0,得m <1.又已知m 是不小于-1的实数,所以-1≤m <1.由根与系数的关系,得122(2)24x x m m +=--=-+,21233x x m m ⋅=-+. 若12111x x +=,那么1212x x x x +=⋅.所以22433m m m -+=-+. 整理,得210m m --=.解得m =m =.所以323(12m -=-=.所以132m -2. (2)2121211mx mx m x x +---=121211x x m m x x ⎡⎤+-⎢⎥--⎣⎦=122112(1)(1)(1)(1)x x x x m m x x ⎡⎤-+--⎢⎥--⎣⎦=12121212()21()x x x x m m x x x x ⎡⎤+--⎢⎥-++⎣⎦=22(24)2(33)1(24)33m m m m m m m m ⎡⎤-+--+-⎢⎥--++-+⎣⎦ =222+42m m m m m m ⎡⎤---⎢⎥-⎣⎦=22(1)(1)m m m m m ⎡⎤---⎢⎥-⎣⎦=222m m -+-=2(1)3m -++.所以当m =-1时,它有最大值,最大值为3(如图1所示).图1考点伸展当m变化时,抛物线y=x2+2(m-2)x+m2-3m+3=0的顶点的运动轨迹是什么?因为抛物线的对称轴是直线x=-(m-2),所以抛物线的顶点的纵坐标y=(m-2)2-2(m-2)2+m2-3m+3=m-1.因为x+y=-(m-2)+m-1=1为定值,所以y=-x+1.也就是说,抛物线的顶点(x, y)的运动轨迹是直线y=-x+1(如图2所示).图2例 3 2014年某某省某某市中考第26题如图1,已知二次函数y=-x2+bx+c的对称轴为x=2,且经过原点,直线AC的解析式为y=kx+4,直线AC与y轴交于点A,与二次函数的图象交于B、C两点.(1)求二次函数解析式; (2)若1=3AOB BOC S S △△,求k 的值; (3)若以BC 为直径的圆经过原点,求k 的值.图1动感体验请打开几何画板文件名“14某某26”,拖动点C 在抛物线上运动,可以体验到,当以BC 为直径的圆经过原点时,△BMO ∽△ONC .思路点拨1.第(2)题先将面积比转化为AB 与BC 的比,进而转化为B 、C 两点的横坐标的比.2.第(2)题可以用直线的解析式表示B 、C 两点的坐标,再代入抛物线的解析式列方程组;也可以用抛物线的解析式表示B 、C 两点的坐标,再代入直线的解析式列方程组.3.第(3)题先联立抛物线与直线,根据一元二次方程根与系数的关系,得到B 、C 两点的横坐标的和与积,再构造相似三角形列方程.图文解析(1)因为原点O 关于直线x =2的对称点为(4, 0),所以抛物线y =-x 2+bx +c 的解析式为y =-x (x -4)=-x 2+4x .(2)如图2,因为1==3AOB BOC S AB S BC △△,所以1=4B C x x .设x B =m ,那么x C =4m . 将点B (m , km +4)、C (4m , 4km +4)分别代入y =-x (x -4),得4(4),444(44).km m m km m m +=--⎧⎨+=--⎩①② ①-②÷4,整理,得m 2=1.所以m =1.将m =1代入①,得k +4=3.解得k =-1.此时点C 落在x 轴上(如图3).(3)因为B 、C 是直线y =kx +4与抛物线的交点,设B (x 1,kx 1+4),C (x 2,kx 2+4). 联立y =-x 2+4x 和y =kx +4,消去y ,整理,得x 2+(k -4)x +4=0.所以x 1+x 2=4-k ,x 1x 2=4.如图5,若以BC 为直径的圆经过原点,那么∠BOC =90°.作BM ⊥y 轴,⊥y 轴,垂足分别为M 、N ,那么△BMO ∽△ONC .根据BM ON MO NC=,得1212(4)4x kx kx x -+=+. 所以212121212(4)(4)[4()16]x x kx kx k x x k x x =-++=-+++.将x 1+x 2=4-k ,x 1x 2=4代入,得24[44(4)16]k k k =-+-+.解得54k =-.图2 图3 图4考点伸展第(2)题也可以先用抛物线的解析式设点B 、C 的坐标,再代入直线的解析式列方程组. 将点B (m ,-m 2+4m )、C (4m ,-16m 2+16m )分别代入y =kx +4,得 2244,16164 4.m m km m m km ⎧-+=+⎪⎨-+=+⎪⎩①②①×4-②,得12m 2=12.所以m =1.将m =1代入①,得3=k +4.解得k =-1.例 4 2014年某某省株洲市中考第24题已知抛物线252(2)4k y x k x +=-++和直线2(1)(1)y k x k =+++. (1)求证:无论k 取何实数值,抛物线与x 轴有两个不同的交点;(2)抛物线与x 轴交于A 、B 两点,直线与x 轴交于点C ,设A 、B 、C 三点的横坐标分别是x 1、x 2、x 3,求x 1·x 2·x 3的最大值;(3)如果抛物线与x 轴的两个交点A 、B 在原点的右边,直线与x 轴的交点C 在原点的左边,又抛物线、直线分别交y 轴于点D 、E ,直线AD 交直线CE 于点G (如图1),且CA ·GE =CG ·AB ,求抛物线的解析式.图1动感体验请打开几何画板文件名“14株洲24”,拖动y 轴上表示实数k 的点运动,可以体验到,抛物线与x 轴总是有两个交点.观察x 1·x 2·x 3随k 变化的函数图像,可以体验到,x 1·x 2·x 3是k 的二次函数.还可以体验到,存在一个正数k ,使得AD 与BE 平行.思路点拨1.两个解析式像庞然大物,其实第(1)题的语境非常熟悉,走走看,豁然开朗.2.第(2)题x 1·x 2·x 3的最小值由哪个自变量决定呢?当然是k 了.所以先求x 1·x 2·x 3关于k 的函数关系式,就明白下一步该怎么办了.x 1·x 2由根与系数的关系得到,x 3就是点C 的横坐标.3.第(3)题的等积式转化为比例式,就得到AD //BE .由此根据OD ∶OA =OE ∶OB 列方程,再结合根与系数的关系化简.还是走走看,柳暗花明.图文解析(1)因为222(52)17(2)42()424k k k k k +∆=+-⨯=-+=-+>0,所以无论k 取何实数值,抛物线与x 轴有两个不同的交点.(2)由2(1)(1)y k x k =+++,得C (-(k +1), 0).所以x 3=-(k +1).由根与系数的关系,得x 1·x 2=(52)4k +. 所以x 1·x 2·x 3=1(52)(1)4k k -++=21(572)4k k -++. 因此710x =-当时,x 1·x 2·x 3取得最大值,最大值=14949(52)410010-⨯-+=980. (3)如图2,由CA ·GE =CG ·AB ,得CA CG AB GE =. 所以AG //BE ,即AD //BE .所以OD OE OA OB =,即212(52)(1)4k k x x ++=.所以22122(52)(1)4k k x x x ++=⋅.所以222(1)1k x +=. 所以x 2=k +1,或-k -1(舍).又因为x 1+x 2=k +2,所以x 1=1,即A (1, 0).再将点A (1, 0)代入252(2)4k y x k x +=-++,得5201(2)4k k +=-++. 解得k =2.所以抛物线的解析式为y =x 2-4x +3.图2 图3考点伸展把第(3)题中的条件“CA ·GE =CG ·AB ”改为“EC =EB ”,其他条件不变,那么抛物线的解析式是怎样的呢?如图3,因为点E 在y 轴上,当EC =EB 时,B 、C 两点关于y 轴对称,所以B (k +1, 0). 将点B (k +1, 0)代入252(2)4k y x k x +=-++,得252(1)(2)(1)04k k k k ++-+++=. 解得k =2.所以抛物线的解析式为y =x 2-4x +3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、中考数学压轴题1.附加题:在平面直角坐标系中,抛物线21y ax a =-与y 轴交于点A ,点A 关于x 轴的对称点为点B ,(1)求抛物线的对称轴;(2)求点B 坐标(用含a 的式子表示);(3)已知点11,P a ⎛⎫ ⎪⎝⎭,(3,0)Q ,若抛物线与线段PQ 恰有一个公共点,结合函数图像,求a 的取值范围. 2.在平面直角坐标系中,抛物线24y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .(1)求点A ,点B 的坐标;(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;②求抛物线的解析式.3.已知:如图,AB 为O 的直径,弦CD AB ⊥垂足为E ,点H 为弧AC 上一点.连接DH 交AB 于点F ,连接HA 、BD ,点G 为DH 上一点,连接AG ,HAG BDC ∠=∠. (1)如图1,求证:AG HD ⊥;(2)如图2,连接HC ,若HC HF =,求证:HC HA =;(3)如图3,连接HO 交AG 于点K ,若点F 为DG 的中点,HC 2HG =,求KG AK的值.4.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.5.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.6.如图,在平面直角坐标系中,直线6y x =+与x 轴交于点A ,与y 轴交于点B ,点C 在x 轴正半轴上,2ABC ACB ∠=∠.(1)求直线BC 的解析式;(2)点D 是射线BC 上一点,连接AD ,设点D 的横坐标为t ,ACD ∆的面积为S ()0S ≠,求S 与t 的函数解析式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,AD 与y 轴交于点E ,连接CE ,过点B 作AD 的垂线,垂足为点H ,直线BH 交x 轴于点F ,交线段CE 于点M ,直线DM 交x 轴于点N ,当:7:12NF FC =时,求直线DM 的解析式.7.如图,在平面直角坐标系中,Rt ABC ∆的斜边AB 在y 轴上,边AC 与x 轴交于点D ,AE 平分BAC ∠交边BC 于点E ,经过点A D E 、、的圆的圆心F 恰好在y 轴上,⊙F 与y 里面相交于另一点G .(1)求证:BC 是⊙F 的切线 ;(2)若点A D 、的坐标分别为(0,1),(2,0)A D -,求⊙F 的半径及线段AC 的长; (3)试探究线段AG AD CD 、、三者之间满足的等量关系,并证明你的结论.8.如图,已知正方形ABCD 中,4,BC AC BD =、相交于点O ,过点A 作射线AM AC ⊥,点E 是射线AM 上一动点,连接OE 交AB 于点F ,以OE 为一边,作正方形OEGH ,且点A 在正方形OEGH 的内部,连接DH .(1)求证:EDO EAO ∆≅∆;(2)设BF x =,正方形OEGH 的边长为y ,求y 关于x 的函数关系式,并写出定义域;(3)连接AG ,当AEG ∆是等腰三角形时,求BF 的长.9.如图①,四边形ABCD 中,//,90AB CD ADC ∠=︒.(1)动点M 从A 出发,以每秒1个单位的速度沿路线A B C D →→→运动到点D 停止,设运动时间为a ,AMD ∆的面积为,S S 关于a 的函数图象如图②所示,求AD CD 、的长.(2)如图③动点P 从点A 出发,以每秒2个单位的速度沿路线A D C →→运动到点C 停止,同时,动点Q 从点C 出发,以每秒5个单位的速度沿路线C D A →→运动到点A停止,设运动时间为t ,当Q 点运动到AD 边上时,连接CP CQ PQ 、、,当CPQ ∆的面积为8时,求t 的值.10.如图1,抛物线23y ax bx =++与x 轴交于点(1,0)A -、点B ,与y 轴交于点C ,顶点D 的横坐标为1,对称轴交x 轴交于点E ,交BC 与点F .(1)求顶点D 的坐标;(2)如图2所示,过点C 的直线交直线BD 于点M ,交抛物线于点N .①若直线CM 将BCD ∆分成的两部分面积之比为2:1,求点M 的坐标;②若NCB DBC ∠=∠,求点N 的坐标.11.问题背景:如图,四边形ABCD 中,AD BC ∥,8BC =,17AD =+32AB =45ABC ∠=︒,P 为边AD 上一动点,连接BP 、CP .问题探究(1)如图1,若30PBC ∠=︒,则AP 的长为__________.(2)如图2,请求出BPC △周长的最小值;(3)如图3,过点P 作PE BC ⊥于点E ,过点E 分别作EM PB ⊥于M ,EN PC ⊥于点N ,连接MN①是否存在点P ,使得PMN 的面积最大?若存在,求出PMN 面积的最大值,若不存在,请说明理由;②请直接写出PMN 面积的最小值.12.如图,已知抛物线y =2ax bx c ++与x 轴交于A 3,0-(),B 33,0()两点,与y 轴交于点C 0,3().(1)求抛物线的解析式及顶点M 坐标;(2)在抛物线的对称轴上找到点P ,使得PAC 的周长最小,并求出点P 的坐标; (3)在(2)的条件下,若点D 是线段OC 上的一个动点(不与点O 、C 重合).过点D 作DE //PC 交x 轴于点E .设CD 的长为m ,问当m 取何值时,PDE ABMC 1S S 9=四边形. 13.如图,在ABC 中,90ABC ∠=︒,AB BC <,O 为AC 中点,点D 在BO 延长线上,CD BC =,AE BC ∥,CE CA =,AE 交BD 于点G .(1)若28DCE ∠=︒,求AOB ∠的度数;(2)求证:AG GE =;(3)设DC 交GE 于点M .①若3AB =,4BC =,求::AG GM ME 的值;②连结DE ,分别记ABG ,DGM ,DME 的面积为1S ,2S ,3S ,当AC DE 时,123::S S S = .(直接写出答案)14.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.15.如图,直线y =﹣x+4与抛物线y =﹣12x 2+bx+c 交于A ,B 两点,点A 在y 轴上,点B 在x 轴上.(1)求抛物线的解析式; (2)在x 轴下方的抛物线上存在一点P ,使得∠ABP =90°,求出点P 坐标;(3)点E 是抛物线对称轴上一点,点F 是抛物线上一点,是否存在点E 和点F 使得以点E ,F ,B ,O 为顶点的四边形是平行四边形?若存在,求出点F 的坐标;若不存在,请说明理由.16.已知:在平面直角坐标系中,抛物线223y ax ax a =--与x 轴交于点A ,B (点B 在点A 的右侧),点C 为抛物线的顶点,点C 的纵坐标为-2.(1)如图1,求此抛物线的解析式;(2)如图2,点P 是第一象限抛物线上一点,连接AP ,过点C 作//CD y 轴交AP 于点D ,设点P 的横坐标为t ,CD 的长为m ,求m 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,点E 在DP 上,且ED AD =,点F 的横坐标大于3,连接EF ,BF ,PF ,且EP EF BF ==,过点C 作//CG PF 交DP 于点G ,若728CG AG =,求点P 的坐标.17.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.18.已知抛物线y=﹣x 2﹣2x+3交x 轴于点A 、C (点A 在点C 左侧),交y 轴于点B .(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M,求点M坐标;(3)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).19.在平面直角坐标系中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)该抛物线的解析式为;(2)如图1,Q为抛物线上位于直线AB上方的一动点(不与B、A重合),过Q作QP⊥x 轴,交x轴于P,连接AQ,M为AQ中点,连接PM,过M作MN⊥PM交直线AB于N,若点P的横坐标为t,点N的横坐标为n,求n与t的函数关系式;在此条件下,如图2,连接QN并延长,交y轴于E,连接AE,求t为何值时,MN∥AE.(3)如图3,将直线AB绕点A顺时针旋转15度交抛物线对称轴于点C,点T为线段OA 上的一动点(不与O、A重合),以点O为圆心、以OT为半径的圆弧与线段OC交于点D,以点A为圆心、以AT为半径的圆弧与线段AC交于点F,连接DF.在点T运动的过程中,四边形ODFA的面积有最大值还是有最小值?请求出该值.20.如图,在⊙O中,直径AB=10,tanA=33.(1)求弦AC的长;(2)D是AB延长线上一点,且AB=kBD,连接CD,若CD与⊙O相切,求k的值;(3)若动点P以3cm/s的速度从A点出发,沿AB方向运动,同时动点Q以32cm/s的速度从B点出发沿BC方向运动,设运动时间为t (0<t<103),连结PQ.当t为何值时,△BPQ为Rt△?21.如图1,D是等边△ABC外一点,且AD=AC,连接BD,∠CAD的角平分交BD于E.(1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.22.如图1,在ABC 中,BD 平分ABC ∠,CD 平分ACB ∠.(1)若80A ∠=︒,则BDC ∠的度数为______;(2)若A α∠=,直线MN 经过点D .①如图2,若//MN AB ,求NDC MDB ∠-∠的度数(用含α的代数式表示);②如图3,若MN 绕点D 旋转,分别交线段,BC AC 于点,M N ,试问在旋转过程中NDC MDB ∠-∠的度数是否会发生改变?若不变,求出NDC MDB ∠-∠的度数(用含α的代数式表示),若改变,请说明理由:③如图4,继续旋转直线MN ,与线段AC 交于点N ,与CB 的延长线交于点M ,请直接写出NDC ∠与MDB ∠的关系(用含α的代数式表示).23.发现来源于探究.小亮进行数学探究活动,作边长为a 的正方形ABCD 和边长为b 的正方形AEFG (a>b ),开始时,点E 在AB 上,如图1.将正方形AEFG 绕点A 逆时针方向旋转.(1)如图2,小亮将正方形AEFG 绕点A 逆时针方向旋转,连接BE 、DG ,当点G 恰好落在线段BE 上时,小亮发现DG ⊥BE ,请你帮他说明理由.当a=3,b=2时,请你帮他求此时DG 的长.(2)如图3,小亮旋转正方形AEFG ,点E 在DA 的延长线上,连接BF 、DF .当FG 平分∠BFD 时,请你帮他求a :b 及∠FBG 的度数.(3)如图4,BE 的延长线与直线DG 相交于点P ,a=2b .当正方形AEFG 绕点A 从图1开始,逆时针方向旋转一周时,请你帮小亮求点P 运动的路线长(用含b 的代数式表示).24.如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点(1)则m =_________;C 点坐标为___________;(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大,若存在,求出此时M 点坐标;若不存在,请简要说明理由.(3)P 为抛物线上一点,它关于直线BC 的对称点为Q①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t =________时,四边形PBQC 的面积最大.25.定义:两个相似等腰三角形,如果它们的底角有一个公共的顶点,那么把这两个三角形称为“关联等腰三角形”.如图,在ABC ∆与AED ∆中,,BA BC EA ED == ,且,ABC AED ∆∆所以称ABC ∆与AED ∆为“关联等腰三角形”,设它们的顶角为α,连接,EB DC ,则称DC EB 会为“关联比". 下面是小颖探究“关联比”与α之间的关系的思维过程,请阅读后,解答下列问题:[特例感知]()1当ABC ∆与AED ∆为“关联等腰三角形”,且90α︒=时, ①在图1中,若点E 落在AB 上,则“关联比”DC EB=②在图2中,探究ABE ∆与ACD ∆的关系,并求出“关联比”DCEB的值.[类比探究]()2如图3,①当ABC ∆与AED ∆为“关联等腰三角形”,且120a ︒=时,“关联比”DCEB= ②猜想:当ABC ∆与AED ∆为“关联等腰三角形”,且n α=︒时,“关联比”DCEB= (直接写出结果,用含n 的式子表示) [迁移运用]()3如图4, ABC ∆与AED ∆为“关联等腰三角形”.若90,4,ABC AED AC ︒∠=∠==点P 为AC 边上一点,且1PA =,点E 为PB 上一动点,求点E 自点B 运动至点P 时,点D 所经过的路径长.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)直线x=0;(2)B (0,1a );(3)2-≤a ≤13-或13≤a 2 【解析】 【分析】(1)根据抛物线的表达式直接得出对称轴即可;(2)根据题意得出点A 的坐标,再利用关于x 轴对称的点的坐标规律得出点B 坐标; (3)分a >0和a <0两种情况分别讨论,画图图像,求出a 的范围. 【详解】解:(1)在抛物线21y ax a=-中, 002a-=,∴对称轴为直线x=0,即y轴;(2)∵抛物线与y轴交于点A,∴A(0,1a -),∵点A关于x轴的对称点为点B,∴B(0,1a);(3)当a>0时,点A(0,1a-)在y轴负半轴上,当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=或2-(舍),当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=或13-(舍),∴当13≤a≤2时,抛物线与线段PQ恰有一个公共点;当a<0时,点A(0,1a-)在y轴正半轴上,同理可知:当点P恰好在抛物线上时,代入得:11aa a -=,解得:2a=2-,当点Q恰好在抛物线上时,代入得:190 aa-=,解得:13a=(舍)或13-,∴当2-a≤13-时,抛物线与线段PQ只有一个公共点;综上:若抛物线与线段PQ 恰有一个公共点,a 的取值范围是2-≤a ≤13-或13≤a 2. 【点睛】本题是一道二次函数的综合题目,主要考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,画出相应的函数图象,利用分类讨论的方法和数形结合的思想解答.2.A解析:(1) A (12,0) B (72,0);(2) ①233y x =+,②24316373999y x x =-+【解析】 【分析】(1)根据抛物线的解析式可得对称轴为x =2,利用:3:4∆∆=ABC BCE S S 得出CA :CE =3:4,由△AOE ∽△AGC 可得13=AO AG ,进而求得OA 、OB 的长,即可求得点A 、点B 的坐标; (2)根据旋转的性质求出C 点坐标,利用C 点坐标和△AOE ∽△AGC 可求得E 点坐标,,分别利用待定系数法即可求得直线CE 和抛物线的解析式. 【详解】解:(1)∵抛物线的解析式为24(0)=-+>y mx mx n m ,∴对称轴为直线422-=-=mx m, 如图,设对称轴与x 轴交于G ,则//CG y 轴,2OG =,∴△AOE ∽△AGC , ∴=AO AEAG AC, ∵:3:4ABCBCES S=, ∴CA :CE =3:4 ,则31AE AC =, ∴13==AO AE AG AC , ∴1142==OA OG ,3342==AG OG , 则23==AB AG ,72=+=OB OA AB , ∴A (12,0), B (72,0); (2)如图,设O 旋转后落在点Q 处,过点C 作CP y ⊥轴于点P ,由旋转的性质得:△BCO ≌△ACQ , ∴BO =AQ =72,CO =CQ , ∴OQ====∵CP y ⊥轴,∴12==OP OQ ∴点C的坐标为(2,,则CG =由(1)得△AOE ∽△AGC ,13==OE AE CG AC ,∴3OE =,即点E的坐标为(0,3, ①设CE 的解析式为y kx b =+,分别代入C (2,,E 得:23k b b ⎧+=⎪⎨=⎪⎩,解得:k b ⎧=⎪⎪⎨⎪=⎪⎩, ∴CE的解析式为33y x =-+; ②将A (12,0),C (2,分别代入24y mx mx n =-+得:120448m m n m m n ⎧-+=⎪⎨⎪-+=⎩,解得:99m n ⎧=⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为2999y x x =-+. 【点睛】本题考查了二次函数的综合、旋转的性质、相似三角形的性质和求一次函数的解析式,正确的理解题意,熟练运算“数形结合思想”是解题的关键.3.A解析:(1)详见解析;(2)详见解析;(3)15KG AK = 【解析】 【分析】(1)根据同弧所对的圆周角相等,进行角度计算,得90AHG HAG ∠+∠=︒,进而得到90AGH ∠=︒,即可证明AG HD ⊥;(2)连接AC 、AD 、CF ,根据同弧所对的圆周角相等,进行角度计算,得HFA HAF ∠=∠,进而得到HF HA =,再根据已知HC HF =,得到HC HA =; (3)在DH 上截取DT HC =,过点C 作CM HD ⊥于点M ,通过证明AHC ≌ATD 得到AH AT =,进而得到HG CH GD +=,再根据F 为DG 中点,得到GF DF =,通过勾股定理逆用,证明90HCF ∠=︒,再通过解ACE △得1tan 3CAB ∠=,解△CDH 得1tan 2CDF ∠=,求得OF 、OH ,逆用勾股定理证明90HOF ∠=︒,易求1tan 2KHG ∠=,1tan 3HAG ∠=,最后求得KGAK的值. 【详解】(1)证明:如图,设HAG ∠为α,∵HAG BDC ∠=∠, ∴HAG BDC α∠=∠=, ∵CD AB ⊥,∴90BDC DBE ∠+∠=︒ ∴90DBE α∠=︒-,∵AHG ∠与ABD ∠为同对弧AD 所对的圆周角, ∴90AHG ABD α∠=∠=︒-, ∴90AHG HAG ∠+∠=︒,∴18090AGH AHG HAG ∠=︒-∠-∠=︒ ∴AG HD ⊥(2)如图,连接AC 、AD 、CF ,∵AB 为直径,AB CD ⊥,∴CE DE =, ∴AB 垂直平分CD , ∴AC AD =,FC FD =,∴ACD ADC ∠=∠,FCD FDC ∠=∠,∴ACD FCD ADC FDC ∠-∠=∠-∠,即ACF ADF ∠=∠, 设FCD FDC α∠=∠=,ACF ADF β∠=∠=, ∵ADH ∠与ACH ∠为同对弧AH 所对的圆周角, ∴ADH ACH β∠=∠=, ∴2HCF HCA ACF β∠=∠+∠=, ∵HFC FCD FDC ∠=∠+∠, ∴2HFC α∠=, ∵HC HF =, ∴HCF HFC ∠=∠, ∴22αβ=, ∴αβ=, ∵AB 为直径, ∴90ADB ∠=︒, ∴90HDB β∠=︒-,∵HAB ∠与为HDB ∠同对弧BH 所对的圆周角, ∴90HAB HDB β∠=∠=︒-, ∵AB CD ⊥,∴9090BFD αβ∠=︒-=︒-, ∵9090HFA BFD αβ∠=∠=︒-=︒-, ∴HFA HAF ∠=∠, ∴HF HA =, ∴HC HA =;(3)如图,在DH 上截取DT HC =,∵ADH ∠与ACH ∠同对弧AH 所对的圆周角, ∴ADH ACH ∠=∠, ∵AB 为直径,且AB CD ⊥∴AC =AD , ∴AC AD =, ∴AHC ≌ATD , ∴AH AT =, ∵AG HT ⊥, ∴HG TG =,∴HG CH GT DT GD +=+=, 设2HG k =,则4CH k =,GD 6k =, ∵F 为DG 中点, ∴3GF DF k ==,∴5HF HG GF k =+=,FD =CF =3k ,在HCF 中,由勾股定理逆定理得90HCF ∠=︒, 过点C 作CM HD ⊥于点M , 由△HCF 面积,可求CM =125k ,∴95MF k =, ∴1tan 2CM CM CDF MD MF FD ∠===+, 解ACE △得1tan 3CAB ∠=, 易求OF ,OH ,由勾股定理逆定理得90HOF ∠=︒, 易求1tan 2KHG ∠=,1tan 3HAG ∠=, ∴15KG AK =. 【点睛】本题考查圆与三角形综合,主要考查知识点有同弧所对的圆周角相等,垂径定理,三角形全等的判定与性质,勾股定理的逆用,解直角三角形,锐角三角函数等,知识点跨度大,计算量多;熟练掌握圆的性质和三角形相关知识是解决本题的关键.4.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+,2QN m 4sin QHN QH 5∠+===,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩, 则抛物线的解析式为:213y x x 222=+-; ()2过点M 作y 轴的平行线,交直线BC 于点K ,将点B 、C 的坐标代入一次函数表达式:y k'x b'=+得:04'''2k b b =-+⎧⎨=-⎩,解得:1'2'2k b ⎧=-⎪⎨⎪=-⎩, 则直线BC 的表达式为:1y x 22=--, 设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,22BMC1113SMK OB 2x 2x x 2x 4x 2222⎛⎫=⋅⋅=----+=-- ⎪⎝⎭, a 10=-<,BMC S∴有最大值,当bx 22a=-=-时, BMCS最大值为4,点M 的坐标为()2,3--;()3如图所示,存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆,切点为N ,过点M 作直线平行于y 轴,交直线AC 于点H ,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴, QHN OCA ∠∠∴=, 1tan QHN 2∠∴=,则sin QHN 5∠= 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-, 则点()H 2,6--,在Rt QNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+2QN m 4sin QHN QH5∠+===, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--.【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.5.A解析:(1)12;(2)5s 或373s ;(3)163s 或685s 或72s 【解析】【分析】(1)AD 与BC 之间的距离即AB 的长,如下图,过点D 作BC 的垂线,交BC 于点E ,在RtDEC 中可求得DE 的长,即AB 的长,即AD 与BC 间的距离;(2)四边形QDCP 为平行四边形,只需QD=CP 即可;(3)存在3大类情况,情况一:QP=PD ,情况二:PD=QD ,情况三:QP=QD ,而每大类中,点P 存在2种情况,一种为点P 还未到达点C ,另一种为点P 从点C 处返回.【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点E∵∠B=90°,AD ∥BC∴AB ⊥BC ,AB ⊥AD∴AB 的长即为AD 与BC 之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在Rt DEC 中,DE=12同理,DE 的长也是AD 与BC 之间的距离∴AD 与BC 之间的距离为12(2)∵AD ∥BC∴只需QD=PC ,则四边形QDCP 是平行四边形QD=16-t ,PC=21-2t 或PC=2t -21∴16-t=21-2t 或16-t=2t -21解得:t=5s 或t=373s (3)情况一:QP=PD图形如下,过点P 作AD 的垂线,交AD 于点F∵PQ=PD ,PF ⊥QD ,∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90°∴四边形ABPF 是矩形,∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t∵AF=BP∴8+2t =2t 或8+2t =42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD ,∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+- ∵PQ=QD ,∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度. 6.A解析:(1)6y x =-+;(2)636S t =-,()6t >;(3)5599y x =+ 【解析】【分析】(1)求出点A 、B 的坐标,从而得出△ABO 是等腰直角三角形,再根据2ABC ACB ∠=∠可得△OCB 也是等腰直角三角形,从而可求得点C 的坐标,将点B 、C 代入可求得解析式;(2)存在2种情况,一种是点D 在线段BC 上,另一种是点D 在线段BC 的延长线上,分别利用三角形的面积公式可求得;(3)如下图,先证ACR CAD ∆≅∆,从而推导出//RD AC ,进而得到CF RG =,同理还可得NF DG =,RD CN =,然后利用:7:12NF FC =可得到N 、D 的坐标,代入即可求得.【详解】解:(1)直线6y x =+与x 轴交于点A ,与y 轴交于点B ,(6,0)A ∴-,(0,6)B .6OA OB ∴==. 45BAO ∴∠=︒,180BAO ABC BCO ∠+∠+∠=︒,2ABC ACB ∠=∠,45BCO ∴∠=︒6OC OB ∴==,()6,0C ∴.设直线BC 的解析式为y kx b =+,将B 、C 两点坐标代得606k b b +=⎧⎨=⎩解得16k b =-⎧⎨=⎩∴直线BC 的解析式为6y x =-+.(2)点D 是射线BC 上一点,点D 的横坐标为t ,(,6)D t t ∴-+,6(6)12AC =--=.如下图,过点D 作DK AC ⊥于点K ,当点D 在线段BC 上时,6DK t =-+, 16362S AC DK t ∴=⋅=-+()06t ≤<; 如下图,当点D 在线段BC 的延长线上时,6DK t =-,636S t ∴=-()6t >.(3)如图,延长CE 交AB 于点R ,连接DR 交BF 于点G ,交y 轴于点P .45BAO BCO ∠=∠=︒,BA BC ∴=.AO CO =,BO AC ⊥EA EC ∴=,EAC ECA ∴∠=∠.ACR CAD ∴∆≅∆.BAD BCR ∴∠=∠.AR CD ∴=.BR BD ∴=.//RD AC ∴.BH AD ⊥,HBD BAD BCR ∴∠=∠=∠.MB MC ∴=,∠MRB MRB MBR ∠=∠MR MB ∴=.CM MR ∴=.//RD AC ,::1:1CF RG CM RM ∴==.CF RG ∴=.同理NF DG =.RD CN =.∵:7:12NF FC =.:7:12DG RG ∴=.RP PD BP ==,5tan 19PG OF OBF BP OB∴==∠= 6OB ∴=,3019OF ∴=,6OC =,8419CF ∴=. 7RD GN ∴==.1ON ∴=,72PD =.52OP OB BP ∴=-=. (1,0)N ∴-,75,22D ⎛⎫ ⎪⎝⎭. 设直线 DN 的解析式为y ax c =+,将N 、D 两点代入,07522a c a c -+=⎧⎪⎨+=⎪⎩ 解得5959a c ⎧=⎪⎪⎨⎪=⎪⎩∴直线DM 的解析式为5599y x =+. 【点睛】本题考查了一次函数与图形的综合,需要用到全等、三角函数和平面直角坐标系的知识,解题关键是想办法确定函数图像上点的坐标. 7.E解析:(1)详见解析;(2)52r =,52AC =;(3)2AG AD CD =+,理由详见解析.【解析】【分析】(1)连接EF ,根据角平分线的定义、等腰三角形的性质得到∠FEA=∠EAC ,得到FE ∥AC ,根据平行线的性质得到∠FEB=∠C=90°,证明结论;(2)连接FD ,设⊙F 的半径为r ,根据勾股定理列出方程,解方程即可求出半径的长,证FEB ∆∽AOD ∆,求出BF 的长,再证BFE ∆∽BAC ∆,即可求出AC 的长;(3)过点F 作FR AC ⊥于点R ,得到四边形RCEF 是矩形,得到EF=RC=RD+CD ,根据垂径定理解答即可.【详解】(1)如图,连接EF ,∵AE 平分BAC ∠,FAE CAE ∴∠=∠,FA FE =,FAE FEA ∴∠=∠,FAE EAC ∴∠=∠,//FE AC ∴,90FEB C ∴∠=∠=︒,又E 为⊙F 上一点,BC ∴是⊙F 的切线;(2)如图,连接FD ,设⊙F 的半径为r ,∵点A D 、的坐标分别为(0,1),(2,0)A D -,1,2,1OA OD OF r ∴===-,5AD ∴=在Rt FOD ∆中,由勾股定理得,222FD OF OD =+,222(1)2r r ∴=-+, 解得52r =, 即⊙F 的半径为52, 90ODA OAD EBF OAD ∠+∠=∠+∠=︒,ODA EBF ∴∠=∠,90AOD FEB ∠=∠=︒,∴FEB ∆∽AOD ∆, EF BF OA DA ∴=,即2.515=, 55BF ∴=, 555BA +∴=, //EF AC ,∴BFE ∆∽BAC ∆,EF BF AC BA∴=,即55522555AC =+, 55AC +∴= (3)2AG AD CD =+.理由如下:如图,过点F 作FR AC ⊥于点R ,则∠FRC=90°,∵∠FEC=∠C=90°,∴四边形RCEF 为矩形,EF RC RD CD ∴==+,FR AD ⊥,AR RD ∴=,12EF RD CD AD CD ∴=+=+, 22AG EF AD CD ∴==+.【点睛】本题考查的是切线的判定、垂径定理的应用、矩形的判定和性质,掌握切线的判定定理是解题的关键.8.A解析:(1)详见解析;(2)2448x x y x-+=(04x <<);(3)当AEG ∆是等腰三角形时,2BF =或43【解析】【分析】 (1)根据正方形的性质得到∠AOD=90°,AO=OD ,∠EOH=90°,OE=OH ,由全等三角形的性质即可得到结论;(2)如图1,过O 作ON ⊥AB 于N ,根据等腰直角三角形的性质得到122AN BN ON AB ====, 根据勾股定理得到()222222248OF FN ON x x x =+=-+=-+,根据平行线分线段成比例定理即可得到结论;(3)①当AE=EG 时,△AEG 是等腰三角形,②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP ⊥EG 于P ③当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ ⊥AE 于Q ,根据相似三角形的性质或全等三角形的性质健即可得到结论.【详解】(1)∵四边形ABCD 是正方形,,OA OD AC BD ∴=⊥,90AOD ∴∠=︒,∵四边形OEGH 是正方形,,90OE OH EOH ∴=∠=︒,AOD EOH ∴∠=∠,AOD AOH EOH AOH ∴∠-∠=∠-∠,即HOD EOA ∠=∠,HDO EAO ∴∆≅∆.(2)如图1,过O 作ON⊥AB 于N ,则122AN BN ON AB ====, ∵BF=x,∴AF=4-x ,∴FN=2-x ,∴()222222248OF FN ON x x x =+=-+=-+,∴248EF y x x =--+,∵AM⊥AC,∴AE∥OB, ∴BF OF AF EF=, ∴2248448x x x x y x x -+=---+, ∴()244804x x y x x-+≤=<; (3)①当AE=EG 时,△AEG 是等腰三角形,则AE=OE ,∵∠EAO=90°,∴这种情况不存在;②当AE=AG 时,△AEG 是等腰三角形,如图2,过A 作AP⊥EG 于P ,则AP∥OE,∴∠PAE=∠AEO,∴△APE∽△EAO,∴PE AE OA OE=, ∵AE=AG,∴221482x x x PE y -+==,)22248x AE y x-=-=, )22222224448448x x x x x x x ---+=+, 解得:x=2,②当GE=AG 时,△AEG 是等腰三角形,如图3,过G 作GQ⊥AE 于Q ,∴∠GQE=∠EAO=90°,∴∠GEQ+∠EGQ=∠GEQ+∠AEO=90°,∴∠EGQ=∠AEO,∵GE=OE,∴△EGQ≌△OEA(AAS ), ∴22EQ AO == ∴24242()x AE E x Q -===, ∴43x =, ∴BF=2或43. 【点睛】本题考查了四边形的综合题,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理,正确的作出辅助线构造全等三角形是解题的关键.9.C解析:(1)12,16AD CD ==;(2)277和297. 【解析】【分析】(1)根据题意由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时16秒求出CD ,再利用三角形面积公式求得AD 即可;(2)由题意可知只能有P 和Q 点都在AD 边上,此时分当P 在Q 上方时以及当P 在Q 下方时两种情况运用数形结合思维进行分析得出答案.【详解】解:(1)由函数图象可知动点M 从A 出发,以每秒1个单位的速度从C 到D 耗时36-20=16秒,即CD=16,而此时AMD ∆的面积为96,又因为90ADC ∠=︒, 即有11169622CD AD AD =⨯=,解得12AD =.所以12,16AD CD ==.(2)由题意可知Q 运动到点A 停止的时间为285,而P 运动到点D 停止的时间为6, 所以只能有P 和Q 点都在AD 边上,此时以PQ 为底边,CD 为高,设运动时间为t ,则AP=2t ,QD=5t-16,(162855t ≤<), ①当P 在Q 上方时,则有PQ=AD-AP-QD= 122516287t t t --+=-,可知CPQ ∆的面积为8时即11(287)16822PQ CD t =⨯-⨯=,解得277t =(满足条件);②当P 在Q 下方时,则有PQ=QD-(AD-AP )= 516(122)728t t t ---=-, 可知CPQ ∆的面积为8时即11(728)16822PQ CD t =⨯-⨯=,解得297t =(满足条件). 所以当CPQ ∆的面积为8时,t 的值为277和297. 【点睛】本题考查四边形动点问题和一次函数结合,熟练掌握四边形动点问题的解决办法和一次函数图象的相关性质,运用数形结合思维分析是解题的关键.10.A解析:(1)(1,4)D ;(2)158(,)33M ,274(,)33M ;(3)N 的坐标为57(,)24. 【解析】 【分析】(1)将点A 坐标代入函数关系式可得a 与b 的方程,再根据顶点D 的横坐标为1可得另一个关于a 和b 的方程,联立方程组求解即可得到a 和b 的值,进而求得抛物线的函数关系式,再将顶点D 的横坐标代入即可求得点D 坐标;(2)①如图,取DB 得三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,通过证相似三角形可得点M 的横纵坐标与点B 、D 的横纵坐标之间的数量关系,进而得解;(3)取线段BC 的中点G ,连接GM ,由中点坐标可得33(,)22G ,根据等腰三角形的三线合一可得GM ⊥BC ,在根据两条直线互相垂直可求得:GM l y x =,与:26BD l y x =-+联立方程组可求得点M 的坐标,再由(2,2),(0,3)M C 利用待定系数法可得1:32CM l y x =-+,最后将132y x =-+与2y x 2x 3=-++联立方程组即可求得点N 的坐标. 【详解】解:(1)将(1,0)A -代入23y ax bx =++可得03a b =-+①∵顶点D 的横坐标为1,∴12ba-=,即2b a =-② 联立①②解得1,2a b =-=∴2y x 2x 3=-++ 当1x =时,4y =(1,4)D ∴(2)由(1)得2y x 2x 3=-++ 当y=0时,x 1=-1,x 2=3, ∴B (3,0),即BO=3,如图,取DB 的三等分点12,M M ,过点12,M M 分别作x 轴,y 轴的平行线分别交DE 、x 轴于点G 、H 、P 、Q ,则可得△DGM 1∽△DHM 2∽△DEB ,△BQM 2∽△BPM 1∽△BED ,且相似比为1:2:3, ∴12833M D y y == 115()33M D B D x x x x =+-=158(,)33M ∴同理可得:274(,)33M∴点M 的坐标为:158(,)33M ,274(,)33M(3)NCB DBC ∠=∠CM MB ∴=取线段BC 的中点G ,作直线GM ,∵点B (3,0),点C (0,3) ∴中点G 的坐标为33(,)22∵CM MB =,点G 为线段BC 的中点, ∴GM ⊥BC , ∴设直线GM 为y=x+m 将33(,)22G 代入得m=0, ∴:GM l y x =① 设直线BD 为y=kx+n将,B D 坐标代入得k=-2,n=6, ∴:26BD l y x =-+②联立①②可得22x y =⎧⎨=⎩∴(2,2)M 设直线MC 为y=k 2x+n 2将(2,2),(0,3)M C 坐标代入得k 2=12-,n 2=3, ∴1:32CM l y x =-+③联立③与2y x 2x 3=-++可得5274x y ⎧=⎪⎪⎨⎪=⎪⎩∴57(,)24N 故N 的坐标为57(,)24. 【点睛】本题考查了一次函数与二次函数的综合应用以及相似三角形的判定及性质的应用,能够根据题意做出正确的辅助线,利用数形结合思想进行转化是解决本题的关键.11.B解析:(1)333-;(2)18;(3)①2716;②972625【解析】 【分析】(1)过点B 作BF ⊥AD ,交DA 的延长线于点F ,利用等腰直角三角形ABF 求得AF 和BF 的长,再利用Rt △PBF 求得PF 的长,进而得解;(2)作点B 关于直线AD 的对称点B',连接B'C ,交AD 于点P',连接BP',根据两点之间线段最短可知当B',P ,C 三点共线时,BPC △周长取得最小值,再利用勾股定理计算即可;(3)①②根据EM PB ⊥,EN PC ⊥可得点E 、M 、P 、N 在以PE 为直径的圆上,利用圆周角定理和直角三角形两锐角互余可证得△MPN ∽△CPB ,进而可知当MN 最大时,PMN 面积的最大,当MN 最小时,PMN 面积的最小,由圆的性质可知当MN 为直径时MN 最大,当MN ⊥PE 时,MN 最小,最后利用勾股定理、等积法和相似三角形的性质求解即可. 【详解】解:(1)如图,过点B 作BF ⊥AD ,交DA 的延长线于点F ,∵AD ∥BC ,∠ABC =45°, ∴∠FAB =∠ABC =45°, ∵BF ⊥AD ,∴在Rt △ABF 中,AF 2+BF 2=AB 2, ∵32AB =∴AF =BF =22AB =23232⨯=, ∵AD ∥BC ,∠PBC =30°,。

相关文档
最新文档