MRI基础知识
磁共振成像基础知识
IR序列M的变化过程
IR序列特点
IR序列具有强T1对比特性; • 可设定TI,饱和特定组织产生具有特征
性对 比图像(STIR、FLAIR); • 短 TI 对比常用于新生儿脑部成像; • 采集时间长,层面相对较少。
STIR序列(Short TI Inversion Recovery)
在IR恢复过程中,组织的MZ都要过0点,但时间不 同。利用这一特点,对某一组织进行抑制。
超导型
优点:1.场强高(0.5-3.0T) ;2.磁场稳 定均匀;3.成像速度快,图象质量好。
缺点:1.造价高;2.需要补充液氦和 液氮;日常维护费用高。
梯度线圈
梯度线圈性能的提高 磁共振成像速度加 快
梯度线圈性能指标 梯度场强 20mT/m 切换率 50mT/m.s
脉冲线圈
作用:激发人体产 生共振;采集MR信 号
质子密度加权像
长TR、短TE——质子密度加权像,图像特点:
组织的 H 越大,信号就越强; H 越小,信号 就越弱。
脑白质:65 % 脑灰质:75 % CSF: 97 %
常规SE序列的特点
最基本、最常用的脉冲序列。 得到标准T1 WI 、 T2 WI图像。 T1 WI观察解剖好。 T2 WI有利于观察病变,对出血较敏感。 伪影相对少(但由于成像时间长,病人易
180- 90-{180-Echo}n
180°脉冲反转脉冲结束后,无MXY的存在,MZ开 始恢复,等MZ过了0点后,在时刻 t=TI (Time of In version反转时间),再施加一个 90°脉冲(此后的脉 冲方式同SE),再施加180°脉冲,就可以得到回波信 号。IR序列的TR一般为1800~2500ms,而TI=400~60 0ms。
磁共振成像基本知识PPT课件
波谱成像(Spectroscopic Imaging):通过分析组 织中的化学成分来提供分子层面的信息,有助于肿瘤 和代谢性疾病的诊断。
靶向成像(Targeted Imaging):通过使用特异性 标记的分子探针,对特定分子或细胞进行成像,为个 性化医疗和精准诊断提供了可能。
04 磁共振成像应用
医学诊断
成本与普及
磁共振成像设备成本较高,限制了其 在基层医疗机构的普及。未来需要降 低设备成本,提高可及性。
磁敏感加权成像(Susceptibility Weighted Imaging, SWI):利用组织磁敏感性 的差异进行成像,能够显示脑部微出血、铁沉积等病理变化。
分子成像技术
化学交换饱和转移成像(Chemical Exchange Saturation Transfer, CEST):利用特定频率的射频 脉冲来检测组织中特定化学物质的变化,对肿瘤和炎 症等疾病的诊断具有潜在价值。
。
快速扫描技术
研究更快的扫描序列和算法,缩短 成像时间,提高检查效率,减轻患 者长时间处于扫描腔内的压力。
多模态成像融合
结合磁共振成像与其他影像技术( 如CT、PET等),实现多模态成像 融合,提供更全面的医学影像信息 。
新应用活动和功能连接,深入 了解神经系统和认知科学领域。
磁共振成像的优势与局限性
高软组织分辨率
MRI对软组织结构有高分辨率,能够清晰显示脑、关节、肌 肉等组织的细微结构。
无骨伪影干扰
MRI不受骨骼的影响,能够清晰显示周围软组织的结构。
磁共振成像的优势与局限性
01
02
03
检查时间长
由于MRI需要采集大量数 据,检查时间相对较长。
金属植入物限制
磁共振的基础知识
磁共振的基础知识1、核磁共振核,不是核辐射,而是原子核,用得最多的是氢(人体最多)。
磁,磁场也。
共振,一定频率的射频脉冲激发原子核,使之共振,从而产生信号,转换成图像。
2、磁共振成像简单过程如果给人体施加一个外来的静磁场,再给予一个短暂的、与质子共振相同频率的旋转磁场(即射频脉冲),之后采集电磁波信号,就可以获得人体的磁共振信号。
对磁共振信号的采集过程给予一个形象的比喻,可以把质子比喻成卫星,我们从发射电台发送信号,卫星获得信号,再重新发射出来,地面的收音机就可以收听到节目了。
通过对接受到的磁共振信号进行空间编码和图像重建等处理,即产生MR图像。
3.磁共振检查的特点1)磁共振没有X线、CT检查的辐射,对身体不产生辐射危害。
2)磁共振采用空间三维梯度场,在不移动患者和扫描床的情况下实现任何角度扫描和图像重建。
3)无骨质伪影。
4)软组织对比度良好。
5)对病变显示更加敏感,可使病灶显示更早更清楚。
6)磁共振的DWI(扩散加权成像)序列,是唯一能够无创检测活体组织内水分子扩散运动的成像方法。
7)磁共振的PWI(灌注加权成像)序列,能够显示脑组织血流动力学信息。
8)磁共振的MRS(波谱分析)序列,是唯一能够无创检测活体组织内化学物质、反应组织代谢的方法。
4、图像分析过程中,有个非常重要的概念必须了解——部分容积效应。
在CT扫描,凡小于层厚或该层仅包含部分的病灶,其CT值受层厚内其它组织的影响,所测出的CT值不能代表该病变的真正的CT值。
MRI也一样,凡小于层厚或该层仅包含部分的病灶,图像表现出来的,不仅仅是病灶的影像,而是重叠了层厚内部分病变外结构的影像。
5、部分容积效应会让你看到的影像变得“不真实”,从而可能会使你做出错误的判断。
6、宽窗位技术,更是数字影像时代,每一名影像医生必须掌握的、最基本的技能!窗宽窗位技术源于CT,磁共振可能用对比度更合适。
不同器官、不同部位,有着不同的合适的窗宽窗位。
同一区域,由于观察的内容不同,合适的窗宽窗位也不同。
核磁共振专题知识
➢ 陀螺存在自旋 ➢ 陀螺处于重力场中 ➢ 重力力矩垂直于自转轴
(角动量)方向
结果
陀螺旋进 力矩越大旋进角速度越大
核磁共振专题知识
图 14-2 陀螺旋进
T L
第17页
旋进也称进动,描述是含 有角动量物体或体系在外力矩 作用下,其角动量方向发生连 续改变现象。
核磁共振专题知识
第18页
原子核在磁场中旋进
核磁共振专题知识
图 磁共振成像原理图
第36页
1.层面选择
利用梯度磁场 依据拉莫尔方程理 论,实现选层定片
核磁共振专题知识
图 选层定片
第37页
核磁共振专题知识
层面选择
第38页
层面选择
核磁共振专题知识
第39页
2.编码 (1)相位编码 如图1
图1 磁矩旋进相位差异
图2 磁矩旋进频率差异
(2)频率编码 核磁共振专题知识 如图2
核磁共振专题知识
第42页
核磁共振专题知识
Proton
质子
氢原子核1H
Electron
电子
第43页
2. 人体各种组织含水百分比不一样
3.人体不一样正常组织和病变组织 、
核磁共振专题知识
第44页
三、怎样产生氢核密度 和 、 加权成像
1.自旋回波序列
核磁共振专题知识
图14-21 自旋回波序列
第45页
第12页
而且,Damadian前瞻性地预言了核磁共 振作为临床诊疗工具可能性。
Damadian工作直接启发了 Lauterbur 对 成像技术研究,Lauterbur在认识到这一发 觉医学价值同时,也敏锐地意识到假如不能 进行空间上定位,核磁共振在临床应用可能
MRI基础知识
自旋回波(SE):采用90º -180º 脉冲组 合形式构成。该序列为MRI的基础序 列。其中又包括2D/3D快速、超快速 自旋回波序列,单次激发半傅里叶采 集快速自旋回波。
SET1WI
FSET2WI
矢状面3DSET1
冠状面3DSET1
流空效应产生的条件
血液在血管内流动,在脉冲序列的激发和回 波收集的时间过程中,血液将因为流动而发生位 置的变化,这种位置的变化就会对 MR 信号产生 影响,原因是曾经在某一个层面中(成像层面总 是有厚度的)被激发的血液,在等待回波收集的 过程中将部分或全部流出原来的成像层面,新流 入的血液因没有被激发的经历,因此,收集不到 信号,这时,流空效应就产生了。由以上描述可 知,流空效应的产生,其先决条件是在等待回波 时间内,原已被激发的血液已经流出成像层面, 与血流速
4、分子生物学和组织学诊断的提高。
利用磁共振的波谱分析可以在不同程度 上反映正常和异常区域的分子生物学和 组织学特征,在影像诊断向分子生物学 和组织学方向迈出重要的一步。
5、无骨骼伪影的干扰。CT检查常遇到
骨骼伪影对病变区域的干扰,而磁共振 检查不存在这一弊端,有利于临床检查 的扩展。 6、无损伤的安全检查,这也是MRI的 最大特点。
属异物 (4) 换有人工金属心脏瓣膜者 (5)金属关节、假肢 (6)内置神经刺激器者。 (7)妊娠3个月以内者。
我院GE0.5T磁共振机
计算机控制系统
磁共振成像的基本原理:从人体进入强
大的外磁场(Bo),到获得清晰的MR 图像,人体组织的受检部位的每一个氢 质子都经历一系列复杂的变化。 ①氢质子群体的平时状态:无外磁场 Bo的作用,人体氢质子杂乱排列,磁 矩方向不一,相互抵消。
MRI成像阅片基础知识
看扫描参数:翻转角
在梯度回波脉冲序列里, 采用小于20°翻转角, 可以得到倾向于SE T2加权像,大于80°可以得到T1加权像。
反转恢复序列 T1FLAIR TR值较长
反转恢复序列 T2FLAIR 自由水被抑制,结合水信号更高
MRI常用序列
概念
MR图像的信号强度取决于射频脉冲的发射方式、梯度磁场的引入方 式和MR信号的读取方式等。为不同成像目的而设计的一系列射频脉 冲、梯度脉冲和信号采集按一定时序排列称作脉冲序列。
如何区分T1、T2 1、看水的信号 2、看脑灰白质信号,肌肉信号 3、看扫描参数 4、看片子上的标记
看水的信号:水是长T1长T2信号 在T1上低信号、T2上高信号
看脑灰白质或肌肉信号: 脑灰质 白质 肌肉
T1:低 稍高 灰 T2:稍高 低 黑
怎么看MRI序列及信号
看扫描参数:TE、TR值 看片子上的标记
作用
自旋回波类序列
自旋回波类序列包括: 自旋回波(SE) 快速自旋回波(FSE) 单次激发快速自旋回波(SSFSE) 半傅立叶采集单次激发快速自旋回波(HASTE) 反转恢复序列(IR) 快速反转恢复序列(TIR)
自旋回波序列
快速自旋回波序列
1986年德国科学家 J . Hennig 《在医学 磁共振杂志 》上发表了一篇关于RARE 的文章,即利用SE多回波技术和革新的K 空间填充方法实现快速 MR 扫描,扫描技 术是原来 SE 方法的数十倍! 这就是现 在普遍使用的快速自旋回波技术。
PHILIPS FFE
GE
FSPGR
GRE和SPGR的图像对比度
GRE T2*
GRE序列采用小的翻转角 (20-30˚ )和较长的TR ( 200 - 600ms ) 来 获 得 T2*加权。
MRI基础知识题库单选题100道及答案解析
MRI基础知识题库单选题100道及答案解析1. MRI 利用的是以下哪种物理现象?()A. 电离辐射B. 电磁感应C. 光电效应D. 康普顿效应答案:B解析:MRI 是利用人体内氢质子在磁场中受到射频脉冲激励而发生磁共振现象,产生信号,通过计算机处理成像,其利用的是电磁感应原理。
2. 磁共振成像中,T1 加权像重点突出的是组织的()A. 横向弛豫差别B. 纵向弛豫差别C. 质子密度差别D. 进动频率差别答案:B解析:T1 加权像主要反映的是组织纵向弛豫的差别。
3. 下列哪种元素不能用于MRI 成像?()A. 氢B. 碳C. 氮D. 氧答案:D解析:氢质子是MRI 成像的主要物质基础,碳和氮在特定情况下也可用于成像,而氧不用于MRI 成像。
4. 在MRI 中,图像的对比度主要取决于()A. 组织的T1 值B. 组织的T2 值C. 组织的质子密度D. 以上都是答案:D解析:组织的T1 值、T2 值和质子密度都会影响MRI 图像的对比度。
5. 以下哪种序列对出血最敏感?()A. T1WIB. T2WIC. 质子密度加权像D. 磁敏感加权成像(SWI)答案:D解析:SWI 对出血尤其是微出血非常敏感。
6. 下列哪种情况会导致T1 值缩短?()A. 组织含水量增加B. 磁场强度增加C. 大分子蛋白含量增加D. 顺磁性物质存在答案:C解析:大分子蛋白含量增加会使T1 值缩短。
7. 关于T2 加权像的描述,错误的是()A. 长TR、长TEB. 突出组织的T2 差别C. 对水肿敏感D. 对脂肪信号高答案:D解析:T2 加权像对脂肪信号不高。
8. 磁共振成像中,空间定位依靠的是()A. 梯度磁场B. 主磁场C. 射频脉冲D. 接收线圈答案:A解析:梯度磁场用于空间定位。
9. 下列哪种组织在T1 加权像上信号最高?()A. 脑脊液B. 脑灰质C. 脂肪D. 肌肉答案:C解析:脂肪在T1 加权像上信号最高。
10. 以下哪种技术可以减少运动伪影?()A. 快速自旋回波B. 梯度回波C. 呼吸门控D. 脂肪抑制答案:C解析:呼吸门控技术可以减少因呼吸运动导致的伪影。
磁共振阅片基础知识
磁共振阅片基础知识
磁共振成像(MRI)呀,就像是给身体拍了一部超级清晰的“大片”!咱来好好唠唠这磁共振阅片的基础知识哈。
你想想看,这磁共振就像是一个神奇的“摄影师”,能把我们身体里面的情况拍得清清楚楚。
那片子上的图像啊,可都是身体内部的秘密呢!
先说说那白花花的一片,嘿,那可不是雪哦!那可能是骨头呀,骨头在片子上看起来就是白白亮亮的。
然后呢,还有一些灰色的区域,说不定就是我们的肌肉啦、软组织啥的。
那要是看到一些黑黑的地方呢?别急别急,这可能是一些空腔呀,比如脑室之类的。
就好像一个大房间,里面空空的,所以看起来就比较黑啦。
再来讲讲那些像线条一样的东西。
哎呀呀,那可能就是血管啦!血管在磁共振片子上有时候就像小蛇一样弯弯曲曲的。
你说神奇不神奇?
咱们看片子的时候可不能马虎哦!要像侦探一样仔细观察每一个细节。
比如说,看看有没有异常的亮点呀,或者是形状奇怪的地方。
这可都可能是身体给我们发出的信号呢!
就好比说,如果看到一个地方突然凸出来一块,那是不是就像脸上突然长了个痘痘一样显眼呀?这时候就得好好琢磨琢磨啦,是不是身体哪里出问题啦?
还有哦,不同的部位在片子上也有不同的特点呢。
脑袋的片子和肚子的片子那肯定不一样呀,就像苹果和橘子,长得都不一样嘛!
总之呢,磁共振阅片可不是一件简单的事儿,但也别被它吓住啦!只要我们多学习,多观察,慢慢就会找到其中的窍门啦。
咱得把自己练成一个厉害的“片子解读大师”,这样就能更好地了解自己的身体啦!这不就是对自己健康负责嘛!磁共振阅片,加油学起来呀!
原创不易,请尊重原创,谢谢!。
头颅MRI-—基础知识(1)
头颅MRI-—基础知识(1)
头颅MRI-—基础知识
MRI技术是一种基于核磁共振原理的成像技术,可以在不使用辐射的情况下生成高分辨率的图像,在医学领域得到了广泛应用。
头颅MRI是
其中的一个应用,可以非常详细地获取人脑内部的构造,为神经系统
疾病的诊断和治疗提供了可靠的依据。
头颅MRI需要在一定的环境中进行,具体如下:
1. 磁场:MRI扫描需要强大的磁场支持,常用的磁场强度为1.5特斯
拉或3.0特斯拉,通常由大型的超导磁体产生。
强大的磁场使得人体
内部的原子核排列产生方向性变化,可以用于成像。
2. 放射波:在磁场的作用下,成像区域的原子核会产生共振,这时需
要通过向身体内部发射放射波的方式刺激原子核,进而产生成像信号。
3. 接收系统:发射的放射波会被人体内部物质吸收、反射和散射,最
后通过接收线圈获得成像信号,这些线圈需要在身体周围放置。
对于头颅MRI,具体需要注意以下几个方面:
1. 头部准确定位:MRI需要在特定位置上成像,头颅区域需要放置有
一个可移动的头架,定位准确,以确保成像的准确性。
2. 静止:MRI需要对静止物体成像,所以在扫描过程中需要保持静止,以免图像模糊。
3. 安全性:由于磁场很强,MRI不能随便进行,使用需要注意安全性,像患者在体内的金属物品,如植入物、牙齿和耳环等,会产生干扰,
应戴上特定的安全装置。
总之,头颅MRI是一项高精度、高分辨率的医学成像技术,除了上述
技术要求外,医生的经验和判断力也对诊断产生关键作用。
MRI
磁共振成像(MRI)知识讲座引言我们将磁共振成像(MRI)的基本知识向大家略做介绍,希望能有所帮助。
第一章磁共振成像(MRI)基础知识一、磁共振成像(MRI)基本原理1、人体组织的化学特性人体内最多的分子是水,约占人体重量的65%,其次为脂肪成份。
此外,还有大量有机分子,如蛋白质、酶、磷酯等。
这些物质中都含有大量的氢原子。
因此,氢原子是人体中含量最多的原子。
2、磁共振成像(MRI)原理目前的磁共振成像是氢原子的成像,实际上是脂肪和水为主的软组组成像,或者说磁共振成像(MRI)是利用身体细胞中的氢原子在磁场内共振产生信号,通过精密的电脑系统重建而获得高清晰的影像,以达到诊断目的的一种技术。
二、磁共振成像(MRI)技术的发展概况1、1977年:初期MRI全身图像产生;2、1980年:首台商品磁共振成像系统问世;3、1981年:首台超导全身磁共振成像系统建立;4、1983年:获准进入市场;5、1989年:我国0.15T永磁型磁共振成像系统(ASM-015P)问世;6、1992年:我国0.60T超导型磁共振成像系统(ASM-060S)问世;7、1999年:我国0.35T永磁型磁共振成像系统(NOVUS系列)开发成功;8、2000年:我国1.5T超导型磁共振成像系统(NOVUS系列)开发成功;9、目前: 3.0T超导磁共振应用于临床;10、目前:7.0T、10.0T磁共振进入临床前研究;三、磁共振成像(MRI)的一些基本概念1. 什么是Tesla?Tesla(T)是一个磁场强度单位,中文译为特斯拉,一单位T等于10000Gause,Gause中文译为高斯,地球的自然磁场强度为0.3~0.7Gs,南北极有所不同。
2. 什么是共振?共振是一种自然界普遍存在的物理现象,物质是永恒运动着的,物体的运动在重力作用下将会有自身的运动频率。
当某一外力作用在某一物体上时,而且有固定的频率,如果这个频率恰好与物体自身运动频率相同,物体将不断吸收外力,转变为自身运动的能量,随时间的积累,能量不断被吸收,最终导致物体的颠覆而失去共振状态。
磁共振基础知识
何为加权???
所 “重 谓的加权就是 点突出”
的意思
T1加权成像(T1WI)----突出组织T1弛豫( 纵向弛豫)差别
T2加权成像(T2WI)----突出组织T2弛豫( 横向弛豫)差别
质子密度加权成像(PD)-突出组织氢质子含 量差别
T1WI T2WI
T1WI T2WI
人体不同组织的
磁共振检查技术
平扫(T1WI,T2WI,PDWI) 增强(TIWI) 动态增强(Dynamic MR) 磁共振血管造影(MRA) 脂肪抑制成像(STIR) 水抑制成像(FLAIR) 水成像(MRCP、MRU) 灌注成像(Perfusion) 弥散成像(Diffusion) 功能成像(Function MR)
进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互 抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础
z M
x
按照单一核子 进动原理,质子 群在静磁场中 y 形成的宏观磁 化矢量M
Z
B0
Z
MZ
X A
Y
X
在这一过程中,产生能量
Y MXY
B
A:施加90度RF脉冲前的磁化矢量Mz B:施加90度RF脉冲后的磁化矢量 Mxy.并以Larmor频率横向施进 C:90度脉冲对磁化矢量的作用。即M 以螺旋运动的形式倾倒到横向平面
X
X
体各类组织均有特定T1 、
(4)停止后一定时间 (5)恢复到平衡状态 T2值,这些值之间的差
异形成信号对比
弛豫:Relaxation;
自然界的一种固有属性;即任何系统都有在外
MR 信 号 特 点
MRI基础知识
T1WI TR 500ms TE 20ms T2WI TR 1500ms TE 100ms 质子加权 TR 1500ms TE 20ms T2WI和质子加权可在一次成像中得到,质子加权诊断意义不大,现很少使用
8.2 成像伪影多 运动伪影多:儿童、老年体弱患者 心脏、大血管搏动 吞咽、呼吸运动 脑脊液流动 金属伪影 机器伪影等
脑MRA
腹腔MRA,使用造影剂
正常肺血管MRA
先心-室间隔缺损
夹层动脉瘤
MRCP
胆总管下段结石
肝门胆管癌
输尿管结石 MRU
↘
↘
↗
7.6 检查安全 无射线辐射损伤
8.MRI检查和诊断的缺点
8.1成像速度慢 颅脑检查需要10分钟左右 腹部多期增强检查需要30分钟左右 目前高场MR可一口屏气完成肝脏扫描,可进行动态增强多期扫描,但图象质量稍差.
T1WI显示解剖结构好
T2WI显示病灶敏感
T1WI
T2WI
6.各种常见组织MRI信号表现
主要有: 水 脂肪 肌肉 骨骼 脑实质 血肿 血流 粘液
夹层动脉瘤I型
肺动静脉瘘
右侧肾动脉狭窄
脑外伤: 颅底脑挫裂伤 硬膜外血肿 SAH
慢性硬膜下血肿
早期大脑中动脉分支梗塞
多发腔隙性脑梗塞
脑干腔隙性脑梗塞
大脑中动脉梗塞伴出血
星形胶质细胞瘤
胶质母细胞瘤
垂体瘤
垂体微腺瘤
听神经瘤
脑膜瘤
血管母细胞瘤
生殖细胞瘤
肺癌脑内多发转移
脑动静脉畸形
先天性小脑扁桃体下疝畸形(Ⅰ型)
Gd-DTPA特征: 驰豫性强(T1WI信号增高) 毒性小、安全系数大 细胞外分布,且不通过血脑屏障 迅速肾脏排泄 禁忌症少
MRI检查基础知识 PPT课件
磁共振成像的基本知识
STIR(压脂序列) • 短TI的IR序列,用于脂肪抑制
• TI值:140-175ms
磁共振成像的基本知识
FLAIR序列(压水序列): • 长TI的IR序列,用于自由水抑制 • TI值:1700-2200ms • 用于脑或脊髓T2WI上病变较小或
邻近脑脊液而不能清楚显示时 也可用于蛛网膜下腔出血的诊断
停、严重外伤、幽闭症患者及不配合者应慎重 孕妇和婴儿应征得医生同意再进行扫描
磁共振成像的基本知识
脉冲序列:MR成像中,为获得反映组织弛豫时 间等特性的磁共振信号,依不同时间间隔施加 一系列射频脉冲
加权像:通过改变TR和TE,得到突出组织某个 特征参数的图像 T2加权像(T2W清晰
动脉夹、人工血管、静脉滤器、 心脏起搏器、 人工瓣膜、人工耳蜗、置入性药物泵、人工关 节等
注:有关体内置入物安全方面的研究主要针对1.5T或更 低场强的磁共振系统,最近的研究显示一些金属置入 物在1.5T为弱磁性,而在3.0T磁场内则可能表现为强 磁性
磁共振成像的基本知识
相对禁忌症
高烧患者应禁止扫描 昏迷、神志不清、精神异常、易发癫痫或心脏骤
磁共振成像的基本知识
扩散加权成像(DWI)
显示水分子的扩散运动情况 观察水分子细胞膜内外跨膜移动引起的MR信号强
度改变 能够无创、快速的反映脑缺血区分子、细胞水平
的微观变化 用于急性脑缺血、出血和脑瘤等
磁共振成像的基本知识
▪ 脑梗死30min后,细胞毒性水肿,细胞内水分子扩
散受限
▪ DWI上发现扩散受限,ADC值降低 ▪ 急性期DWI呈高信号, ADC呈低信号 ▪ 敏感性、特异性均在90%以上 ▪ 常规MRI阴性
磁共振成像的基本知识
MRI基本知识总结
MRI基本知识总结2014-09-05朗润医疗1加权像高信号的产生机制一般认为,T1加权像上的高信号多由于出血或脂肪组织引起。
但近年来的研究表明,T1加权高信号尚可见于多种颅内病变中,包括肿瘤、脑血管病、代谢性疾病以及某些正常的生理状态下。
在射频脉冲的激发下,人体组织内氢质子吸收能量处于激发状态。
射频脉冲终止后,处于激发状态的氢质子恢复其原始状态,这个过程称为弛豫。
在弛豫过程中,氢质子将其吸收的能量释放到周围环境中,若质子及所处晶格中的质子也以与Larmor频率相似的频率进动,那么氢质子的能量释放就较快,组织的T1弛豫时间越短,T1加权像其信号强度就越高。
T1弛豫时间缩短者有3种情况:其一为结合水效应;其二为顺磁性物质;其三为脂类分子。
一.结合水效应小分子的自由水(如脑脊液)具有非常高的运动频率,它的运动频率要远高于MRI的Larmor频率,其T1弛豫时间也远长于身体内其他组织,所以在T1加权像上呈低信号。
如在水中加入大分子的蛋白质,那么具有极性的水分子会被带有电荷的蛋白质分子吸引而结合在蛋白质分子上,从而形成一个蛋白质水化层。
在此蛋白分子水化层内的水分子受蛋白分子的吸引,致使水分子的运动频率下降,接近于Larmor频率。
使其T1驰豫时间缩短,故T1加权成像时呈现出高信号改变。
二.顺磁性物质顺磁性物质的特点是含有不成对的电子,常见的有铁、铬、钆、锰等金属、稀土元素及自由基。
在磁场中顺磁性物质的磁进动与组织内质子进动相互作用,产生一个随机变化的局部微小磁场,这个微小磁场的变化频率与Larmor频率接近,从而使T1弛豫时间缩短。
三.脂类分子纯水分子非常小,运动频率非常高,远高于Larmor频率。
大分子如蛋白质和DNA分子运动频率较慢,低于Larmor频率。
所以大、小分子在T1加权上均呈低信号。
脂类分子为中等大小,其运动频率高于蛋白质,低于纯水,与Larmor频率相似,所以T1弛豫时间短,T1加权像呈高信号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021/3/10
增强静脉期
讲解:XX
36
2021/3/10
复杂型囊肿
讲解:XX
37
7.4 任意方位成像
CT只能横断位成像
MRI可以横断位、冠状位、矢状位及任 意斜位成像;增强了病灶的检出及定性 能力.
2021/3/10
讲解:XX
38
矢状位:显示胼胝体、脑
干、导水管等
2021/3/10
冠状位:显示垂体、海马等
2021/3/10
讲解:XX
7
T1WI
T2WI
T1WI显示解剖结构好 T2WI显示病灶敏感
2021/3/10
讲解:XX
8
6.各种常见组织MRI信号表现
主要有:
水 肌肉 脑实质 血流
脂肪 骨骼 血肿 粘液
2021/3/10
讲解:XX
9
﹡
﹡
T1WI
T2WI
水:T1WI 低信号 T2WI 高信号
2021/3/10
显示脑灰白质
2021/3/10
T2WI
讲解:XX
25
T2WI
T1WI
2021/3/10
显示脊讲髓解:及XX 椎间盘
26
T2WI
2021/3/10
显示听神经
讲解:XX
T1WI
27
T1WI
T1WI
显示半月板及韧带
2021/3/10
讲解:XX
28
肌肉、软组织
T1WI 冠状位
T2WI加脂肪抑制 T1WI
讲解:XX
43
无须造影剂的血管成像
2021/3/10
讲解:XX
44
脑MRA
2021/3/10
讲解:XX
45
腹腔MRA,使用造影剂
2021/3/10
讲解:XX
46
正常肺血管MRA
2021/3/10
3
2.MRI成像的基本原理
基本物理基础: 核磁共振现象
成像原理: 人体内的原子核(1H)无序排列 →加入主磁场内→ 1H沿主磁场方向有序排 列→外加频率相同的射频脉冲→ 1H接收能 量宏观磁距发生变化→射频脉冲消失→ 1H 回复到原来状态时释放出吸收的能量→感 应线圈接收产生信号→通过转换及复杂的 计算组成MRI图象
2021/3/10
讲解:XX
29
7.3 提高定性诊断能力
多参数和多序列成像可使诊断达到分子 生物学和组织学水平;
一些病变CT无明显特征性,而MRI表现 特殊,诊断较容易.
2021/3/10
讲解:XX
30
亚急性期血肿
Flair
T1WI
CT
2021/3/10
讲解:XX
31
T2WI
Flair
早期脑梗塞及小腔 隙性脑梗塞
2021/3/10
讲解:XX
4
3.核磁弛豫
纵向弛豫(T1): T1值为MZ(纵向磁化矢 量)达到最终平衡状态的63%的时间
横向弛豫(T2): T2值为MXY(横向磁化矢 量)衰减到原来值的37%的时间
1H的T1\T2可反应周围的化学或磁环境, 各种正常和病变组织的T1和T2值各不 相同
2021/3/10
讲解:XX
39
矢状位
顶部脑膜瘤, CT漏诊
CT2021/3/10
讲解:XX
冠状位增强 40
2021/3/10
游离型椎间盘突出
讲解:XX
41
判断肝肾交界处病灶来源
2021/3/10
讲解:XX
42
7.5 一些特殊方式成像 血管成像MRA 心脏大血管成像 MRCP与MRU 功能成像及波谱分析
2021/3/10
MRI基础与临床应用
2021/3/10
讲解:XX
1
一、 MRI基础部分
2021/3/10
讲解:XX
2
1.MRI历史发展
1945年 1971年 1976年 1980年 1989年
核磁共振现象的发现 应用于医学成像研究 取得人体MRI图象 MRI装备商品化 国产永磁装备商品化
2021/3/10
讲解:XX
讲解:XX
5
4.MRI成像特点
多序列成像: SE, FSE, IR, Flair, GE等 十几种成像序列 多参数成像: 通过不同的TE(回波时间) 和TR(重复时间),可产生T1WI图像,T2WI 图象和质子加权图像等
2021/3/10
讲解:XX
6
5.MRI的三种基本图象特点
T1WI TR 500ms TE 20ms T2WI TR 1500ms TE 100ms 质子加权 TR 1500ms TE 20ms T2WI和质子加权可在一次成像中得到, 质子加权诊断意义不大,现很少使用
讲解:XX
10
↖
↖
T2WI
Flair水抑制
T2WI水抑制可使自由水变成低信号,结合水仍为高
信号.(可鉴别梗塞的新旧)
2021/3/10
讲解:XX
11
T1WI
﹡
T2WI
﹡
2021/3/10
脂肪:T1WI高信号
T2WI稍高信号 脂肪抑制后为低信号
脂肪抑制
﹡
讲解:XX
12
T1WI
﹡
T2WI
﹡
2021/3/10
T2WI稍高 15
血肿:信号表现复杂,每一时期均不一样;
急性期 亚急性初期 亚急性中期 亚急性后期
T1WI
T2WI
等信号
低信号
高信号
等信号
高信号
高信号
高信号
高信号
出现含铁血黄素沉着
2021/3/10
讲解:XX
16
亚急性早期血肿
CT
T1WI
2021/3/10
T2WI
讲解:XX17T1WI NhomakorabeaT2WI
肌肉:
T1WI 稍低信号 T2WI 低信号
讲解:XX
13
T1WI
T2WI
2021/3/10
T2WI脂肪抑制
骨皮质:T1WI,T2WI均为
极低信号
骨髓质:与脂肪信号相似,
并可被脂肪抑制
讲解:XX
14
脑白质:T1WI稍高,
T2WI稍低
T1WI
2021/3/10
T2WI
讲解:XX
脑灰质:T1WI稍低,
2021/3/10
讲解:XX
CT
32
2021/3/10
讲解:XX
肝 脏 血 管 瘤
33
T2WI
血管瘤在MRI T2WI上常表现为典型的
2021/3/10
灯泡征 “讲解:XX
”
34
SPGR
2021/3/10
静脉期
讲解:XX
动脉期 延迟期
MRI
动 态 增 强 扫 描
35
T2WI
增强动脉期
肝癌与血管瘤
亚急性中晚期血肿
2021/3/10
讲解:XX
18
血流:信号复杂,
快血流一般为流空 无信号,T1WI 和T2WI均为低 信号,慢血流表现 多样.
2021/3/10
讲解:XX
19
T1WI
T2WI
富含粘液及蛋白成分的组织,
T1WI和T2WI均呈高信号.
2021/3/10
讲解:XX
20
7.MRI检查和诊断优点
主要与CT比较
2021/3/10
讲解:XX
21
7.1没有骨伪影
2021/3/10
讲解:XX
22
2021/3/10
脑干梗塞
CT颅底伪影多,脑干和小脑 病变易漏诊、误诊
讲解:XX
23
小脑多发梗塞
(男性,45岁,突发眩晕)
2021/3/10
讲解:XX
24
7.2 高对比度
MRI软组织分辨极高率
T1WI