2018年高考全国2卷理科数学word版官方答案

合集下载

2018全国高考数学二试题及答案(理科)

2018全国高考数学二试题及答案(理科)

的素数中,随机选取连个不同的数,其和等于 30 的概率是( )
A. 1 12
【答案】C
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3 ,则异面直线 AD1 与 DB1 所成角的余弦值为( )
A. 1 5
【答案】C
为了预测该地区 2018 年的环境基础设施投资额, 建立了 y 与时间变量 t 的两 个线性回归模型.根据 2000 年至 2016 年的数据(时间 变量 t 的值依次为1, 2, ,17 )建立模型①:y 30.4 13.5t ;根据 2010 年至 2016
年的数据(时间变量 t 的值依次为1, 2, ,7 )建立模型②: y 99 17.5t . (1)分别利用这两个模型,求该地区 2018 年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 【解析】(1)由题意可知,用模型①预测 2018 年投资额为
(2)若 f (x) 在 (0, ) 只有一个零点,求 a .
【解析】(1)当 a 1时,f (x) ex x2 ,则 f x() e x2x .令 h(x) f (x) ex 2x ,
由 h(x) ex 2 知 h(x) 在 (0, ln 2) 上单调递减,在 (ln 2, ) 上单调递增.从而 h(x) f (x) h(ln 2) f (ln 2) 2 2ln 2 0 ,所以 f (x) 在 (0, ) 上单调递增.
S3 3a1 3d 21 3d 15 解得 d 2 .所以 an 7 2(n 1) 2n 9 . (2)由(1)可知 Sn n2 8n (n 4)2 16 .由二次函数性质可知当 n 4 时,Sn 取 得最小值 16 . 18.(12 分)下图是某地区 2000 年至 2016 年环境基础设施投资额 y (单位:亿 元)的折线图.

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)

2018年高考全国二卷数学理科(word版)试题(含答案)绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i+=-A .43i 55-- B .43i 55-+ C .34i 55-- D .34i 55-+2.已知集合(){}223A x y xy x y =+∈∈Z Z,≤,,,则A 中元素的个数为A .9B .8C .5D .4 3.函数()2e e x xf x x --=的图像大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .0 5.双曲线22221(0,0)x y a b a b -=>>则其渐近线方程为 A.y = B.y = C.y = D.y x =6.在ABC△中,cos2C 1BC =,5AC =,则AB = A.B.CD.7.为计算11111123499100S =-+-++-…,设计了右侧的程序框图,则在空白框中应填入 A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15B C D 10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=…A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A . 23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

(完整word版)2018年全国2卷理科数学试卷及答案

(完整word版)2018年全国2卷理科数学试卷及答案

2018年普通高等学校招生全国统一考试全国2卷数学(理科)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-( ) A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为( ) A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是( )4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=( ) A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,> )A .y =B .y =C .y x =D .y x =6.在ABC △中,cos 2C =,1BC =,5AC =,则AB =( )A .B C D .7.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入( ) A .1i i =+ B .2i i =+ C .3i i =+ D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是( ) A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( ) A .15B .56C .55D .2210.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是( )A .4π B .2π C .43πD .π11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=( ) A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为( ) A .23B .12C .13D .14二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________.16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

2018年高考理科数学全国卷2含答案

2018年高考理科数学全国卷2含答案

12[ f (1) f (2) f (3) f (4)] f (49) f (50)
理科数学试题 A 第 8页(共 16页)
12.【答案】D
【解析】如图,因为 PF1F2 为等腰三角形, F1F2 P 120 且 F1F2 2c ,所
以 PF1F2 30 ,则 P 的坐标为 (2c,
“每个大于 2 的偶数可以表示为两个素数的和”,如 30=7+23. 在不超过 30 的素数中,随机
选取两个不同的数,其和等于 30 的概率是
A. 1 12
B. 1 14
C. 1 15
D. 1 18
9.在长方体 ABCD A1B1C1D1 中, AB BC 1, AA1 3, 则异面直线 AD1 与 DB1 所
理科数学试题 A 第 5页(共 16页)
理科数学试题 A 第 6页(共 16页)
2018 年普通高等学校招生全国统一考试
理科数学答案解析
一、选择题
1.【答案】D
1
【解析】
1
2i 2i

1 2i2 1 2i1 2i


3 5
4i


3 5

4 5
i
,故选
D.
2.【答案】A
成角的余弦值为
A. 1 5
B. 5 6
C. 5 5
10.若 f (x) cos x sin x 在 a, a是减函数,则 a 的最大值是
A.
4
B.
2
C. 3 4
D. 2 2
D.
理科数学试题 A 第 2页(共 16页)
11.已知 f (x) 是定义域为 , 的奇函数,满足 f (1 x) f (1 x) .若 f (1) 2 ,则

2018年全国高考理科数学2卷---精美解析版.docx

2018年全国高考理科数学2卷---精美解析版.docx

2018 年普通高等学校招生全国统一考试(新课标II 卷)理科数学2018.6.29本试卷 4 页, 23 小题,满分150 分.考试用时120 分钟.一、选择题:本题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.12i()12iA . 4 3 i B. 4 3 i C. 3 4 i D. 3 4 i555555551.【解析】12i112i 234i34i,故选 D.12i2i12i5552.已知集合A{( x, y) | x2y 23, x Z , y Z} ,则A中元素的个数为()A .9B . 8C. 5D. 42.【解析】A{(1,1), ( 1,0), (1,1), (0,1), (0,0), (0,1),(1,1), (1,0), (1, 1)} ,元素的个数为9,故选 A .3.函数f (x)e x e x的图像大致为()x 2y yA .1B .1O1x O 1xy yC.1 D .1O1x O 1xe x e xf ( x) ,即 f ( x) 为奇函数,排除 A ;由f (1) e 1D;由3.【解析】 f ( x)20 排除x ef (4)e4 e 41211)(e11f (1)排除 C,故选 B .16(ee2 )(ee)e16e e4.已知向量a, b满足a 1 , a b1,则a(2a b)()A .4B . 3C. 2D. 04.【解析】a(2a b)2a b 2 1 3 ,故选B.2ax2y 21( a0, b0) 的离心率为 3 ,则其渐近线方程为()5.双曲线b2a2A .y2x B.y3x C.y2x D.y3 2x25.【解析】离心率e c3c2 a 2b2b,渐近线方程为y 2 x ,故选A.a a 2a23 ,所以2a6.在ABC 中,cos C5, BC1, AC 5 ,则 AB()25A .4 2B .30C.29D.2 56.【解析】cosC 2 cos2C13,开始25由余弦定理得AB BC 2AC22BC ACcos4 2 ,N0, T0C故选 A .i17.为计算S11111,设计了右侧的是i100否1349921001程序框图,则在空白框中应填入()N Ni S N TA .i i11B .i i2T T输出 Si 1C.i i3结束D .i i47.【解析】依题意可知空白框中应填入i i 2 .第1次循环: N1,T 1,i 3 ;第2次循环:2N 11,T11,i5;;第50 次循环:N111,T111, i101 ,结32439924100束循环得 S11111,所以选 B.1349910028.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于 2 的偶数可以表示为两个素数的和”,如30723,在不超过30 的素数中,随机选取两个不同的数,其和等于30的概率是()1B .1C .11A .1415D .12188.【解析】 不超过 30 的素数有: 2,3,5,7,11,13,17,19,23,29 ,共 10 个.从中选取两个不同的数, 其和等于 30的有: 7 与 23、 11与 19、 13 与 17 ,共 3 对.则所求概率为31,故选 C .C 102159.在长方体 ABCD A 1B 1C 1 D 1 中, AB BC1, AA 13 ,则异面直线 AD 1 与 DB 1 所成角的余弦值为()1B . 5C . 52A .65D .529.【解析】建立如图所示的空间直角坐标系,z则 A(1,1,0) , D 1 (1,0, 3) , D (1,0,0) , B 1 (0,1, 3)C 1,1DA 1 B所以 AD 1(0, 1, 3) , DB 1 ( 1,1, 3) ,1AD 1 DB 12 5DCBy则cosAD 1, DB 1,故选 C .AAD 1 DB 12 55x10.若 f ( x)cos x sin x 在 [a,a] 上是减函数,则 a 的最大值是()A .B .3D .2C .4410.【解析】 因为 f ( x)cos x sin x2 cos( x) 在区间 [ , 3 ,] 上是减函数, 所以 a 的最大值是44 44故选 A .11 . 已 知 f (x) 是 定 义 域 为 ( ,) 的 奇 函 数 , 满 足 f (1 x)f (1 x) . 若 f (1)2 , 则f (1) f ( 2) f (3)f (50)()A .50 B . 0C . 2D . 5011.【解析】因为 f ( x)f ( x) ,所以 f (1 x) f (x 1) ,则 f ( x1) f (x 1) , f ( x) 的最小正周期 为 T4 . 又 f (1) 2 , f (2)f ( 0) 0 , f (3)f (1)2 , f (4) f (0)0 , 所 以f (1)f ( 2)f (3)f (50) 12[ f (1) f (2) f (3)f ( 4)] f (49)f (50)f (1)f (2) 2 ,选 C .x 2y 2 1( a b312.已知 F 1, F 2 是椭圆 C :2b 20) 的左、右焦点, A 是 C 的左顶点, 点 P 在过 A 且斜率为a6的直线上,PF 1F 2 为等腰三角形,F 1F 2 P 120 ,则 C 的离心率为()2B .11 1A .2C .D .33412.【解析】如图,因为PF 1F 2 为等腰三角形, F 1 F 2 P 120 且 F 1F 2 2c ,所以 PF 1 F 2 30 ,则 P的坐标为 (2c,3c) ,故 k PA3c 3,化简得 4c a ,所以离心率e c1,故选 D .2c a6a4yPA F1 O F 2x二、填空题:本题共 4 小题,每小题 5 分,共 20 分.13.曲线y2ln( x1)在点 (0,0)处的切线方程为.13.【解析】y2y|x 0 2 ,则曲线 y2ln( x1)在点 (0,0)处的切线方程为 y2x.x1x 2 y5014.若x, y满足约束条件x 2 y30 ,则z x y 的最大值为.x5014.【解析】可行域为ABC 及其内部,当直线y x z 经过点B(5,4)时,z max9 .yBAC-3O5x15.已知sin cos1, cos sin0 ,则 sin().15.【解析】sin cos2sin 2 2 sin cos cos21,cos sin2cos2 2 cos sin sin 20 ,则 sin 22sin cos cos2cos22cos sin sin 20 1 1 ,即2 2 sin cos2cos sin1sin()1.216.已知圆锥的顶点为S ,母线SA, SB所成角的余弦值为7, SA与圆锥底面所成角为45,若SAB的面8积为 515 ,则该圆锥的侧面积为.16.【解析】如图所示,因为cos ASB 7ASB15S ,所以 sin,88SSAB1SA SB sin ASB15SA2 5 15 ,所以 SA4 5 .216又 SA与圆锥底面所成角为45,即SAO45 ,AO则底面圆的半径 OA210 ,圆锥的侧面积S OA SA40 2 .B三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第17~21 题为必考题,每个试题考生都必须作答.第 22、 23 题为选考题,考生根据要求作答.(一)必考题:共 60 分.17.( 12 分)记 S n 为等差数列 a n 的前 n 项和,已知 a 17 , S 315 .( 1)求 a n 的通项公式;( 2)求 S n ,并求 S n 的最小值.17.【解析】( 1)设等差数列a n 的公差为 d ,则 由 1 7 , S 3 3a 1 3d 15 得 d 2 ,a所以 a n7 (n 1) 22n 9,即 a n 的通项公式为 a n 2n 9 ;( 2)由( 1)知 S nn( 72n9) n 2 8n ,2因为 S n (n 4)2 16 ,所以 n4 时, S n 的最小值为 16 .18.( 12 分)下图是某地区2000 年至 2016 年环境基础设施投资额y (单位:亿元)的折线图.投资额240220220209200184180 171160148140 122 129120 1006053 568035374242 4740192514202000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 年份为了预测该地区2018 年的环境基础设施投资额,建立了y 与时间变量 t 的两个线性回归模型,根据2000 年至 2016年的数据(时间变量 t 的值依次为 1,2, ,17y 30.4 13.5t ;根据 2010年至 2016)建立模型①: ?年的数据(时间变量 t 的值依次为 1,2, ,7 )建立模型②: y 99 17.5t .?( 1)分别利用这两个模型,求该地区2018 年的环境基础设施投资额的预测值;( 2)你认为哪个模型得到的预测值更可靠?并说明理由.18.【解析】( 1)将t19代入模型①:?30.4 13.5 19 226.1(亿元),y所以根据模型①得该地区2018 年的环境基础设施投资额的预测值为226.1亿元;将 t 9 代入模型②:?99 17.59256.5 (亿元),y所以根据模型②得该地区2018 年的环境基础设施投资额的预测值为256.5亿元.( 2)模型②得到的预测值更可靠.理由如下:答案一:从折现图可以看出,2010 年至 2016 年的数据对应的点并没有紧密地均分分布在回归直线y30.413.5t的上下,2009年至2010年的环境基础设施投资额出现了明显的大幅度增加,这说明模型?①不能很好的反应环境基础设施投资额呈线性增长.而2010 年至 2016年的数据对应的点紧密的分布在回归?17.5t 的附近,这说明模型②能更好地反应环境基础设施投资额呈线性增长,所以模型②得到的直线 y 99预测值更可靠.答案二:从计算结果来看,相对于2016 年的环境基础设施投资额为220 亿元,利用模型①得到的该地区2018 年的环境基础设施投资额的预测值为226.1 亿元的增幅明显偏低,而利用模型②得到的该地区2018 年的环境基础设施投资额的预测值为256.5亿元的增幅明显更合理,所以模型②得到的预测值更可靠.19.( 12 分)设抛物线 C : y24x的焦点为F,过F且斜率为k (k0) 的直线l 与 C 交于A, B两点,AB8 .(1)求l的方程;(2)求过点A, B且与C的准线相切的圆的方程.19.【解析】( 1)焦点F为 (1,0),则直线 l :y k( x1) ,联立方程组y k( x1),得22( 224)x 20,yy24x k x k k A令 A( x1 , y1 ), B( x2 , y2 ) ,则 x1x22k 24x1 x21.k2,- 1O F x根据抛物线的定义得AB x1x2 2 8 ,B 即 2k 24 6 ,解得k 1 (舍去 k1),k 2所以 l 的方程为y x1;( 2)设弦AB的中点为M,由( 1)知x1x2 3 ,所以M的坐标为(3,2),2则弦 AB 的垂直平分线为y x5,令所求圆的圆心为(m,5m) ,半径为 r ,2m5m12根据垂径定理得r AB221234 ,22m m由圆与准线相切得m 1221234,解得 m3或 m11 .m m则所求圆的方程为:( x 3) 2( y 2) 216 或 ( x 11) 2( y 6) 214420.( 12 分)如图,在三棱锥P ABC 中,AB BC22 ,PA PB PC AC4, O 为 AC 的中点.( 1)证明:PO平面 ABC ;( 2)若点M在棱BC上,且二面角M PA C 为30,求 PC 与平面 PAM 所成角的正弦值.P20.【解析】( 1)证明:连接OB,PA PC , O 为 AC 的中点,PO AC ,AB BC22, AC 4,AB 2BC 2AC 2,即AB BC ,OB 1AC 2 ,AOC 2又 PO23, PB 4 ,则 OB2PO 2PB 2,即 OP OB ,B MAC OB O ,PO平面 ABC ;( 2)由( 1)知OB,OC , OP两两互相垂直,z以 O 为坐标原点建立如图所示的空间直角坐标系,P则 B(2,0,0) , C (0,2,0) , A(0,2,0) , P(0,0,2 3) ,BC ( 2,2,0), AP(0,2,23), CP(0,2,23)令 BM BC ,[ 0,1] .A OC y 则 OM OB BC(22,2,0) , AM(22,22,0) ,M令平面 PAM 的法向量为 n(x, y, z) ,Bxn AP 2 y 2 3z0,取 x3 1 ,得n ( 3 1 , 3 1 ,1)由n AM(2 2 )x ( 22) y 0易知平面 PAC 的一个法向量为m(1,0,0) ,所以 cos n, mn m3(1)3(1)3,1) 21) 2) 27 2cos302n m3(3((127解得1(舍去3),即n( 43,23,2) ,3333n CP 83因为 cos n, CP333.8,所以PC 与平面 PAM 所成角的正弦值为n CP444 321.( 12 分)已知函数 f ( x)e x ax2.( 1)若a1,证明:当 x0 时,f ( x)1;( 2)若f ( x)在(0,) 只有一个零点,求 a .21.【解析】( 1)方法 1:欲证明当x0 时, f ( x)1,即证明e x1 .x21令 g ( x)e x,则g ( x)e x (x 21)2xe x(x 1) 2 e x0,x 2x 2 1 2x2 1 2 1则 g ( x) 为增函数, g (x)g (0) 1 ,得证.方法 2:a1时, f ( x) e x x2,则 f ( x) e x2x ,令 f (x)g( x) ,则 g ( x)e x 2 ,x[0, ln 2) 时, g (x)0 , g( x) 为减函数, x(ln 2,) 时, g ( x)0 , g( x) 为增函数,所以 g( x) min g(ln 2)22ln 20,即当x0 时, f (x)0, f (x) 为增函数,所以 f ( x) f (0) 1 ,因此 a 1 , x0 时, f (x) 1.( 2)方法 1:若f ( x)在(0,) 只有一个零点,则方程e xa 只有一个实数根.x2令 h(x)e xh( x) 的图像与直线y a 只有一个公共点.x2,等价于函数y又 h ( x)x2e x2xe x x 2 e xx4x3,x(0,2) 时, h ( x)0 , h( x) 为减函数, x (2,) 时, h ( x)0 , h( x) 为增函数,所以 h( x) min h(2)e2, x0 时h(x), x时 h( x).4则 a e2) 只有一个零点.时, f ( x) 在 (0,4方法 2:若f ( x)在(0,) 只有一个零点,则方程e xax 只有一个实数根.x令 h(x)e xh(x) 的图像与直线y ax 只有一个公共点.,等价于函数 yx当直线 y ax 与曲线y h(x) 相切时,设切点为(x0, e x0) ,x0又 h ( x)xe x e x x 1 e x x0 1 e x0e x0x0 2 ,此时a h ( x0)e2 x2x 2,则 h ( x0 )x02x02.4又当 x(0,1) 时, h ( x)0 , h( x) 为减函数,yx (1, ) 时, h ( x) 0 , h(x) 为增函数,所以 h( x) min h(1) e ,且 x 0 时 h(x), x 时 h( x).根据 yh( x) 与 yax 的图像可知,O 1 2xe 2 时,函数 yh(x) 的图像与直线 yax 只有一个公共点,即f ( x) 在 (0,) 只有一个零点.a4(二)选考题:共 10 分.请考生在第 22、 23 题中任选一题作答.如果多做,则按所做的第一题计分.22. [选修 4—4:坐标系与参数方程]( 10 分)在 直 角 坐 标 系 xOy 中 , 曲 线 C 的 参 数 方 程 为x 2 cosy( 为 参 数 ) , 直 线 l 的 参 数 方 程 为4sinx 1 t cos y2 (t 为参数 )t sin( 1)求 C 和 l 的直角坐标方程;( 2)若曲线 C 截直线 l 所得线段的中点坐标为(1,2) ,求 l 的斜率.22.【解析】( 1)消去参数,得 C 的直角坐标方程为x 2 y 2 41;16消去参数 t ,得 l 的直角坐标方程为 sin x cos y sin2 cos0 ;( l 的直角坐标方程也可写成:y tan (x 1)2() 或 x 1 .)2( 2)方法 1:将 l 的参数方程:x 1 t cos x 2 y 2y 2t sin(t 为参数 ) 代入 C :164 4 1 t cos22 t sin216 ,即 1 3 cos2t24 2 cossint由韦达定理得 t 14 2cossint 23 cos 2,1依题意,曲线 C 截直线 l 所得线段的中点对应t 1t 2 0,即 2 cossin2因此 l 的斜率为 2 .方法 2:令曲线 C 与直线 l 的交点为 A( x 1 , y 1 ), B(x 2 , y 2 ) ,x 1 2 y 1 2 1416x 2 x 1x 2y 1y 2 y 1y 2则由x 10 ,其中 x 1x 2 2 y 2 2 得4 1614161得:8 0 ,0 ,得 tan 2 .x 2 2, y 1 y 2 4 .所以x 1x2y 1 y 2y 1 y 2 2 ,即 l 的斜率为 2 .24x 1 x 223. [选修 4—5:不等式选讲 ]( 10 分)设函数f (x)5x ax 2 .( 1)当 a1时,求不等式f (x)0 的解集;( 2)若 f ( x)1 ,求 a 的取值范围.23.【解析】( 1) a1时, f ( x) 5 x 1x 2 ,x 1时, f( x) 5 x1 x2 2x 4 0 ,解得2 x 1 ; 1 x 2 时, f ( x) 5x1 x2 2 0,解得 1 x 2 ; x 2 时, f ( x)5 x 1 x22x6 0 ,解得 2 x3,综上所述,当 a 1 时,不等式 f (x) 0 的解集为 [ 2,3] .( 2) f (x)5 x ax2 1,即 xa x2 4 ,又 x a x 2 x a x 2 a 2 ,所以 a 24 ,等价于 a 2 4 或 a 24 ,解得 a 的取值范围为 { a | a2 或 a6} .。

2018高考全国2卷理科数学带详细标准答案

2018高考全国2卷理科数学带详细标准答案

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生先将自己地姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹地签字笔书写,字体工整、笔迹清楚. 3.请按照题号顺序在各题目地答题区域内作答,超出答题区域书写地答案无效;在草稿纸、试题卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹地签字笔描黑.5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素地个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=地图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a bA .4B .3C .2D .05.双曲线22221(0,0)x y a b a b -=>>A.y =B.y =C.y x =D.y = 6.在ABC △中,cos2C =1BC =,5AC =,则AB = A..7.为计算11111123499100S =-+-++-,设计了右侧地程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想地研究中取得了世界领先地成果.哥德巴赫猜想是“每个大于2地偶数可以表示为两个素数地和”,如30723=+.在不超过30地素数中,随机选取两个不同地数,其和等于30地概率是A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA ,则异面直线1AD 与1DB 所成角地余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 地最大值是A .π4B .π2C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞地奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++= A .50-B .0C .2D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:地左,右焦点,A 是C 地左顶点,点P 在过A地直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 地离心率为 A .23B .12C .13D .14二、填空题:本题共4小题,每小题5分,共20分.13.曲线2ln(1)y x =+在点(0,0)处地切线方程为__________.14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤则z x y =+地最大值为__________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________. 16.已知圆锥地顶点为S ,母线SA ,SB 所成角地余弦值为78,SA 与圆锥底面所成角为45°,若SAB △地面积为,则该圆锥地侧面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23为选考题.考生根据要求作答.(一)必考题:共60分. 17.(12分)记n S 为等差数列{}n a 地前n 项和,已知17a =-,315S =-. (1)求{}n a 地通项公式; (2)求n S ,并求n S 地最小值. 18.(12分)下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)地折线图.为了预测该地区2018年地环境基础设施投资额,建立了y 与时间变量t 地两个线性回归模型.根据2000年至2016年地数据(时间变量t 地值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年地数据(时间变量t 地值依次为1,2,,7)建立模型②:ˆ9917.5yt =+.(1)分别利用这两个模型,求该地区2018年地环境基础设施投资额地预测值; (2)你认为用哪个模型得到地预测值更可靠?并说明理由. 19.(12分)设抛物线24C y x =:地焦点为F ,过F 且斜率为(0)k k >地直线l 与C 交于A ,B 两点,||8AB =.(1)求l 地方程;(2)求过点A ,B 且与C 地准线相切地圆地方程. 20.(12分)如图,在三棱锥P ABC -中,AB BC == 4PA PB PC AC ====,O 为AC 地中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角地正弦值. 21.(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做地第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 地参数方程为2cos ,4sin ,x θy θ=⎧⎨=⎩(θ为参数),直线l 地参数方程为1cos ,2sin ,x t αy t α=+⎧⎨=+⎩(t 为参数).(1)求C 和l 地直角坐标方程;(2)若曲线C 截直线l 所得线段地中点坐标为(1,2),求l 地斜率. 23.[选修4-5:不等式选讲](10分)设函数()5|||2|f x x a x =-+--.(1)当1a =时,求不等式()0f x ≥地解集; (2)若()1f x ≤,求a 地取值范围. 绝密★启用前2018年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题 1.D 2.A 3.B 4.B 5.A 6.A 7.B8.C9.C10.A11.C12.D二、填空题13.2y x = 14.9 15.12-16.三、解答题 17.解:(1)设{}n a 地公差为d ,由题意得13315a d +=-. 由17a =-得d =2.所以{}n a 地通项公式为29n a n =-.(2)由(1)得228(4)16n S n n n =-=--.所以当n =4时,n S 取得最小值,最小值为−16. 18.解:(1)利用模型①,该地区2018年地环境基础设施投资额地预测值为ˆ30.413.519226.1y=-+⨯=(亿元). 利用模型②,该地区2018年地环境基础设施投资额地预测值为ˆ9917.59256.5y=+⨯=(亿元). (2)利用模型②得到地预测值更可靠. 理由如下:(ⅰ)从折线图可以看出,2000年至2016年地数据对应地点没有随机散布在直线30.413.5y t =-+上下.这说明利用2000年至2016年地数据建立地线性模型①不能很好地描述环境基础设施投资额地变化趋势.2010年相对2009年地环境基础设施投资额有明显增加,2010年至2016年地数据对应地点位于一条直线地附近,这说明从2010年开始环境基础设施投资额地变化规律呈线性增长趋势,利用2010年至2016年地数据建立地线性模型ˆ9917.5yt =+可以较好地描述2010年以后地环境基础设施投资额地变化趋势,因此利用模型②得到地预测值更可靠.(ⅱ)从计算结果看,相对于2016年地环境基础设施投资额220亿元,由模型①得到地预测值226.1亿元地增幅明显偏低,而利用模型②得到地预测值地增幅比较合理.说明利用模型②得到地预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.解:(1)由题意得(1,0)F ,l 地方程为(1)(0)y k x k =->. 设1221(,),(,)A y x y x B ,由2(1),4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++=. 216160k ∆=+>,故122224k x k x ++=. 所以122244||||||(1)(1)x k AB AF BF k x +=+=+++=. 由题设知22448k k +=,解得1k =-(舍去),1k =. 因此l 地方程为1y x =-.(2)由(1)得AB 地中点坐标为(3,2),所以AB 地垂直平分线方程为2(3)y x -=--,即5y x =-+.设所求圆地圆心坐标为00(,)x y ,则00220005,(1)(1)16.2y x y x x =-+⎧⎪⎨-++=+⎪⎩解得003,2x y =⎧⎨=⎩或0011,6.x y =⎧⎨=-⎩ 因此所求圆地方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 20.解:(1)因为4AP CP AC ===,O 为AC 地中点,所以OP AC ⊥,且OP = 连结OB.因为2AB BC AC ==,所以ABC △为等腰直角三角形, 且OB AC ⊥,122OB AC ==. 由222OP OB PB +=知PO OB ⊥.由,OP OB OP AC ⊥⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB uu u r地方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0),(2,0,0),(0,2,0),(0,2,0),O B A C P AP -=u u u r取平面PAC 地法向量(2,0,0)OB =u u u r.设(,2,0)(02)M a a a -<≤,则(,4,0)AM a a =-u u u r.设平面PAM 地法向量为(,,)x y z =n .由0,0AP AM ⋅=⋅=uu u r uuu r n n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB =uu u rn.由已知得|cos ,|2OB =uu u r n ..解得4a =-(舍去),43a =.所以4()333=--n.又(0,2,PC =-u u u r,所以cos ,4PC =uu u r n . 所以PC 与平面PAM.21.解:(1)当1a =时,()1f x ≥等价于2(1)e 10xx -+-≤.设函数2()(1)e1xg x x -=+-,则22()(21)e (1)e x x g'x x x x --=--+=--.当1x ≠时,()0g'x <,所以()g x 在(0,)+∞单调递减. 而(0)0g =,故当0x ≥时,()0g x ≤,即()1f x ≥.(2)设函数2()1e xh x ax -=-.()f x 在(0,)+∞只有一个零点当且仅当()h x 在(0,)+∞只有一个零点.(i )当0a ≤时,()0h x >,()h x 没有零点;(ii )当0a >时,()(2)e xh'x ax x -=-.当(0,2)x ∈时,()0h'x <;当(2,)x ∈+∞时,()0h'x >. 所以()h x 在(0,2)单调递减,在(2,)+∞单调递增. 故24(2)1eah =-是()h x 在[0,)+∞地最小值.①若(2)0h >,即2e 4a <,()h x 在(0,)+∞没有零点;②若(2)0h =,即2e 4a =,()h x 在(0,)+∞只有一个零点;③若(2)0h <,即2e 4a >,由于(0)1h =,所以()h x 在(0,2)有一个零点,由(1)知,当0x >时,2e x x >,所以33342241616161(4)11110e (e )(2)a a a a a h a a a=-=->-=->.故()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上,()f x 在(0,)+∞只有一个零点时,2e 4a =.22..解:(1)曲线C 地直角坐标方程为221416x y +=.当cos 0α≠时,l 地直角坐标方程为tan 2tan y x αα=⋅+-, 当cos 0α=时,l 地直角坐标方程为1x =.(2)将l 地参数方程代入C 地直角坐标方程,整理得关于t 地方程22(13cos )4(2cos sin )80t t ααα+++-=.①因为曲线C 截直线l 所得线段地中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120t t +=.又由①得1224(2cos sin )13cos t t ααα++=-+,故2cos sin 0αα+=,于是直线l 地斜率tan 2k α==-.23.解:(1)当1a =时,24,1,()2,12,26, 2.x x f x x x x +≤-⎧⎪=-<≤⎨⎪-+>⎩可得()0f x ≥地解集为{|23}x x -≤≤. (2)()1f x ≤等价于|||2|4x a x ++-≥.而|||2||2|x a x a ++-≥+,且当2x =时等号成立.故()1f x ≤等价于|2|4a +≥. 由|2|4a +≥可得6a ≤-或2a ≥,所以a 地取值范围是(,6][2,)-∞-+∞.21(12分)已知函数2()e x f x ax =-.(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a . 解:(1)()e 2x f x x '=-,()e 2x f x ''=-.当ln2x <时,()0f x ''<,当ln2x >时,()0f x ''>,所以()f x '在(,ln 2)-∞单调递减,在(ln 2,)+∞单调递增,故()(ln 2)22ln 20f x f ''≥=->,()f x 在(,)-∞+∞单调递增.因为0x ≥,所以()(0)1f x f ≥=.(2)当0x >时,设2e ()xg x a x=-,则2()()f x x g x =,()f x 在(0,)+∞只有一个零点等价于()g x 在(0,)+∞只有一个零点.3e (2)()x x g x x -'=,当02x <<时,()0g x '<,当2x >时,()0g x '>,所以()g x 在(0,2)单调递减,在(2,)+∞单调递增,故2e ()(2)4g x g a ≥=-.若2e 4a <,则()0g x >,()g x 在(0,)+∞没有零点.若2e 4a =,则()0g x ≥,()g x 在(0,)+∞有唯一零点2x =.若2e 4a >,因为(2)0g <,由(1)知当0x >时,2e 1x x >+,22e 1()1x g x a a x x =->+-,故存在1(0,2)x ∈⊆,使1()0g x >. 4422e e (4)1616a ag a a a a a=->- 2e x x >,版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.LDAYt 。

【新课标II卷】2018年高考数学试题(理)(Word全部解析版)

【新课标II卷】2018年高考数学试题(理)(Word全部解析版)

绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i12i+=- A .43i 55-- B .43i 55-+C .34i 55--D .34i 55-+【解析】54341441)21)(21()21)(21(2121ii i i i i i i +-=+-+=+-++=-+ 【D 】 2.已知集合(){}223A x y x y x y =+∈∈Z Z ,≤,,,则A 中元素的个数为A .9B .8C .5D .4【解析】如右图所示,符合条件的整点个数为9个 【A 】3.函数()2e e x xf x x --=的图像大致为【解析】设x x e e x g --=)(,2)(x x q =,则)(x g 为奇函数,)(x q 为偶函数且不过x =0点。

所以,由复合函数的奇偶性知函数)(x f 为奇函数,排除A 。

2)1(1>-=-ee f 所以 【B 】4. 己知向量a , b 满足|a | = l ,a•b =-l,则a •(2a -b )= A. 4 B. 3 C. 2 D. 0【解析】a •(2a -b )=2a 2-a•b =2|a|2-(-1)=2+1=3 【B 】5. 双曲线12222=-by a x (a >0,b >0)的离心率为3则其渐近线方程为A. x y 2±=B. x y 3±=C. x y 22±= D.x y 23±= 【解析】3==ace ,223b a a c +==,2223b a a += 所以a b 2= 所以渐近线方程为x aby 2±=±= 【A 】6. 在△ABC 中,552cos=C ,BC = l, AC = 5,则AB = A. 24 B.30 C.29 D. 52【解析】53155212cos 2cos 22-=-⎪⎪⎭⎫ ⎝⎛=-=C C C BC AC BC AC AB cos 222⋅-+==)53(1521522-⨯⨯⨯-+=24【A 】7. 为计算10019914131211-++-+-= S ,设计了右侧的程序框图,则在空白框中应填入 A. 1+=i i B. 2+=i i C. 3+=i i D. 4+=i i 【解析】奇数项为正,偶数项为负,规律是差2个。

2018年全国Ⅱ卷理科数学真题及答案详解详解

2018年全国Ⅱ卷理科数学真题及答案详解详解

2018年普通高等学校招生全国统一考试(全国卷2)理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A .B .C .D .2.已知集合,则中元素的个数为A .9B .8C .5D .43.函数的图像大致为4.已知向量,满足,,则 A .4B .3C .2D .05.双曲线A .B .C .D . 6.在中,,,,则 A .BCD .7.为计算,设计了右侧的程序框图,则在空白框中应填入12i12i+=-43i 55--43i 55-+34i 55--34i 55-+(){}223A x y x y x y =+∈∈Z Z ,≤,,A ()2e e x xf x x --=a b ||1=a 1⋅=-a b (2)⋅-=a a b 22221(0,0)x y a b a b-=>>y =y =y =y x =ABC △cos2C =1BC =5AC =AB =11111123499100S =-+-++-…A .B .C .D .8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A .B .C .D .9.在长方体中,,与所成角的余弦值为 A .BCD10.若在是减函数,则的最大值是A .B .C .D .11.已知是定义域为的奇函数,满足.若,则 A .B .0C .2D .5012.已知,是椭圆的左,右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为A .B .C .D .1i i =+2i i =+3i i =+4i i =+30723=+1121141151181111ABCD A B C D -1AB BC ==1AA 1AD 1DB 15()cos sin f x x x =-[,]a a -a π4π23π4π()f x (,)-∞+∞(1)(1)f x f x -=+(1)2f =(1)(2)(3)(50)f f f f ++++=…50-1F 2F 22221(0)x y C a b a b+=>>:A C P A 12PF F △12120F F P ∠=︒C23121314二、填空题:本题共4小题,每小题5分,共20分。

2018年高考真题——理科数学(全国卷II)+Word版含解析

2018年高考真题——理科数学(全国卷II)+Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学(全国卷II)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.【答案】D【解析】分析:根据复数除法法则化简复数,即得结果.详解:选D.点睛:本题考查复数除法法则,考查学生基本运算能力.2. 已知集合,则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数.详解:,当时,;当时,;当时,;所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别.3. 函数的图像大致为A. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.详解:为奇函数,舍去A,舍去D;,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,满足,,则A. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果.详解:因为所以选B.点睛:向量加减乘:5. 双曲线的离心率为,则其渐近线方程为A. B. C. D.【答案】A【解析】分析:根据离心率得a,c关系,进而得a,b关系,再根据双曲线方程求渐近线方程,得结果. 详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.6. 在中,,,,则A. B. C. D.【答案】A【解析】分析:先根据二倍角余弦公式求cosC,再根据余弦定理求AB.详解:因为所以,选A.点睛:解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.7. 为计算,设计了下面的程序框图,则在空白框中应填入A.B.C.D.【答案】B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项.详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.【答案】C【解析】分析:先确定不超过30的素数,再确定两个不同的数的和等于30的取法,最后根据古典概型概率公式求概率.详解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.点睛:古典概型中基本事件数的探求方法: (1)列举法. (2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法. (3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化. (4)排列组合法:适用于限制条件较多且元素数目较多的题目.9. 在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与线线角相等或互补关系求结果.详解:以D为坐标原点,DA,DC,DD1为x,y,z轴建立空间直角坐标系,则,所以,因为,所以异面直线与所成角的余弦值为,选C.点睛:利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.10. 若在是减函数,则的最大值是A. B. C. D.【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值详解:因为,所以由得因此,从而的最大值为,选A.点睛:函数的性质:(1). (2)周期 (3)由求对称轴, (4)由求增区间;由求减区间.11. 已知是定义域为的奇函数,满足.若,则A. B. 0 C. 2 D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果.详解:因为是定义域为的奇函数,且,所以,因此,因为,所以,,从而,选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.【答案】D【解析】分析:先根据条件得PF2=2c,再利用正弦定理得a,c关系,即得离心率.详解:因为为等腰三角形,,所以PF2=F1F2=2c,由斜率为得,,由正弦定理得,所以,选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

(word完整版)2018年高考全国2卷理科数学带答案解析

(word完整版)2018年高考全国2卷理科数学带答案解析

绝密★启用前2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.12i 12i +=-A .43i 55--B .43i 55-+C .34i 55--D .34i 55-+2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为A .9B .8C .5D .43.函数2e e ()x xf x x --=的图象大致为4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4B .3C .2D .05.双曲线22221(0,0)x y a b a b-=>>3A .2y x =±B .3y x =C .2y = D .3y x = 6.在ABC △中,5cos 2C =1BC =,5AC =,则AB = A .42B 30C 29D .257.为计算11111123499100S =-+-++-L ,设计了右侧的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A .112 B .114 C .115 D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA 1AD 与1DB 所成角的余弦值为A .15BCD10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是A .π4 B .π2 C .3π4D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .5012.已知1F ,2F 是椭圆22221(0)x y C a b a b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23 B .12 C .13D .14二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国卷2理科数学真题附含答案解析

2018年高考全国卷2理科数学真题附含答案解析

2018年普通高等学校招生全国统一考试理科数学本试卷共23题,共150分,共5页。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A. B. C. D.2.已知集合A={(x,y)|x ²+y ²≤3,x∈Z,y∈Z},则A中元素的个数为A.9B.8C.5D.43.函数f(x)=e ²-e-x/x ²的图像大致为A.B.C.D.4.已知向量a,b满足∣a∣=1,a·b=-1,则a·(2a-b)=A.4B.3C.2D.05.双曲线x ²/a ²-y ²/b ²=1(a﹥0,b﹥0)的离心率为,则其渐进线方程为A.y=±xB.y=±xC.y=±D.y=±6.在中,cos=,BC=1,AC=5,则AB=A.4B.C.D.27.为计算s=1-+-+…+-,设计了右侧的程序框图,则在空白框中应填入A.i=i+1B.i=i+2C.i=i+3D.i=i+48.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。

哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30=7+23,在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是A. B. C. D.9.在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=则异面直线AD1与DB1所成角的余弦值为A. B.10.若f(x)=cosx-sinx在[-a,a]是减函数,则a的最大值是A. B. C. D. π11.已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x)。

若f(1)=2,则f(1)+ f(2)+ f(3)+…+f(50)=A.-50B.0C.2D.5012.已知F1,F2是椭圆C: =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为A..B.C.D.二、填空题:本题共4小题,每小题5分,共20分。

(完整word版)2018全国高考II卷理科数学试题及答案解析(2),推荐文档

(完整word版)2018全国高考II卷理科数学试题及答案解析(2),推荐文档

绝密★启用前2018年普通咼等学校招生全国统考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1 4-2i1.1 21[4引4 3r 3 4 3 4lA. -------- 1 --- b C. : D.-7 +5 5 5 5 5]>【答案】D【解析】分析:根据复数除法法则化简复数,即得结果详解:'•.选D.1-21 5 5点睛:本题考查复数除法法则,考查学生基本运算能力2. 已知集合厂「..厂•「则中元素的个数为A. 9B. 8C. 5D. 4【答案】A【解析】分析:根据枚举法,确定圆及其内部整点个数详解:选入九/冬久E乙"X- - l,0j|,当b = 时,[;:'■ ■」.丨当卜■取时,当 b ■-〕时,f所以共有9个,选A.点睛:本题考查集合与元素关系,点与圆位置关系,考查学生对概念理解与识别3. 函数心、的图像大致为A B C DA. AB. BC. CD. D【答案】B【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像-谑异畑为奇函数,舍去A,详解:x2r (亡"亠亡K)x1-(e x-e K)2X (x-2)e x + (x + 2)e_li r,所以舍去C;因此选B.点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复.4. 已知向量,卜满足用i,则且“『通-心;:TA. 4B. 3C. 2D. 0【答案】B【解析】分析:根据向量模的性质以及向量乘法得结果详解:因为 a -(坯 & - - b -加'-(-】) 2+1-3.所以选B.点睛:向量加减乘:.-'■: I、m. ■ I -i ;•- :■■ ;;. I:2 25. 双曲线的离心率为|门|,则其渐近线方程为A. \qB.” ■ 土占羞c.\一r\y 三土—x D.2y = i —x£【解析】分析:根据离心率得 a,c 关系,进而得 a,b 关系,再根据双曲线方程求渐近线方程,得结果详解:b" c"-a"r b jr- c -1 ■ 3 - 1 ■ 2 " - ■ J2,2口口M,所以渐近线方程为.,选A.【答案】A【解析】分析:先根据二倍角余弦公式求 cosC,再根据余弦定理求 AB.详解:因为 所以? -- 1 亠 25-2 1 ■ ?,选 A.点睛:解三角形问题,多为边和角的求值问题, 这就需要根据正、余弦定理结合已知条件灵活转化边和角 之间的关系,,设计了下面的程序框图,则在空白框中应填入因为渐近线方程为ya 2b 32 2Kv b 0 刊■ ± -x . ? a A.卜同 B. .. C.D.I 11 1A. B.【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减 •因此累加量为隔项•详解:由得程序框图先对奇数项累加,偶数项累加,最后再相减•因此在空白框2 3 499 100中应填入厂帀,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查•先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明 确流程图研究的数学问题,是求和还是求项8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果. 哥德巴赫猜想是“每个大于 2的偶数可以表示为两个素数的和”,如 卜迓;(•在不超过30的素数中,随机选取两个不同的数,其和 等于30的概率是 1 1 1 1A.B.C. D.12】41518【答案】C【解析】分析:先确定不超过 30的素数,再确定两个不同的数的和等于 30的取法,最后根据古典概型概率公式求概率•详解:不超过30的素数有2, 3, 5, 7, 11, 13, 17, 19, 23, 29,共10个,随机选取两个不同的数,共 有减 f 种方法,因为773 ■ I 「旧 戸丄17-30,所以随机选取两个不同的数,其和等于30的有3种3 r方法,故概率为R-,选C.禎 15点睛:古典概型中基本事件数的探求方法:(1)列举法• (2)树状图法:适合于较为复杂的问题中的基本事件的探求•对于基本事件有“有序”与“无序”区别的题目,常采用树状图法 • (3)列表法:适用于多元素 基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化 • (4)排列组合法:适用于限制条件较多且元素数目较多的题目9.在长方体卩•,飞•匸|中,卜庶■段打■ :.|,啟卸「.讯 则异面直线 与所成角的余弦值为5| |6【答案】C【解析】分析:先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角与 线线角相等或互补关系求结果详解:以D 为坐标原点,DA,DC,DD 为x,y,z 轴建立空间直角坐标系,贝U ',所以血1麻Db 广(1丄间,A.B. C. D.因为. . 土,所以异面直线与 所成角的余弦值为IADJIDBJ 2 忻 5,选C.点睛:禾U 用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标 第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第一一 + 2k7r < tax + (p < - 4 2kx(k € 乙',求增区间;咒、由-+ 2kjt < oix + Q < — ■+ 2kx(k € 乙i 求减区间. 已知 是定义域为琬的奇函数,满足和⑴若 ,贝则订;*『:二A.B. 0C. 2D. 50【答案】C【解析】分析:先根据奇函数性质以及对称性确定函数周期,再根据周期以及对应函数值求结果 详解:因为◎提定义域为卜迪亠训的奇函数,且肾四, 破“应用公式关”.10. 若险:■・:.叙朮工在一 是减函数,则的最大值是3皐 A B.-C.D.累4| 2A【答案】A【解析】分析:先确定三角函数单调减区间,再根据集合包含关系确定的最大值 详解:因为Rx) CUSX SII1X y2ix )s(x + -;,4所以由 0 + 2匕兰乳 + -上;r + 2kn,(k € Z )得一 I :< x< — + 21uL(k E4 4 4.,,, 3兀.―,, 兀 兀 3 耳 冗,.. ”、, 因此[乩创u [—,—]片-洁电生---< 一 /- 0 < a < ,从而的最大值为4 4 4 4 4点睛:函数的性质:,选A.X1求对称轴,(4)由系;11. A. ⑴、吹nd A B所以|;: •I -,因此n;一二三:n巴诃m⑺因为;■■::ii... H--::■■:■/,所以-型'、亢:了■- h_- J : ■ ■■::,从而战"需篇严宀■-洽谕■即;:■专选C.点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.12. 已知眉,是椭圆的左,右焦点,是的左顶点,点卜在过且斜率为的直线a- tr 16|上,卜卩珥耳为等腰三角形,四几卩・1划,则匚的离心率为2 1 ]| [A. B. - C. D.3| 2 3| |4【答案】DPH=2c,再利用正弦定理得a,c关系,即得离心率详解:因为卷W为等腰三角形,门TQ 一‘:,所以PF2=F I F2=2C,PFr sinziPAI';由正弦定理得AF, siniAPF,点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于沁韵的方程或不等式,再根据k*::;的关系消掉得到的关系式,而建立关于”爲■詞的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。

2018年高中高考全国2卷理科数学及答案

2018年高中高考全国2卷理科数学及答案

绝密★启用前2018年一般高等学校招生全国一致考试理科数学本试卷共 23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考据号码填写清楚,将条形码正确粘贴在条形码地区内。

2.选择题一定使用 2B 铅笔填涂;非选择题一定使用 0.5毫米黑色笔迹的署名笔书写, 笔迹清楚。

字体工整、3.请依据题号次序在各题目的答题地区内作答,高出答题地区书写的答案无效;在底稿纸、试题卷上答题无效。

4.作图可先使用铅笔划出,确立后一定用黑色笔迹的署名笔描黑。

5.保持卡面洁净,不要折叠、不要弄破、弄皱,禁止使用涂改液、修正带、刮纸刀。

一、选择题:此题共 12小题,每题5分,共60分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

1.12i 1 2iA .4 3B .4 3 C .3 4 D .3 4 5i5 i5 i5 i55552.已知会合A {(x,y)|x 2y 23,xZ,y Z},则A 中元素的个数为A .9B .8C .5D .43.函数f(x) e xe x2的图象大概为x4.已知向量 a ,b 知足|a|1,ab1,则a(2a b)A .4 x 2y 2B .3C .2D .05.双曲线1(a 0,b 0)的离心率为3,则其渐近线方程为22ab23 开始A .y2xB .y3x C .yD .yxxC5,BC22N0,T0.在△ABC 中,1,AC5,则AB6cos5i12A .42 B . 30 C .29D .25是否i1007.为计算S111 1L11,设计了右边的123 499 100NSNTN程序框图,则在空白框中应填入iA .i i 1T1输出STB .i i 2i1C .i i 3 结束D .ii 4理科数学试题 第1页(共9页)8.我国数学家陈景润在哥德巴赫猜想的研究中获得了世界当先的成就.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723.在不超出30的素数中,随机选用两个不一样的数,其和等于30的概率是1B.111A.C.D.121415189.在长方体ABCD A1B1C1D1中,AB BC1,AA13,则异面直线AD1与DB1所成角的余弦值为A.1B.5526C.D.55210.若f(x)cosx sinx在[a,a]是减函数,则a的最大值是A.πB.πC.3πD.π42411.已知f(x)是定义域为(,)的奇函数,知足f(1x)f(1x).若f(1)2,则f(1)f(2)f(3)L f(50)A.50B.0C.2D.50x2y21(a b0)的左,右焦点,A是C 3的12.已知F1,F2是椭圆C:22的左极点,点P在过A且斜率为a b6直线上,△PF1F2为等腰三角形,F1F2P120,则C的离心率为A.2B.1C.1D.1 3234二、填空题:此题共4小题,每题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学
本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在
条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一
项是符合题目要求的。

1.12i 12i +=-
A .43i 55--
B .43i 55-+
C .34i 55--
D .34i 55
-+
2.已知集合22{(,)|3,,A x y x y x y =+≤∈∈Z Z},则A 中元素的个数为
A .9
B .8
C .5
D .4
3.函数2
e e ()x x
f x x --=的图象大致为
4.已知向量a ,b 满足||1=a ,1⋅=-a b ,则(2)⋅-=a a b A .4
B .3
C .2
D .0
5.双曲线
2
2
22
1(0,0)x y a b a b -=>>3 A .2y x = B .3y x =±
C .2y =
D .3y = 6.在ABC △中,5
cos 2C =
1BC =,5AC =,则AB = A .42B 30C 29D .5
7.为计算11111
123499100
S =-+-++-L ,设计了右侧的程
序框图,则在空白框中应填入
A .1i i =+
B .2i i =+
C .3i i =+
D .4i i =+
8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是
A .
112 B .114 C .115 D .118
9.在长方体1111ABCD A B C D -中,1AB BC ==
,1AA 1AD 与1DB 所成角
的余弦值为
A .1
5
B
C
D

2
10.若()cos sin f x x x =-在[,]a a -是减函数,则a 的最大值是
A .
π4 B .π2 C .3π4
D .π 11.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+.若(1)2f =,
则(1)(2)(3)(50)f f f f ++++=L A .50- B .0 C .2 D .50
12.已知1F ,2F 是椭圆22
221(0)x y C a b a b
+=>>:的左,右焦点,A 是C 的左顶点,点P 在
过A
的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .
23 B .12 C .13
D .
14
二、填空题:本题共4小题,每小题5分,共20分。

13.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.
14.若,x y 满足约束条件250,230,50,x y x y x +-⎧⎪
-+⎨⎪-⎩
≥≥≤则z x y =+的最大值为__________.
15.已知sin cos 1αβ+=,cos sin 0αβ+=,则sin()αβ+=__________.
16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为
7
8
,SA 与圆锥底面所成角为45°,若SAB △
的面积为,则该圆锥的侧面积为__________.
三、解答题:共70分。

解答应写出文字说明、证明过程或演算步骤。

第17~21题为必考题,
每个试题考生都必须作答。

第22、23为选考题。

考生根据要求作答。

(一)必考题:共60分。

17.(12分)
记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-. (1)求{}n a 的通项公式; (2)求n S ,并求n S 的最小值. 18.(12分)
下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.
20002001200220032004200520062007200820092010201120122013201420152016年份200
406080
为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17L )建立模型①:ˆ30.413.5y
t =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7L )建立模型②:ˆ9917.5y
t =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由. 19.(12分)
设抛物线24C y x =:的焦点为F ,过F 且斜率为(0)k k >的直线l 与C 交于A ,B 两点,||8AB =.
(1)求l 的方程;
(2)求过点A ,B 且与C 的准线相切的圆的方程.
20.(12分)
如图,在三棱锥P ABC -
中,AB BC == 4PA PB PC AC ====,O 为AC 的中点.
(1)证明:PO ⊥平面ABC ;
(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.
21.(12分)
已知函数2()e x f x ax =-.
(1)若1a =,证明:当0x ≥时,()1f x ≥; (2)若()f x 在(0,)+∞只有一个零点,求a .
(二)选考题:共10分。

请考生在第22、23题中任选一题作答。

如果多做,则按所做的第
一题计分。

22.[选修4-4:坐标系与参数方程](10分)
在直角坐标系xOy 中,曲线C 的参数方程为2cos ,
4sin ,x θy θ=⎧⎨=⎩
(θ为参数),直线l 的参数方
程为1cos ,
2sin ,x t αy t α=+⎧⎨=+⎩
(t 为参数).
(1)求C 和l 的直角坐标方程;
(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.
23.[选修4-5:不等式选讲](10分)
设函数()5|||2|f x x a x =-+--.
(1)当1a =时,求不等式()0f x ≥的解集; (2)若()1f x ≤,求a 的取值范围.。

相关文档
最新文档