关于三等分任意角的方法探究
利用渐开线三等分任意角的方法和证明
![利用渐开线三等分任意角的方法和证明](https://img.taocdn.com/s3/m/d281ced133687e21ae45a961.png)
利用渐开线三等分任意角的方法和证明
要求:如果所示,以园心为A,半径为AC的园的渐开线作为辅助线,现在要把∠CAB三等分。
操作:利用渐开线三等分任意角∠CAB的尺规作图步骤:
1、以B点做切线,和渐开线相交于E;
2、在BE线段上做三等分点F,即BF=BE/3;
3、以A点为圆心,AF长为半径,相交渐开线于G;
4、以G点为圆心,BF长为半径,相交基圆于D;
5、连接AD,∠CAD即为∠CAB的三等分角。
证明:
1、先证明△BAF与△DAG全等
根据作图,BE是垂直于AB的圆上点B的切线,所
以∠FBA是直角,BF2=FA2-AB2,DG是垂直于AD的圆上点D的切线,所以∠ADG是直角,DG2=GA2-AD2,其中,AB=AD为园A的半径,且AF=AG,所
以BF=DG,△BAF与△DAG全等。
2、根据渐开线的性质,直线BE的长度=园弧BDC的长度,直线DG的长度 =园弧DC的长度,又因为DG=BF=BE/ 3,所以园弧DC的长度=园弧BDC的长度/3,因
此,∠CAD即为∠CAB的三等分角
总结:
伽罗瓦所证明的是,在不使用任何辅助线或用到除尺规外其他工具的前提下,不能在有限次操作内,使用尺规作图法三等分任意角,也就是说这三个限制只要有一个不成立,那么不能三等分任意角就不成立。
实际上只要引入渐开线,在有限次操作内,使用尺规作图法N等分任意角都是可行的,而且这种方法也同样可以解决化圆为方的问题。
这样,通过引入渐开线就一举解决的三大几何作图问题中的两个“不可能”的难题,并且渐开线在物理上是很容易得到的,它的本质是绕基圆展开的线,或者说大家常用的卷尺,就是渐开线所对应的物理实物。
角的三等分(尺规作图)
![角的三等分(尺规作图)](https://img.taocdn.com/s3/m/3ac16aa3f121dd36a22d8207.png)
1 . 以图 1中的 A O为轴 , 将 已三 等 分一 角 的 AA O C向
AA O B方 向旋转任意角度 O t ( 1 8 0 。> O t >0 。 ) , 连接 B C , 即形
数 学 学 习与 研 究 2 0 1 6 . 2 3
任意角被 三等分. O F 、 O G 为任意角的三等分线.
4 . 证 明图 2 、 图 3中的 ,点与 F 点、 G点与 G 点在 线段
. .
A B上分别为 同一 个 点 , 从 而 逆推 证 明在平 面 图二 中 , 用 尺
●
, ●
规作 图方法 三等分任意角的正确结论.
因图 3 AA B C中, A C、 A B 的 长 度 及 D、 E两 点 在 A C上 的
位置与图 2 AA B C中的对应 部分相等 ( 旋 转后未发生 变化 ) ,
个三角形 中 E F , B C、 DG / B C、 E F t 力B C、 D G t / B C .
7 . 连接 O F 、 O G, 所 得 LA O F( 1 )= F O G ( 2 )=
A F=A F , F点与 F 点在 A B上为 同一个点 , 同理 , A G= A G , G点与 G 点在 A B上为同一个点.
-G / O B( / _ 3 ) . O G、 O F为任意 LA O B三等分线 , 任意 角被三
解 题 技 巧 与 方 法
◎ 栾鹤 臣
( 黑 龙 江省 朗 乡林 区基 层 法 院 , 黑龙 江
铁力
1 5 2 5 1 9 )
【 摘 要】 用已 被 三等分 一角 的三角 形, 通 过平 行投 影 与
求解 的任 意角所在 的三角形重合 , 三等分任 意角.
关于三等分任意角尺规作图的方法步骤(作者:张爱献)
![关于三等分任意角尺规作图的方法步骤(作者:张爱献)](https://img.taocdn.com/s3/m/e1cf1f0fcf84b9d529ea7a1e.png)
关于三等分任意角尺规作图的方法步骤
作者:张爱献
(铁铁道部四局三处,1990年于山西沁水)
已知一任意角∠SOT用尺规作图法三等分该角的作图方法步骤
1、作角∠SOT。
2、以O为圆心以任意长为半径画弧,交∠SOT的两边于A、B两点得弧AB。
3、以A、B为圆心以大于1/2AB长为半径画弧交于一点,以O为起点过交点作射线,交弧AB于C点(简称作AB的平分线得C点)。
4、连AC并过C点作射线AC,在射线AC上截取AD=2AC。
5、将AD线段三等分(利用平行线截得成比例线段定理),得AH=1/3AD。
6、过H点作AD的垂线交弧AB于E点。
7、以A点为圆心,以AE长为半径画弧交AD线段于I点。
8、将HI线段九等分(利用平行线截得成比例线段定理),得HK=5/9HI。
9、过K点作AB线段的垂线交弧AB于F点。
10、以AF长为定长三等分弧AB,得三等分点F点和Y点。
11、以O点为起点过F点、Y点作射线,并去掉所有多余的辅助作图线。
说明:
1、作图中的第4条和第7条将线段三等分和9等分利用三角形中平行线截得成比例例线段定理进行等分,不再详细讲解等分步骤。
2、对于90度以下的锐角来说:因H点和I点近似重合,也可近似以E点作为等分点进行等分,(视分割精度要求而定)。
作者简介:张爱献(1964—)男河南省民权县高级工程师
4。
关于任意角的三等分问题
![关于任意角的三等分问题](https://img.taocdn.com/s3/m/76531376f242336c1eb95e85.png)
关于任意角的三等问题数学与计算机科学学院数学与应用数学专业105012007016 张成娇【摘要】本文立足于对高中数学《课标》选修系列3的《三等分角与数域扩充》中三等分角的探究,分别从三等分角的发展历史、证明、可三等分的特殊角及在数学教学中的课题研究等四个主要方面进行探究.【关键词】三等分角;数域;特殊角;课题研究;一、前言《三等分角与数域扩充》是高中数学新增加的内容,它所处的是《课标》中选修系列3,选修系列3的专题,主要是以通俗易懂的语言,深入浅出地介绍各专题的基本数学内容及其基本思想,用以开阔学生视野.三等分角、倍立方积、化圆为方、等分圆周等尺规作图问题,都是古希腊著名的作图问题,经过了长达几千年的时间才得以解决.解决这类问题的思想方法不仅在数学上,而且在人类思想史上都具有重大意义.本文从三等分角的发展历史、证明、可三等分的特殊角及在教学中的研究性学习与数学实验等四个主要方面进行说明.二、关于任意三等分角的历史在欧洲巴尔干半岛的南端,有一个濒临地中海的文明古国——希腊,古希腊人在几何学的形成和发展上作出了巨大的贡献,人们习惯上把希腊称为几何学的故乡.古希腊人鄙视任何不明确或模棱两可的东西.他们认为,没有任何东西能够像直线和圆那样,明确得使人无可挑剔!况且这两者的获得又最为容易:用一个边缘平直的工具,便能随心所欲的画出一条直线;而用一端固定,另一端旋转的工具,便能得到一个圆.所以古希腊人认为,几何作图只许用直尺和圆规,这是天经地义的.大约在公元前六至四世纪,古希腊人,仍然热衷于三个貌似简单的作图题:给你一把圆规和直尺(无标记),经过有限次的步骤,能否:①将一个给定角三等分?②作一个立方体使它的体积是已知立方体体积的两倍?③作一个正方形使它的面积等于已知圆的面积?以上三个问题分别称为三等分角问题、倍立方积问题和化圆为方问题,这就是几何作图的三大问题.其实这三个问题,于19世纪就被严格证明为不可能用直尺、圆规,经有限次的作图步骤来解决的问题. 自1637年笛卡尔(Rene Descartes ,1596 - 1650 )创立了解析几何学之后,尺规作图的可能性就有了判定准则. 1837 年万泽尔( Pierre hanrent Wantzel ,1814 - 1848)首先证明了“立方倍积”和“三等分任意角”不可能尺规作图. 1873 年埃尔米特(Charles Hennite ,1822 - 1901)证明了e 是超越数.1882年林德曼(Lindeman ,1852 - 1939) 证明了π也是超越数. 从而“变圆为方”的不可能性也得以确立.1895年克莱因( Felix Klein ,1849- 1925) 总结了前人的研究成果,给出三大几何问题不可能用尺规作图的简明证法,从而彻底地解决了这三个古老的问题.三、用数域扩充的方法证明对于任意角不能三等分证明有许多的方法,如:1801年数学家高斯的证明方法:作圆的n 等分,当n 满足如下特征j1k km 1jn=2p p 其中,m 为非负整数,1p 、2p 、j p 为互不相同的费马素数(前5个费马素数为3,5,17,257,65537),i k 01i j = 或(=1、2、、)才可三等分角360n︒.在此主要是考虑到中学生的数学知识水平以及课程标准中对数域的要求,因而用采用数域扩充的方法来证明.1.预备知识(1)尺规作图的公法:①从任意一点到另一点,可作一直线;②任意有限长的线段,可顺着延长;③ 由一已知点及定距离,可作一个圆(说明的是圆规的用法).(2)可构作的概念: 经过平面上的两点,用直尺可以画一直线;经过一点用圆规可以画一个半径等于给定线段的圆,直线与直线、直线与圆和圆与圆都可能相交,这样的交点称为是用尺规可以构作的点,若交点在数轴上,也称对应的长度(实数)是可以构作的. (3)相关定理、概念定理1 设F 是R 的一个子域,则实数a 可由F 构作的充要条件是存在R 的子域链,使得0F F =,a F ∈ 且i i+1[F :F ]=2, i=12n 、、、. 推论2 设F 是R 的一个子域, a R ∈,如果a 可由F 构作,则必存在整数r ≥0,使得[F(a):F]=2r.定理3 设θ是一个角,另cos a θ=,则角θ可用尺规三等分的充要条件是多项式3()32()[]f x x x a Q a x =--∈,在()[]Q a x 中是可约的.2.证明证: 设θ是一个经过原点以x 轴为一条边的角,过原点作一半径为1的圆,圆与角的另一条边的交点的横坐标为cos θ∴ 角θ可构作的充要条件是实数cos θ可构作令3θϕ=,cos a θ=,2cos b ϕ=,则问题化为能否由()Q a 构作b有三倍角公式: 3cos 4cos 3cos θϕϕ=-∴ b 是多项式3()32()[]f x x x a Q a x =--∈的一个根假设()f x 在()[]Q a x 中可约,则由于b 是()f x 的根,而()f x 是3次的,所以()b Q a ∈或是()Q a 上的一个二次不可约多项式的根.若是前者,显然b 可以由()Q a 构作;若是后者, 则有[()():()]2Q a b Q a =,于是b 是可以由()Q a 构作的∴ 当()f x 在()[]Q a x 中可约时, b 可以由()Q a 构作的,从而θ可构作假设()f x 在()[]Q a x 中不可约,则()f x 就是b 在()Q a 上的极小多项式,从而有[()():()]3Q a b Q a =∴ b 不可由()Q a 构作,即θ不可构作 ∴ 三等分任意角是不可能的3.举例说明例如,角3π是不能用尺规三等分的,因为此时12a =,3()31f x x x =--在[]Q x 中不可约四、可三等分的特殊角用尺规将三等分一个任意角是不可能的, 但对于一些特殊角则可以利用尺规三等分,例说如下:1. 180︒可以三等分简析:根据上述的证明过程,因为此时cos 1a θ==-,32()32(1)(2)f x x x x x x =-+=-+-在[]Q x 中可约,从而可三等分.这时把一平角三等分,每一份的度数是60︒而等边三角形的每一内角是60︒,故可以利用作等边三角形的方法把平角三等分.作法:(1)如图1,A O B ∠为平角,分别在角的两边O A 、O B 上取两点C D 、. (2)分别以O O C D 、为边,作两个等边三角形(E C O FD O ∆∆、).则O E O F 、为平角A O B ∠的三等分线,即O E O F 、把平角A O B ∠三等分.2. 45︒角三等分简析: 因为把一个45︒的角三等分,每一份是15︒,而15︒恰好是30︒的一半,或者是604515︒-︒=︒,故仍可采用先作等边三角形的方法把45︒的角三等分.作法:(1)如图2, 45A O B ∠=︒.在O A 上任取一点C,以O C 为边,在A O B ∠内部作等边三角形O C D ∆.(2)作D A O ∠的平分线OE. (3)作E A O ∠的平分线OF. 则OE 、OF 把45︒的A O B ∠三等分3. 90︒角三等分简析: 根据上述的证明过程,因为此时cos 0a θ==, 32()3(3)f x x x x x =-=-在[]Q x 中可约,从而可三等分.此时把一直角三等分,每一份的度数是30︒,而906030︒-︒=︒,可用作等边三角形的方法把直角三等分.4. 还有135︒、36︒等可转化为形如180n ︒(n不为3的倍数, *n N∈)的角都可以三等分.此为俄国数学家罗巴切夫斯基经过多年努力得到的结论.因此根据这个结论也可以得到60︒、120︒等是不可三等分的.五、在高中数学教学中的研究课题现今的教育要求丰富学生的学习方式,改进学生的学习方法是高中数学追求的基本理念.独立自主、自主探索、动手实践、合作交流等都是学习数学的重要方式.随着三等分角这部分内容进入高中数学课程,这使得三等分角成为一个很好的研究课题.下面简述两个.1. 在已有的数学知识水平上开展研究性学习比如参考文献[5]中对三等分角的研究,该文中作者在学生学了二倍角公式并逆用二倍角公式推得半角公式后,让学生推导三倍角公式.利用三倍角公式,从特殊的60︒角的三等分角20︒的可作性来尝试三等分角的问题.作者将课题分为4步:探索1 能否用尺规三等分60︒角?探索2 在0︒~180︒的几个特殊角中有哪些是可三等分?哪些是不可三等分?探索3 探索0︒~180︒的几个特殊角中可三等分角与不可三等分角的特点,能得出什么结论?探索4 证明形如180()kk N︒∈形式的角中,若k是3的倍数,则不可以三等分;否则就可以三等分.通过对三等分角的研究,让学生体会了其中蕴含的数学思想方法,从一般到特殊,再从特殊到一般,提高了分析问题和解决问题的能力.同时通过以上四个探索,可使同学们感到“三等分角”问题不再是那么的神秘、高不可攀,更不会再在三等分任意角的问题上作徒劳的努力.2. 将“三等分角问题”与数学实验相结合参考文献[6]一文中,作者试着从三等分角问题出发,在前人研究的基础上,结合自己的想法,设计了一个三等分角演示仪. 作者通过五个步骤:步骤1 研读课标,确定研究题目;步骤2搜寻课题的有关资料和研究现状;步骤3 确定研究题目的基本原理;步骤4 认真分析并解决遇到的问题;步骤5 动手操作设计三等分角演示仪;在进行实验的过程中,不仅了解了三等分角的相关知识,并将三等分角应用于数学实验中,激发了学生的学习兴趣和强烈的动手制作愿望,而且能使学生在学会知识的同时,掌握分析问题,解决问题的方法.既促进了学生自身的发展,也带动了数学实验的发展.六、结束语任意角的三等分问题是几何作图三大问题之一,并且在课改中,《三等分角与数域扩充》成为了高中数学选修系列3的一部分内容.选修系列3的内容相对新颖前沿,反映了某些重要的数学思想,并且具有一定的挑战性.可见对该问题的学习有利于扩展学生的数学视野,提高学生对数学的科学价值,文化价值,应用价值的认识,并且在培养学生的思维能力,数学素养等方面有着重要作用.参考文献[1]王忠华.用尺规作图不可能三等分任意角[J].数学通讯,2001年第19期[2]曹亮吉.三等分任意角可能吗?[J].科学月刊,1978年第4期[3王美香.高中《三等分角与属于扩充》的数学探讨[J].中学数学杂志,2009年第7期[4]侯国兴.尺规作图三等分角[J].今日中学生,上旬版,2007年第12期[5]楼许静.我把嫦娥请下凡——一堂三等分角的研究课[J].高中数学教与学,2008年第6期[6]田晓娟.从“三等分角问题”浅谈数学实验[J].科学教育,2008年第3期[7]郭熙汉.数学知识探源[M].武汉:湖北教育出版社,1999[8]唐忠明.抽象代数基础[M].北京:高等教育出版社,2005。
任意锐角的三等分
![任意锐角的三等分](https://img.taocdn.com/s3/m/154430e5b90d6c85ed3ac62f.png)
任意锐角的三等分【摘要】:任意角的三等分问题是几何学的三大难题之一,数学家们认为用尺规三等分任意角是不可能的.本文试图用初等几何知识证明任意角是可以三等分的.角有锐角和钝角之分,而钝角都可以等分成锐角,所以锐角的等分问题如果得到解决,则钝角和圆(360°)的等分问题也就会得到解决.所以,本文先从锐角的等分开始进行了研究.【关键词】三等分;圆周角;圆心角;弦切角任意角的三等分问题是几何学的三大难题之一,两千八百年来,数学家们都认为用尺规三等分任意角是不可能的(特殊角除外),认为这是一个“作图不能”的问题.近百年来,数学界的老前辈们还是认为只要是任意角,仅用尺规三等分是不可能的.这些前辈们是用解析几何作解的(即用公式做题).为什么用解析几何作解呢?是因为“惊讶之处是初等几何没能对此问题提供解答” ,所以“我们必须求助于代数和高等分析”(引自:高等教育出版社出版,丘成桐主编《初等几何的著名问题》2005 年版第2 页).实际上,如果用上述数学方法解几何问题,有些问题只能以近似的方式来解决•比如,以a为直径作一个圆,会容易做出来;但如果是计算一下周长S,这时候问题就来了,因为我们要使用n值来计算,所以计算出来的周长S计只能是S~ S计且S z S计,或表示为S=S计土8 , 3可以很小,但是毕竟是个“差”呀.再比如,1 m=3 市尺,那么1尺等于多少厘米呢?计算不出来,只能表示为:1市尺=33 cm,而这是一个近似值.计算不出来,如何分开呢?但用几何的方法就分开了.所以用几何的方法解决几何问题,才是真正的可行之道.本文试图用初等几何知识证明任意角是可以三等分的. 在作图之前,首先要明确一下任意角的概念:任意角是指0° < a < 360 °,不包含负角和超过360 °的角.另外,角有锐角和钝角之分,而钝角都可以等分成锐角,所以锐角的等分问题如果得到解决,则钝角和圆(360°)的等分问题也就会得到解决.所以我先从锐角的等分开始进行了研究.下面即将以初等几何知识以及纯几何的手工操作,通过尺规作图来三等分任意锐角.题给条件:0< a = / xOy<90 °(参照图1).求解:三等分a .一、作图(参照图2)(1 )在Ox 边上任取一点A ,然后在Ox 边上取OA=AA2=A2A3.(2)以O 为圆心,以OA 为半径,作AB ,此时OA=OB同圆半径),以O 为圆心,以OA2 为半径,作A2B2 ,此时OA2=OB2 (同圆半径),以O 为圆心,以OA3 为半径,作A3B3 ,此时OA3=OB3 (同圆半径).(3)作/ a的平分线OP.①以A3 为圆心,以OA3 为半径作弧lA ;②以B3 为圆心,以OA3 为半径作弧lB ,交lA 于P;③连接OP,交AB于C,交A2B2于C2,交A3B3于C3,此时,/ xOP= / POy= / AOC= / COB= / A2OC2= / C2OB2= / A3OC3= / C3OB3.•••同一圆内等角对等弧,••• AC=CB,A2C2=C2B2,A3C3=C3B3.(4)连接弦A2C2,在C3B3上按照取弦A2C2的长度取弦A3W3=V3B3=A2C2 ,连接A3W3 ,V3B3.(5)连接OW3,OV3,此时,OA3=OW3=OC3=OV3=OB3 (同圆半径),贝y OW3 , OV3 三等分/ a ,即/ A3OW3= / W3OV3= /V3OB3.二、证明1.作辅助图(参照图3).( 1)连接A3V3 交OW3 于KW.(2)以OKW为直径作O R.①以OKW 为半径,以O为圆心作弧101 ,102,以OKW 为半径,以KW为圆心作弧IK1交101于M,作弧IK2交102 于N.②连接MN交OKW 于R,则MN是OKW 的垂直平分线,R 是垂足.••• 0W3是OKW 所在的直线段,•••0W3丄MN.③以R为圆心,以RO (=RKW )为半径,作O R,交MN 于m, n,交0A3 于O, a,交0W3 于0, KW,交0V3 于0, E,交0B3 于O, b,交A3V3 于KW , KW 是A3V3 与O R 的唯一公共点.2.证明.(1)根据以上所作辅助图(参照图3)可知:O R交A3V3于KW,即KW 是A3V3与O R的唯一公共点.根据圆的切线定义:如果一条直线与一个圆只有一个公共点,则这条直线叫作这个圆的切线,该公共点叫作切点, 可以得出结论:A3V3是O R的一条切线;另根据圆的切线的性质定理:圆的切线垂直于过切点的半径,可以得出结论:A3V3丄RKW. v 0W3是RKW 所在的直?段,••• A3V3丄0W3 , KW 是垂足.(2)在Rt △ OKWA3 与Rt △ OKWV3 中,•/ A3V3 丄OW3 , •••/ OKWA3= / OKWV3=90 ° ,v 同圆半径,OA3=OV3 , OKW 为共有直角边,根据HL定理,Rt△ OKWA3 ◎ Rt△ OKWV3.〔•对应边相等,. A3KW=KWV3.(3)在Rt△ W3KWA3 与Rt△ W3KWV3 中,T A3V3 丄OW3 ,•••/ W3KWA3= / W3KWV3=90。
三等分角
![三等分角](https://img.taocdn.com/s3/m/f9b40418b7360b4c2e3f644c.png)
题目:三等分任意角地点:北京师大二附中 主讲人:徐超主持人:我们从上午九点四十到下午三点钟结束,在整个报告过程中,因为我了解到今天参加报告的同学大部分是高一的,在听报告过程中有些地方会觉得稍稍困难些,但是我们学数学的就是这样的,我们会经历些我们感觉会比较困难的过程,我们只要坚持下去,就会在数学中发现许多乐趣,发现数学内在让我们感动的东西,希望大家能够珍惜我们今天讲座的机会,认真的体会,在听的过程中会有些问题留下来,将来通过大家的努力,一定能很好的解决。
下面我们就有请徐超先生。
徐超:三等分任意角教科书上写清楚是不可能的,我们今天给出严格的证明是不可能的,而且这个证明是高一学生所能接受的。
在过去在没有找到这个证明之前所有人都认为是大学二年级学完所谓的抽象代数这门课后才能理解为什么是不可能的,实际这个证明可以很初等的给出来,为什么三等分角这件事情惹了这么多麻烦呢?我举一个例子,我是1956年到的中科院数学研究所,这个时候,不断的有各个地方的人写信来,说我解决了三等分角,这种信每个月都有一沓,作者当初给的证明实际上是错的,实际上他要证明三等分任意角都可以,他以为用平面几何的知识就可以解决,但实际上很难,这个问题偶尔到现在还能收到所谓的人民来信说他解决了三等分角,原因在哪里?就是一直没有一个初等证明使得能说服他,现在讲的证明是从分析三等分角究竟是怎么回事开始的。
那么我从历史讲起。
三等分角是什么意思呢?首先我们先讲尺规作图。
先下定义,尺规作图就是用不带刻度的尺画直线,用不带度量的圆规画圆,用的这两个东西不能量大小,不能够我给你60度的角,量一量画出两条线,这是不允许的,所以说一般的直尺和圆规不带刻度有限次作图,给它画出来。
什么叫作图,举个例子给了一条直线BB ’和线外一点A ,作它的平行线,这就叫作图。
那么怎么作呢?以B 为圆心以r (r 可以为任意长度)为半径画圆,连接BA 并延长至C ,再以A 为圆心r 为半径画圆,用圆规在A 点作'CAA ∠,令'2CAA ∠=∠,使21∠=∠,利用同位角相等可以知道'//'AA BB 。
尺规三等分任意角画法和证明
![尺规三等分任意角画法和证明](https://img.taocdn.com/s3/m/506e66f7910ef12d2af9e7f3.png)
〈〈用直尺和圆规把一个任意角分成三个相等的小角的画法和证明〉〉(1)在图[1]中,圆心角AOB,圆心是O,边OA=OB是半径,弧AB。
(2)在AB弧上任意截取一段AC弧,再任意截取一段BD弧,令BD弧=2AC 弧,剩余一段CD弧;剩余CD弧=AB弧-AC弧-BD弧=AB弧-3AC弧,(BD弧=2AC弧),请看图[1]。
(3)连C点和D点,CD线段为剩余弧CD的弦;因为剩余弧CD很短与CD 弦重合成一段线段,所以,我们只要把CD弦三等分,剩余弧CD也就被三等分了,请看图[1]。
(4)大家知道CD弦是一段线段,我们用“平行线等分线段定理”把CD弦等分成三段:CH=HK=KD,因为,剩余弧CD很短与CD弦重合成一段线段,所以,CD弧也被同时三等分为:CH弧=HK弧=KD弧,请看图[1],H点和K点便是CD 弦上的两个三等分点同时也是剩余弧CD上的两个三等分点,所以,剩余弧CD=3CH 弧(CH弧=HK弧=KD弧),请看图[1]。
(5)因为,AB弧=AC弧+BD弧+CD弧=3AC弧+3CH弧(BD弧=2AC弧,剩余弧CD=3CH弧),所以,AB弧=3(AC弧+CH弧)=3AH弧,请看图[1]。
所以,1/3AB弧=AH弧,请看图[1],所以,H点是AB弧上的一个三等分点,请看图[1]。
(6)以H点为原点、以HA弧长为标准长在BH弧上截取一段弧HM,截点为M,则M点和H点便是AB弧上的两个三等分点,所以,AH弧=HM弧=MB弧=1/3AB弧,请看图[1]。
(7)连OH和OM,OH和OM把圆心角AOB分成三个小圆心角:小圆心角AOH、小圆心角HOM和小圆心角MOB,请看图[1]。
(8)在圆心角AOB中,依据圆心角、弧、弦的关系定理:因为:小圆心角AOH对应AH弧,小圆心角HOM对应HM弧,小圆心角MOB对应MB弧,AH弧=HM弧=MB弧=1/3AB弧,所以:小圆心角AOH=小圆心角HOM=小圆心角MOB=1/3圆心角AOB(依据圆心角、弧、弦的关系定理,等弧对等角),请看图[1],所以,任意角AOB被尺规三等分了。
三等分任意角的作法探讨
![三等分任意角的作法探讨](https://img.taocdn.com/s3/m/def0cf357275a417866fb84ae45c3b3567ecdd8f.png)
㊀㊀㊀㊀㊀140数学学习与研究㊀2020 10三等分任意角的作法探讨三等分任意角的作法探讨Һ蔡长青㊀(咸丰县中等职业技术学校,湖北㊀咸丰㊀445600)㊀㊀ʌ摘要ɔ 三等分角 是古希腊几何中尺规作图的名题,和化圆为方㊁倍立方问题并列为古代数学的三大难题,2400多年以来,不少学者进行了无数次尝试,都未能找到好的解决方法,笔者经过40余载的不断探索,吸取前人的数学智慧,突破传统思维,找到简单易行的求作三等分角的方法,该方法可以广泛应用到几何教学或工程技术领域.ʌ关键词ɔ三等分;任意角;作法;证明1979年的九月,进入咸丰一中学习的第一堂数学课上,满头银发的数学老师文渊不但满怀激情地介绍了高中三年数学学习的目标和学习方法,还向大家抛出了古代数学的三大难题,即用尺规作图法求作三等分任意角㊁化圆为方以及倍立方问题,从此笔者与三等分角问题结下了不解之缘.三等分角是号称古希腊三大几何问题之一,该问题的完整叙述为:只用圆规及一把没有刻度的直尺将一个给定角三等分.该问题自公元前480年以来,不少学者进行了长期的探索,甚至不少著名数学家从不同角度论证了用尺规作图法不可能解决 三等分角 问题,本着吸取前人数学智慧㊁传承文明㊁尊重科学的治学态度,本人就解决使用 尺规作图法 三等分任意角问题进行了长期的探索,现将偶有所得分享给大家,希望起到抛砖引玉的作用.一㊁关于三等分任意角的历史溯源1.三等分任意角问题产生的历史背景根据历史记载,公元前480年,古希腊和当时的波斯国在当时的雅典郊外萨尼克湾展开了一场惨烈的海战,古希腊大获全胜,从此雅典作为古希腊的政治㊁文化㊁经济中心逐渐走向繁荣.社会分工逐渐细化,一部分人从繁重的体力劳动中解放出来,出现了专门传授学问㊁研究学问的辩论师或称智者,也就是现代的职业教师.这些人为古希腊文明做出了巨大的贡献,其中在几何学上亦留下了三大难题供后人进行研究和探讨:给你一把圆规和直尺(无刻度),经过有限次的步骤,能否:①对任意角作三等分?②作已知立方体的二倍体积的立方体图形?③作与已给的圆面积相等的正方形?以上三个问题分别称为三等分角问题㊁倍立方问题和化圆为方问题,也称古希腊三大几何难题,这些问题看起来很简单,但是,2400多年来,不少数学家或数学爱好者为了解决这三个问题,耗费了许多心血,都没有取得成功.2.三等分任意角可能无法用 尺规作图法 求解1637年笛卡儿(ReneDescartes,1596 1650)创立了解析几何学后,有数学家依据解析几何,认为找到了通过尺规作图法不能解决三等分任意角问题的依据.1837年法国数学家旺策尔(PierreLaurentWantzel,1814 1848)首先证明了 倍立方 和 三等分任意角 不可能用尺规作图解决.1873年埃尔米特(CharlesHermite,1822 1901)证明了e是超越数;1882年德国数学家林德曼(Lindemann,1852 1939)证明了π也是超越数,从而 变圆为方 的不可能性也得以确立.1965年以前,数学家华罗庚曾写文章告诫青少年 用直尺和圆规三等分任意角是不可能的,不要为这道难题花费精力.2001年华中师范大学数学系的王中华亦在‘数学通讯“上发文并证明使用尺规作图 三等分任意角 是不可能的.二㊁ 三等分任意角 仍有研究的价值1.高中数学教学的需要为了加强普通高中的数学教学,在新版的‘普通高中数学课程标准“中增加了 三等分角与数域扩充 问题,让三等分角问题真正进入我国高中数学教学领域,有利于扩展学生的数学视野,激发学生的学习兴趣,提高学生解决问题㊁分析问题的能力.2.可以促进人的数学思维的发展古希腊的三大几何难题,几千年来尽管耗费了历代数学家不少的心血,但是在解决这类问题的过程中,不仅促进了数学思想的发展,而且在人类其他思想史上亦具有重大意义.三㊁预备知识1. 尺规作图法关于尺规作图法,以科学出版社出版的‘数学大辞典“中的规定为主要参考依据:尺规作图法又称初等几何作图法或欧几里得作图法.仅用直尺(无刻度)和圆规(两脚足够长)两种工具按照下述步骤进行有限次的组合来完成的几何作图方法.(1)过两点可画一条直线(或一条射线),连接两点成一线段.(2)延长线段成一条直线或射线.(3)以定点为圆心定长为半径可画圆或圆弧.2.初等几何知识本文涉及的初等几何知识,我们还是沿用科学出版社出版的‘数学大辞典“中的相关论述:(1)关于角的分类平角:两边组成一条直线的角,或一条射线在平面内绕㊀㊀㊀141㊀数学学习与研究㊀2020 10着它的端点旋转,转到和原来位置构成一条直线时所形成的角.1平角=180ʎ.直角:平角的一半,一直角=90ʎ.锐角:大于0ʎ小于直角的角.钝角:大于直角小于平角的角.(2)关于三角形和圆的几个基本知识等腰三角形的定义及性质:两边相等的三角形是等腰三角形,等腰三角形的两个底角相等.三角形外角定理:三角形的外角等于和它不相邻的两个内角之和.圆心角定理:圆心角的度数等于它所对的弧的度数.圆周角定理:圆周角的度数等于它所对的弧的度数的一半.显然,同弧所对的圆心角等于圆周角的2倍.3.关于图学的几点相关知识的说明(1)图学是几何学与行为科学有机结合的综合性学科.图学一开始就是由理论几何学与行为科学有机构成的.从平面几何开始,发展到画法几何㊁工程图㊁地形图等,人们在制图过程中总要依据几何原理,经过人的科学行为(制图)表达完成各类制图工作.(2)图学是理论与实践相结合的科学,图学允许可逆.无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的,行为本身就是四维的运动(时间维㊁空间维),允许可逆自然是在四维时空中进行的.四㊁三等分任意角的作图方法以锐角为例,使用 尺规作图法 三等分任意角的作图步骤如下:第1步:给定任意角øAOB.第2步:作边OA的反向延长线OC.第3步:以O点为圆心,R为半径长画☉O,圆弧与边OB交于F点.第4步:在☉O上,以E点为圆心,R为半径长画☉E,☉E与OA的反向延长线交于D点,配合使用圆规和直尺,确保圆心E与D,F三点在同一直线上.第5步:连接OE,最终形成如图所示的几何图形.需要特别说明的是在作图过程中,第4步圆心的确认很关键,有可能需要 多次逼近 才能确定.五㊁三等分任意角的证明通过以下两种方法分别证明前面的作图方法可以三等分任意角.方法一:在☉E中,因为øODF为圆周角,øOEF为圆心角所以øOEF=2øODF.因为OE=OF,所以әEOF为等腰三角形,øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.方法二:在әDEO中,因为DE=OE,所以әDEO为等腰三角形,所以øODE=øEOD,øOEF=2øODE,因为OE=OF,所以әEOF为等腰三角形,所以øEFO=øOEF=2øODF,øAOB=øODF+øEFO=3øODF,故有øODF=13øAOB.六㊁结㊀论通过以上的作图和证明,我们有理由认为对 三等分任意角 的作法有革命性的突破.1.作图过程中严格遵守 尺规作图法 的要求,且在有限的步骤内准确三等分角.2.通过初等几何理论对所作图形进行了严密的证明,结果正确.3.整个作图过程符合图学是理论与实践相结合的科学观点:图学允许可逆,无论 同时行为 还是 第三度行为 ,都是在允许行为可逆基础上进行的.路曼曼其修远兮,吾将上下而求索.ʌ参考文献ɔ[1]娄桐城.中学数学词典[M].北京:知识出版社,1984.[2]王元.数学大辞典[M].北京:科学出版社,2010.[3]熙国维.运动论[M].北京:海洋出版社,1993.[4]R.柯良(RichardCourant),H.罗宾(HertbertRobbins).什么是数学[M].左平,张饴慈译.上海:复旦大学出版社,2008.[5]欧几里得.几何原本[M].邹忌译.重庆:重庆出版社,2018.[6](日)远山启著.吕砚山㊁李诵雪㊁马杰㊁莫德举译著.数学与生活[M].北京:人民邮电出版社,2014.[7]王中华.用尺规作图不可能三等分任意角[J].数学通讯,2001(19).48.。
三等分角的问题
![三等分角的问题](https://img.taocdn.com/s3/m/77cac5dad15abe23482f4d49.png)
三等分角的问题一、研究动机:古代数学几何作图有三大难题,一是化圆为方,一是倍立方体,另一个则是三等分角,其中又以三等分角看起来最为容易。
可是这三大难题难倒了数学家好几个世纪,现代数学证明了用几何原本所规定的标尺作图法,是无法解出这三道难题,但是如果不限于标尺作图的话,是否可以把这三道问题解决呢?于是便开始了我们的研究路程。
二、研究目的:在这三道问题中,我们选择三等分角来进行研究。
三等分角顾名思义是把一个任意角分成三个相等的角,虽然有些特殊角很容易,比如直角,但其他的角度就无法适用。
现在我们利用所有可以采用的工具来作图,以便把我们想要的角分成三个等分,其中包括我们常用可以量刻度的直尺和圆规。
三、研究设备器材:直尺、圆规、三角板、木板、雕刻刀四、研究过程或方法:我们分三个方向来进行:1.拜近来科技的发达,透过因特网,寻找所有别人已经发现三等分角的方法,再重新整理一遍。
2.利用学校及附近的图书馆,找寻有关于三等分角的几何书籍,以资参考。
3.将国中所教到的几何观念以及所找到的数据,做出三等分角的方法。
最后将所有找到以及做出的八种方法详细整理与证明。
五、研究结果:这次研究总共找出了八种将一个角分成三分之一的方法,兹将这八种方法详列如后:∫是任意數1.标度尺(一)在一根直尺上,标出P、R两点,两点间距离是2∫,在∠AOB的一边上截取一点B,使OB =2∫,再从OB的中点C做两条直线,一线垂直OA,另一线则平行OA,移动尺使O 点在尺的边上,而P 、R 两点分别在所做的垂直及并行线上,沿着尺画线,就可把角AOB 三等分。
证明:以M 表PR 的中点,则∵∠PCR 为直角 ∴OC MC MR PM ====∫ ∵CR 平行OA∴∠AOR =∠MRC = ∠MCR = 21∠PMC =21∠MOC ∴∠AOR =31∠AOB2.标度尺(二)做一半圆,圆心O ,A 、B 在圆周上,使得∠AOB 为圆心角,在直尺上标记P 、R 两点,距离与半径等长,现移动直尺,让P 、R 分别落在BO 及圆周上,而A 在直尺边上,则∠RPO =31∠AOB证明:A BOC PRMBAPRO∠RPO = ∠ROP =21∠ARO = 21∠RAO 又∠AOB = ∠RAO + ∠RPO∴ ∠RPO =31∠AOB3.三连器利用上面的方法可做出种简单的三等分角的工具,如下图:OE 、OF 、CD 代表三根木条,OE = OF ,F 可沿着CD 中的沟槽移动。
角的三等分
![角的三等分](https://img.taocdn.com/s3/m/500bd8d650e2524de5187e24.png)
角的三等分历史
• 公元前4世纪,托勒密一世定都亚历山大城。他凭借优越的地理环境, 发展海上贸易和手工艺,奖励学术。他建造了规模宏大的“艺神之 宫”,作为学术研究和教学中心;他又建造了著名的亚历山大图书馆, 藏书75万卷。托勒密一世深深懂得发展科学文化的重要意义,他邀请 著名学者到亚历山大城,当时许多著名的希腊数学家都来到了这个城 市。亚历山大城郊有一座圆形的别墅,里面住着一位公主。圆形别墅 中间有一条河,公主的居室正好建立在圆心处。别墅南北围墙各开了 一个门,河上建了一座桥,桥的位置和南北门位置恰好在一条直线上。 国王每天赏赐的物品,从北门运进,先放到南门处的仓库,然后公主 再派人从南门取回居室。一天,公主问侍从:“从北门到我的卧室, 和从北门到桥,哪一段路更远?”侍从不知道,赶紧去测量,结果是 两段路一样远的。过了几年,公主的妹妹小公主长大了,国王也要为 她修建一座别墅。小公主提出她的别墅要修的像姐姐的别墅那样,有 河,有桥,有南北门。国王满口答应,小公主的别墅很快就动工了, 当把南门建立好,要确定桥和北门的位置时,却出现了一个问题:怎 样才能使得北门到卧室和北门到桥的距离一样远呢?
谢谢观看!
研 究 步 骤
而三等分则不然。弦的三等分并不 是弧的三等分(如图)
弧的三等分与线段的三等分点的连线应该不是平行的。于是我们又开始 研究弧、弦与圆心角的关系。可是他们之间并不存在,或者只有很复杂 的关系,所以并不能通过弦与圆心角来画出弧的三等分。 但是我们又想到了π。π约等于三,所以在圆上,可以粗略地把圆周三 等分(如图)
A B
这样,只要求出所求角度与360°的关系, 再把圆规的半径缩小到同一倍数,也能近似 的三等分一个角。但是,这个方法受许多限 制,比如在缩小倍数时不能保证完全精确, 使本已近似的结果误差更大。有时倍数也不 能太复杂。所以,只有特殊角的三等分可以 用这种办法的。
尺规三平分角,角三等分
![尺规三平分角,角三等分](https://img.taocdn.com/s3/m/6ff20e85680203d8ce2f2424.png)
三等分角、三平分角1、废话部分先说明我没有破解,但是有很多很接近的作图方法,在这里都写出来,希望接下来有共同兴趣的人可以少一点的弯路。
因为这方面的书籍和讯息都很少,我的想法不知道会不会和以前的人的想法重合 另一个就是,利用双曲线的这种方法可以解决任意角度(︒︒360~0),相比我知道的几种工具解决三等分的办法是便捷了许多另外就是由这个三等分衍生出来的好多概念在以后应该会有价值,就不知道是多少年后, 最后对于想深入研究的人我奉劝一句|“放弃吧,很费脑细胞还有时间的”2、双曲线的由来取任意一个角度每一个角度,以顶点为圆心,以任意长度画圆,被这个角度的两条边截出一段弧这段弧会根据圆半径的长短,弧长会相应变化,但是圆心角是不会变化的我们只要三等分弧AB ,就能等到AOB ∠的三平分角,这点不证明把A 、B 为两点连接直线,从圆心O 点作直线AB 的垂线,我们会得到一个类似直角坐标系的图形(可能有人在这里要彪了,你这是要利用直角坐标系,不是的哈,乖乖看下去,我只如果A、B间距是固定的,随着圆心在垂线DE上下运动,我们就能得到任意一个角度我用几何画板作图,大家可以学一下这个软件,毕竟手工作图误差是很大的对于这个任意角度,我们反推,在已知弧AB的两个三等分点的情况下,得到三平分点随着圆心上下移动的轨迹这个是一条栓曲线的一部分图像,接下来我给出证明把两个三平分点与点A 、B 连接,我们会得到一个等腰梯形,并且线段AF=FG=GB因为F 、G 点事三平分点,GOB FOG AOF ∠=∠=∠,点A 、F 、G 、B 在同一圆上,所以AF=FG=GB接下来是证明线段FG 平行AB ,弧AF=弧GB (因为FG 是三平分点),所以线段FG 平行于AB ,线段FG 也是垂直于DE 的直线DE 垂直于AB ,FG 平行于AB ,又DE 平分线段AB ,所以直线DF 也是FOG ∠的平分线,最主要的,我们要得到线段HG=21GB , FG=GB (相等角在同一个圆上所对应的弦是相等的),DE 平分线段FG , ∴ HG=21 FG=21GB ∴HG=21GBHG=21GB 圆心O 是直线DE 上任一点,恒有HG=21GB ,这个符合双曲线的第二个定义:平面内到一个定点B 和一条直线DF 的距离的比是常数e=2,e 〉1时的动点曲线轨迹叫做双曲线,∴∠AOB 的之中右边的三等分点的轨迹是一条双曲线,同理得证左边的三等分点也是一条双曲线3、接下来是推理出双曲线的解析式,求出解析式112422=-y x当∠AOB 是零度的时候, AB 的长度不随着圆点O 的变动而变动∴零度的弧就是与线段AB 重合,三等分点如图所示为i ,i 同时是线段AB 的三等分点,同时也是三等分点轨迹与线段AB 的轨迹的交点和双曲线的顶点之一设直线AB 与直线DE 的交点是j,假设线段ji 是一个距离单位,那么根据数量关系就有线段AB=6ji, iB=2ji B 点事双曲线的一个焦点我们假设双曲线的解析式是12222=-by a x , 222c b a =+,原点到双曲线顶点的距离是a,原点到焦点的距离是c, iB=c-a=2ij 我们已经把ij 设为基本距离单位,∴c-a=2离心率e=ac =2 联立方程⎪⎩⎪⎨⎧==-22ac a c 解得a=2,c=4, 222c b a =+ ∴b=32所以双曲线的方程式112422=-y x上边的是繁琐的一些证明,无非我们要得到的就是三等分点的轨迹是双曲线,要得到这条双曲线的相关的一些规律,希望这些规律能够在你尺规作图三等分角的时候有所帮助,现在我把我掌握的一些好玩的规律给大家介绍介绍。
尺规三大作图问题.
![尺规三大作图问题.](https://img.taocdn.com/s3/m/0234e6ea58f5f61fb636660e.png)
尺规三大作图问题尺规作图是我们熟知的内容。
尺规作图对作图的工具——直尺和圆规的作用有所限制。
直尺和圆规所能的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、圆点、作一条直线与一个圆的交点。
公元前五世纪的希腊数学家,已经习惯于用不带刻度的直尺和圆规(以下简称尺规)来作图了。
在他们看来,直线和圆是可以信赖的最基本的图形,而直尺和圆规是这两种图形的具体体现,因而只有用尺规作出的图形才是可信的。
于是他们热衷于在尺规限制下探讨几何作图问题。
数学家们总是对用简单的工具解决困难的问题备加赞赏,自然对用尺规去画各种图形饶有兴趣。
尺规作图是对人类智慧的挑战,是培养人的思维与操作能力的有效手段。
所谓三大几何作图难题就是在这种背景下产生的。
传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。
起初,人们并没有认识到满足这一要求会有多大困难,但经过多次努力还不能办到时,才感到事态的严重。
人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图经过慎重的思考,也感到无能为力。
这就是古希腊三大几何问题之一的倍立方体问题。
用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。
任意给定一个角,仅用直尺和圆规作它的角平分线是很容易的,这就是说,二等分任意角是很容易做到的。
于是,人们自然想到,任意给定一个角,仅用直尺和圆规将它三等分,想必也不会有多大困难。
但是,尽管费了很大的气力,却没能把看来容易的事做成。
于是,第二个尺规作图难题——三等分任意角问题产生了。
正方形是一种美丽的直线形,圆是一种既简单又优美的曲线图形,它们都有面积,能不能用直尺和圆规作一个正方形,使它的面积等于一个给定的圆的面积?这就是尺规作图三大难题的第三个问题——化圆为方问题。
另类做法:总述:人们用尺规解几何三大作图题屡遭失败之后,一方面是从反面怀疑它是否可作;另一方面就很自然地考虑,假如跳出尺规作图的框框,也就是不限用尺规,而是借助于另外一些曲线,或者借助于尺规以外的一些工具,是不是可解决这些问题呢?人们发现,一旦跳出了尺规作图的框框,问题的解决将是轻而易举的.这方面的工作已经有许多人做过,而且取得了不少成就,下面的词条内容就择要介绍一二.三等分任意角★作法一三等分角问题尼科梅德斯(Nicomedes,公元前250年左右)方法对于已知锐角∠O,在角的一边上取任意点B,作OB的垂线,交∠O的另一边于点A.以O为定点,BA为定直线,2OA为定长,作出蚌线的右支C.从点A作BA的垂线,和蚌线C相交于点S,那么∠BOS=1/3∠BOA★作法二帕斯卡(Pascal,B.1623—1662)的方法对于∠AOB,在其一边上取任意长OA做半径,以点O为圆心作一圆(图12).延长AO,和圆O交于点C.以圆O为定圆,以C为定点,以定圆O的半径为定长,作一蚶线蚶线和角的另一边OB相交于点E.连结CE,过点O作OS∥CE,那么∠BOS=1/3∠BOA★作法三帕普斯(Pappus,约公元320年)方法对于∠AOB,在它的两边上截取OA=OB.连结AB并三等分,设两分点分别为C和D.以点C为中心,点A、D分别为顶点,作离心率e=√2的双曲线.以点O为圆心,OB为半径作弧,交双曲线于点S.则∠BOS=1/3∠BOA★作法四玫瑰线方法交∠AOB的两边于点A和B,分别以O和A为圆心,a为半径画弧,两弧交于点S,则有∠BOS=1/3∠BOA立方倍积★作法一倍立方问题倍立方问题柏拉图(Plato,公元前427—347年)的方法:作两条互相垂直的直线,两直线交于点O,在一条直线上截取OA=a,在另一条直线上截取OB=2a,这里a为已知立方体的棱长.在这两条直线上分别取点C、D,使∠ACD=∠BDC=90°(这只要移动两根直角尺,使一个角尺的边缘通过点A,另一个角尺的边缘通过点B,并使两直角尺的另一边重合,直角顶点分别在两直线上,这时两直角尺的直角顶点即为点C、D).线段OC之长即为所求立方体的一边。
阿基米德三等分角的证明
![阿基米德三等分角的证明](https://img.taocdn.com/s3/m/2d731cb285868762caaedd3383c4bb4cf7ecb715.png)
阿基米德三等分角的证明阿基米德三等分角是指将一个任意角分为三个相等的角。
这个问题最早由希腊数学家阿基米德提出,并给出了一种简单而巧妙的证明方法。
本文将详细介绍这个证明过程。
问题描述设有一个任意角AOC,我们的目标是将其分为三个相等的角AOB、BOC和COA。
证明过程步骤1:作AO上的等边三角形AOB首先,我们在射线AO上作一个等边三角形AOB。
具体做法如下:1.以点A为圆心,以线段AO的长度为半径,画一个圆。
2.圆与射线AO交于点B。
这样,我们得到了一个等边三角形AOB。
步骤2:作OC上的等边三角形BOC接下来,我们需要在另一条射线OC上构造一个等边三角形BOC。
具体操作如下:1.以点O为圆心,以线段OC的长度为半径,画一个圆。
2.圆与射线OC交于点C。
这样,我们得到了一个等边三角形BOC。
步骤3:连接AC现在,我们需要连接点A和点C,即线段AC。
这条线段将角AOC分为两个相等的角。
步骤4:证明角BAC等于角BCA我们已经将角AOC分为两个相等的角。
接下来,我们需要证明这两个角分别与AOB和BOC的对应角相等。
首先,我们观察三角形AOB和三角形BOC。
根据等边三角形的性质,我们知道∠BAO = ∠ABO 和∠BCO = ∠BOC。
然后,我们观察△ABC。
根据直线之间的夹角性质,我们知道∠BAC + ∠ABC +∠BCA = 180°。
由于∠ABC是一个等边三角形的内角,所以∠ABC = 60°。
根据步骤1和步骤2中构造的等边三角形AOB和BOC,我们知道∠BAO = ∠ABO = ∠BCO = ∠BOC = 60°。
因此,将以上信息代入△ABC中的方程式中得到:∠BAC + 60° + ∠BCA = 180°。
简化方程式得到:∠BAC + ∠BCA = 120°。
由于∠BAC和∠BCA是两个相等的角,所以它们都为60°。
因此,我们证明了∠BAC与∠BCA相等。
将任意角三等分的方法
![将任意角三等分的方法](https://img.taocdn.com/s3/m/8d7144c0a48da0116c175f0e7cd184254b351b28.png)
将任意角三等分的方法
李俊玉
【期刊名称】《山西煤炭管理干部学院学报》
【年(卷),期】2005(018)001
【摘要】在工农业生产、生活中,将一个任意角三等分有广泛的应用.用常规的尺规作图法不可能将任意角三等分已成定论.笔者通过多年的探索,在尺规方法的基础上应用逐步逼近的思想,找到了三等分角的一种简便方法.
【总页数】2页(P52,54)
【作者】李俊玉
【作者单位】娄烦教委教研室,山西,娄烦,030300
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.尺规作图三等分一个给定的任意角 [J], 吴兴建
2.三等分任意角挑战世界 [J], 方和生; 方祖旺
3.三等分任意角探究 [J], 岳斌
4.三等分任意角的作法探讨 [J], 蔡长青
5.用尺规三等分任意角的一种近似方法 [J], 许尔锋
因版权原因,仅展示原文概要,查看原文内容请购买。
三等分任意角浅思
![三等分任意角浅思](https://img.taocdn.com/s3/m/37a5a1bfb1717fd5360cba1aa8114431b90d8e2b.png)
三等分任意角浅思光中______概述:三等分任意角是古希腊三大作图名题(1.作一立方体,其体积为所知立方体体积的两倍;2.画圆为方,即作一正方形使其面积为已知圆的面积;3.尺规三等分任意角)之一。
众所周知,二等分任意给定角用尺规很容易就能解决。
而充满探索与挑战精神的人们又会想到用尺规如何三等分任意给定角,此后,许多数学家纷投入这一问题的解决。
直到十九世纪,人们才严格证明了三等分任意角仅凭尺规不可能实现。
到此,这一问题才告一段落。
期间,有许多超越了尺规限制的作图方法:比如:希皮阿斯发明的割圆曲线,阿基米德螺线和尼科梅德斯蚌线等。
人们万万也不会想到但他们在潜心研究一些未解决的问题的时候,许多新的发现也会应运而生……科学需要大胆的想象,或许引入数学公式可以实现超越尺规而三等分角,于是我想到了倍角的相关公式,引发了以下一系列的思考: 一:n倍角的正切值展开通式:A通过观察下列式子:tan1﹫=t……有如下特征:①分子分母各项均是“+,-”交替出现,且分子上为t的奇次幂,分母上为t的偶次幂。
②我们将分子分母上相同序项对齐,则分子上的次数比分母上依次高一,且其系数有如下关系:即:对正相加分别作为下式相应项的分子系数;由下往上左偏相减作为下式相应项的分母系数。
③分子以“nt”开头,分母以“1”;若从第一项开始每两项为一对,分子上:奇数对的基数项(简称奇对奇项)以"t的n次方"结尾,奇对偶项以“n 倍的t的n-1次方”结尾;偶对奇项以"负的t的n次方"结尾,偶对偶项以“-n 倍t的n-1次方”结尾;分母上:奇对奇项以“n 倍的t的n-1次方”结尾,奇对偶项以“- t的n 次方”结尾;偶对奇项以"n 倍的t的n-1次方"结尾;偶对偶项以"t的n次方"结尾。
注意:奇数项中分子.分母的项数相同,偶数项中分母项数比分子项数多一项。
综合以上特征和八个式子的系数关系,我们不难发现:B下面我们用数学归纳法来验证上式的正确:二:“T”型架三等分任意角原理:如图设AOB是要等分的任意角,O-MN“T”型架(MOp=NOp,MN┷OOp),作OB的平行线a(如图虚线),使OB与a 的距离d=MOp=NOp.然后让“T”型架绕点O转动,当M点N点恰好分别落在OA与a上时,则得到的夹角 COB为其三等分角。
三等分角
![三等分角](https://img.taocdn.com/s3/m/dd580f6e7e21af45b307a820.png)
三等分任意角度的最佳方法----兼论三大几何难题之解三等分任意角度是世界著名的三大几何难题之一(还有化圆为方和二倍立方体),早在1775年德国科学院就向世界宣布:三大几何难题无解。
下面首先推出三等分任意角度的最佳方法。
用无刻度直尺和圆规(这是最古老的尺规作图法)二等分任意角度,作平行线,多等分直线段等都是可行的;也可以对已知的90°及其整倍数的角度,乃至小于90°的特殊角度进行三等分。
但对未知的一般任意角度如何进行三等分呢?先看一下,已知任意直线段OB(如图1),是如何被三等分的:过O点作直线,取OC=CE=EA,得直线段OA。
连接AB,过C 和E点分别作AB的平行线CD和EF,则:OD=DF=FB。
简要证明:过D和F点分别作OA的平行线DH和FK,∵△OCD,△DHF和△FKB皆为全等三角形,∴OD=DF=FB。
仿照上述三等分任意直线段的方法,对任意角度进行三等分:绘制任意角度∠AOB(如图2),以O为圆心,以OA为半径画弧交OB于B点,并连接弦AB。
延长OA至Q,使QA=OA,以Q为圆心,以QA为半径画弧,在弧上取弦AC=CD=DG,分别连接QC、QD和QG三个半径,并连接弦AG分别交中间两个半径于E和F点。
连接BG,过E和F点分别作BG的平行线交AB于H和M点,连接OH和OM点作半径OK和ON,则∠AOB被近似三等分:即∠AOK=∠NOB≌∠KON。
对该绘图方法的精度分析:(1)当所取AG=AB时,则∠AOK=∠NOB=∠KON,因为对过A点相对于OQ的垂线(未画出)而言,其两侧图的所有点都是对称的。
虽然所取AG等于AB的几率很小,但在理论上它是存在的。
(2)当所取AG≠AB时,则∠AOK=∠NOB≈∠KON。
按照三等分直线段的方法,其对应线段的比例关系是不变的:即AE︰FG=AH︰MB;AE︰EF=AH︰HM。
∵△AQE和△GQF为全等三角形,∴AE=FG,则AH=MB故∠AOK=∠NOB;虽然AE︰EF=AH︰HM,在表示线段成比例时是对的,但在AG≠AB的条件下,将其分别转换成相对应的角度以后不可能相等,必然会产生误差,只能得到:∠AOK≈∠KON。
关于三等分任意角的方法探究
![关于三等分任意角的方法探究](https://img.taocdn.com/s3/m/e697473167ec102de2bd89ca.png)
三等分任意角的方法探究西工大附中孙开锋三等分任意角的方法探究摘要:三等分角是古希腊几何三大作图问题之一,本文关键词:只准用直角和圆规,你能将一个任意的角进行两等分吗?这可太简单了,几千前的数学家们就会做。
纸上任意画一个角,以其顶点O为圆心,任意选一个长度为半径画弧,找出弧与角的两边的交点,分别命名为A和B。
然后分别以A点和B点为圆心,以同一个半径画弧,这个半径要大于A、B之间距离的一半。
找出两段弧的相交点C,用直尺把O和C连接起来,那么直线OC就将角AOB平分成了两部分。
用同样的方法,我们可以把一个角任意分成4等分、8等分、16等分……,也就是说,只要你有耐心,可以把任意一个角等分为2的任意次方。
但是,如果只用直尺和圆规,并且,这直尺还不能有刻度,你能将任意一个角三等分吗?早在公元前5世纪,古希腊的巧辩学派就提出了在只用直尺画直线、圆规画弧的限定下,将任意给定的角三等分的命题。
很多伟大的数学家如阿基米德、笛卡儿、牛顿等都试图拿起直尺和圆规挑战自己的智力,但终于都以失败告终。
直至公元1837年,法国数学家闻脱兹尔宣布:“只准使用直尺与圆规,想三等分一个任意角是不可能的!”, 才暂时了结了这宗长达几千年的数学悬案。
但是,如果没有几何作图法的限制,任意角三等分问题当然可以解决,不妨举几个例子以共享。
一、利用工具三等分任意角如图1所示,叫做“三等分仪”吧 ,CE=EG=DG,ME ⊥CD,弧ED 是以G 为圆心的半圆,故ME 与半圆G 相切于点E.具体操作:将该仪器置于 ∠AOB 的内部,使得点C 落在OA 上,ME 经过点O,半圆G 与OB 相切于点F,则OE,OG 为∠AOB 的三等分线。
数理证明:分别连接OG,GF,故GF ⊥OB,而EG ⊥OE,所以易证:△GOE ≌△GOF;同理可证△GOE ≌△COE;故可得到:∠COE=∠GOE=∠FOG.所以,OE 、OG 为∠AOB 的三等分线。
二、中考中的三等分角题目:(广东佛山市)三等分一任意角是数学史上一个著名的问题,用尺规不可能“三等分一任意角”。
三等分角
![三等分角](https://img.taocdn.com/s3/m/0b8e5b19581b6bd97f19ea70.png)
三等分角第一种方法一,做任意角O二,以OA长为半径,做弧AB,交角O的两边于A,B两点三,连接AB,并做角AOB的角分线OP,连接OP,取OP与AB的交点为L,取弧AB与OP的交点为E四,以LA为半径,以点L为原点,做圆取与射线OP的两个交点为Z,X五,将半圆弧AXB三等分,取两个三等分点分别为M,N六,以点Z为原点,以ZA为长做弧AFB,取弧AFB与OP的交点为F注:弧AEB为原弧,弧AFB为变弧以向量OP方向为正方向(1)当角O小于90°时EF为正(2)当角O等于90°时EF为零(3)当角O大于90°时EF为负七,以EF长为长,以点Z点为一个端点,在向量ZP方向上取另一点Q八,连接QM,QN取QM,QN与弧AEB的交点分别为H,I九,连接OH,OI,则射线OH,OI即为角AOB的两个三等分线。
十,大于180°小于360°角的三等分角解法1,利用解决小于180°角的三等分角的方法将小于180°的那部分角进行三等分2,然后以OA长为长,以点H为圆心点做弧与圆O交于C点,再以C点为圆心点做弧与圆O交于点S3,同理,以OB长为长,以点I为圆心点做弧与圆O交于D点,再以D点为圆心点做弧与圆O交于点T4,连接OS,OT第二种方法:一,180°的三等分角的解法A:做法1,作一个平角O2,以点O为圆点,以OA长为半径作弧,设其与平角O的两个交点为A,B两点3,以OA长为长,分别以点A,B两点为圆点作弧,设其与这个半圆的两个交点为C,D 4,分别连接OC,OD,则射线OC,OD即为平角的两条三等分线。
B,论证1,连接AC,CD,BD2,由作法部分知AC=AO=CO,所以知三角形AOC是等边三角形,知角AOC=60°3,同理,知三角形BOD为等边三角形,所以知角BOD=60°4,∠AOC=∠BOD=60°,所以知∠COD=60°5,综上,OC,OD为平角AOB的两条三等分线二,90°角的三等分角作法A,作法:1,作一个直角O2,以OA长为半径,以点O为圆点作弧,取其与∠O的两边的交点分别为A,B两点3,作∠ AOB的角分线OP, 连接AB,取AB与OP的交点为L4,以LA长为半径,以点L为圆点作圆,取这个圆与OP的另一个交点为Q5,以LA长为长,分别以点A,B为圆点作弧,取其与半圆AQB的两个交点分别为C,D 6,连接OC,OD则OC,OD为∠AOB的两条三等分线B,论证1,连接AC,CD,BD,LC,LD2,由上文论证180°角三等分角的部分知∠ALC=∠CLD=∠BLD=60°,所以知弧AC=弧CD=弧BD3,由圆周角定理知∠ AOC=∠COD=∠BOD,所以知OC,OD为∠AOB的两条三等分线三,90°-----180°角的三等分角的作法A,作法1,作∠AOB2,以点O为圆点,以OA长为半径作弧,交∠O两边于A,B两点3,作∠AOB的角分线OP,并将OP反向延长,连接AB,取AB与OP的交点为L4,以点L为圆点,以LA长为半径作圆,分别以点A,B为圆点以LA长为半径作弧取其与弧APB的两个交点为C,D.5,连接OC,OD则OC,OD即为∠AOB的两条三等分线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三等分任意角的方法探究
西工大附中
孙开锋
三等分任意角的方法探究
摘要:三等分角是古希腊几何三大作图问题之一,本文
关键词:
只准用直角和圆规,你能将一个任意的角进行两等分吗?这可太简单了,几千前的数学家们就会做。
纸上任意画一个角,以其顶点O为圆心,任意选一个长度为半径画弧,找出弧与角的两边的交点,分别命名为A和B。
然后分别以A点和B点为圆心,以同一个半径画弧,这个半径要大于A、B之间距离的一半。
找出两段弧的相交点C,用直尺把O和C连接起来,那么直线OC就将角AOB 平分成了两部分。
用同样的方法,我们可以把一个角任意分成4等分、8等分、16等分……,也就是说,只要你有耐心,可以把任意一个角等分为2的任意次方。
但是,如果只用直尺和圆规,并且,这直尺还不能有刻度,你能将任意一个角三等分吗?
早在公元前5世纪,古希腊的巧辩学派就提出了在只用直尺画直线、圆规画弧的限定下,将任意给定的角三等分的命题。
很多伟大的数学家如阿基米德、笛卡儿、牛顿等都试图拿起直尺和圆规挑战自己的智力,但终于都以失败告终。
直至公元1837年,法国数学家闻脱兹尔宣布:“只准使用直尺与圆规,想三等分一个任意角是不可能的!”, 才暂时了结了这宗长达几千年的数学悬案。
但是,如果没有几何作图法的限制,任意角三等分问题当然可以解决,不妨举几个例子以共享。
一、利用工具三等分任意角
如图1所示,叫做“三等分仪”
吧 ,
CE=EG=DG,ME ⊥CD,弧ED 是以G 为圆心的半圆,故ME 与半圆G 相切于点E.
具体操作:将该仪器置于 ∠AOB 的内部,使得点C 落在OA 上,ME 经过点O,半圆G 与OB 相切于点F,则OE,OG 为∠AOB 的三等分线。
数理证明:分别连接OG,GF,故GF ⊥OB,而EG ⊥OE,所以易证:△GOE ≌△GOF;同理可证△GOE ≌△COE;故可得到:∠COE=∠GOE=∠FOG.所以,OE 、OG 为∠AOB 的三等分线。
二、中考中的三等分角
题目:(广东佛山市)三等分一任意角是数学史上一个著名的问题,用尺规不可能“三等分一任意角”。
下面是数学家帕普斯借助函数给出的一种“三等分锐角”的方法:将给定的锐角∠AOB 置于直角坐标系中,边OB 在x 轴上,边OA 与函数y x
=1的图象交于点P ,以P 为圆心,以2OP 为半径作弧交函数y x
=1的图象于点R ,分别过点P 和R 作x 轴和y 轴的平行线,两直线交于点M ,连结OM 得到∠MOB ,则∠=∠MOB AOB 13。
要明白帕普斯的方法,请研究以下问题。
(1)设P (a a
,1),R (b b
,1)求直线OM 对应的函数表达式(用含a b 、的代表式表示);
(2)分别过点P 和R 作y 轴与x 轴的平行线,两直线相交于点Q ,请证明点Q 在直线OM 上,并据此证明∠=∠MOB AOB 1
3
;
(3)应用上述方法得到的结论,你如何三等分一个钝角(用文字简要说明)。
分析:三等分角问题是二千四百年前古希腊人提出的几何三大作图不能问题之一。
本题以数学家帕普斯借助函数给出的一种“三等分锐角”的方法为线索,提出了相关的问题,要求学生研究解决,颇有新意。
同时,引导同学们了解数学史、了解数学家的探索过程,可以帮助同学们认识自我,建立学好数学的信心。
为了减轻同学们证明中的困难,命题者设计了两道简单的小题,用以过渡。
对前两道小题,首先用待定系数法易求得直线OM 的解析式为
y ab x =
1。
接着由于点Q 的坐标(a b ,1)满足y ab
x =1
,因此可得点Q 在直线
OM 上。
有了上面的基础,再证明∠=∠MOB AOB 13
,就不太困难。
简证如下:
四边形PQRM 是矩形,MQ 与PR 交于点S 。
∴====
∴∠=∠=∴==∴∠=∠∠=∠+∠=∠SP SQ SR SM PR PR OP PS OP PR 1
2
1221
23441221,,,, ,又即
∠=∠∴∠=∠3211, QR OB MOB //,。
则∠=∠32MOB ,即∠=∠MOB AOB 1
3。
最后将(3)解答如下:
方法(1)因为钝角的一半是锐角,所以先把钝角平分为两锐角,再利用题给方法把相等的两锐角都三等分即可。
方法(2)可把钝角分为一个直角和一个锐角,然后利用题给方法把锐角三等分后,再将直角利用作等边三角形(或其它方法)三等分即可。
方法(3)若设已知钝角为α。
6018033
︒-
︒-=∴αα
,可先将α的补角三等分得:角603
︒-α
,然后从大小为60︒的角中通过作图去掉角603
︒-α
即可。
这道压轴题的第(3)小题具有一定的开放性和个性化设计,它可以根据自己的理解程度,提出一个解决的方法,并且为了减缓难度,设计了3小题,让同学们拾级而上,入口较宽。
这一系列的、有层次的命题设计,体现了新课程标准倡导的“承认差异,尊重个性,给每一位学生以充分发展的空间”的理念。
数学思想方法在解决数学问题中具有理念性的地位,这道压轴题是一道典型的数形结合题。
近年来,不少试题,都重视考查同学们对数学思想方法的理解与应用,有效抑制了题海战术,促进了学生学习方式的变革。
三、尺规作图的方法探究
三等分任意角作图(如图3) 1.1 用无刻度尺
的直尺作任意角
AOB ∠;
1.2 用圆规作
AOB ∠的平分线
1OO ;
1.3 取任意长半径d ,作AOB ∠的内
切圆;
1.4 由d 圆周上作b ‖1OO ;作c ‖OB 相交于点K;
1.5 过点K 作等圆⊙1O ;
1.6 过O 点再作⊙1O 的切线OP ,则OP 就是任意角AOB ∠的三等分线。
下面做简单的数理证明: (如图4)
2.1 以O 为圆心,以1OO 为半径作弧⊙O ;
2.2作距离切线OP 为d 的平行线p ′与⊙O 相交于2O ; 2.3由作图知1KO =d ,K 到OB 的距离为2d;
过K 点作⊙'
2O 与OB 和c 相切且与⊙1O 相交于K,圆心'
2O 在⊙O 的轨迹线上;
过M 点作⊙2O 与OB 和c 相切且与⊙1O 相切于M;圆心2O 在⊙O 的轨迹线上;
2.4所以1O M =2O M =2O D ;故△1OO M ≌△2OO M ≌△2OO D ;
2.5同理作左边⊙3O ,则12O O 、13O O (及35O O 、24O O )是⊙O 内接正多边形的边;故OP 切线是任意角AOB ∠的三等分线。
A
O
B
O1
b
c
D
图2
P
p ˊ
O2
d
M
K
O3
R
O 2ˊ
O5
O4
K ˊ。