介电和铁电基础及应用汇总.ppt.
合集下载
材料的铁电性能课件
电场强度继续增大,最后晶体 电畴方向都趋于电场方向,类 似于单畴,极化强度达到饱和, 这相当于图中C附近的部分。
图6.26 铁电电滞回线 (Ps为自发极化强度,Ec为矫顽力)
13
2 自发极化强度Ps 极化强度达到饱和后,再增
加电场,P与E成线性关系,将这 线性部分外推至E=0时的情况, 此时在纵轴P上的截距称为饱和 极化强度或自发极化强度Ps。 3 剩余极化强度
多晶体中每个小晶粒可包含多个 电畴。由于晶体本身取向无规则,所 以各电畴分布是混乱的,因而对外不 显示极性。
单晶体,各电畴间的取向成一定的 角度,如90 °,180 ° 。
图6.31 畴壁
7
4.电畴的形成及其运动的微观机理 (1)电畴的形成
以BaTiO3为例。离子位移理论,认为自发极化主要是由 晶体中某些离子偏离了平衡位置造成的。由于离子偏离了平衡 位置,使得单位晶胞中出现了电矩。电矩之间的相互作用使偏 离平衡位置的离子在新的位置上稳定下来,与此同时晶体结构 发生了畸变。
的电滞回线很接近于矩形,Ps 和Pr很接近,而且Pr较高;陶 瓷的电滞回线中Ps与Pr相差较 多,表明陶瓷多晶体不易成为
单畴,即不易定向排列
图6.34 BaTiO3的电滞回线 20
4)铁电体的应用
①由于它有剩余极化强度,因而铁电体可用来作信息 存储、图象显示。
目前已经研制出一些透明铁电陶瓷器件,如铁电存储和 显示器件、光阀,全息照相器件等,就是利用外加电场使 铁电畴作一定的取向,使透明陶瓷的光学性质变化。铁电 体在光记忆应用方面也已受到重视,目前得到应用的是掺 镧的锆钛酸铅(PLZT)透明铁电陶瓷以及Bi4Ti3O12铁电薄膜。
1)温度对电滞回线的影响 铁电畴在外电场作用下的“转向”,使得陶瓷材料具有宏
6介电642页
锲而舍之,朽木不折。锲而不舍,
12
金石可镂 友友情分享O(∩_∩)O~
介电晶类(32种)
不具有对称 极性晶类(热 1,2,3,4,6,m, 中心的晶类 释电晶类) mm2.4mm,3m,6mm
(21种) (10种)
其中压电晶 类
(20种)
非极性晶类 (11种)
222,-4,-6,23,423(不具有压 电性),-43m,422,
逆压电效应: S=dtE 电致伸缩效应:电介质在大外力作用下,需考虑非线性项。S=vE2
热释电效应:在热平衡条件下,电介质因自发极化要产生表面束缚 电荷,这种电荷被来自空气中附集于电介质表面上的自由电荷所补 偿,其电不能显现出来,,当温度发生变化,由温度变化引起电介 质的极化状态的改变不能及时被来自电介质表面上的自由电荷所补 偿,使电介质对外显电性。Ps=p T(具有自发极化的晶体)
(3) 无对称中心,且本身具有自发极化特性的结构
+
-
+
例1:具有极性轴或结构本身具有自发极化的结构
- -+ - - -
+
+++++
-
-
+
正 电
+
荷-
层
-
固
-
极 化 轴
与
有
负+
电 荷
-
+ -
偶 极 子
+ -
C
层
交
+++++
替+ +
+
-
-
排-
列
纤锌矿(ZnS)结构在(01锲0而)舍之上,投朽木影不折。锲而不舍,
铁电性与压电性PPT课件
第5页/共41页
等轴晶系(大于120oC) : 晶胞常数:a=4.01A 氧离子的半径:1.32A 钛离子的半径: 0.64
钛离子处于氧八面体中, 两个氧离子间的空隙为:4.01-2× 1.32= 1.37 钛离子的直径:2× 0.64= 1。28
第6页/共41页
结果: 氧八面体空腔体积大于钛离子体积,给钛离子位移的余地。 较高温度时,热振动能比较大,钛离子难于在偏离中心的某一个位置上固定下来, 接近六个氧离子的几率相等,晶体保持高的对称性,自发极化为零。 温度降低,钛离子平均热振动能降低,因热涨落,热振动能特别低的离子占很大比 例,其能量不足以克服氧离子电场作用,有可能向某一个氧离子靠近,在新平衡位 置上固定下来,并使这一氧离子出现强烈极化,发生自发极化,使晶体顺着这个方 向延长,晶胞发生轻微畸变,由立方变为四方晶体。
d:压电常数 逆压电效应的应变与施加的电场强度有如下关系:
S=dE d:压电常数 注:正、逆压电效应的压电常数一样。
第23页/共41页
2. 压电材料的性能
(1)机电偶合系数 (2)机械品质因数 (3)频率常数 (4)压电常数 (5)弹性模量、相对介电常数、居里温度等。 介电质的基本性能:介电常数、介电损耗等 特殊应用要求的性能:如:滤波器要求谐振频率稳定性高
第21页/共41页
-------
+ + ++ + 极化方向
------- + + ++
-----
+ 极化方向
++++++
自+由电荷
-----
------------
++++++ +
铁电功能材料PPT课件
饱和极化强度Ps 剩余极化强度Pr 矫顽电场强度Ec
2021/3/19
23
2、 电滞回线 hysteresis loop
在强电场作用下,使多畴铁电体变为单畴铁电体或使 单畴铁电体的自发极化反向的动力学过程称为畴的反转。
使剩余极化强度降为零时的电场值Ec称为矫顽电场强 度(矫顽场)
变化过程:
A→B→C→B→D→F
ABO3型钙钛矿结构
2021/3/19
12
ABO3型钙钛矿晶胞结构
2021/3/19
13
1. 铁电材料的钙钛矿结构
❖ 离子A、B、C的半径RA、RB、RO满足下列关系才 能组成ABO3结构: RA+RO=√2 t (RB+RO)
式中t为容差因子,可以在0.9~1.1范围内,这样A离 子半径约为1.00~1.40A,B离子半径约为0.45~0.75, 氧离子半径为1.32A。
在没有外电场作用时,晶体中存在着由于电偶极子的有序排列而产生 的极化,称为自发极化。
在垂直于极化轴的表面上,单位面积的自发极化电荷量称为自发极化强 度。
3 介电常数
dielectric constant
表征材料极化并储存电荷能力的物理量称为介电常数,用ε表示,无量纲。
2021/3/19
6
电介质的极化与铁电性
5、热释电效应 pyroelectric effect
由于温度的变化,晶体出现结构上的电荷中 心相对位移,使自发极化强度发生变化,从而在 两端产生异号的束缚电荷,这种现象称为热释电 效应。
6、 居里温度Tc Curie temperature
铁电陶瓷只在某一温度范围内才具有铁电性,它 有一临界温度Tc.,当温度高于Tc时,铁电相转变为 顺电相,自发极化消失。
2021/3/19
23
2、 电滞回线 hysteresis loop
在强电场作用下,使多畴铁电体变为单畴铁电体或使 单畴铁电体的自发极化反向的动力学过程称为畴的反转。
使剩余极化强度降为零时的电场值Ec称为矫顽电场强 度(矫顽场)
变化过程:
A→B→C→B→D→F
ABO3型钙钛矿结构
2021/3/19
12
ABO3型钙钛矿晶胞结构
2021/3/19
13
1. 铁电材料的钙钛矿结构
❖ 离子A、B、C的半径RA、RB、RO满足下列关系才 能组成ABO3结构: RA+RO=√2 t (RB+RO)
式中t为容差因子,可以在0.9~1.1范围内,这样A离 子半径约为1.00~1.40A,B离子半径约为0.45~0.75, 氧离子半径为1.32A。
在没有外电场作用时,晶体中存在着由于电偶极子的有序排列而产生 的极化,称为自发极化。
在垂直于极化轴的表面上,单位面积的自发极化电荷量称为自发极化强 度。
3 介电常数
dielectric constant
表征材料极化并储存电荷能力的物理量称为介电常数,用ε表示,无量纲。
2021/3/19
6
电介质的极化与铁电性
5、热释电效应 pyroelectric effect
由于温度的变化,晶体出现结构上的电荷中 心相对位移,使自发极化强度发生变化,从而在 两端产生异号的束缚电荷,这种现象称为热释电 效应。
6、 居里温度Tc Curie temperature
铁电陶瓷只在某一温度范围内才具有铁电性,它 有一临界温度Tc.,当温度高于Tc时,铁电相转变为 顺电相,自发极化消失。
第六章 无机材料介电性能2PPT课件
❖ 由自发极化方向相同的晶胞所组成的小区域便称为电畴,分 隔相邻电畴的界面称为畴壁。
A-A:180°畴壁 B-B:90 °畴壁
铁电体中电畴是不能在空间任意取向的,只能沿着晶体的 某几个特定晶向取向,取决于该种铁电体原型结构的对称性。
TEM observation of domains in BaTiO3 ceramics
“压峰效应”:为了降低居里点处的介电常数的峰值, 即降低非线性。
2、铁电体的应用
6.5 压电性
❖ 压电性:某些介质在机械力作用下发生电极化或电极化的变 化,这样的性质称为压电性。具有压电性的介质称为压电体。
6.4 铁电性
❖ 1920年 法国人瓦拉赛克(Valasek) 发现即酒石酸钾钠 (NaKC4H4O6·4H2O)的铁电现象;
❖ 20世纪50年代以来 铁电体种类急剧增加,早年是科学家实 验室中的珍品,被当作研究结构相变的典型材料;
❖ 20世纪80年代以来 铁电体作为一类新型功能材料而崭露头 角。
一、铁电体
化强度)
剩余极化强度 Pr
矫顽电 场强度
Ec
2、电滞回线的影响因素: ❖ 极化温度:极化温度的高低影响到电畴运动和转向的难易。
矫顽场强和饱和场强随温度升高而降低。 极化温度较高,可以在较低的极化电压下达到同样的效
果,其电滞回线形状比较瘦长。
❖ 环境温度:环境温度的变化对材料的晶体结构有影响,从而 使内部自发极化发生改变,尤其是在相变处(晶型转变温度 点)更为显著。
2、铁电体的基本特征 ❖ (1)铁电体的基本特征:
铁电材料在电极化中存在电滞回线; 晶体中存在电畴形式的微结构 ; 在外加电场下,晶体中的电偶极矩可转变方向; 存在居里温度Tc(常称居里点)。
A-A:180°畴壁 B-B:90 °畴壁
铁电体中电畴是不能在空间任意取向的,只能沿着晶体的 某几个特定晶向取向,取决于该种铁电体原型结构的对称性。
TEM observation of domains in BaTiO3 ceramics
“压峰效应”:为了降低居里点处的介电常数的峰值, 即降低非线性。
2、铁电体的应用
6.5 压电性
❖ 压电性:某些介质在机械力作用下发生电极化或电极化的变 化,这样的性质称为压电性。具有压电性的介质称为压电体。
6.4 铁电性
❖ 1920年 法国人瓦拉赛克(Valasek) 发现即酒石酸钾钠 (NaKC4H4O6·4H2O)的铁电现象;
❖ 20世纪50年代以来 铁电体种类急剧增加,早年是科学家实 验室中的珍品,被当作研究结构相变的典型材料;
❖ 20世纪80年代以来 铁电体作为一类新型功能材料而崭露头 角。
一、铁电体
化强度)
剩余极化强度 Pr
矫顽电 场强度
Ec
2、电滞回线的影响因素: ❖ 极化温度:极化温度的高低影响到电畴运动和转向的难易。
矫顽场强和饱和场强随温度升高而降低。 极化温度较高,可以在较低的极化电压下达到同样的效
果,其电滞回线形状比较瘦长。
❖ 环境温度:环境温度的变化对材料的晶体结构有影响,从而 使内部自发极化发生改变,尤其是在相变处(晶型转变温度 点)更为显著。
2、铁电体的基本特征 ❖ (1)铁电体的基本特征:
铁电材料在电极化中存在电滞回线; 晶体中存在电畴形式的微结构 ; 在外加电场下,晶体中的电偶极矩可转变方向; 存在居里温度Tc(常称居里点)。
第七章 铁电物理.ppt
第七章 铁电物理
本章提要
铁电体物理学研究的核心问题是自发极化。 本章主要介绍有关铁电体物理学的一些基本 概念;自发极化产生的机制;铁电相变与晶 体的结构变化;极化状态在各种外界条件下 的变化,即介电响应、压电、热释电、电致 伸缩、光学效应等;最后适当介绍铁电物理 效应的实验研究。
7.1铁电物理的一般性质
自发极化能被外电场重行定向是铁电体最重 要的判据,也是铁电体具有许多独特性质的 主要原因
3. 电畴结构
晶体内部在退极化电场的作用下,就会分裂 出一系列自发极化方向不同的小区域,使其 各自所建立的退极化电场互相补偿,相到整 个晶体对内、对外均不呈现电场为止。这些 由自发极化方向相同的晶胞所组成的小区域 便称为电畴,分隔相邻电畴的界面称为畴壁
极化反转过程中电畴的运动可以用实验的方法 动态地观察到。如果把电场沿着钛酸钡晶体的
自发极化轴加到图7-1(a)所示的试样上,实验
表明,与电场方向一致的电畴并不通过其畴壁 的侧向移动以牺牲反向畴为代价进行扩张,而 是在反向畴内部沿着试样的边缘靠近电极处生 长出许多极化方向与电场方向一致的尖劈状新 畴。新畴成核后便在电场作用下向前推进,穿 透整个试样,如图7-4所示。电场增强时,新 畴不断出现,不断向前发展波及整个反向畴, 最终便把这种反向电畴变成与外场方向一致, 并与相邻的同向畴结合为一个体积更大的同向 畴。
由于铁电性的出现或消失,总伴随着晶格结构 的改变,所以这是个相变过程。当晶体从非铁 电相(称顺电相)向铁电相过渡时,晶体的许 多物理性质皆成反常现象。对于第一级相变, 伴随有潜热发生,对于第二级相变,则出现比 热的突变。铁电相中自发极化强度是和晶体的 铁电相低。
图7-4 钛酸钡晶体反向畴中尖劈状新畴 的成核和扩展
铁电体的畴过程还可以用加上电场后电畴反 转过程所产生的电流脉冲波形来研究。如果 把前沿很陡的矩形电压脉冲加到晶体上。脉 冲的宽度比极化反转所需的时间长,脉冲的 振幅足够大,以保证试样的极化强度能被外 场反向,这时流过试样的瞬时电流便便正比 于,其波形如图7-6所示
本章提要
铁电体物理学研究的核心问题是自发极化。 本章主要介绍有关铁电体物理学的一些基本 概念;自发极化产生的机制;铁电相变与晶 体的结构变化;极化状态在各种外界条件下 的变化,即介电响应、压电、热释电、电致 伸缩、光学效应等;最后适当介绍铁电物理 效应的实验研究。
7.1铁电物理的一般性质
自发极化能被外电场重行定向是铁电体最重 要的判据,也是铁电体具有许多独特性质的 主要原因
3. 电畴结构
晶体内部在退极化电场的作用下,就会分裂 出一系列自发极化方向不同的小区域,使其 各自所建立的退极化电场互相补偿,相到整 个晶体对内、对外均不呈现电场为止。这些 由自发极化方向相同的晶胞所组成的小区域 便称为电畴,分隔相邻电畴的界面称为畴壁
极化反转过程中电畴的运动可以用实验的方法 动态地观察到。如果把电场沿着钛酸钡晶体的
自发极化轴加到图7-1(a)所示的试样上,实验
表明,与电场方向一致的电畴并不通过其畴壁 的侧向移动以牺牲反向畴为代价进行扩张,而 是在反向畴内部沿着试样的边缘靠近电极处生 长出许多极化方向与电场方向一致的尖劈状新 畴。新畴成核后便在电场作用下向前推进,穿 透整个试样,如图7-4所示。电场增强时,新 畴不断出现,不断向前发展波及整个反向畴, 最终便把这种反向电畴变成与外场方向一致, 并与相邻的同向畴结合为一个体积更大的同向 畴。
由于铁电性的出现或消失,总伴随着晶格结构 的改变,所以这是个相变过程。当晶体从非铁 电相(称顺电相)向铁电相过渡时,晶体的许 多物理性质皆成反常现象。对于第一级相变, 伴随有潜热发生,对于第二级相变,则出现比 热的突变。铁电相中自发极化强度是和晶体的 铁电相低。
图7-4 钛酸钡晶体反向畴中尖劈状新畴 的成核和扩展
铁电体的畴过程还可以用加上电场后电畴反 转过程所产生的电流脉冲波形来研究。如果 把前沿很陡的矩形电压脉冲加到晶体上。脉 冲的宽度比极化反转所需的时间长,脉冲的 振幅足够大,以保证试样的极化强度能被外 场反向,这时流过试样的瞬时电流便便正比 于,其波形如图7-6所示
(完整PPT)第六章铁电性能和压电性能_材料物理(1)
结晶化学分类法: 软铁电体 硬铁电体
含氢键的晶体(KDP、RS)和双氧化物晶体(BT、PT、LN) 按极化轴数目分类:
单轴铁电体(RS、KDP、LN)和多轴铁电体(BT) 按原型相有无对称中心分类:
压电性铁电体(KDP、RS)和非压电性铁电体(BT) 按铁电相变时原子运动特点分类:
有序-无序型相变的(RS)和位移型相变的(BT、PT、LN) 按居里-外斯常数C的大小分类:
二、BaTiO3自发极化的微观机理 1. BaTiO3的晶体结构
有氧八面体 骨 架 的 ABO3 晶格
BaTiO3的晶体结构
钙钛矿结构
2. BaTiO3的相变
顺电态
Tc 居里温度
铁电态
120°C
5°C
-80°C
立方晶系 四方晶系 斜方晶系
菱形结构
无自发极化 自发极化沿c轴 自发极化沿 自发极化沿
Ps-饱和极化强度 Pr-剩余极化强度(remanent
polarization) Ec-矫顽场强(corcive field)
~2KV/cm -~120KV/cm
按照Ec大小可将铁电体分为: 软铁电体-小Ec 硬铁电体-大Ec
电滞回线是铁电体的重要物理特征之一,也是判别铁电性的 一个重要判据。
3. 铁电体的分类
如: 在钙钛矿结构中,自发极 化起因于[BO6]中中心离子的 位移
[BO6]氧八面体
2. 铁电体的概念
铁电体是在一定温度范围内具有自发极化(必要条件) ,并且极化方向可随外加电场做可逆转动的晶体。
铁电体一定是极性晶体,但自发极化转动的晶体仅发生在某些特殊结 构晶体当中,在自发极化转向时,结构不发生大的畸变。
质
加电场E 成正比。
含氢键的晶体(KDP、RS)和双氧化物晶体(BT、PT、LN) 按极化轴数目分类:
单轴铁电体(RS、KDP、LN)和多轴铁电体(BT) 按原型相有无对称中心分类:
压电性铁电体(KDP、RS)和非压电性铁电体(BT) 按铁电相变时原子运动特点分类:
有序-无序型相变的(RS)和位移型相变的(BT、PT、LN) 按居里-外斯常数C的大小分类:
二、BaTiO3自发极化的微观机理 1. BaTiO3的晶体结构
有氧八面体 骨 架 的 ABO3 晶格
BaTiO3的晶体结构
钙钛矿结构
2. BaTiO3的相变
顺电态
Tc 居里温度
铁电态
120°C
5°C
-80°C
立方晶系 四方晶系 斜方晶系
菱形结构
无自发极化 自发极化沿c轴 自发极化沿 自发极化沿
Ps-饱和极化强度 Pr-剩余极化强度(remanent
polarization) Ec-矫顽场强(corcive field)
~2KV/cm -~120KV/cm
按照Ec大小可将铁电体分为: 软铁电体-小Ec 硬铁电体-大Ec
电滞回线是铁电体的重要物理特征之一,也是判别铁电性的 一个重要判据。
3. 铁电体的分类
如: 在钙钛矿结构中,自发极 化起因于[BO6]中中心离子的 位移
[BO6]氧八面体
2. 铁电体的概念
铁电体是在一定温度范围内具有自发极化(必要条件) ,并且极化方向可随外加电场做可逆转动的晶体。
铁电体一定是极性晶体,但自发极化转动的晶体仅发生在某些特殊结 构晶体当中,在自发极化转向时,结构不发生大的畸变。
质
加电场E 成正比。
介电性能.ppt
研究发现,当把罗息盐加热到24℃,电滞回线消失--铁电体具有自发极化现象,即电偶极矩在外电场作 用下可以转向,甚至反向。在同一电场强度下,极化 强度可以有双值。 存在电畴
电畴,铁电体自发极化时能量升高,状态不稳定,晶 体趋向于分成许多小区域,每个小区域电偶极子沿同 一方向,不同小区域的电偶极子方向不同,每个小区 域为电畴。
1.没有外电场时,晶体总电 矩为零。 2.加上外加电场时,沿电场 方向的畴扩展变大,与电场方 向的畴变小,因此,总的极化 强度随外电场增加而增加,表 现为图中的OA段。 3.随着电场强度的继续增大 ,晶体电畴都趋向于电场方向 ,类似于形成一个单畴,表现 为图中的OB段。 4.继续增加电场强度,极化 强度与电场强度呈线性关系, 表现为BC段。
压电性和热释电性是材料的重要性质: 1.一些无对称中心的物体可具有压电性 2.具有极轴和自发极化的晶体介质具有 热释电性。
铁电性
电滞回线,罗息盐( 酒石酸钾钠— NaKC4H4O6· 4H2O)的极 化强度随外加电场的 变化如右图所示。 铁电体,具有电滞回 线性质的晶体。(晶 体中并不含有铁)
由于电滞回线与铁磁体的磁滞回线相似,因此,把具 有这种晶体称为铁电体。
压电效应与晶体的对称性有关。 压电效应的本质是对晶体施加应力时,改变了晶体内 的电极化。因此电极化只能在不具有对称中心的晶体 内才可能发生。 只有结构上没有对称中心,才有可能产生压电效应。 而且必须是:电介质(或至少具有半导体性质);其 结构必须带正负电荷的质点--离子或离子团存在( 离子晶体或离子团组成的分子晶体) 常用:α-石英,钛酸钡,钛酸铅,钛酸钼等。
压电性产生的原因
石英晶体的化学组成是SiO2,3个Si原子和6个O原子 位于晶包的格点上。Si4+ , O2-。
电畴,铁电体自发极化时能量升高,状态不稳定,晶 体趋向于分成许多小区域,每个小区域电偶极子沿同 一方向,不同小区域的电偶极子方向不同,每个小区 域为电畴。
1.没有外电场时,晶体总电 矩为零。 2.加上外加电场时,沿电场 方向的畴扩展变大,与电场方 向的畴变小,因此,总的极化 强度随外电场增加而增加,表 现为图中的OA段。 3.随着电场强度的继续增大 ,晶体电畴都趋向于电场方向 ,类似于形成一个单畴,表现 为图中的OB段。 4.继续增加电场强度,极化 强度与电场强度呈线性关系, 表现为BC段。
压电性和热释电性是材料的重要性质: 1.一些无对称中心的物体可具有压电性 2.具有极轴和自发极化的晶体介质具有 热释电性。
铁电性
电滞回线,罗息盐( 酒石酸钾钠— NaKC4H4O6· 4H2O)的极 化强度随外加电场的 变化如右图所示。 铁电体,具有电滞回 线性质的晶体。(晶 体中并不含有铁)
由于电滞回线与铁磁体的磁滞回线相似,因此,把具 有这种晶体称为铁电体。
压电效应与晶体的对称性有关。 压电效应的本质是对晶体施加应力时,改变了晶体内 的电极化。因此电极化只能在不具有对称中心的晶体 内才可能发生。 只有结构上没有对称中心,才有可能产生压电效应。 而且必须是:电介质(或至少具有半导体性质);其 结构必须带正负电荷的质点--离子或离子团存在( 离子晶体或离子团组成的分子晶体) 常用:α-石英,钛酸钡,钛酸铅,钛酸钼等。
压电性产生的原因
石英晶体的化学组成是SiO2,3个Si原子和6个O原子 位于晶包的格点上。Si4+ , O2-。
介电和铁电材料
温度引起的自发极化的改变。自发极化的改变来自于离子的位移
为热释电系数;P s 为自发极化强度;T 为温度
晶体中存在热释电效应的前提 具有自发极化,即晶体结构的 某些方向正负电荷重心不重合。 不存在对称中心,且存在与其 他极化轴不同的唯一极化轴
石英晶体不产生热释电效应示意图
第七节 热释电材料-2
思考:把各种不同颜色的颜料混合得到什么颜色?
第二节 材料发色/光的机理-1
1、原子激发和分子振动 a.原子中电子的激发跃迁。 例:当燃烧物质中含Na原子,火 焰呈黄色:Na从激发态返回基态 时,发出波长为589.6nm、589.0nm 的黄光 应用:原子发射光谱、焰火 一般固体热辐射的颜色与温度关系:
第一节 光与固体的相互作用-2
电子的两种响应行为: 电子极化:电磁波对电子运动产生微扰 电子能态跃迁:电子吸收整个光子能量,使得状态显著改变 1、金属材料 金属吸收光子后 能态的变化 由于自由电子的存 在,金属对所有的 低频电磁波(从无 线电波到紫外光) 者是不透明的,只 有对高频电磁波X 射线和 γ 射线才透 明(为什么?)
S与材料性质、微结构及其温度有关
2、不同金属的温差电动势的叠加构成闭合回路的净的热电动势
+++++
热
塞贝克系数 S 本 质上就是热电势 系数
第八节 热电材料-7
一般半导体的热电 势系数最大
铂和铂铑合金 的热电势系数 温度参考点是 273K,0.1MPa
第八节 热电材料-8
三、热电材料的应用
1、测温:热电偶 接触电动势和温差电动势共同构成两种材料构成的闭合回路的电动势
无反演对称中心的石英晶体有压电效应
第六节 压电材料-2
介电和铁电基础及应用汇总.ppt.
K A Muller, Jpn J Appl Phys 24 (1985) 24-2, pp.89-93
Quantum Para- , Ferro-, and Random Electric Behaviors in Oxide Perovskites
铁电弛豫体 ferroelectric relaxor
居里温度 ( Tc,c)
当晶体从高温降温经过c时,要经过一个从 非铁电相(有时称顺电相)到铁电相的结构 相变。温度高于c时,晶体不具有铁电性, 温度低于c时,晶体呈现出铁电性。通常认 为晶体的铁电结构是由其顺电结构经过微小 畸变而得,所以铁电相的晶格对称性总是低 于顺电相的对称性。如果晶体存在两个或多 个铁电相时,只有顺电-铁电相变温度才称 为居里点;晶体从一个铁电相到另一个铁电 相的转变温度称为相变温度或过渡温度。
具有反演对称中心的晶体无压电效应
无反演对称中心的石英晶体有压电效应
第六节 压电材料-2
+
压电ቤተ መጻሕፍቲ ባይዱ必须是离子晶体或离子团组成的分子
第六节 压电材料-3
三、压电材料主要工程参数 1、机械品质因素 压电振子:具有一定取向和形状的压电晶片具有固有的机械谐振频率。 当外电场的频率与其一致时,由于逆压电效应会产生机械谐振。这种 晶片称压电振子。 压电振子在谐振子时,会产生内耗,造成机械能损失,反映这种机械能损 耗程度的参数为机械品质因数Qm,定义为:
对称中心
根据铁电体在非铁电相有无对称中心亦可 分为两类。一类铁电体在其顺电相的晶体 结构不具有对称中心,因而有压电效应。 如钽铌酸锂、罗息盐、KDP族晶体。另一类 铁电体,其顺电相的晶格结构具有对称中 心,因而不具有压电效应,如钛酸钡、铌 酸钾以及它们的同类型晶体。这种分类方 法便于铁电相变的热力学处理。
材料的介电性课件
频率对介电损耗的影响
总结词
随着频率的增加,介电损耗通常会增 加。
详细描述
介电损耗是指电场能量转换为热能并 耗散在材料中的过程。在高频电场下 ,由于电子和离子的运动速度限制, 能量转换更为频繁,导致介电损耗增 加。
频率对介电强度的影晌
要点一
总结词
介电强度与频率的关系较为复杂,但通常在高频下介电强 度会有所降低。
材料的介电性课件
• 介电性基本概念 • 介电性与物质结构 • 介电性与温度 • 介电性与频率 • 介电性与应用
01
介电性基本概念
介电常数
总结词
介电常数是衡量材料介电性能的重要参数,它表示了电场中材料对电能的保持 能力。
详细描述
介电常数的大小取决于材料的种类、温度、湿度和频率等条件。在相同的条件 下,介电常数越大,表示材料对电场的屏蔽作用越强,电能被保持得越紧密。
详细描述
介电性是指材料在电场作用下,内部电荷的分布和运动行为。分子极性是指分子内部正负电荷分布不均匀,导致 分子具有电偶极矩。极性分子在电场中会发生取向极化,即分子正负电荷中心发生相对位移,与电场方向一致。 这种取向极化会导致材料表现出较高的介电常数。
晶体结构与介电性
总结词
晶体结构的紧密程度和对称性对介电性产生影响,晶体中的离子或分子的相对位置和排列方式决定了 介电常数的大小。
详细描述
离子化合物是由正负离子通过离子键结合形成的化合物。在离子化合物中,正负离子的 相互作用较强,容易发生取向极化。当电场施加时,离子间的相互作用会导致正负离子 发生相对位移,与电场方向一致,从而表现出较高的介电常数。此外,离子化合物的介
电常数还与其离子半径、晶体结构和温度等因素有关。
03
材料物理材料的介电性能PPT课件
例如,H2O Hcl CO SO2
因无序排列对外不呈现电性。
电子云的 正电中心
电介质
极化面 电荷
–
+–
+
+ – + –
+
–
+–
+ – E0 + –
+
–
–
+ – + –
+–
+
–
+ –E E+ –
+–
+
无外场时,电偶极子杂乱无章的排列
3、极化机制
电子位移极化
无极分子(Nonpolar molecule) 在无外场作用下整个分子无电矩。
A、电容材料
I、存储电能
传统 电容 器
VS
电 池
超级电 容器
高能量密度 高功率密度 长循环寿命
超级电容器
• 超级电容器 (Supercapacitors),它兼有静电电容器和电池 特性,能提供比静电电容器更高的能量密度,比电池更高的功 率密度和更长的循环寿命。
A、电容材料
I、存储电能
A、电容材料
A、电容材料
I、存储电能
制备高性能的超级电容器有2个途径: A、是增大电极材料比表面积,从而增大双电层电容量; B、是提高电极材料的可逆法拉第反应的机率,从而提 高准电容容量。 实际应用中,这2种储能机理往往同时存在。
A、电容材料
I、存储电能
原理 种类 优点 缺点
研究热点
碳素材料
以双电层为主
活性炭(AC);活性炭纤维(CFA);碳纳米 管(CNTs);炭气凝胶(CAGs);石墨等
3、极化机制
离子位移极化
因无序排列对外不呈现电性。
电子云的 正电中心
电介质
极化面 电荷
–
+–
+
+ – + –
+
–
+–
+ – E0 + –
+
–
–
+ – + –
+–
+
–
+ –E E+ –
+–
+
无外场时,电偶极子杂乱无章的排列
3、极化机制
电子位移极化
无极分子(Nonpolar molecule) 在无外场作用下整个分子无电矩。
A、电容材料
I、存储电能
传统 电容 器
VS
电 池
超级电 容器
高能量密度 高功率密度 长循环寿命
超级电容器
• 超级电容器 (Supercapacitors),它兼有静电电容器和电池 特性,能提供比静电电容器更高的能量密度,比电池更高的功 率密度和更长的循环寿命。
A、电容材料
I、存储电能
A、电容材料
A、电容材料
I、存储电能
制备高性能的超级电容器有2个途径: A、是增大电极材料比表面积,从而增大双电层电容量; B、是提高电极材料的可逆法拉第反应的机率,从而提 高准电容容量。 实际应用中,这2种储能机理往往同时存在。
A、电容材料
I、存储电能
原理 种类 优点 缺点
研究热点
碳素材料
以双电层为主
活性炭(AC);活性炭纤维(CFA);碳纳米 管(CNTs);炭气凝胶(CAGs);石墨等
3、极化机制
离子位移极化
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
居里-外斯定律Curie-Weiss law
当温度高于居里点时,铁电体的介电常数与 温度的关系服从居里-外斯定律:
C 0
式中:C为居里-外斯常数;为绝对温度; 0为顺电居里温度,或称居里-外斯温度。
几种典型铁电体的性质
BaTiO3,钛酸钡 KDP,磷酸二氢钾 KH2PO4 TGS,三甘氨酸硫酸盐,(NH2CH2COOH)3 H2SO4 RS,酒石酸钾钠(罗息盐)NaKC4H4O64H2O
主要特征
电滞回线hysteresis loop 居里温度Curie temperature Tc
介电反常Dielectric anomalous
电滞回线 hysteresis loop
自发极化Ps 剩余极化Pr 矫顽电场Ec
Sawyer-Tower 电路
电滞回线表明,铁电体的极化强度与外电场 之间呈现非线性关系,而且极化强度随外电 场反向而反向。 极化强度反向是电畴反转的结果,所以电滞 回线表明铁电体中存在电畴。 所谓电畴就是铁电体中自发极化方向一致的 小区域,电畴与电畴之间的边界称为畴壁。 铁电晶体通常多电畴体,每个电畴中的自发 极化具有相同的方向,不同电畴中自发极化 强度的取向间存在着简单的关系。
介电反常:临界特征
铁电体的介电性质、弹性性质、光学性质和 热学性质等在居里点附近都要出现反常现象, 其中研究的最充分的是“介电反常”。因为 铁电体的介电性质是非线性的,介电常数随 外加电场的大小而变,所以一般用电滞回线 中在原点附近的斜率来代表铁电体的介电常 数,实际测量介电常数时外加电场很小。大 多数铁电体的介电常数在居里点附近具有很 大的数值,其数量级可达,104-105,此即铁 电体在临界温度的“介电反常”。
Note:
铁电体与铁磁体在其它许多性质上也具有相 应的平行类似性,“铁电体”之名即由此而 来,其实它的性质与“铁”毫无关系。在欧 洲(如法国、德国)常称“铁电体”为“薛 格涅特电性”(Seignett-electricity)或 “罗息尔电性”(Rochell-electricity)。 因为历史上铁电现象是首先于1920年在罗息 盐中发现的,而罗息盐是在1665年被法国药 剂师薛格涅特在罗息这个地方第一次制备出 来。
对称中心
根据铁电体在非铁电相有无对称中心亦可 分为两类。一类铁电体在其顺电相的晶体 结构不具有对称中心,因而有压电效应。 如钽铌酸锂、罗息盐、KDP族晶体。另一类 铁电体,其顺电相的晶格结构具有对称中 心,因而不具有压电效应,如钛酸钡、铌 酸钾以及它们的同类型晶体。这种分类方 法便于铁电相变的热力学处理。
成分和结构
根据晶体成分和结构特征,可把铁电晶体 分成两类。一类是含有氢键的晶体,如KDP 族、TGS、罗息盐等。这类晶体的特点是可 溶于水、力学性质软、居里点温度低、溶 解温度低,常称“软”铁电体。另一类是 双氧化物晶体,如钛酸钡、铌酸锂等晶体。 它们的特点是不溶于水、力学性质硬、居 里点温度高、溶解温度高,常称为“硬” 铁电体。
按居里-外斯常数的大小分类(参照图6-4), 这种分类法有利于研究铁电体的相变机制。 居里-外斯常数C 大约在105数量级的为第一 类。这类铁电体的微观相变机制属于位移型, 它主要包括钛酸钡等氧化物形铁电体。近来 发现的SbSI是这一类中的唯一例外,它不是 氧化物。
居里-外斯常数C 大约在103数量级的为第 二类,这类铁电体的微观相变机制属于有 序-无序型,主要包括KDP、TGS、罗息盐和 NaNO2等。C数量级大约在10的为第三类铁 电晶体,属于这一类的典型晶体是 (NH4)2Cd2(SO4)3。这类铁电体的相变机制 目前尚未详细研究,也无专门的名称。
单轴铁电体,多轴铁电体
根据铁电体的极化轴的多少分为两类。一 类是只能沿一个晶轴方向极化的铁电体, 如罗息盐以及其它酒石酸盐,磷酸二氢钾 型铁电体,硫酸铵以及氟铍酸铵等。另一 类是可以沿几个晶轴方向极化的铁电体 (在非铁电相时这些晶轴是等效的),如 钛酸钡、铌酸钾、钾铵铝矾等。这种分类 方法便于研究铁电畴。
居里温度 ( Tc,c)
当晶体从高温降温经过c时,要经过一个从 非铁电相(有时称顺电相)到铁电相的结构 相变。温度高于c时,晶体不具有铁电性, 温度低于c时,晶体呈现出铁电性。通常认 为晶体的铁电结构是由其顺电结构经过微小 畸变而得,所以铁电相的晶格对称性总是低 于顺电相的对称性。如果晶体存在两个或多 个铁电相时,只有顺电-铁电相变温度才称 为居里点;晶体从一个铁电相到另一个铁电 相的转变温度称为相变温度或过渡温度。
TGS晶体的自发极化强度与温度的关系
TGS晶体的起始介电常数与温度的关系
TGS的定压比热与温度的关系
罗息盐晶体的自发极化强度与温度的关系
罗息盐晶体的介电常数与温度的关系
RS晶体的弹性柔顺常数S44与温度的关系
铁电晶体的分类
至今已经发现的铁电晶体有一千多种,它 们广泛地分布于从立方晶系到单斜晶系的 10个点群中。它们的自发极化强度从104C/m2到1C/m2,它们的居里点有的低到261.5C(酒石酸铊锂),有的高于1500C 。表6-1给出了部分铁电晶体的分子式、居 里点和自发极化强度。对于晶格结构和特 性差异如此之大的各种铁电体,要对它们 做完善的统一分类是不容易的。到目前为 止,对铁电晶体的分类法有许多种,其中 常用的有以下几种
铁电性基础 Basics of Ferroelectrics
什么是铁电体, 开关特性,Sawyer-Tower 电路 铁电体主要特征 典型的铁电材料的主要物理性质 铁电材料的分类, 反铁电体
基本定义
具有自发极化强度(Ps) Spontaneous Polarization
自发极化强度能在外加电场下反转, Switchable Ps
Spontaneous polarization of BaTiO3
Dielectric constant of BaTiO3
钛酸钡晶体的自发畸变与温度的关系
KDP晶体的自发极化强度与温度的关系
KDP晶体的介电常数与温度的关系
KDP的定压比热与温度的关系
KDP晶体的压电常数d36与温度的关系