2018年宜昌市近五届中考数学应用题压轴题22题汇编及答案

合集下载

2018年湖北省宜昌市中考数学试卷(解析版)

2018年湖北省宜昌市中考数学试卷(解析版)

2018年湖北省宜昌市中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共15小题)1.﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣2.如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×1054.计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.245.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.B.C.D.6.如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.7.下列运算正确的是()A.x2+x2=x4B.x3•x2=x6C.2x4÷x2=2x2D.(3x)2=6x28.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=69.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.10.为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定11.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2)B.(2,﹣2)C.(2,5)D.(﹣2,5)12.如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30°B.35°C.40°D.45°13.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.14.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米15.如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1二、解答题(共9小题)16.先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.17.解不等式组,并把它的解集在数轴上表示出来.18.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.19.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.20.某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:(1)填空:在统计表中,这5个数的中位数是;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.22.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.23.在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.24.如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=,k=﹣,点E的坐标为﹣;(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.2018年湖北省宜昌市中考数学试卷(解析版)参考答案一、单选题(共15小题)1.【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【知识点】绝对值2.【分析】根据轴对称图形的定义逐个判断即可.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.【知识点】轴对称图形3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.21万=1.21×104,故选:C.【知识点】科学记数法—表示较大的数4.【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.【知识点】有理数的混合运算5.【分析】直接利用概率公式求解.【解答】解:这句话中任选一个汉字,这个字是“绿”的概率=.故选:B.【知识点】概率公式6.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:该几何体的主视图为:;左视图为;俯视图为;故选:C.【知识点】简单组合体的三视图7.【分析】根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.【解答】解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.【知识点】整式的混合运算8.【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【知识点】规律型:数字的变化类9.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.【知识点】正方形的性质10.【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.【知识点】算术平均数、方差11.【分析】依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).【解答】解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选:A.【知识点】坐标与图形变化-旋转12.【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.【知识点】圆周角定理、切线的性质13.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【知识点】作图—基本作图、垂线14.【分析】根据正切函数可求小河宽P A的长度.【解答】解:∵P A⊥PB,PC=100米,∠PCA=35°,∴小河宽P A=PC tan∠PCA=100tan35°米.故选:C.【知识点】解直角三角形的应用15.【分析】直接利用反比例函数的性质进而分析得出答案.【解答】解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.【知识点】有理数大小比较二、解答题(共9小题)16.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=﹣4时,原式=﹣4+4=.【知识点】整式的混合运算—化简求值17.【分析】解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分;并把它的解集在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1;解不等式②,得:x<2;∴原不等式组的解集是1≤x<2..【知识点】解一元一次不等式组、在数轴上表示不等式的解集18.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【知识点】平行线的判定、三角形的外角性质19.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.【知识点】二元一次方程组的应用20.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【知识点】列表法与树状图法、扇形统计图、条形统计图、用样本估计总体、中位数21.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.【知识点】圆周角定理、勾股定理、等腰三角形的性质、菱形的判定与性质22.【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n的值即可得出关于a的等式求出答案.【解答】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)第二年用乙方案治理Q值降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.【知识点】一元二次方程的应用、一元一次方程的应用23.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠PGC=90°,∴∠GEF+∠PGC=180°,∴BF∥PG∵BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.【知识点】四边形综合题24.【分析】(1)根据题意将先关数据带入(2)①用t表示直线MN解析式,及b,c,得到P点坐标带入双曲线y=解析式,证明关于t的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B和在BD上时的情况;③由②中部分结果,用t表示F、P点的纵坐标,求出t的取值范围及直线MN在四边形OAEB中所过的面积.【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【知识点】二次函数综合题。

2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案

2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案

2018年宜昌市近五届中考数学抛物线压轴题(24题)汇编及答案(本大题一般3小问,共12分)上传校勘:柯老师【2013/24】如图1,平面之间坐标系中,等腰直角三角形的直角边BC在x轴正半轴上滑动,点C 的坐标为(t,0),直角边AC=4,经过O,C两点做抛物线y1=ax(x﹣t)(a为常数,a>0),该抛物线与斜边AB交于点E,直线OA:y2=kx(k为常数,k>0)(1)填空:用含t的代数式表示点A的坐标及k的值:A,k=;(2)随着三角板的滑动,当a=时:①请你验证:抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②当三角板滑至点E为AB的中点时,求t的值;(3)直线OA与抛物线的另一个交点为点D,当t≤x≤t+4,|y2﹣y1|的值随x的增大而减小,当x≥t+4时,|y2﹣y1|的值随x的增大而增大,求a与t的关系式及t的取值范围.【2014/24】如图,在平面直角坐标系中,已知点P(0,4),点A在线段OP上,点B在x轴正半轴上,且AP=OB=t,0<t<4,以AB为边在第一象限内作正方形ABCD;过点C、D依次向x轴、y 轴作垂线,垂足为M,N,设过O,C两点的抛物线为y=ax2+bx+c.(1)填空:△AOB≌△≌△BMC(不需证明);用含t的代数式表示A点纵坐标:A(0,);(2)求点C的坐标,并用含a,t的代数式表示b;(3)当t=1时,连接OD,若此时抛物线与线段OD只有唯一的公共点O,求a的取值范围;(4)当抛物线开口向上,对称轴是直线x=2﹣,顶点随着的增大向上移动时,求t的取值范围.【2015/24】如图1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中m为常数,且m>0,E(0,n)为y轴上一动点,以BC为边在x轴上方作矩形ABCD,使AB=2BC,画射线OA,把△ADC 绕点C逆时针旋转90°得△A′D′C′,连接ED′,抛物线y=ax2+bx+n(a≠0)过E,A′两点.(1)填空:∠AOB=°,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且=时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.【2016/24】已知抛物线y=x2+(2m+1)x+m(m﹣3)(m为常数,﹣1≤m≤4).A(﹣m﹣1,y1),B(,y2),C(﹣m,y3)是该抛物线上不同的三点,现将抛物线的对称轴绕坐标原点O逆时针旋转90°得到直线a,过抛物线顶点P作PH⊥a于H.(1)用含m的代数式表示抛物线的顶点坐标;(2)若无论m取何值,抛物线与直线y=x﹣km(k为常数)有且仅有一个公共点,求k的值;(3)当1<PH≤6时,试比较y1,y2,y3之间的大小.【2017/24】24.已知抛物线y=ax 2+bx+c ,其中20a b c =>>,且0a b c ++=.(1) 直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根;(2) 证明:抛物线y=ax 2+bx+c 的顶点A 在第三象限;(3) 直线 y=x+m 与x ,y 轴分别相交于,B C 两点,与抛物线y=ax 2+bx+c 相交于A ,D 两点.设抛物线y=ax 2+bx+c 的对称轴与x 轴相交于E ,如果在对称轴左侧的抛物线上存在点F ,使得ADF ∆与BOC ∆相似.并且12ADF ADE S S ∆∆=,求此时抛物线的表达式.参考答案:【2013/24】解:(1)∵点C的坐标为(t,0),直角边AC=4,∴点A的坐标是(t,4).又∵直线OA:y2=kx(k为常数,k>0),∴4=kt,则k=(k>0).(2)①当a=时,y1=x(x﹣t),其顶点坐标为(,﹣).对于y=来说,当x=时,y=×=﹣,即点(,﹣)在抛物线y=上.故当a=时,抛物线y1=ax(x﹣t)的顶点在函数y=的图象上;②如图1,过点E作EK⊥x轴于点K.∵AC⊥x轴,∴AC∥EK.∵点E是线段AB的中点,∴K为BC的中点,∴EK是△ACB的中位线,∴EK=AC=2,CK=BC=2,∴E(t+2,2).∵点E在抛物线y1=x(x﹣t)上,∴(t+2)(t+2﹣t)=2,解得t=2.(3)如图2,,则x=ax(x﹣t),解得x=+4,或x=0(不合题意,舍去)..故点D的横坐标是+t.当x=+t时,|y2﹣y1|=0,由题意得t+4=+t,解得a=(t>0).【2014/24】解:(1)如图,∵∠DNA=∠AOB=90°,∴∠NAD=∠OBA(同角的余角相等).在△AOB与△DNA中,,∴△AOB≌△DNA(SAS).同理△DNA≌△BMC.∵点P(0,4),AP=t,∴OA=OP﹣AP=4﹣t.故答案是:DNA或△DPA;4﹣t;(2)由题意知,NA=OB=t,则OA=4﹣t.∵△AOB≌△BMC,∴CM=OB=t,∴OM=OB+BM=t+4﹣t=4,∴C(4,t).又抛物线y=ax2+bx+c过点O、C,∴,解得b=t﹣4a;(3)当t=1时,抛物线为y=ax2+(﹣4a)x,NA=OB=1,OA=3.∵△AOB≌△DNA,∴DN=OA=3,∵D(3,4),∴直线OD为:y=x.联立方程组,得,消去y,得ax2+(﹣﹣4a)x=0,解得x=0或x=4+,所以,抛物线与直线OD总有两个交点.讨论:①当a>0时,4+>3,只有交点O,所以a>0符合题意;②当a<0时,若4+>3,则a<﹣.又a<0所以a<﹣.若4+<0,则得a>﹣.又a<0,所以﹣<a<0.综上所述,a的取值范围是a>0或a<﹣或﹣<a<0.(4)抛物线为y=ax2+(﹣4a)x,则顶点坐标是(﹣,﹣(t﹣16a)2).又∵对称轴是直线x=﹣+2=2﹣,∴a=t2,∴顶点坐标为:(2﹣,﹣(1﹣4t)2),即(2﹣,﹣(t﹣)2).∵抛物线开口向上,且随着t的增大,抛物线的顶点向上移动,∴只与顶点坐标有关,∴t的取值范围为:0<t≤.【2015/24】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),∵A′为抛物线的顶点,∴设抛物线解析式为y=a(x﹣m)2﹣m,∵抛物线过点E(0,n),∴n=a(0﹣m)2﹣m,即m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点E与点O重合时,E(0,0),∵抛物线y=ax2+bx+c过点E,A,∴,整理得:am+b=﹣1,即b=﹣1﹣am;②∵抛物线与四边形ABCD有公共点,∴抛物线过点C时的开口最大,过点A时的开口最小,若抛物线过点C(3m,0),此时MN的最大值为10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为y=x2﹣x,由A(2m,2m),可得直线OA解析式为y=x,联立抛物线与直线OA解析式得:,解得:x=5m,y=5m,即M(5m,5m),令5m=10,即m=2,当m=2时,a=;若抛物线过点A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD有公共点时a的范围为≤a≤1.【2016/24】解:(1)∵﹣=﹣,==﹣,∴顶点坐标(﹣,﹣).(2)由消去y得x2+2mx+(m2+km﹣3m)=0,∵抛物线与x轴有且仅有一个公共点,∴△=0,即(k﹣3)m=0,∵无论m取何值,方程总是成立,∴k﹣3=0,∴k=3,(3)PH=|﹣﹣(﹣)|=||,∵1<PH≤6,∴当>0时,有1<≤6,又﹣1≤m≤4,∴<m,当<0时,1<﹣≤6,又∵﹣1≤m≤4,∴﹣1,∴﹣1≤m<﹣或<m≤,∵A(﹣m﹣1,y1)在抛物线上,∴y1=(﹣m﹣1)2+(2m+1)(﹣m﹣1)+m(m+3)=﹣4m,∵C(﹣m,y3)在抛物线上,∴y3=(﹣m)2+(2m+1)(﹣m)+m(m﹣3)=﹣4m,∴y1=y3,①令<﹣m﹣1,则有m<﹣,结合﹣1≤m≤﹣,∴﹣1≤m<﹣,此时,在对称轴的左侧y随x的增大而减小,如图1,∴y2>y1=y3,即当﹣1≤m<﹣时,有y2>y1=y3.②令=﹣m﹣1,则A与B重合,此情形不合题意,舍弃.③令>﹣m﹣1,且≤﹣时,有﹣<m≤﹣,结合﹣1≤m<﹣,∴﹣<m≤﹣,此时,在对称轴的左侧,y随x的增大而减小,如图2,∴y1=y3>y2,即当﹣<m≤﹣时,有y1=y3>y2,④令﹣≤<﹣m,有﹣≤m<0,结合﹣1≤m<﹣,∴﹣≤m<﹣,此时,在对称轴的右侧y随x的增大而增大,如图3,∴y2<y3=y1.⑤令=﹣m,B,C重合,不合题意舍弃.⑥令>﹣m,有m>0,结合<m≤,∴<m≤,此时,在对称轴的右侧,y随x的增大而增大,如图4,∴y2>y3=y1,即当<m≤时,有y2>y3=y1,综上所述,﹣1≤m<﹣或<m≤时,有y2>y1=y3,﹣<m<﹣时,有y2<y1=y3.【2017/24】。

2018年中考数学挑战压轴题(含答案)

2018年中考数学挑战压轴题(含答案)

2018年挑战压轴题中考数学精讲解读篇因动点产生的相似三角形问题1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.3.如图,在平面直角坐标系xOy中,直线AB过点A(3,0)、B(0,m)(m>0),tan∠BAO=2.(1)求直线AB的表达式;(2)反比例函数y=的图象与直线AB交于第一象限内的C、D两点(BD<BC),当AD=2DB时,求k1的值;(3)设线段AB的中点为E,过点E作x轴的垂线,垂足为点M,交反比例函数y=的图象于点F,分别联结OE、OF,当△OEF∽△OBE时,请直接写出满足条件的所有k2的值.4.如图,在Rt△ABC中,∠ACB=90°,AC=1,BC=7,点D是边CA延长线的一点,AE⊥BD,垂足为点E,AE的延长线交CA的平行线BF于点F,连结CE交AB于点G.(1)当点E是BD的中点时,求tan∠AFB的值;(2)CE•AF的值是否随线段AD长度的改变而变化?如果不变,求出CE•AF的值;如果变化,请说明理由;(3)当△BGE和△BAF相似时,求线段AF的长.5.如图,平面直角坐标系xOy中,已知B(﹣1,0),一次函数y=﹣x+5的图象与x轴、y轴分别交于点A、C两点,二次函数y=﹣x2+bx+c的图象经过点A、点B.(1)求这个二次函数的解析式;(2)点P是该二次函数图象的顶点,求△APC的面积;(3)如果点Q在线段AC上,且△ABC与△AOQ相似,求点Q的坐标.6.已知:半圆O的直径AB=6,点C在半圆O上,且tan∠ABC=2,点D为弧AC上一点,联结DC(如图)(1)求BC的长;(2)若射线DC交射线AB于点M,且△MBC与△MOC相似,求CD的长;(3)联结OD,当OD∥BC时,作∠DOB的平分线交线段DC于点N,求ON的长.7.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣1),点C(0,﹣4),顶点为点M,过点A作AB∥x轴,交y轴与点D,交该二次函数图象于点B,连结BC.(1)求该二次函数的解析式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包含△ABC的边界),求m的取值范围;(3)点P时直线AC上的动点,若点P,点C,点M所构成的三角形与△BCD相似,请直接写出所有点P的坐标(直接写出结果,不必写解答过程).因动点产生的等腰三角形问题8.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E是∠BAC角平分线上一点,过点E作AE的垂线,过点A作AB的垂线,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF.(1)如图1,若点H是AC的中点,AC=2,求AB,BD的长;(2)如图1,求证:HF=EF;(3)如图2,连接CF,CE.猜想:△CEF是否是等边三角形?若是,请证明;若不是,说明理由.9.已知,一条抛物线的顶点为E(﹣1,4),且过点A(﹣3,0),与y轴交于点C,点D是这条抛物线上一点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴,垂足为K,DK分别交线段AE、AC于点G、H.(1)求这条抛物线的解析式;(2)求证:GH=HK;(3)当△CGH是等腰三角形时,求m的值.10.如图,已知在Rt△ABC中,∠ACB=90°,AB=5,sinA=,点P是边BC上的一点,PE⊥AB,垂足为E,以点P为圆心,PC为半径的圆与射线PE相交于点Q,线段CQ与边AB交于点D.(1)求AD的长;(2)设CP=x,△PCQ的面积为y,求y关于x的函数解析式,并写出定义域;(3)过点C作CF⊥AB,垂足为F,联结PF、QF,如果△PQF是以PF为腰的等腰三角形,求CP的长.11.如图(1),直线y=﹣x+n交x轴于点A,交y轴于点C(0,4),抛物线y=x2+bx+c 经过点A,交y轴于点B(0,﹣2).点P为抛物线上一个动点,过点P作x轴的垂线PD,过点B作BD⊥PD于点D,连接PB,设点P的横坐标为m.(1)求抛物线的解析式;(2)当△BDP为等腰直角三角形时,求线段PD的长;(3)如图(2),将△BDP绕点B逆时针旋转,得到△BD′P′,当旋转角∠PBP′=∠OAC,且点P的对应点P′落在坐标轴上时,请直接写出点P的坐标.12.综合与探究如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(﹣2,0),(6,﹣8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE?若存在,请直接写出点F 的坐标;若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q,试探究:当m为何值时,△OPQ是等腰三角形.因动点产生的直角三角形问题13.已知,如图1,在梯形ABCD中,AD∥BC,∠BCD=90°,BC=11,CD=6,tan ∠ABC=2,点E在AD边上,且AE=3ED,EF∥AB交BC于点F,点M、N分别在射线FE和线段CD上.(1)求线段CF的长;(2)如图2,当点M在线段FE上,且AM⊥MN,设FM•cos∠EFC=x,CN=y,求y关于x的函数解析式,并写出它的定义域;(3)如果△AMN为等腰直角三角形,求线段FM的长.14.如图,在矩形ABCD中,点O为坐标原点,点B的坐标为(4,3),点A、C 在坐标轴上,点P在BC边上,直线l1:y=2x+3,直线l2:y=2x﹣3.(1)分别求直线l1与x轴,直线l2与AB的交点坐标;(2)已知点M在第一象限,且是直线l2上的点,若△APM是等腰直角三角形,求点M的坐标;(3)我们把直线l1和直线l2上的点所组成的图形为图形F.已知矩形ANPQ的顶点N在图形F上,Q是坐标平面内的点,且N点的横坐标为x,请直接写出x的取值范围(不用说明理由).因动点产生的平行四边形问题15.如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a 的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.16.如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x 轴,y轴建立平面直角坐标系.(1)求点E坐标及经过O,D,C三点的抛物线的解析式;(2)一动点P从点C出发,沿CB以每秒2 个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.17.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称,直线AD与y轴交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形.若点T和点Q关于AM所在直线对称,求点T的坐标.18.如图,点A和动点P在直线l上,点P关于点A的对称点为Q,以AQ为边作Rt△ABQ,使∠BAQ=90°,AQ:AB=3:4,作△ABQ的外接圆O.点C在点P 右侧,PC=4,过点C作直线m⊥l,过点O作OD⊥m于点D,交AB右侧的圆弧于点E.在射线CD上取点F,使DF=CD,以DE,DF为邻边作矩形DEGF.设AQ=3x.(1)用关于x的代数式表示BQ,DF.(2)当点P在点A右侧时,若矩形DEGF的面积等于90,求AP的长.(3)在点P的整个运动过程中,①当AP为何值时,矩形DEGF是正方形?②作直线BG交⊙O于点N,若BN的弦心距为1,求AP的长(直接写出答案).19.在平面直角坐标系xOy(如图)中,经过点A(﹣1,0)的抛物线y=﹣x2+bx+3与y轴交于点C,点B与点A、点D与点C分别关于该抛物线的对称轴对称.(1)求b的值以及直线AD与x轴正方向的夹角;(2)如果点E是抛物线上一动点,过E作EF平行于x轴交直线AD于点F,且F 在E的右边,过点E作EG⊥AD与点G,设E的横坐标为m,△EFG的周长为l,试用m表示l;(3)点M是该抛物线的顶点,点P是y轴上一点,Q是坐标平面内一点,如果以点A、M、P、Q为顶点的四边形是矩形,求该矩形的顶点Q的坐标.20.如图,直线y=mx+4与反比例函数y=(k>0)的图象交于点A、B,与x 轴、y轴分别交于D、C,tan∠CDO=2,AC:CD=1:2.(1)求反比例函数解析式;(2)联结BO,求∠DBO的正切值;(3)点M在直线x=﹣1上,点N在反比例函数图象上,如果以点A、B、M、N 为顶点的四边形是平行四边形,求点N的坐标.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P 在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.因动点产生的梯形问题22.如图,在平面直角坐标系xOy中,二次函数y=+bx+c的图象与y轴交于点A,与双曲线y=有一个公共点B,它的横坐标为4,过点B作直线l∥x轴,与该二次函数图象交于另一个点C,直线AC在y轴上的截距是﹣6.(1)求二次函数的解析式;(2)求直线AC的表达式;(3)平面内是否存在点D,使A、B、C、D为顶点的四边形是等腰梯形?如果存在,求出点D坐标;如果不存在,说明理由.23.如图,矩形OMPN的顶点O在原点,M、N分别在x轴和y轴的正半轴上,OM=6,ON=3,反比例函数y=的图象与PN交于C,与PM交于D,过点C作CA⊥x轴于点A,过点D作DB⊥y轴于点B,AC与BD交于点G.(1)求证:AB∥CD;(2)在直角坐标平面内是否若存在点E,使以B、C、D、E为顶点,BC为腰的梯形是等腰梯形?若存在,求点E的坐标;若不存在请说明理由.因动点产生的面积问题24.如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC 于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.(1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标.25.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.26.在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上.(1)小明发现DG⊥BE,请你帮他说明理由.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG 上时,请你帮他求出此时BE的长.(3)如图3,小明将正方形ABCD绕点A继续逆时针旋转,线段DG与线段BE将相交,交点为H,写出△GHE与△BHD面积之和的最大值,并简要说明理由.27.在平面直角坐标系中,O为原点,直线y=﹣2x﹣1与y轴交于点A,与直线y=﹣x交于点B,点B关于原点的对称点为点C.(1)求过A,B,C三点的抛物线的解析式;(2)P为抛物线上一点,它关于原点的对称点为Q.①当四边形PBQC为菱形时,求点P的坐标;②若点P的横坐标为t(﹣1<t<1),当t为何值时,四边形PBQC面积最大?并说明理由.28.如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆,B为半圆上一点,连接AB并延长至C,使BC=AB,过C作CD⊥x轴于点D,交线段OB于点E,已知CD=8,抛物线经过O、E、A三点.(1)∠OBA=°.(2)求抛物线的函数表达式.(3)若P为抛物线上位于第一象限内的一个动点,以P、O、A、E为顶点的四边形面积记作S,则S取何值时,相应的点P有且只有3个?29.如图1,关于x的二次函数y=﹣x2+bx+c经过点A(﹣3,0),点C(0,3),点D为二次函数的顶点,DE为二次函数的对称轴,E在x轴上.(1)求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到x轴的距离相等?若存在求出点P,若不存在请说明理由;=3S△EBC?若存在求出点(3)如图2,DE的左侧抛物线上是否存在点F,使2S△FBCF的坐标,若不存在请说明理由.30.已知抛物线y=mx2+(1﹣2m)x+1﹣3m与x轴相交于不同的两点A、B (1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当<m≤8时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值?若有,求出该最值及相对应的m值.31.问题提出(1)如图①,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2)如图②,在矩形ABCD中,AB=4,AD=6,AE=4,AF=2,是否在边BC、CD 上分别存在点G、H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3)如图③,有一矩形板材ABCD,AB=3米,AD=6米,现想从此板材中裁出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,EF=FG=米,∠EHG=45°,经研究,只有当点E、F、G分别在边AD、AB、BC上,且AF<BF,并满足点H 在矩形ABCD内部或边上时,才有可能裁出符合要求的部件,试问能否裁得符合要求的面积尽可能大的四边形EFGH部件?若能,求出裁得的四边形EFGH部件的面积;若不能,请说明理由.32.如图,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8,OE=17,抛物线y=x2﹣3x+m与y轴相交于点A,抛物线的对称轴与x轴相交于点B,与CD交于点K.(1)将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①点B的坐标为(、),BK的长是,CK的长是;②求点F的坐标;③请直接写出抛物线的函数表达式;(2)将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连接OG,折痕与OG相交于点H,点M是线段EH上的一个动点(不与点H重合),连接MG,MO,过点G作GP⊥OM于点P,交EH于点N,连接ON,点M 从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1•S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化范围;若不变,请直接写出这个值.温馨提示:考生可以根据题意,在备用图中补充图形,以便作答.33.如图,已知▱ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作▱ABCD关于直线AD的对称图形AB1C1D(1)若m=3,试求四边形CC1B1B面积S的最大值;(2)若点B1恰好落在y轴上,试求的值.因动点产生的相切问题34.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+2x+c与x轴交于点A(﹣1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴为直线l.(1)求这条抛物线的关系式,并写出其对称轴和顶点M的坐标;(2)如果直线y=kx+b经过C、M两点,且与x轴交于点D,点C关于直线l的对称点为N,试证明四边形CDAN是平行四边形;(3)点P在直线l上,且以点P为圆心的圆经过A、B两点,并且与直线CD相切,求点P的坐标.35.如图,在Rt△ABC中,∠C=90°,AC=14,tanA=,点D是边AC上一点,AD=8,点E是边AB上一点,以点E为圆心,EA为半径作圆,经过点D,点F是边AC 上一动点(点F不与A、C重合),作FG⊥EF,交射线BC于点G.(1)用直尺圆规作出圆心E,并求圆E的半径长(保留作图痕迹);(2)当点G的边BC上时,设AF=x,CG=y,求y关于x的函数解析式,并写出它的定义域;(3)联结EG,当△EFG与△FCG相似时,推理判断以点G为圆心、CG为半径的圆G与圆E可能产生的各种位置关系.36.如图,线段PA=1,点D是线段PA延长线上的点,AD=a(a>1),点O是线段AP延长线上的点,OA2=OP•OD,以O为圆心,OA为半径作扇形OAB,∠BOA=90°.点C是弧AB上的点,联结PC、DC.(1)联结BD交弧AB于E,当a=2时,求BE的长;(2)当以PC为半径的⊙P和以CD为半径的⊙C相切时,求a的值;(3)当直线DC经过点B,且满足PC•OA=BC•OP时,求扇形OAB的半径长.37.如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD 向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3cm/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<).(1)如图1,连接DQ平分∠BDC时,t的值为;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.38.如图,抛物线y=﹣x2+mx+n的图象经过点A(2,3),对称轴为直线x=1,一次函数y=kx+b的图象经过点A,交x轴于点P,交抛物线于另一点B,点A、B 位于点P的同侧.(1)求抛物线的解析式;(2)若PA:PB=3:1,求一次函数的解析式;(3)在(2)的条件下,当k>0时,抛物线的对称轴上是否存在点C,使得⊙C 同时与x轴和直线AP都相切,如果存在,请求出点C的坐标,如果不存在,请说明理由.因动点产生的线段和差问题39.如图,抛物线y=x2﹣4x与x轴交于O,A两点,P为抛物线上一点,过点P 的直线y=x+m与对称轴交于点Q.(1)这条抛物线的对称轴是,直线PQ与x轴所夹锐角的度数是;=S△PAQ,求m的值;(2)若两个三角形面积满足S△POQ(3)当点P在x轴下方的抛物线上时,过点C(2,2)的直线AC与直线PQ交于点D,求:①PD+DQ的最大值;②PD•DQ的最大值.40.抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.41.如图,在每一个四边形ABCD中,均有AD∥BC,CD⊥BC,∠ABC=60°,AD=8,BC=12.(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为;(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时cos∠BPC的值;若不存在,请说明理由.42.如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.43.如图,在平面直角坐标系中,抛物线y=﹣x2﹣x+2与x轴交于B、C两点(点B在点C的左侧),与y轴交于点A,抛物线的顶点为D.(1)填空:点A的坐标为(,),点B的坐标为(,),点C的坐标为(,),点D的坐标为(,);(2)点P是线段BC上的动点(点P不与点B、C重合)①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是线段AB上的动点(点Q不与点A、B重合),点R是线段AC上的动点(点R不与点A、C重合),请直接写出△PQR周长的最小值.44.如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.45.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为,此时点P,A间的距离为;点M与AB的最小距离为,此时半圆M的弧与AB所围成的封闭图形面积为;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)46.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示)(2)应用:点A为线段BC外一动点,且BC=3,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.47.如图,直线l:y=﹣3x+3与x轴、y轴分别相交于A、B两点,抛物线y=ax2﹣2ax+a+4(a<0)经过点B.(1)求该抛物线的函数表达式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S 的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M′.①写出点M′的坐标;②将直线l绕点A按顺时针方向旋转得到直线l′,当直线l′与直线AM′重合时停止旋转,在旋转过程中,直线l′与线段BM′交于点C,设点B、M′到直线l′的距离分别为d1、d2,当d1+d2最大时,求直线l′旋转的角度(即∠BAC的度数).48.如图,在平面直角坐标系xOy中,将二次函数y=x2﹣1的图象M沿x轴翻折,把所得到的图象向右平移2个单位长度后再向上平移8个单位长度,得到二次函数图象N.(1)求N的函数表达式;(2)设点P(m,n)是以点C(1,4)为圆心、1为半径的圆上一动点,二次函数的图象M与x轴相交于两点A、B,求PA2+PB2的最大值;(3)若一个点的横坐标与纵坐标均为整数,则该点称为整点.求M与N所围成封闭图形内(包括边界)整点的个数.49.如图,顶点为A(,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.2017 挑战压轴题中考数学精讲解读篇参考答案与试题解析一.解答题(共36小题)1.如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PAT相似时,求所有满足条件的t的值.【分析】(1)根据题意易得点M、P的坐标,利用待定系数法来求直线AB的解析式;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,构建等腰直角△QDC,利用二次函数图象上点的坐标特征和二次函数最值的求法进行解答;(3)根据相似三角形的对应角相等推知:△PBQ中必有一个内角为45°;需要分类讨论:∠PBQ=45°和∠PQB=45°;然后对这两种情况下的△PAT是否是直角三角形分别进行解答.另外,以P、B、Q为顶点的三角形与△PAT相似也有两种情况:△Q″PB∽△PAT、△Q″BP∽△PAT.【解答】解:(1)如图①,设直线AB与x轴的交点为M.∵∠OPA=45°,∴OM=OP=2,即M(﹣2,0).设直线AB的解析式为y=kx+b(k≠0),将M(﹣2,0),P(0,2)两点坐标代入,得,解得.故直线AB的解析式为y=x+2;(2)如图①,过点Q作x轴的垂线QC,交AB于点C,再过点Q作直线AB的垂线,垂足为D,根据条件可知△QDC为等腰直角三角形,则QD=QC.设Q(m,m2),则C(m,m+2).∴QC=m+2﹣m2=﹣(m﹣)2+,QD=QC=[﹣(m﹣)2+].故当m=时,点Q到直线AB的距离最大,最大值为;(3)∵∠APT=45°,∴△PBQ中必有一个内角为45°,由图知,∠BPQ=45°不合题意.①如图②,若∠PBQ=45°,过点B作x轴的平行线,与抛物线和y轴分别交于点Q′、F.此时满足∠PBQ′=45°.∵Q′(﹣2,4),F(0,4),∴此时△BPQ′是等腰直角三角形,由题意知△PAT也是等腰直角三角形.(i)当∠PTA=90°时,得到:PT=AT=1,此时t=1;(ii)当∠PAT=90°时,得到:PT=2,此时t=0.②如图③,若∠PQB=45°,①中是情况之一,答案同上;先以点F为圆心,FB为半径作圆,则P、B、Q′都在圆F上,设圆F与y轴左侧的抛物线交于另一点Q″.则∠PQ″B=∠PQ′B=45°(同弧所对的圆周角相等),即这里的交点Q″也是符合要求.设Q″(n,n2)(﹣2<n<0),由FQ″=2,得n2+(4﹣n2)2=22,即n4﹣7n2+12=0.解得n2=3或n2=4,而﹣2<n<0,故n=﹣,即Q″(﹣,3).可证△PFQ″为等边三角形,所以∠PFQ″=60°,又PQ″=PQ″,所以∠PBQ″=∠PFQ″=30°.则在△PQ″B中,∠PQ″B=45°,∠PBQ″=30°.(i)若△Q″PB∽△PAT,则过点A作y轴的垂线,垂足为E.则ET=AE=,OE=1,所以OT=﹣1,解得t=1﹣;(ii)若△Q″BP∽△PAT,则过点T作直线AB垂线,垂足为G.设TG=a,则PG=TG=a,AG=TG=a,AP=,∴a+a=,解得PT=a=﹣1,∴OT=OP﹣PT=3﹣,∴t=3﹣.综上所述,所求的t的值为t=1或t=0或t=1﹣或t=3﹣.2.如图,已知BC是半圆O的直径,BC=8,过线段BO上一动点D,作AD⊥BC 交半圆O于点A,联结AO,过点B作BH⊥AO,垂足为点H,BH的延长线交半圆O于点F.(1)求证:AH=BD;(2)设BD=x,BE•BF=y,求y关于x的函数关系式;(3)如图2,若联结FA并延长交CB的延长线于点G,当△FAE与△FBG相似时,求BD的长度.【分析】(1)由AD⊥BC,BH⊥AO,利用垂直的定义得到一对直角相等,再由一对公共角,且半径相等,利用AAS得到三角形ADO与三角形BHO全等,利用全等三角形对应边相等得到OH=OD,利用等式的性质化简即可得证;(2)连接AB,AF,如图1所示,利用HL得到直角三角形ADB与直角三角形BHA全等,利用全等三角形对应角相等得到一对角相等,再由公共角相等得到三角形ABE与三角形AFB相似,由相似得比例即可确定出y与x的函数解析式;(3)连接OF,如图2所示,利用两对角相等的三角形相似得到三角形AFO与三角形FOG相似,由相似得比例求出BD的长即可.【解答】(1)证明:∵AD⊥BC,BH⊥AO,∴∠ADO=∠BHO=90°,在△ADO与△BHO中,,∴△ADO≌△BHO(AAS),∴OH=OD,又∵OA=OB,∴AH=BD;(2)解:连接AB、AF,如图1所示,∵AO是半径,AO⊥弦BF,∴∴AB=AF,∴∠ABF=∠AFB,在Rt△ADB与Rt△BHA中,,∴Rt△ADB≌Rt△BHA(HL),∴∠ABF=∠BAD,∴∠BAD=∠AFB,又∵∠ABF=∠EBA,∴△BEA∽△BAF,∴=,。

(真题)湖北省宜昌市2018年中考数学试题有答案

(真题)湖北省宜昌市2018年中考数学试题有答案

2018年湖北省宜昌市初中毕业生学业考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2018-的绝对值是( ) A .2018 B .2018-C .12018 D .12018- 2.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.工信部发布《中国数字经济发展与就业白皮书(2018)》显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( )A .31.2110⨯B .312.110⨯C .41.2110⨯D .50.12110⨯ 4.计算24(2)5+-⨯=( )A .16-B .16 C.20 D .245.在“绿水青山就是金山银山”这句话中任选一个汉子,这个字是“绿”的概率为( ) A .310 B .110 C.19 D .186.如图,是由四个相同的小正方体组合而成的几何体,它的左视图是( )A .B . C.D .7.下列运算正确的是( )A .224x x x +=B .326x x x = C.42222x x x += D .22(3)6x x =8.1261年,我国南宋数学家杨辉用下图中的三角形解释二项和的惩罚规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”.请观察图中的数字排列规律,则,a b ,c 的值分别为( )A .1,6,15a b c ===B .6,15,20a b c === C.15,20,15a b c === D .20,15,6a b c ===9.如图,正方形ABCD 的边长为1,点E, F 分别是对角线AC 上的两点, E G AB ⊥ , EI AD ⊥,FH AB ⊥,FJ AD ⊥,垂足分别为G I, H, J ,,则图中阴影部分的面积等于()A .1B .12 C.13 D .1410.为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛.这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( )A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定11.如图,在平面直角坐标系中,把ABC 绕原点O 旋转180°得到CDA ∆.点A,B, C 的坐标分别为(5,2)-,(22)(52)---,,,,则点D 的坐标为()A .(2, 2)B .(2 -2) C. (2,5) D .(2,5)-12.如图,直线AB 是O 的切线,C 为切点,//OD AB 交O 于点D ,点E 在O 上,连接,,OC EC ED ,则CED ∠的度数为( )A .30°B .35° C.40° D .45°13.尺规作图:经过已知直线外一点作这条直线的垂直.下列作图中正确的是( )A. B.C. D.14.如图,要测量小河两岸相对的两点,P A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得100PC =米,35PCA ∠=,则小河宽PA 等于( )A.100sin 35米B.100sin 55米C.100tan 35米D.100tan 55米 15.如图,一块砖的,,A B C 三个面的面积比是4:2:1,如果,,A B C 面分别向下放在地上,地面所受压强为123,,p p p 的大小关系正确的是( )A.123p p p >>B.132p p p >>C.213p p p >>D.321p p p >>第Ⅱ卷(共90分)三、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.先化简,再求值:()()()122x x x x +++-,其中4x =.17. 解不等式组1021320xx x -⎧≤+⎪⎨⎪-<⎩,并把它的解集在数轴上表示出来.18. 如图,在Rt ABC ∆中,90ACB ∠=,40A ∠=,ABC ∆的外角CBD ∠的平分线BE 交AC 的延长线于点E.(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F .求F ∠的度数.19. 我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶。

2018年湖北省宜昌市中考数学试卷(答案+解析)

2018年湖北省宜昌市中考数学试卷(答案+解析)

2018年湖北省宜昌市中考数学试卷一、选择题(每题只有一个正确选项,本题共15小题,每题3分,共45分) 1.(3分)﹣2018的绝对值是()A.2018 B.﹣2018 C.12018D.﹣120182.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.(3分)工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×1054.(3分)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.245.(3分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.186.(3分)如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.7.(3分)下列运算正确的是()A.x2+x2=x4B.x3•x2=x6C.2x4÷x2=2x2D.(3x)2=6x28.(3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=69.(3分)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.12C.13D.1410.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定11.(3分)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)12.(3分)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED 的度数为()A.30°B.35°C.40°D.45°13.(3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.14.(3分)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米15.(3分)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=F S,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1二、解答题(本题共9题,75分)16.(6分)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=6﹣4.17.(6分)解不等式组10−x3≤2x+1x−2<0,并把它的解集在数轴上表示出来.18.(7分)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.19.(7分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了(1)填空:在统计表中,这5个数的中位数是;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.22.(10分)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.23.(11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE ⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.24.(12分)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=k(k≠0)与矩形OADB的边BD交于点E.x(1)填空:OA=,k=,点E的坐标为;(2)当1≤t ≤6时,经过点M (t ﹣1,﹣12t 2+5t ﹣32)与点N (﹣t ﹣3,﹣12t 2+3t ﹣72)的直线交y 轴于点F ,点P 是过M ,N 两点的抛物线y =﹣12x 2+bx +c 的顶点. ①当点P 在双曲线y =k x 上时,求证:直线MN 与双曲线y =k x 没有公共点;②当抛物线y =﹣12x 2+bx +c 与矩形OADB 有且只有三个公共点,求t 的值; ③当点F 和点P 随着t 的变化同时向上运动时,求t 的取值范围,并求在运动过程中直线MN 在四边形OAEB 中扫过的面积.2018年湖北省宜昌市中考数学试卷参考答案与试题解析一、选择题(每题只有一个正确选项,本题共15小题,每题3分,共45分)1.(3分)﹣2018的绝对值是()A.2018 B.﹣2018 C.12018D.﹣12018【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.2.(3分)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义逐个判断即可.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.3.(3分)工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.21万=1.21×104,故选:C.4.(3分)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.24【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.5.(3分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.310B.110C.19D.18【分析】直接利用概率公式求解.【解答】解:这句话中任选一个汉字,这个字是“绿”的概率=110.故选:B.6.(3分)如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:该几何体的主视图为:;左视图为;俯视图为;故选:C.7.(3分)下列运算正确的是()A.x2+x2=x4B.x3•x2=x6C.2x4÷x2=2x2D.(3x)2=6x2【分析】根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.【解答】解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.8.(3分)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.9.(3分)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A .1B .12C .13D .14 【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD 是正方形,∴直线AC 是正方形ABCD 的对称轴,∵EG ⊥AB .EI ⊥AD ,FH ⊥AB ,FJ ⊥AD ,垂足分别为G ,I ,H ,J .∴根据对称性可知:四边形EFHG 的面积与四边形EFJI 的面积相等,∴S 阴=12S 正方形ABCD =12, 故选:B .10.(3分)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( )A .小明的成绩比小强稳定B .小明、小强两人成绩一样稳定C .小强的成绩比小明稳定D .无法确定小明、小强的成绩谁更稳定【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A .11.(3分)如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D 的坐标为( )A .(2,2)B .(2,﹣2)C .(2,5)D .(﹣2,5) 【分析】依据四边形ABCD 是平行四边形,即可得到BD 经过点O ,依据B 的坐标为(﹣2,﹣2),即可得出D 的坐标为(2,2). 【解答】解:∵点A ,C 的坐标分别为(﹣5,2),(5,﹣2),∴点O 是AC 的中点,∵AB =CD ,AD =BC ,∴四边形ABCD 是平行四边形,∴BD 经过点O ,∵B 的坐标为(﹣2,﹣2),∴D 的坐标为(2,2),故选:A .12.(3分)如图,直线AB 是⊙O 的切线,C 为切点,OD ∥AB 交⊙O 于点D ,点E 在⊙O 上,连接OC ,EC ,ED ,则∠CED 的度数为( )A .30°B .35°C .40°D .45°【分析】由切线的性质知∠OCB =90°,再根据平行线的性质得∠COD =90°,最后由圆周角定理可得答案.【解答】解:∵直线AB 是⊙O 的切线,C 为切点,∴∠OCB =90°,∵OD ∥AB ,∴∠COD =90°,∴∠CED =12∠COD =45°, 故选:D .13.(3分)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )A .B .C .D .【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB 和AB 外一点C .求作:AB 的垂线,使它经过点C .作法:(1)任意取一点K ,使K 和C 在AB 的两旁.(2)以C 为圆心,CK 的长为半径作弧,交AB 于点D 和E .(3)分别以D 和E 为圆心,大于12DE 的长为半径作弧,两弧交于点F , (4)作直线CF .直线CF 就是所求的垂线.故选:B .14.(3分)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取P A的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽P A等于()A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米【分析】根据正切函数可求小河宽P A的长度.【解答】解:∵P A⊥PB,PC=100米,∠PCA=35°,∴小河宽P A=PCtan∠PCA=100tan35°米.故选:C.15.(3分)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=F S,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1【分析】直接利用反比例函数的性质进而分析得出答案.【解答】解:∵p=FS,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.二、解答题(本题共9题,75分)16.(6分)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=6﹣4.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=6﹣4时,原式=6﹣4+4=6.17.(6分)解不等式组10−x3≤2x+1x−2<0,并把它的解集在数轴上表示出来.【分析】解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分;并把它的解集在数轴上表示出来即可.【解答】解:10−x3≤2x+1①x−2<0②解不等式①,得:x≥1;解不等式②,得:x<2;∴原不等式组的解集是1≤x<2..18.(7分)如图,在Rt △ABC 中,∠ACB =90°,∠A =40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC =90°﹣∠A =50°,由邻补角定义得出∠CBD =130°.再根据角平分线定义即可求出∠CBE =12∠CBD =65°; (2)先根据三角形外角的性质得出∠CEB =90°﹣65°=25°,再根据平行线的性质即可求出∠F =∠CEB =25°.【解答】解:(1)∵在Rt △ABC 中,∠ACB =90°,∠A =40°,∴∠ABC =90°﹣∠A =50°,∴∠CBD =130°.∵BE 是∠CBD 的平分线,∴∠CBE =12∠CBD =65°;(2)∵∠ACB =90°,∠CBE =65°,∴∠CEB =90°﹣65°=25°.∵DF ∥BE ,∴∠F =∠CEB =25°.19.(7分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,则 5x +y =3x +5y =2, 解得: x =1324y =724, 答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了(1)填空:在统计表中,这5个数的中位数是10;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=14.21.(8分)如图,在△ABC 中,AB =AC ,以AB 为直径的圆交AC 于点D ,交BC 于点E ,延长AE 至点F ,使EF =AE ,连接FB ,FC .(1)求证:四边形ABFC 是菱形;(2)若AD =7,BE =2,求半圆和菱形ABFC 的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD =x ,连接BD .利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB 是直径,∴∠AEB =90°,∴AE ⊥BC ,∵AB =AC ,∴BE =CE ,∵AE =EF ,∴四边形ABFC 是平行四边形,∵AC =AB ,∴四边形ABFC 是菱形.(2)设CD =x .连接BD .∵AB 是直径,∴∠ADB =∠BDC =90°,∴AB 2﹣AD 2=CB 2﹣CD 2,∴(7+x )2﹣72=42﹣x 2,解得x =1或﹣8(舍弃)∴AC =8,BD = 82−72= 15,∴S 菱形ABFC =8 15.∴S 半圆=12•π•42=8π.22.(10分)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q ,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q 值都以平均值n 计算.第一年有40家工厂用乙方案治理,共使Q 值降低了12.经过三年治理,境内长江水质明显改善.(1)求n 的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m ,三年来用乙方案治理的工厂数量共190家,求m 的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n的值即可得出关于a的等式求出答案.【解答】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=12,m2=﹣72(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:x+a=30x+2a=39.5解得:x=20.5a=9.523.(11分)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE ⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE =DE ,在△ABE 和△DCE 中, AB =DC∠A =∠D =90°AE =DE ,∴△ABE ≌△DCE (SAS );(2)①在矩形ABCD ,∠ABC =90°,∵△BPC 沿PC 折叠得到△GPC ,∴∠PGC =∠PBC =90°,∠BPC =∠GPC ,∵BE ⊥CG ,∴BE ∥PG ,∴∠GPF =∠PFB ,∴∠BPF =∠BFP ,∴BP =BF ;②当AD =25时,∵∠BEC =90°,∴∠AEB +∠CED =90°,∵∠AEB +∠ABE =90°,∴∠CED =∠ABE ,∵∠A =∠D =90°,∴△ABE ∽△DEC ,∴AB AE =DE CD ,设AE =x ,∴DE =25﹣x ,∴12x =25−x 12,∴x =9或x =16,∵AE <DE ,∴AE =9,DE =16,∴CE =20,BE =15,由折叠得,BP =PG ,∴BP =BF =PG ,∵BE ∥PG ,∴△ECF ∽△GCP ,∴EF PG =CE CG ,设BP =BF =PG =y ,∴15−y y =2025,∴y =253,∴BP =253,在Rt △PBC 中,PC =25 103,cos ∠PCB =BC PC =3 1010;③如图,连接FG ,∵∠GEF =∠BAE =90°,∵BF ∥PG ,BF =PG ,∴▱BPGF 是菱形,∴BP ∥GF ,∴∠GFE =∠ABE ,∴△GEF ∽△EAB ,∴EF GF =AB BE ,∴BE •EF =AB •GF =12×9=108.24.(12分)如图,在平面直角坐标系中,矩形OADB 的顶点A ,B 的坐标分别为A (﹣6,0),B (0,4).过点C (﹣6,1)的双曲线y =k x (k ≠0)与矩形OADB 的边BD 交于点E . (1)填空:OA = 6 ,k = ﹣6 ,点E 的坐标为(﹣32,4) ; (2)当1≤t ≤6时,经过点M (t ﹣1,﹣12t 2+5t ﹣32)与点N (﹣t ﹣3,﹣12t 2+3t ﹣72)的直线交y 轴于点F ,点P 是过M ,N 两点的抛物线y =﹣12x 2+bx +c 的顶点. ①当点P 在双曲线y =k x 上时,求证:直线MN 与双曲线y =k x 没有公共点;②当抛物线y =﹣12x 2+bx +c 与矩形OADB 有且只有三个公共点,求t 的值; ③当点F 和点P 随着t 的变化同时向上运动时,求t 的取值范围,并求在运动过程中直线MN 在四边形OAEB 中扫过的面积.【分析】(1)根据题意将先关数据带入 (2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y =k x 解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.【解答】解:(1)∵A 点坐标为(﹣6,0)∴OA =6∵过点C (﹣6,1)的双曲线y =k x ∴k =﹣6y =4时,x =﹣64=−32 ∴点E 的坐标为(﹣32,4)故答案为:6,﹣6,(﹣32,4) (2)①设直线MN 解析式为:y 1=k 1x +b 1由题意得: −12t 2+5t −32=k 1(t −1)+b 1−12t 2+3t −72=k 1(−t −3)+b 1 解得 k 1=1b =−12t 2+4t −12 ∵抛物线y =﹣12x 2+bx +c 过点M 、N ∴ −12t 2+5t −32=−12(t −1)2+b (t −1)+c −12t 2+3t −72=−12(−t −3)2+b (−t −3)+c解得 b =−1c =5t −2 ∴抛物线解析式为:y =﹣12x 2﹣x +5t ﹣2 ∴顶点P 坐标为(﹣1,5t ﹣32)∵P 在双曲线y =﹣6x 上∴(5t ﹣32)×(﹣1)=﹣6∴t =32 此时直线MN 解析式为:联立 y =x +358y =−6x ∴8x 2+35x +49=0 ∵△=352﹣4×8×48=1225﹣1536<0∴直线MN 与双曲线y =﹣6x 没有公共点. ②当抛物线过点B ,此时抛物线y =﹣12x 2+bx +c 与矩形OADB 有且只有三个公共点∴4=5t ﹣2,得t =65 当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点 ∴10t−32=4,得t =1110 ∴t =65或t =1110 ③∵点P 的坐标为(﹣1,5t ﹣32)∴y P =5t ﹣32 当1≤t ≤6时,y P 随t 的增大而增大此时,点P 在直线x =﹣1上向上运动∵点F 的坐标为(0,﹣12t 2+4t −12)∴y F =﹣12(t −4)2+152∴当1≤t ≤4时,随者y F 随t 的增大而增大此时,随着t 的增大,点F 在y 轴上向上运动∴1≤t ≤4当t =1时,直线MN :y =x +3与x 轴交于点G (﹣3,0),与y 轴交于点H (0,3) 当t =4﹣ 3时,直线MN 过点A .当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为S =12×(32+6)×4−12×3×3=212。

2018年全国各地中考数学压轴题汇编:函数(湖北专版)(解析卷)

2018年全国各地中考数学压轴题汇编:函数(湖北专版)(解析卷)

2018年全国各地中考数学压轴题汇编(湖北专版)函数参考答案与试题解析1.(2018•襄阳)如图,已知双曲线y1=与直线y2=ax+b交于点A(﹣4,1)和点B(m,﹣4).(1)求双曲线和直线的解析式;(2)直接写出线段AB的长和y1>y2时x的取值范围.解:(1)把A(﹣4,1)代入y1=得k=﹣4×1=﹣4,∴反比例函数的解析式为y1=﹣,把B(m,﹣4)代入y1=﹣得﹣4m=﹣4,解得m=1,则B(1,﹣4),把A(﹣4,1),B(1,﹣4)代入y2=ax+b得,解得,∴直线解析式为y2=﹣x﹣3;(2)AB==5,当﹣4<x<0或x>1时,y1>y2.2.(2018•黄冈)如图,反比例函数y=(x>0)过点A(3,4),直线AC与x轴交于点C(6,0),过点C作x轴的垂线BC交反比例函数图象于点B.(1)求k的值与B点的坐标;(2)在平面内有点D,使得以A,B,C,D四点为顶点的四边形为平行四边形,试写出符合条件的所有D点的坐标.解:(1)把点A(3,4)代入y=(x>0),得k=xy=3×4=12,故该反比例函数解析式为:y=.∵点C(6,0),BC⊥x轴,∴把x=6代入反比例函数y=,得y==6.则B(6,2).综上所述,k的值是12,B点的坐标是(6,2).(2)①如图,当四边形ABCD为平行四边形时,AD∥BC且AD=BC.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y A﹣y D=y B﹣y C即4﹣y D=2﹣0,故y D=2.所以D(3,2).②如图,当四边形ACBD′为平行四边形时,AD′∥CB且AD′=CB.∵A(3,4)、B(6,2)、C(6,0),∴点D的横坐标为3,y D′﹣y A=y B﹣y C即y D﹣4=2﹣0,故y D′=6.所以D′(3,6).③如图,当四边形ACD″B为平行四边形时,AC=BD″且AC=BD″.∵A(3,4)、B(6,2)、C(6,0),∴x D″﹣x B=x C﹣x A即x D″﹣6=6﹣3,故x D″=9.y D″﹣y B=y C﹣y A即y D″﹣2=0﹣4,故y D″=﹣2.所以D″(9,﹣2).综上所述,符合条件的点D的坐标是:(3,2)或(3,6)或(9,﹣2).3.(2018•孝感)“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理A,B两种型号的净水器,每台A型净水器比每台B型净水器进价多200元,用5万元购进A型净水器与用4.5万元购进B 型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)槐荫公司计划购进A,B两种型号的净水器共50台进行试销,其中A型净水器为x 台,购买资金不超过9.8万元.试销时A型净水器每台售价2500元,B型净水器每台售价2180元,槐荫公司决定从销售A型净水器的利润中按每台捐献a(70<a<80)元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为W,求W的最大值.解:(1)设A型净水器每台的进价为m元,则B型净水器每台的进价为(m﹣200)元,根据题意得:=,解得:m=2000,经检验,m=2000是分式方程的解,∴m﹣200=1800.答:A型净水器每台的进价为2000元,B型净水器每台的进价为1800元.(2)根据题意得:2000x+1800(50﹣x)≤98000,解得:x≤40.W=(2500﹣2000)x+(2180﹣1800)(50﹣x)﹣ax=(120﹣a)x+19000,∵当70<a<80时,120﹣a>0,∴W随x增大而增大,∴当x=40时,W取最大值,最大值为(120﹣a)×40+19000=23800﹣40a,∴W的最大值是(23800﹣40a)元.4.(2018•天门)如图,在平面直角坐标系中,直线y=﹣x与反比例函数y=(k≠0)在第二象限内的图象相交于点A(m,1).(1)求反比例函数的解析式;(2)将直线y=﹣x向上平移后与反比例函数图象在第二象限内交于点B,与y轴交于点C,且△ABO的面积为,求直线BC的解析式.解:(1)∵直线y=﹣x过点A(m,1),∴﹣m=1,解得m=﹣2,∴A(﹣2,1).∵反比例函数y=(k≠0)的图象过点A(﹣2,1),∴k=﹣2×1=﹣2,∴反比例函数的解析式为y=﹣;(2)设直线BC的解析式为y=﹣x+b,∵三角形ACO与三角形ABO面积相等,且△ABO的面积为,∴△ACO的面积=OC•2=,∴OC=,∴b=,∴直线BC的解析式为y=﹣x+.5.(2018•黄冈)已知直线l:y=kx+1与抛物线y=x2﹣4x.(1)求证:直线l与该抛物线总有两个交点;(2)设直线l与该抛物线两交点为A,B,O为原点,当k=﹣2时,求△OAB的面积.解:(1)联立化简可得:x2﹣(4+k)x﹣1=0,∴△=(4+k)2+4>0,故直线l与该抛物线总有两个交点;(2)当k=﹣2时,∴y=﹣2x+1过点A作AF⊥x轴于F,过点B作BE⊥x轴于E,∴联立解得:或∴A(1﹣,2﹣1),B(1+,﹣1﹣2)∴AF=2﹣1,BE=1+2易求得:直线y=﹣2x+1与x轴的交点C为(,0)∴OC==S△AOC+S△BOC∴S△AOB=OC•AF+OC•BE=OC(AF+BE)=××(2﹣1+1+2)=6.(2018•恩施州)如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D、E两点,求△CDE的面积.解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),D(3,2),又∵C(1,2),∴CD=3﹣1=2,∴△CDE的面积=×2×(6+2)=8.7.(2018•天门)绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?解:(1)设y1与x之间的函数关系式为y1=kx+b,∵经过点(0,168)与(180,60),∴,解得:,∴产品销售价y1(元)与产量x(kg)之间的函数关系式为y1=﹣x+168(0≤x≤180);(2)由题意,可得当0≤x≤50时,y2=70;当130≤x≤180时,y2=54;当50<x<130时,设y2与x之间的函数关系式为y2=mx+n,∵直线y2=mx+n经过点(50,70)与(130,54),∴,解得,∴当50<x<130时,y2=﹣x+80.综上所述,生产成本y2(元)与产量x(kg)之间的函数关系式为y2=;(3)设产量为xkg时,获得的利润为W元,①当0≤x≤50时,W=x(﹣x+168﹣70)=﹣(x﹣)2+,∴当x=50时,W的值最大,最大值为3400;②当50<x<130时,W=x[(﹣x+168)﹣(﹣x+80)]=﹣(x﹣110)2+4840,∴当x=110时,W的值最大,最大值为4840;③当130≤x≤180时,W=x(﹣x+168﹣54)=﹣(x﹣95)2+5415,∴当x=130时,W的值最大,最大值为4680.因此当该产品产量为110kg时,获得的利润最大,最大值为4840元.8.(2018•武汉)已知点A(a,m)在双曲线y=上且m<0,过点A作x轴的垂线,垂足为B.(1)如图1,当a=﹣2时,P(t,0)是x轴上的动点,将点B绕点P顺时针旋转90°至点C,①若t=1,直接写出点C的坐标;②若双曲线y=经过点C,求t的值.(2)如图2,将图1中的双曲线y=(x>0)沿y轴折叠得到双曲线y=﹣(x<0),将线段OA绕点O旋转,点A刚好落在双曲线y=﹣(x<0)上的点D(d,n)处,求m和n的数量关系.解:(1)①如图1﹣1中,由题意:B(﹣2,0),P(1,0),PB=PC=3,∴C(1,3).②图1﹣2中,由题意C(t,t+2),∵点C在y=上,∴t(t+2)=8,∴t=﹣4 或2,(2)如图2中,①当点A与点D关于x轴对称时,A(a,m),D(d,n),∴m+n=0.②当点A绕点O旋转90°时,得到D′,D′在y=﹣上,作D′H⊥y轴,则△ABO≌△D′HO,∴OB=OH,AB=D′H,∵A(a,m),∴D′(m,﹣a),即D′(m,n),∵D′在y=﹣上,∴mn=﹣8,综上所述,满足条件的m、n的关系是m+n=0或mn=﹣8.9.(2018•天门)抛物线y=﹣x2+x﹣1与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,其顶点为D.将抛物线位于直线l:y=t(t<)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A,B,D的坐标分别为(,0),(3,0),(,);(2)如图①,抛物线翻折后,点D落在点E处.当点E在△ABC内(含边界)时,求t 的取值范围;(3)如图②,当t=0时,若Q是“M”形新图象上一动点,是否存在以CQ为直径的圆与x 轴相切于点P?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)当y=0时,有﹣x2+x﹣1=0,解得:x1=,x2=3,∴点A的坐标为(,0),点B的坐标为(3,0).∵y=﹣x2+x﹣1=﹣(x2﹣x)﹣1=﹣(x﹣)2+,∴点D的坐标为(,).故答案为:(,0);(3,0);(,).(2)∵点E、点D关于直线y=t对称,∴点E的坐标为(,2t﹣).当x=0时,y=﹣x2+x﹣1=﹣1,∴点C的坐标为(0,﹣1).设线段BC所在直线的解析式为y=kx+b,将B(3,0)、C(0,﹣1)代入y=kx+b,,解得:,∴线段BC所在直线的解析式为y=x﹣1.∵点E在△ABC内(含边界),∴,解得:≤t≤.(3)当x<或x>3时,y=﹣x2+x﹣1;当≤x≤3时,y=x2﹣x+1.假设存在,设点P的坐标为(m,0),则点Q的横坐标为m.①当m<或m>3时,点Q的坐标为(m,﹣x2+x﹣1)(如图1),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(﹣m2+m)2=m2+1+m2+(﹣m2+m﹣1)2,整理,得:m1=,m2=,∴点P的坐标为(,0)或(,0);②当≤m≤3时,点Q的坐标为(m,x2﹣x+1)(如图2),∵以CQ为直径的圆与x轴相切于点P,∴CP⊥PQ,∴CQ2=CP2+PQ2,即m2+(m2﹣m+2)2=m2+1+m2+(m2﹣m+1)2,整理,得:11m2﹣28m+12=0,解得:m3=,m4=2,∴点P的坐标为(,0)或(1,0).综上所述:存在以CQ为直径的圆与x轴相切于点P,点P的坐标为(,0)、(,0)、(1,0)或(,0).10.(2018•武汉)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y 轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x 轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.解:(1)由题意知,解得:b=2、c=1,∴抛物线L的解析式为y=﹣x2+2x+1;(2)如图1,∵y=kx﹣k+4=k(x﹣1)+4,∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴点B(1,2),则BG=2,=1,即S△BNG﹣S△BMG=BG•x N﹣BG•x M=1,∵S△BMN∴x N﹣x M=1,由得x2+(k﹣2)x﹣k+3=0,解得:x==,则x N=、x M=,由x N﹣x M=1得=1,∴k=±3,∵k<0,∴k=﹣3;(3)如图2,设抛物线L1的解析式为y=﹣x2+2x+1+m,∴C(0,1+m)、D(2,1+m)、F(1,0),设P(0,t),①当△PCD∽△FOP时,=,∴=,∴t2﹣(1+m)t+2=0;②当△PCD∽△POF时,=,∴=,∴t=(m+1);(Ⅰ)当方程①有两个相等实数根时,△=(1+m)2﹣8=0,解得:m=2﹣1(负值舍去),此时方程①有两个相等实数根t1=t2=,方程②有一个实数根t=,∴m=2﹣1,此时点P的坐标为(0,)和(0,);(Ⅱ)当方程①有两个不相等的实数根时,把②代入①,得:(m+1)2﹣(m+1)+2=0,解得:m=2(负值舍去),此时,方程①有两个不相等的实数根t1=1、t2=2,方程①有一个实数根t=1,∴m=2,此时点P的坐标为(0,1)和(0,2);综上,当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).11.(2018•黄石)某年5月,我国南方某省A、B两市遭受严重洪涝灾害,1.5万人被迫转移,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表A(吨)B(吨)合计(吨)C x﹣60300﹣x240D260﹣x x260总计(吨)200300500(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.解:(1)∵D市运往B市x吨,∴D市运往A市(260﹣x)吨,C市运往B市(300﹣x)吨,C市运往A市200﹣(260﹣x)=(x﹣60)吨,故答案为:x﹣60、300﹣x、260﹣x;(2)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(3)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤8,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤,∵<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤8.12.(2018•宜昌)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA=6,k=﹣6,点E的坐标为(﹣,4);(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=13.(2018•黄石)已知抛物线y=a(x﹣1)2过点(3,1),D为抛物线的顶点.(1)求抛物线的解析式;(2)若点B、C均在抛物线上,其中点B(0,),且∠BDC=90°,求点C的坐标;(3)如图,直线y=kx+4﹣k与抛物线交于P、Q两点.①求证:∠PDQ=90°;②求△PDQ面积的最小值.解:(1)将点(3,1)代入解析式,得:4a=1,解得:a=,所以抛物线解析式为y=(x﹣1)2;(2)由(1)知点D坐标为(1,0),设点C的坐标为(x0,y0),(x0>1、y0>0),则y0=(x0﹣1)2,如图1,过点C作CF⊥x轴,∴∠BOD=∠DFC=90°、∠DCF+∠CDF=90°,∵∠BDC=90°,∴∠BDO+∠CDF=90°,∴∠BDO=∠DCF,∴△BDO∽△DCF,∴=,∴==,解得:x0=17,此时y0=64,∴点C的坐标为(17,64).(3)①证明:设点P的坐标为(x1,y1),点Q为(x2,y2),(其中x1<1<x2,y1>0,y2>0),由,得:x2﹣(4k+2)x+4k﹣15=0,∴,∴(x1﹣1)(x2﹣1)=﹣16,如图2,分别过点P、Q作x轴的垂线,垂足分别为M、N,则PM=y1=(x1﹣1)2,QN=y2=(x2﹣1)2,DM=|x1﹣1|=1﹣x1、DN=|x2﹣1|=x2﹣1,∴PM•QN=DM•DN=16,∴=,又∠PMD=∠DNQ=90°,∴△PMD∽△DNQ,∴∠MPD=∠NDQ,而∠MPD+∠MDP=90°,∴∠MDP+∠NDQ=90°,即∠PDQ=90°;②过点D作x轴的垂线交直线PQ于点G,则点G的坐标为(1,4),所以DG=4,=DG•MN=×4×|x1﹣x2|=2=8,∴S△PDQ取得最小值16.∴当k=0时,S△PDQ14.(2018•襄阳)襄阳市精准扶贫工作已进入攻坚阶段.贫困户张大爷在某单位的帮扶下,把一片坡地改造后种植了优质水果蓝莓,今年正式上市销售.在销售的30天中,第一天卖出20千克,为了扩大销量,采取了降价措施,以后每天比前一天多卖出4千克.第x天的售价为y元/千克,y关于x的函数解析式为且第12天的售价为32元/千克,第26天的售价为25元/千克.已知种植销售蓝莓的成本是18元/千克,每天的利润是W元(利润=销售收入﹣成本).(1)m=﹣,n=25;(2)求销售蓝莓第几天时,当天的利润最大?最大利润是多少?(3)在销售蓝莓的30天中,当天利润不低于870元的共有多少天?解:(1)当第12天的售价为32元/件,代入y=mx﹣76m得32=12m﹣76m解得m=﹣当第26天的售价为25元/千克时,代入y=n则n=25故答案为:m=﹣,n=25(2)由(1)第x天的销售量为20+4(x﹣1)=4x+16当1≤x<20时W=(4x+16)(﹣x+38﹣18)=﹣2x2+72x+320=﹣2(x﹣18)2+968∴当x=18时,W最大=968当20≤x≤30时,W=(4x+16)(25﹣18)=28x+112∵28>0∴W随x的增大而增大∴当x=30时,W最大=952∵968>952∴当x=18时,W最大=968(3)当1≤x<20时,令﹣2x2+72x+320=870解得x1=25,x2=11∵抛物线W=﹣2x2+72x+320的开口向下∴11≤x≤25时,W≥870∴11≤x<20∵x为正整数∴有9天利润不低于870元当20≤x≤30时,令28x+112≥870解得x≥27∴27≤x≤30∵x为正整数∴有3天利润不低于870元∴综上所述,当天利润不低于870元的天数共有12天.15.(2018•荆门)随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t 天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与P的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)解:(1)依题意得,解得:;(2)当0≤t≤20时,设y=k1t+b1,由图象得:,解得:∴y=t+16;当20<t≤50时,设y=k2t+b2,由图象得:,解得:,∴y=﹣t+32,综上,;(3)W=ya﹣mt﹣n,当0≤t≤20时,W=10000(t+16)﹣600t﹣160000=5400t,∵5400>0,20=108000,∴当t=20时,W最大=5400×当20<t≤50时,W=(﹣t+32)(100t+8000)﹣600t﹣160000=﹣20t2+1000t+96000=﹣20(t﹣25)2+108500,∵﹣20<0,抛物线开口向下,∴当t=25,W最大=108500,∵108500>108000,∴当t=25时,W取得最大值,该最大值为108500元.16.(2018•襄阳)直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM 时,求t的值.解:(1)在y=﹣x+3中,令x=0得y=3,令y=0得x=2,∴点A(2,0)、点B(0,3),将点A(2,0)代入抛物线解析式,得:﹣×4+4m﹣3m=0,解得:m=3,所以抛物线解析式为y=﹣x2+6x﹣9,∵y=﹣x2+6x﹣9=﹣(x﹣4)2+3,∴点D(4,3),对称轴为x=4,∴点C坐标为(6,0);(2)如图1,由(1)知BD=AC=4,根据0≤3t≤4,得:0≤t≤,①∵B(0,3)、D(4,3),∴BD∥OC,∴∠CAD=∠ADB,∵∠DPE=∠CAD,∴∠DPE=∠ADB,∵AB==、AD==,∴AB=AD,∴∠ABD=∠ADB,∴∠DPE=∠ABD,∴PQ∥AB,∴四边形ABPQ是平行四边形,∴AQ=BP,即2t=4﹣3t,解得:t=,即当∠DPE=∠CAD时,t=秒;②(Ⅰ)当点N在AB上时,0≤2t≤2,即0≤t≤1,连接NE,延长PN交x轴于点F,延长ME交x轴于点H,∵PN⊥BD、EM⊥BD,BD∥OC,PN=EM,∴OF=BP=2t,PF=OB=3,NE=FH、NF=EH,NE∥FQ,∴FQ=OC﹣OF﹣QC=6﹣5t,∵点N在直线y=﹣x+3上,∴点N的坐标为(2t,﹣3t+3),∴PN=PF﹣NF=3﹣(﹣3t+3)=3t,∵NE∥FQ,∴△PNE∽△PFQ,∴=,∴FH=NE=•FQ=×(6﹣5t)=6t﹣5t2,∵A(2,0)、D(4,3),∴直线AD解析式为y=x﹣3,∵点E在直线y=x﹣3上,∴点E的坐标为(4﹣2t,﹣3t+3),∵OH=OF+FH,∴4﹣2t=2t+6t﹣5t2,解得:t=1+>1(舍)或t=1﹣;(Ⅱ)当点N在AD上时,2<2t≤4,即1<t≤,∵PN=EM,∴点E、N重合,此时PQ⊥BD,∴BP=OQ,∴2t=6﹣3t,解得:t=,综上所述,当PN=EM时,t=(1﹣)秒或t=秒.17.(2018•荆门)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于原点及点A,且经过点B(4,8),对称轴为直线x=﹣2.(1)求抛物线的解析式;(2)设直线y=kx+4与抛物线两交点的横坐标分别为x1,x2(x1<x2),当时,求k的值;(3)连接OB,点P为x轴下方抛物线上一动点,过点P作OB的平行线交直线AB于点Q,当S△POQ:S△BOQ=1:2时,求出点P的坐标.(坐标平面内两点M(x1,y1),N(x2,y2)之间的距离MN=)解:(1)根据题意得,,∴,∴抛物线解析式为y=x2+x;(2)∵直线y=kx+4与抛物线两交点的横坐标分别为x1,x2,∴x2+x=kx+4,∴x2﹣4(k﹣1)x﹣16=0,根据根与系数的关系得,x1+x2=4(k﹣1),x1x2=﹣16,∵,∴2(x1﹣x2)=x1x2,∴4(x1﹣x2)2=(x1x2)2,∴4[(x1+x2)2﹣4x1x2]=(x1x2)2,∴4[16(k﹣1)2+64]=162,∴k=1;(3)如图,取OB的中点C,∴BC=OB,∵B(4,8),∴C (2,4),∵PQ ∥OB ,∴点O 到PQ 的距离等于点O 到OB 的距离,∵S △POQ :S △BOQ =1:2,∴OB=2PQ ,∴PQ=BC ,∵PQ ∥OB ,∴四边形BCPQ 是平行四边形,∴PC ∥AB ,∵抛物线的解析式为y=x 2+x ②,令y=0, ∴x 2+x=0,∴x=0或x=﹣4,∴A (﹣4,0),∵B (4,8),∴直线AB 解析式为y=x +4,设直线PC 的解析式为y=x +m ,∵C (2,4),∴直线PC 的解析式为y=x +2②, 联立①②解得,(舍)或,∴P (﹣2,﹣2+2).18.(2018•孝感)如图1,在平面直角坐标系xOy 中,已知点A 和点B 的坐标分别为A (﹣2,0),B (0,﹣6),将Rt △AOB 绕点O 按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为(﹣6,0),点E的坐标为(2,0);抛物线C1的解析式为y=﹣.抛物线C2的解析式为y=﹣;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.解:(1)由旋转可知,OC=6,OE=2,则点C坐标为(﹣6,0),E点坐标为(2,0),分别利用待定系数法求C1解析式为:y=﹣,C2解析式为:y=﹣故答案为:(﹣6,0),(2,0),y=﹣,y=﹣(2)①若点P在x轴上方,∠PCA=∠ABO时,则CA1与抛物线C1的交点即为点P设直线CA1的解析式为:y=k1x+b1∴解得∴直线CA1的解析式为:y=x+2联立:解得或(不符合题意,舍)根据题意,P点坐标为(﹣);若点P在x轴下方,∠PCA=∠ABO时,则CA1关于x轴对称的直线CA2与抛物线C1的交点即为点P设直线CA2解析式为y=k2x+b2∴解得∴直线CA2的解析式为:y=﹣x﹣2联立解得或(不符合题意,舍)由题意,点P坐标为(﹣)∴符合条件的点P为(﹣)或(﹣);②设直线BC的解析式为:y=kx+b∴解得∴设直线BC的解析式为:y=﹣x﹣6过点B做BD⊥MN于点D,如图,则BM=∴BM=2BD=2|x|=﹣2x.h=PM+NM+=(y P﹣y M)+(y N﹣y M)+2|x|=y P﹣y M+y N﹣y M﹣2x=[﹣x2﹣4x﹣6﹣(﹣x﹣6)]+[﹣x2+6﹣(﹣x﹣6)]+(﹣2x)=﹣x2﹣6x+12∴h=﹣(x+3)2+21当x=﹣3时,h的最大值为21∵﹣5≤x≤﹣2∴当x=﹣5时,h=﹣(﹣5+3)2+21=17当x=﹣2时,h=﹣(﹣2+3)2+21=20∴h的取值范围是:17≤h≤2119.(2018•黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y=,每件产品的利润z (元)与月份x(月)的关系如下表:x123456789101112z191817161514131211101010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x为何值时,月利润w有最大值,最大值为多少?解;(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z=kx+b,,得,即当1≤x≤9时,每件产品利润z(元)与月份x(月)的关系式为z=﹣x+20,当10≤x≤12时,z=10,由上可得,z=;(2)当1≤x≤8时,w=(x+4)(﹣x+20)=﹣x2+16x+80,当x=9时,w=(﹣9+20)×(﹣9+20)=121,当10≤x≤12时,w=(﹣x+20)×10=﹣10x+200,由上可得,w=;(3)当1≤x≤8时,w=﹣x2+16x+80=﹣(x﹣8)2+144,∴当x=8时,w取得最大值,此时w=144;当x=9时,w=121,当10≤x≤12时,w=﹣10x+200,则当x=10时,w取得最大值,此时w=100,由上可得,当x为8时,月利润w有最大值,最大值144万元.20.(2018•咸宁)如图,在平面直角坐标系中,矩形OABC的顶点B的坐标为(4,2),直线y=﹣x+与边AB,BC分别相交于点M,N,函数y=(x>0)的图象过点M.(1)试说明点N也在函数y=(x>0)的图象上;(2)将直线MN沿y轴的负方向平移得到直线M′N′,当直线M′N′与函数y═(x>0)的图象仅有一个交点时,求直线M'N′的解析式.解:(1)∵矩形OABC的顶点B的坐标为(4,2),∴点M的横坐标为4,点N的纵坐标为2,把x=4代入y=﹣x+,得y=,∴点M的坐标为(4,),把y=2代入y=﹣x+,得x=1,∴点N的坐标为(1,2),∵函数y=(x>0)的图象过点M,∴k=4×=2,∴y=(x>0),把N(1,2)代入y=,得2=2,∴点N也在函数y=(x>0)的图象上;(2)设直线M'N′的解析式为y=﹣x+b,由得x2﹣2bx+4=0,∵直线y=﹣x+b与函数y═(x>0)的图象仅有一个交点,∴(﹣2b)2﹣4×4=0,解得b=2,b2=﹣2(舍去),∴直线M'N′的解析式为y=﹣x+2.21.(2018•随州)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=设李师傅第x天创造的产品利润为W元.(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:(2)求李师傅第几天创造的利润最大?最大利润是多少元?(3)任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?解:(1)设p与x之间的函数关系式为p=kx+b,,解得,,即p与x的函数关系式为p=0.5x+7(1≤x≤15,x为整数),当1≤x<10时,W=[20﹣(0.5x+7)](2x+20)=﹣x2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=;(2)当1≤x<10时,W=﹣x2+16x+260=﹣(x﹣8)2+324,∴当x=8时,W取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x<10时,令﹣x2+16x+260=299,得x1=3,x2=13,当W>299时,3<x<13,∵1≤x<10,∴3<x<10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的月份是4月到11月,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.22.(2018•咸宁)为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)3042租金/(元/辆)300400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.解:(1)设老师有x名,学生有y名.依题意,列方程组为,解之得:,答:老师有16名,学生有284名;(2)∵每辆客车上至少要有2名老师,∴汽车总数不能大于8辆;又要保证300名师生有车坐,汽车总数不能小于=(取整为8)辆,综合起来可知汽车总数为8辆;故答案为:8;(3)设租用x辆乙种客车,则甲种客车数为:(8﹣x)辆,∵车总费用不超过3100元,∴400x+300(8﹣x)≤3100,解得:x≤7,为使300名师生都有座,∴42x+30(8﹣x)≥300,解得:x≥5,∴5≤x≤7(x为整数),∴共有3种租车方案:方案一:租用甲种客车3辆,乙种客车5辆,租车费用为2900元;方案二:租用甲种客车2辆,乙种客车6辆,租车费用为3000元;方案三:租用甲种客车1辆,乙种客车7辆,租车费用为3100元;故最节省费用的租车方案是:租用甲种客车3辆,乙种客车5辆.23.(2018•恩施州)某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?解:(1)设A型空调和B型空调每台各需x元、y元,,解得,,答:A型空调和B型空调每台各需9000元、6000元;(2)设购买A型空调a台,则购买B型空调(30﹣a)台,,解得,10≤a≤12,∴a=10、11、12,共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,方案三:采购A型空调12台,B型空调18台;(3)设总费用为w元,w=9000a+6000(30﹣a)=3000a+180000,∴当a=10时,w取得最小值,此时w=210000,即采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.24.(2018•随州)如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.解:(1)∵点A的坐标为(﹣1,0),∴OA=1,∴OC=3OA,∴点C的坐标为(0,3),将A、C坐标代入y=ax2﹣2ax+c,得:,解得:,∴抛物线C1的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,所以点G的坐标为(1,4).(2)设抛物线C2的解析式为y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,过点G′作G′D⊥x轴于点D,设BD′=m,∵△A′B′G′为等边三角形,∴G′D=B′D=m,则点B′的坐标为(m+1,0),点G′的坐标为(1,m),将点B′、G′的坐标代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),,∴k=1;(3)设M(x,0),则P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均为钝角,∴△AOQ≌△PQN,如图2,延长PQ交直线y=﹣1于点H,则∠QHN=∠OMQ=90°,又∵△AOQ≌△PQN,∴OQ=QN,∠AOQ=∠PQN,∴∠MOQ=∠HQN,∴△OQM≌△QNH(AAS),∴OM=QH,即x=﹣x2+2x+2+1,解得:x=(负值舍去),当x=时,HN=QM=﹣x2+2x+2=,点M(,0),∴点N坐标为(+,﹣1),即(,﹣1);或(﹣,﹣1),即(1,﹣1);如图3,同理可得△OQM≌△PNH,∴OM=PH,即x=﹣(﹣x2+2x+2)﹣1,解得:x=﹣1(舍)或x=4,当x=4时,点M的坐标为(4,0),HN=QM=﹣(﹣x2+2x+2)=6,∴点N的坐标为(4+6,﹣1)即(10,﹣1),或(4﹣6,﹣1)即(﹣2,﹣1);综上点M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).25.(2018•恩施州)如图,已知抛物线交x轴于A、B两点,交y轴于C点,A点坐标为(﹣1,0),OC=2,OB=3,点D为抛物线的顶点.(1)求抛物线的解析式;(2)P为坐标平面内一点,以B、C、D、P为顶点的四边形是平行四边形,求P点坐标;(3)若抛物线上有且仅有三个点M1、M2、M3使得△M1BC、△M2BC、△M3BC的面积均为定值S,求出定值S及M1、M2、M3这三个点的坐标.解:(1)由OC=2,OB=3,得到B(3,0),C(0,2),设抛物线解析式为y=a(x+1)(x﹣3),把C(0,2)代入得:2=﹣3a,即a=﹣,则抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+x+2;(2)抛物线y=﹣(x+1)(x﹣3)=﹣x2+x+2=﹣(x﹣1)2+,∴D(1,),当四边形CBPD是平行四边形时,由B(3,0),C(0,2),得到P(4,);当四边形CDBP是平行四边形时,由B(3,0),C(0,2),得到P(2,﹣);当四边形BCPD是平行四边形时,由B(3,0),C(0,2),得到P(﹣2,);(3)设直线BC解析式为y=kx+b,把B(3,0),C(0,2)代入得:,解得:,∴y=﹣x+2,设与直线BC平行的解析式为y=﹣x+b,联立得:,消去y得:2x2﹣6x+3b﹣6=0,当直线与抛物线只有一个公共点时,△=36﹣8(3b﹣6)=0,解得:b=,即y=﹣x+,此时交点M1坐标为(,);可得出两平行线间的距离为,同理可得另一条与BC平行且平行线间的距离为的直线方程为y=﹣x+,联立解得:M2(,﹣),M3(,﹣﹣),此时S=1.26.(2018•咸宁)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.(1)在y=﹣x+3种,令y=0得x=4,令x=0得y=3,∴点A(4,0)、B(0,3),把A(4,0)、B(0,3)代入y=﹣x2+bx+c,得:,。

湖北省宜昌市2018年中考数学试卷(解析版)

湖北省宜昌市2018年中考数学试卷(解析版)

2018年湖北省宜昌市中考数学试卷一、选择题1. ﹣2018的绝对值是()A. 2018B. ﹣2018C.D. ﹣【答案】A【解析】根据绝对值的意义可得的绝对值是2018,故选A.【解题必备】学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...学#科#网...2. 如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.【答案】D【解析】分析:根据轴对称图形的定义逐个判断即可.详解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.点睛:本题考查了轴对称图形的定义,能够正确观察图形和理解轴对称图形的定义是解此题的关键.3. 工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A. 1.21×103B. 12.1×103C. 1.21×104D. 0.121×105【答案】C【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:1.21万=1.21×104,故选:C.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 计算4+(﹣2)2×5=()A. ﹣16B. 16C. 20D. 24【答案】D【解析】分析:根据有理数的乘方、乘法和加法可以解答本题.详解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.点睛:本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.5. 在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A. B. C. D.【答案】B【解析】分析:直接利用概率公式求解.详解:这句话中任选一个汉字,这个字是“绿”的概率=.故选:B.6. 如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A. B. C. D.【答案】C【解析】分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.详解:该几何体的主视图为:;左视图为;俯视图为;故选:C.点睛:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.7. 下列运算正确的是()A. x2+x2=x4B. x3•x2=x6C. 2x4÷x2=2x2D. (3x)2=6x2【答案】C【解析】分析:根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.详解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.点睛:本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.8. 1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A. a=1,b=6,c=15B. a=6,b=15,c=20C. a=15,b=20,c=15D. a=20,b=15,c=6【答案】B【解析】分析:根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c的值.详解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.点睛:本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9. 如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A. 1B.C.D.【答案】B【解析】分析:根据轴对称图形的性质,解决问题即可.详解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.点睛:本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.10. 为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A. 小明的成绩比小强稳定B. 小明、小强两人成绩一样稳定C. 小强的成绩比小明稳定D. 无法确定小明、小强的成绩谁更稳定【答案】A【解析】分析:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.详解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.点睛:本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.11. 如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A. (2,2)B. (2,﹣2)C. (2,5)D. (﹣2,5)【答案】A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选:A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.12. 如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A. 30°B. 35°C. 40°D. 45°【答案】D【解析】分析:由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.详解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.点睛:本题主要考查切线的性质,解题的关键是掌握圆的切线垂直于经过切点的半径及圆周角定理.13. 尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A. B. C. D.【答案】B【解析】分析:根据过直线外一点向直线作垂线即可.详解:已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.点睛:此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.14. 如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A. 100sin35°米B. 100sin55°米C. 100tan35°米D. 100tan55°米【答案】C【解析】分析:根据正切函数可求小河宽PA的长度.详解:∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.点睛:考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.15. 如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A. p1>p2>p3B. p1>p3>p2C. p2>p1>p3D. p3>p2>p1【答案】D【解析】分析:直接利用反比例函数的性质进而分析得出答案.详解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.点睛:此题主要考查了反比例函数的性质,正确把握反比例函数的性质是解题关键.二、解答题(本题共9题,75分)16. 先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【答案】【解析】分析:根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.详解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=﹣4时,原式=﹣4+4=.点睛:本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17. 解不等式组,并把它的解集在数轴上表示出来.【答案】1≤x<2.【解析】分析:解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分;并把它的解集在数轴上表示出来即可.详解:解不等式①,得:x≥1;解不等式②,得:x<2;∴原不等式组的解集是1≤x<2..点睛:此题主要考查了解一元一次不等式组的方法,要熟练掌握,解答此题的关键是要明确方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.18. 如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【答案】(1) 65°;(2) 25°.【解析】分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.19. 我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.【答案】1个大桶可以盛酒斛,1个小桶可以盛酒斛.【解析】分析:直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.详解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.点睛:此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.20. 某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:(1)填空:在统计表中,这5个数的中位数是;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【答案】(1)10;(2)补图见解析;(3)280名;(4)【解析】分析:(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;详解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.点睛:此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21. 如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【答案】(1)证明见解析;(2)【解析】分析:(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题.详解:(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.点睛:本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22. 某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【答案】(1)0.3;(2)60家;(3)Q=20.5;a=9.5.【解析】分析:(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n的值即可得出关于a的等式求出答案.详解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5点睛:考查了一元二次方程和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23. 在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【答案】(1)证明见解析;(2)①证明见解析;②;③108.【解析】分析:(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.详解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.点睛:此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.24. 如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA= ,k= ,点E的坐标为;(2)当1≤t≤6时,经过点M(t﹣1,﹣t2+5t﹣)与点N(﹣t﹣3,﹣t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB 中扫过的面积.【答案】(1)6,﹣6,(﹣,4);(2)①证明见解析;②t=或t=;③.【解析】分析:(1)根据题意将相关数据代入.(2)①用t表示直线MN解析式,及b,c,得到P点坐标带入双曲线y=解析式,证明关于t的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B和在BD上时的情况;③由②中部分结果,用t表示F、P点的纵坐标,求出t的取值范围及直线MN在四边形OAEB中所过的面积.详解:解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得,∵抛物线y=﹣过点M、N,∴,解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=.点睛:本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t表示相关点坐标.。

2018年湖北省宜昌市中考数学试卷和答案解析

2018年湖北省宜昌市中考数学试卷和答案解析

数学试卷 第1页(共8页)数学试卷 第2页(共8页)绝密★启用前2018年湖北省宜昌市初中毕业生学业考试数 学 试 题本试卷共24小题,满分120分,考试时间120分钟注意事项:1.答本试卷分试题卷和答题卡两部分,请将答案写在答题卡上每题对应的答题区域内,写在试题卷上无效.2.考试结束,请将本试题卷和答题卡一并上交.3.参考公式:二次函数2y ax bx c =++图象的顶点坐标是24(,)24b ac b a a--.一、选择题(下列各题中,只有一个选项是符合题目要求的.请在答题卡上指定的位置填涂符合要求的选项前面的字母代号.每小题3份,计45分.) 1.2018-的绝对值是( ) A .2018B .2018-C .12018D .12018-2.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.工信部发布《中国数字经济发展与就业白皮书(2018)》显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( ) A .31.2110⨯B .312.110⨯C .41.2110⨯D .50.12110⨯4.计算24(2)5+-⨯=( ) A .16-B .16C .20D .245.在“绿水青山就是金山银山”这句话中任选一个汉子,这个字是“绿”的概率为( ) A .310B .110C .19D .186.如图,是由四个相同的小正方体组合而成的几何体,它的左视图是( )A .B .C .D .7.下列运算正确的是( ) A .224x x x +=B .326x x x =C .42222x x x +=D .22(3)6x x =8.1261年,我国南宋数学家杨辉用下图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”.请观察图中的数字排列规律,则a ,b ,c 的值分别为( )A .1,6,15a b c ===B .6,15,20a b c ===C .15,20,15a b c ===D .20,15,6a b c ===-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名_____________ 考生号_____________ ____________________________________________________数学试卷 第3页(共8页)数学试卷 第4页(共8页)9.如图,正方形ABCD 的边长为1,点, E F 分别是对角线AC 上的两点, EG AB ⊥,EI AD ⊥,FH AB ⊥,FJ AD ⊥,垂足分别为,,, G I H J ,则图中阴影部分的面积等于( )A .1B .12 C .13 D .1410.为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛.这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( ) A .小明的成绩比小强稳定 B .小明、小强两人成绩一样稳定 C .小强的成绩比小明稳定D .无法确定小明、小强的成绩谁更稳定11.如图,在平面直角坐标系中,把ABC 绕原点O 旋转180°得到CDA ∆.点,,A B C 的坐标分别为(5,2)-,(22)--,,(52)-,,则点D 的坐标为( )A .(2, 2)B .(2,2)-C . (2,5)D .(2,5)-12.如图,直线AB 是O 的切线,C 为切点,//OD AB 交O 于点D ,点E 在O 上,连接,,OC EC ED ,则CED ∠的度数为( )A .30°B .35°C .40°D .45°13.尺规作图:经过已知直线外一点作这条直线的垂直.下列作图中正确的是( )A .B .C .D .14.如图,要测量小河两岸相对的两点,P A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得100PC =米,35PCA ∠=,则小河宽PA 等于( )A .100sin35米B .100sin55米C .100tan35米D .100tan55米15.如图,一块砖的,,A B C 三个面的面积比是4:2:1,如果,,A B C 面分别向下放在地上,地面所受压强为123,,p p p 的大小关系正确的是( )A .123p p p >>B .132p p p >>C .213p p p >>D .321p p p >>数学试卷 第5页(共8页)数学试卷 第6页(共8页)二、解答题(将解答过程写在答题卡上指定的位置.本大题共有9题,计75分.) 16.(6分)先化简,再求值:(x 1)(2x)(2x)x +++-,其中4x .17.(6分)解不等式组1021,320,xx x -⎧≤+⎪⎨⎪-<⎩并把它的解集在数轴上表示出来.18.(7分)如图,在Rt ABC ∆中,90ACB ∠=,40A ∠=,ABC ∆的外角CBD ∠的平分线BE交AC 的延长线于点E . (1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F .求F ∠的度数.19.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶。

2018年宜昌市中考压轴题解析

2018年宜昌市中考压轴题解析
01
原题呈现
目录
02 解析23题
03 解析24题 04 评析与思考
01
原题呈现23题
23题 在矩形ABCD中,AB=12,P是边AB上一点,把 △PBC沿直线PC折叠,顶点B的对应点是点G,过点B作 BE⊥CG,垂足为E且在AD上,BE交PC于点F. (1)如图1,若点E是AD的中点,求证:△AEB≌△DEC (2)如图2,①求证:BP=BF; ②当AD=25,且AE<DE时,求cos∠PCB的值; ③当BP=9时,求BE·EF的值.
24题解析
24题解析
24题解析
此时,随着 t 的增大,点 F 在 y 轴上向上运动 ∴ 1 ≤ t≤4 当 t=1 时,直线 MN:y=x+3 与 x 轴交于点 G(-3,0) , 与 y 轴交于点 H (0,3) 当 t=4- 时,直线 MN 过点 A.
当 1 ≤ t≤4 时,直
C
第23题解析
③如图,连接 FG , ∵∠ GEF=∠BAE=90°,∵BF∥PG,BF=PG ∴ ▱ BPGF 是菱形,∴BP∥GF, ∴∠ GFE=∠ABE,∴△GEF∽△EAB, EF AB ∴ = ,∴ BE ·EF=AB ·GF=12×9=108 GF BE
03
解析24题
24题
24题解析
A P
G E F B C D
G A P F
E
D
B
C
第23题解析
②当 AD=25 时,∵∠BEC=90°,∴∠ AEB+ ∠CED=90°, ( 2)①在矩形ABCD,∠ABC=90 °,∵△BPC沿PC折叠得到 ∵∠ AEB+∠ABE=90°,∴∠ CED= ∠ABE,°,∠BPC=∠GPC∵BE⊥CG,∴B △GPC,∴∠PGC= ∠PBC=90 AB BPF= DE ∠BFP,∴BP=BF E ∥ PG, ∴∠ GPF= ∠ PFB, ∴∠ ∵∠ A=∠D=90°,∴△ABE∽△DEC,∴ = , AE CD 12 25-x G 设 AE=x,∴DE=25﹣x,∴ = ,∴x=9 或 x=16, E x 12 A ∵ AE <DE,∴ AE=9,DE=16,∴CE=20,BE=15, P 由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG, F EF CE ∴△ ECF∽△GCP,∴ = , PG CG B 15-y 20 25 25 设 BP=BF=PG=y,∴ = ,∴y= ,∴BP= , y 25 3 3 25 10 BC 3 10 在 Rt △PBC 中,PC= ,cos∠PCB= = 3 PC 10

2018年全国各地中考数学压轴题汇编:几何综合(湖北专版)(解析版)

2018年全国各地中考数学压轴题汇编:几何综合(湖北专版)(解析版)

2018年全国各地中考数学压轴题汇编(湖北专版)几何综合参考答案与试题解析1.(2018•武汉)如图,PA是⊙O的切线,A是切点,AC是直径,AB是弦,连接PB、PC,PC交AB于点E,且PA=PB.(1)求证:PB是⊙O的切线;(2)若∠APC=3∠BPC,求的值.(1)证明:连接OP、OB.∵PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°,∵PA=PB,PO=PO,OA=OB,∴△PAO≌△PBO.∴∠PAO=∠PBO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)设OP交AB于K.∵AB是直径,∴∠ABC=90°,∴AB⊥BC,∵PA、PB都是切线,∴PA=PB,∠APO=∠BPO,∵OA=OB,∴OP垂直平分线段AB,∴OK∥BC,∵AO=OC,∴AK=BK,∴BC=2OK,设OK=a,则BC=2a,∵∠APC=3∠BPC,∠APO=∠OPB,∴∠OPC=∠BPC=∠PCB,∴BC=PB=PA=2a,∵△PAK∽△POA,∴PA2=PK•PO,设PK=x,则有:x2+ax﹣4a2=0,解得x=a(负根已经舍弃),∴PK=a,∵PK∥BC,∴==.2.(2018•天门)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为BC=DC+EC;探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明你的结论;应用:如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE,∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE==6,∵∠DAE=90°,∴AD=AE=DE=6.3.(2018•黄石)如图,已知A、B、C、D、E是⊙O上五点,⊙O的直径BE=2,∠BCD=120°,A为的中点,延长BA到点P,使BA=AP,连接PE.(1)求线段BD的长;(2)求证:直线PE是⊙O的切线.(1)解:连接DB,如图,∵∠BCD+∠DEB=180°,∴∠DEB=180°﹣120°=60°,∵BE为直径,∴∠BDE=90°,在Rt△BDE中,DE=BE=×2=,BD=DE=×=3;(2)证明:连接EA,如图,∵BE为直径,∴∠BAE=90°,∵A为的中点,∴∠ABE=45°,∵BA=AP,而EA⊥BA,∴△BEP为等腰直角三角形,∴∠PEB=90°,∴PE⊥BE,∴直线PE是⊙O的切线.4.(2018•武汉)在△ABC中,∠ABC=90°.(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.解:(1)∵AM⊥MN,CN⊥MN,∴∠AMB=∠BNC=90°,∴∠BAM+∠ABM=90°,∵∠ABC=90°,∴∠ABM+∠CBN=90°,∴∠BAM=∠CBN,∵∠AMB=∠NBC,∴△ABM∽△BCN;(2)如图2,过点P作PF⊥AP交AC于F,在Rt△AFP中,tan∠PAC===,同(1)的方法得,△ABP∽△PQF,∴=,设AB=a,PQ=2a,BP=b,FQ=2b(a>0,b>0),∵∠BAP=∠C,∠B=∠CQF=90°,∴△ABP∽△CQF,∴,∴CQ==2a,∵BC=BP+PQ+CQ=b+2a+2a=4a+b∵∠BAP=∠C,∠B=∠B=90°,∴△ABP∽△CBA,∴=,∴BC===,∴4a+b=,a=b,∴BC=4×b+b=5b,AB=a=5b,在Rt△ABC中,tanC==;(3)在Rt△ABC中,sin∠BAC==,过点A作AG⊥BE于G,过点C作CH⊥BE交EB的延长线于H,∵∠DEB=90°,∴CH∥AG∥DE,∴=同(1)的方法得,△ABG∽△BCH∴,设BG=4m,CH=3m,AG=4n,BH=3n,∵AB=AE,AG⊥BE,∴EG=BG=4m,∴GH=BG+BH=4m+3n,∴,∴n=2m,∴EH=EG+GH=4m+4m+3n=8m+3n=8m+6m=14m,在Rt△CEH中,tan∠BEC==.5.(2018•随州)如图,AB是⊙O的直径,点C为⊙O上一点,CN为⊙O的切线,OM ⊥AB于点O,分别交AC、CN于D、M两点.(1)求证:MD=MC;(2)若⊙O的半径为5,AC=4,求MC的长.解:(1)连接OC,∵CN为⊙O的切线,∴OC⊥CM,∠OCA+∠ACM=90°,∵OM⊥AB,∴∠OAC+∠ODA=90°,∵OA=OC,∴∠OAC=∠OCA,∴∠ACM=∠ODA=∠CDM,∴MD=MC;(2)由题意可知AB=5×2=10,AC=4,∵AB是⊙O的直径,∴∠ACB=90°,∴BC=,∵∠AOD=∠ACB,∠A=∠A,∴△AOD∽△ACB,∴,即,可得:OD=2.5,设MC=MD=x,在Rt△OCM中,由勾股定理得:(x+2.5)2=x2+52,解得:x=,即MC=.6.(2018•天门)如图,在⊙O中,AB为直径,AC为弦.过BC延长线上一点G,作GD ⊥AO于点D,交AC于点E,交⊙O于点F,M是GE的中点,连接CF,CM.(1)判断CM与⊙O的位置关系,并说明理由;(2)若∠ECF=2∠A,CM=6,CF=4,求MF的长.解:(1)CM与⊙O相切.理由如下:连接OC,如图,∵GD⊥AO于点D,∴∠G+∠GBD=90°,∵AB为直径,∴∠ACB=90°,∵M点为GE的中点,∴MC=MG=ME,∴∠G=∠1,∵OB=OC,∴∠B=∠2,∴∠1+∠2=90°,∴∠OCM=90°,∴OC⊥CM,∴CM为⊙O的切线;(2)∵∠1+∠3+∠4=90°,∠5+∠3+∠4=90°,∴∠1=∠5,而∠1=∠G,∠5=∠A,∴∠G=∠A,∵∠4=2∠A,∴∠4=2∠G,而∠EMC=∠G+∠1=2∠G,∴∠EMC=∠4,而∠FEC=∠CEM,∴△EFC∽△ECM,∴==,即==,∴CE=4,EF=,∴MF=ME﹣EF=6﹣=.7.(2018•黄石)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合).(1)如图1,若EF∥BC,求证:(2)如图2,若EF不与BC平行,(1)中的结论是否仍然成立?请说明理由;(3)如图3,若EF上一点G恰为△ABC的重心,,求的值.解:(1)∵EF∥BC,∴△AEF∽△ABC,∴=,∴=()2=•=;(2)若EF不与BC平行,(1)中的结论仍然成立,分别过点F、C作AB的垂线,垂足分别为N、H,∵FN⊥AB、CH⊥AB,∴FN∥CH,∴△AFN∽△ACH,∴=,∴==;(3)连接AG并延长交BC于点M,连接BG并延长交AC于点N,连接MN,则MN分别是BC、AC的中点,∴MN∥AB,且MN=AB,=S△ACM,∴==,且S△ABM∴=,设=a,由(2)知:==×=,==a,则==+=+a,而==a,∴+a=a,解得:a=,∴=×=.8.(2018•襄阳)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.解:(1)证明:连接OE、OC.∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4.∵FC==2,∴BC﹣AD=2,∴BC=3.在直角△OBC中,tan∠BOE==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°.∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.9.(2018•咸宁)如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证:DE是⊙O的切线;(2)若AB=25,BC=,求DE的长.(1)证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠ABD=45°,∴∠AOD=90°,∵DE∥AC,∴∠ODE=∠AOD=90°,∴DE是⊙O的切线;(2)解:在Rt△ABC中,AB=2,BC=,∴AC==5,∴OD=,过点C作CG⊥DE,垂足为G,则四边形ODGC为正方形,∴DG=CG=OD=,∵DE∥AC,∴∠CEG=∠ACB,∴tan∠CEG=tan∠ACB,∴=,即=,解得:GE=,∴DE=DG+GE=.10.(2018•宜昌)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.11.(2018•荆门)如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,AD交⊙O于F,FM⊥AB于H,分别交⊙O、AC于M、N,连接MB,BC.(1)求证:AC平分∠DAE;(2)若cosM=,BE=1,①求⊙O的半径;②求FN的长.(1)证明:连接OC,如图,∵直线DE与⊙O相切于点C,∴OC⊥DE,又∵AD⊥DE,∴OC∥AD.∴∠1=∠3∵OA=OC,∴∠2=∠3,∴∠1=∠2,∴AC平方∠DAE;(2)解:①∵AB为直径,∴∠AFB=90°,而DE⊥AD,∴BF∥DE,∴OC⊥BF,∴=,∴∠COE=∠FAB,而∠FAB=∠M,∴∠COE=∠M,设⊙O的半径为r,在Rt△OCE中,cos∠COE==,即=,解得r=4,即⊙O的半径为4;②连接BF,如图,在Rt△AFB中,cos∠FAB=,∴AF=8×=在Rt△OCE中,OE=5,OC=4,∴CE=3,∵AB⊥FM,∴,∴∠5=∠4,∵FB∥DE,∴∠5=∠E=∠4,∵=,∴∠1=∠2,∴△AFN∽△AEC,∴=,即=,∴FN=.12.(2018•黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.13.(2018•襄阳)如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG 交AD于点H.若AG=6,GH=2,则BC=3.解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.14.(2018•宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC 于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,=8.∴S菱形ABFC•π•42=8π.∴S半圆=15.(2018•黄冈)如图,在直角坐标系xOy中,菱形OABC的边OA在x轴正半轴上,点B,C在第一象限,∠C=120°,边长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.解:(1)当t=2时,OM=2,在Rt△OPM中,∠POM=60°,∴PM=OM•tan60°=2,在Rt△OMQ中,∠QOM=30°,∴QM=OM•tan30°=,∴PQ=CN﹣QM=2﹣=.(2)由题意:8+(t﹣4)+2t=24,解得t=.(3)①当0<x <4时,S=•2t•4=4t . ②当4≤x <时,S=×[8﹣(t ﹣4)﹣(2t ﹣8)]×4=40﹣6t . ③当≤x <8时.S=×[(t ﹣4)+(2t ﹣8)﹣8]×4=6t ﹣40.④当8≤x ≤12时,S=S菱形ABCO ﹣S △AON ﹣S △ABP =32﹣•(24﹣2t )•4﹣•[8﹣(t ﹣4)]•4=6t ﹣40.16.(2018•孝感)如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 交BC 于点D ,交AC 于点E ,过点D 作DF ⊥AC 于点F ,交AB 的延长线于点G .(1)求证:DF 是⊙O 的切线;(2)已知BD=2,CF=2,求AE 和BG 的长.解:(1)连接OD ,AD ,∵AB 为⊙O 的直径,∴∠ADB=90°,即AD ⊥BC ,∵AB=AC ,∴BD=CD ,又∵OA=OB ,∴OD ∥AC ,∵DG ⊥AC ,∴OD ⊥FG ,∴直线FG 与⊙O 相切;(2)连接BE .∵BD=2, ∴, ∵CF=2,∴DF==4,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴=,∴=,∴AB=10,∴AE==6,∵BE⊥AC,DF⊥AC,∴BE∥GF,∴△AEB∽△AFG,∴=,∴=,∴BG=.17.(2018•恩施州)如图,AB为⊙O直径,P点为半径OA上异于O点和A点的一个点,过P点作与直径AB垂直的弦CD,连接AD,作BE⊥AB,OE∥AD交BE于E点,连接AE、DE、AE交CD于F点.(1)求证:DE为⊙O切线;(2)若⊙O的半径为3,sin∠ADP=,求AD;(3)请猜想PF与FD的数量关系,并加以证明.证明:(1)如图1,连接OD、BD,BD交OE于M,∵AB是⊙O的直径,∴∠ADB=90°,AD⊥BD,∵OE∥AD,∴OE⊥BD,∴BM=DM,∵OB=OD,∴∠BOM=∠DOM,∵OE=OE,∴△BOE≌△DOE(SAS),∴∠ODE=∠OBE=90°,∴DE为⊙O切线;(2)设AP=a,∵sin∠ADP==,∴AD=3a,∴PD===2a,∵OP=3﹣a,∴OD2=OP2+PD2,∴32=(3﹣a)2+(2a)2,9=9﹣6a+a2+8a2,a1=,a2=0(舍),当a=时,AD=3a=2,∴AD=2;(3)PF=FD,理由是:∵∠APD=∠ABE=90°,∠PAD=∠BAE,∴△APF∽△ABE,∴,∴PF=,∵OE∥AD,∴∠BOE=∠PAD,∵∠OBE=∠APD=90°,∴△ADP∽△OEB,∴,∴PD=,∵AB=2OB,∴PD=2PF,∴PF=FD.18.(2018•咸宁)定义:我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.理解:(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.求证:BD是四边形ABCD的“相似对角线”;(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.解:(1)由图1知,AB=,BC=2,∠ABC=90°,AC=5,∵四边形ABCD是以AC为“相似对角线”的四边形,①当∠ACD=90°时,△ACD∽△ABC或△ACD∽△CBA,∴=或=2,∴CD=10或CD=2.5同理:当∠CAD=90°时,AD=2.5或AD=10,(2)证明:∵∠ABC=80°,BD平分∠ABC,∴∠ABD=∠DBC=40°,∴∠A+∠ADB=140°∵∠ADC=140°,∴∠BDC+∠ADB=140°,∴∠A=∠BDC,∴△ABD∽△BDC,∴BD是四边形ABCD的“相似对角线”;(3)如图3,∵FH是四边形EFGH的“相似对角线”,∴△EFG与△HFG相似,∵∠EFH=∠HFG,∴△FEH∽△FHG,∴,∴FH2=FE•FG,过点E作EQ⊥FG于Q,∴EQ=FE•sin60°=FE,∵FG×EQ=2,∴FG×FE=2,∴FG•FE=8,∴FH2=FE•FG=8,∴FH=2.。

湖北省宜昌市2018年中考数学真题试题(含解析)含答案

湖北省宜昌市2018年中考数学真题试题(含解析)含答案

湖北省宜昌市2018年中考数学真题试题一、选择题1.(2018年湖北省宜昌市)﹣2018的绝对值是()A.2018 B.﹣2018 C.D.﹣【分析】根据绝对值的定义即可求得.【解答】解:﹣2018的绝对值是2018.故选:A.【点评】本题主要考查的是绝对值的定义,熟练掌握相关知识是解题的关键.2.(2018年湖北省宜昌市)如下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义逐个判断即可.【解答】解:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形的定义,能够正确观察图形和理解轴对称图形的定义是解此题的关键.3.(2018年湖北省宜昌市)工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为()A.1.21×103B.12.1×103C.1.21×104D.0.121×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1.21万=1.21×104,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(2018年湖北省宜昌市)计算4+(﹣2)2×5=()A.﹣16 B.16 C.20 D.24【分析】根据有理数的乘方、乘法和加法可以解答本题.【解答】解:4+(﹣2)2×5=4+4×5=4+20=24,故选:D.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.5.(2018年湖北省宜昌市)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.B.C.D.【分析】直接利用概率公式求解.【解答】解:这句话中任选一个汉字,这个字是“绿”的概率=.故选:B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.6.(2018年湖北省宜昌市)如图,是由四个相同的小正方体组合而成的几何体,它的左视图是()A.B.C.D.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:该几何体的主视图为:;左视图为;俯视图为;故选:C.【点评】此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.7.(2018年湖北省宜昌市)下列运算正确的是()A.x2+x2=x4B.x3•x2=x6C.2x4÷x2=2x2D.(3x)2=6x2【分析】根据整式运算法则,分别求出四个选项中算式的值,比较后即可得出结论.【解答】解:A、x2+x2=2x2,选项A错误;B、x3•x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4﹣2=2x2,选项C正确;D、(3x)2=32•x2=9x2,选项D错误.故选:C.【点评】本题考查了整式的混合运算,牢记整式混合运算的运算法则是解题的关键.8.(2018年湖北省宜昌市)1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为()A.a=1,b=6,c=15 B.a=6,b=15,c=20C.a=15,b=20,c=15 D.a=20,b=15,c=6【分析】根据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20,故选:B.【点评】本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.9.(2018年湖北省宜昌市)如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于()A.1 B.C.D.【分析】根据轴对称图形的性质,解决问题即可;【解答】解:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=S正方形ABCD=,故选:B.【点评】本题考查正方形的性质,解题的关键是利用轴对称的性质解决问题,属于中考常考题型.10.(2018年湖北省宜昌市)为参加学校举办的“诗意校园•致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是()A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定,故选:A.【点评】本题考查方差、平均数的定义,解题的关键是熟练掌握基本知识,属于中考基础题.11.(2018年湖北省宜昌市)如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为()A.(2,2) B.(2,﹣2)C.(2,5) D.(﹣2,5)【分析】依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).【解答】解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选:A.【点评】本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.12.(2018年湖北省宜昌市)如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为()A.30° B.35° C.40° D.45°【分析】由切线的性质知∠OCB=90°,再根据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=∠COD=45°,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握圆的切线垂直于经过切点的半径及圆周角定理.13.(2018年湖北省宜昌市)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是()A.B.C.D.【分析】根据过直线外一点向直线作垂线即可.【解答】已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.故选:B.【点评】此题主要考查了过一点作直线的垂线,熟练掌握基本作图方法是解决问题的关键.14.(2018年湖北省宜昌市)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米【分析】根据正切函数可求小河宽PA的长度.【解答】解:∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.【点评】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.15.(2018年湖北省宜昌市)如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为p=,其中P 是压强,F是压力,S是受力面积,则p1,p2,p3,的大小关系正确的是()A.p1>p2>p3B.p1>p3>p2C.p2>p1>p3D.p3>p2>p1【分析】直接利用反比例函数的性质进而分析得出答案.【解答】解:∵p=,F>0,∴p随S的增大而减小,∵A,B,C三个面的面积比是4:2:1,∴p1,p2,p3的大小关系是:p3>p2>p1.故选:D.【点评】此题主要考查了反比例函数的性质,正确把握反比例函数的性质是解题关键.二、解答题(本题共9题,75分)16.(2018年湖北省宜昌市)先化简,再求值:x(x+1)+(2+x)(2﹣x),其中x=﹣4.【分析】根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:x(x+1)+(2+x)(2﹣x)=x2+x+4﹣x2=x+4,当x=﹣4时,原式=﹣4+4=.【点评】本题考查整式的混合运算﹣化简求值,解答本题的关键是明确整式的化简求值的计算方法.17.(2018年湖北省宜昌市)解不等式组,并把它的解集在数轴上表示出来.【分析】解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分;并把它的解集在数轴上表示出来即可.【解答】解:解不等式①,得:x≥1;解不等式②,得:x<2;∴原不等式组的解集是1≤x<2..【点评】此题主要考查了解一元一次不等式组的方法,要熟练掌握,解答此题的关键是要明确方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.18.(2018年湖北省宜昌市)如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【解答】解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【点评】本题考查了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.19.(2018年湖北省宜昌市)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.【分析】直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.【解答】解:设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,则,解得:,答:1个大桶可以盛酒斛,1个小桶可以盛酒斛.【点评】此题主要考查了二元一次方程组的应用,正确得出等量关系是解题关键.20.(2018年湖北省宜昌市)某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:(1)填空:在统计表中,这5个数的中位数是 10 ; (2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(2018年湖北省宜昌市)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.【分析】(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;【解答】(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.【点评】本题考查平行四边形的判定和性质、菱形的判定、线段的垂直平分线的性质勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.22.(2018年湖北省宜昌市)某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.【分析】(1)直接利用第一年有40家工厂用乙方案治理,共使Q值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n的值即可得出关于a的等式求出答案.【解答】解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:解得:【点评】考查了一元二次方程和一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.(2018年湖北省宜昌市)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;(2)如图2,①求证:BP=BF;②当AD=25,且AE<DE时,求cos∠PCB的值;③当BP=9时,求BE•EF的值.【分析】(1)先判断出∠A=∠D=90°,AB=DC再判断出AE=DE,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC,进而判断出∠GPF=∠PFB 即可得出结论;②判断出△ABE∽△DEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF∽△GCP,进而求出PC,即可得出结论;③判断出△GEF∽△EAB,即可得出结论.【解答】解:(1)在矩形ABCD中,∠A=∠D=90°,AB=DC,∵E是AD中点,∴AE=DE,在△ABE和△DCE中,,∴△ABE≌△DCE(SAS);(2)①在矩形ABCD,∠ABC=90°,∵△BPC沿PC折叠得到△GPC,∴∠PGC=∠PBC=90°,∠BPC=∠GPC,∵BE⊥CG,∴BE∥PG,∴∠GPF=∠PFB,∴∠BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE,∵∠A=∠D=90°,∴△ABE∽△DEC,∴,设AE=x,∴DE=25﹣x,∴,∴x=9或x=16,∵AE<DE,∴A E=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ECF∽△GCP,∴,设BP=BF=PG=y,∴,∴y=,∴BP=,在Rt△PBC中,PC=,cos∠PCB==;③如图,连接FG,∵∠GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴▱BPGF是菱形,∴BP∥GF,∴∠GFE=∠ABE,∴△GEF∽△EAB,∴,∴BE•EF=AB•GF=12×9=108.【点评】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键.24.(2018年湖北省宜昌市)如图,在平面直角坐标系中,矩形OADB的顶点A,B的坐标分别为A(﹣6,0),B(0,4).过点C(﹣6,1)的双曲线y=(k≠0)与矩形OADB的边BD交于点E.(1)填空:OA= 6 ,k= ﹣6 ,点E的坐标为(﹣,4);(2)当1≤t≤6时,经过点M(t﹣1,﹣ t2+5t﹣)与点N(﹣t﹣3,﹣ t2+3t﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c的顶点.①当点P在双曲线y=上时,求证:直线MN与双曲线y=没有公共点;②当抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点,求t的值;③当点F和点P随着t的变化同时向上运动时,求t的取值范围,并求在运动过程中直线MN在四边形OAEB中扫过的面积.【分析】(1)根据题意将先关数据带入(2)①用t表示直线MN解析式,及b,c,得到P点坐标带入双曲线y=解析式,证明关于t的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B和在BD上时的情况;③由②中部分结果,用t表示F、P点的纵坐标,求出t的取值范围及直线MN在四边形OAEB 中所过的面积.【解答】解:(1)∵A点坐标为(﹣6,0)∴OA=6∵过点C(﹣6,1)的双曲线y=∴k=﹣6y=4时,x=﹣∴点E的坐标为(﹣,4)故答案为:6,﹣6,(﹣,4)(2)①设直线MN解析式为:y1=k1x+b1由题意得:解得∵抛物线y=﹣过点M、N∴解得∴抛物线解析式为:y=﹣x2﹣x+5t﹣2∴顶点P坐标为(﹣1,5t﹣)∵P在双曲线y=﹣上∴(5t﹣)×(﹣1)=﹣6∴t=此时直线MN解析式为:联立∴8x2+35x+49=0∵△=352﹣4×8×48=1225﹣1536<0∴直线MN与双曲线y=﹣没有公共点.②当抛物线过点B,此时抛物线y=﹣x2+bx+c与矩形OADB有且只有三个公共点∴4=5t﹣2,得t=当抛物线在线段DB上,此时抛物线与矩形OADB有且只有三个公共点∴,得t=∴t=或t=③∵点P的坐标为(﹣1,5t﹣)∴y P=5t﹣当1≤t≤6时,y P随t的增大而增大此时,点P在直线x=﹣1上向上运动∵点F的坐标为(0,﹣)∴y F=﹣∴当1≤t≤4时,随者y F随t的增大而增大此时,随着t的增大,点F在y轴上向上运动∴1≤t≤4当t=1时,直线MN:y=x+3与x轴交于点G(﹣3,0),与y轴交于点H(0,3)当t=4﹣时,直线MN过点A.当1≤t≤4时,直线MN在四边形AEBO中扫过的面积为S=【点评】本题为二次函数与反比例函数综合题,考查了数形结合思想和分类讨论的数学思想.解题过程中,应注意充分利用字母t表示相关点坐标.。

【精校】2018年湖北省宜昌市中考真题数学

【精校】2018年湖北省宜昌市中考真题数学

2018年湖北省宜昌市中考真题数学一、选择题(每题只有一个正确选项,本题共15小题,每题3分,共45分)1.-2018的绝对值是( )A.2018B.-2018C.1 2018D.-1 2018解析:-2018的绝对值是2018.答案:A2.如下字体的四个汉字中,是轴对称图形的是( )A.B.C.D.解析:A、不是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项符合题意.答案:D3.工信部发布《中国数字经济发展与就业白皮书(2018)》)显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( )A.1.21×103B.12.1×103C.1.21×104D.0.121×105解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.1.21万=1.21×104.答案:C4.计算4+(-2)2×5=( )A.-16B.16C.20D.24解析:4+(-2)2×5=4+4×5=4+20=24.答案:D5.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为( )A.3 10B.1 10C.1 9D.1 8解析:这句话中任选一个汉字,这个字是“绿”的概率=1 10.答案:B6.如图,是由四个相同的小正方体组合而成的几何体,它的左视图是( )A.B.C.D.解析:该几何体的主视图为:;左视图为;;俯视图为. 答案:C7.下列运算正确的是( )A.x2+x2=x4B.x3·x2=x6C.2x4÷x2=2x2D.(3x)2=6x2解析:A、x2+x2=2x2,选项A错误;B、x3·x2=x3+2=x5,选项B错误;C、2x4÷x2=2x4-2=2x2,选项C正确;D、(3x)2=32·x2=9x2,选项D错误.答案:C8.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则a,b,c的值分别为( )A.a=1,b=6,c=15B.a=6,b=15,c=20C.a=15,b=20,c=15D.c=20,b=15,c=6解析:根据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6,b=5=10=15,c=10+10=20.答案:B9.如图,正方形ABCD的边长为1,点E,F分别是对角线AC上的两点,EG⊥AB.EI⊥AD,FH ⊥AB,FJ⊥AD,垂足分别为G,I,H,J.则图中阴影部分的面积等于( )A.1B.1 2C.1 3D.1 4解析:∵四边形ABCD是正方形,∴直线AC是正方形ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB,FJ⊥AD,垂足分别为G,I,H,J.∴根据对称性可知:四边形EFHG的面积与四边形EFJI的面积相等,∴S阴=12S正方形ABCD=12.答案:B10.为参加学校举办的“诗意校园-致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( )A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定解析:∵小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.平均成绩一样,小明的方差小,成绩稳定.答案:A11.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(-5,2),(-2,-2),(5,-2),则点D的坐标为( )A.(2,2)B.(2,-2)C.(2,5)D.(-2,5)解析:∵点A,C的坐标分别为(-5,2),(5,-2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(-2,-2),∴D的坐标为(2,2).答案:A12.如图,直线AB是⊙O的切线,C为切点,OD∥AB交⊙O于点D,点E在⊙O上,连接OC,EC,ED,则∠CED的度数为( )A.30°B.35°C.40°D.45°解析:∵直线AB是⊙O的切线,C为切点,∴∠OCB=90°,∵OD∥AB,∴∠COD=90°,∴∠CED=12∠COD=45°.答案:D13.尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( ) A.B.C.D.解析:已知:直线AB和AB外一点C.求作:AB的垂线,使它经过点C.作法:(1)任意取一点K,使K和C在AB的两旁.(2)以C为圆心,CK的长为半径作弧,交AB于点D和E.(3)分别以D和E为圆心,大于12DE的长为半径作弧,两弧交于点F,(4)作直线CF.直线CF就是所求的垂线.答案:B14.如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于( )A.100sin35°米B.100sin55°米C.100tan35°米D.100tan55°米解析:∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.答案:C15.如图,一块砖的A,B,C三个面的面积比是4:2:1.如果A,B,C面分别向下放在地上,地面所受压强为p 1,p 2,p 3,压强的计算公式为p=F S,其中P 是压强,F 是压力,S 是受力面积,则p 1,p 2,p 3,的大小关系正确的是( )A.p 1>p 2>p 3B.p 1>p 3>p 2C.p 2>p 1>p 3D.p 3>p 2>p 1解析:∵p=F S,F >0,∴p 随S 的增大而减小, ∵A ,B ,C 三个面的面积比是4:2:1,∴p 1,p 2,p 3,的大小关系是:p 3>p 2>p 1. 答案:D二、解答题(本题共9题,75分)16.先化简,再求值:x(x+1)+(2+x)(2-x),其中-4.解析:根据单项式乘多项式、平方差公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.答案:x(x+1)+(2+x)(2-x)=x 2+x+4-x 2=x+4,当-4时,原式44+=.17.解不等式组1021320x x x -⎧≤+⎪⎨⎪-⎩,<,并把它的解集在数轴上表示出来.解析:解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分;并把它的解集在数轴上表示出来即可. 答案:1021320x x x -⎧≤+⎪⎨⎪-⎩①,<②,解不等式①,得:x ≥1;解不等式②,得:x <2;∴原不等式组的解集是1≤x <2.18.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.解析:(1)先根据直角三角形两锐角互余求出∠ABC=90°-∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=12∠CBD=65°;(2)先根据三角形外角的性质得出∠CEB=90°-65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.答案:(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°-∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=12∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°-65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.19.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.解析:直接利用5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛,分别得出等式组成方程组求出答案.答案:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,则5352x yx y+=⎧⎨+=⎩,,解得:1324724xy⎧⎪=⎨⎪⎪=⎪⎩,,答:1个大桶可以盛酒1324斛,1个小桶可以盛酒724斛.20.某校创建“环保示范学校”,为了解全校学生参加环保类杜团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:(1)填空:在统计表中,这5个数的中位数是;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.解析:(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题.答案:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10.(2)没有选择的占1-10%-30%-20%-10%-20%=10%,条形图的高度和E相同;如图所示.(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=14.21.如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.解析:(1)根据对角线相互平分的四边形是平行四边形,证明是平行四边形,再根据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连接BD.利用勾股定理构建方程即可解决问题;答案:(1)∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2-AD2=CB2-CD2,∴(7+x)2-72=42-x2,解得x=1或-8(舍弃),∴AC=8,=S菱形ABFC22.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m ,三年来用乙方案治理的工厂数量共190家,求m 的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q 值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q 值与当年因甲方案治理降低的Q 值相等,第三年,用甲方案使Q 值降低了39.5.求第一年用甲方案治理降低的Q 值及a 的值.解析:(1)直接利用第一年有40家工厂用乙方案治理,共使Q 值降低了12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m ,三年来用乙方案治理的工厂数量共190家得出等式求出答案;(3)利用n 的值即可得出关于a 的等式求出答案.答案:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:121722m m ==-,(舍去), ∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家).(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30-a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q 值为x ,第二年Q 值因乙方案治理降低了100n=100×0.3=30,解法一:(30-a)+2a=39.5,a=9.5,x=20.5.解法二:30239.5x a x a ++⎨==⎧⎩,,解得:20.59.5.x a =⎧⎨=⎩,23.在矩形ABCD 中,AB=12,P 是边AB 上一点,把△PBC 沿直线PC 折叠,顶点B 的对应点是点G ,过点B 作BE ⊥CG ,垂足为E 且在AD 上,BE 交PC 于点F.(1)如图1,若点E 是AD 的中点,求证:△AEB ≌△DEC ;(2)如图2,①求证:BP=BF ;②当AD=25,且AE <DE 时,求cos ∠PCB 的值;③当BP=9时,求BE ·EF 的值.解析:(1)先判断出∠A=∠D=90°,AB=DC 再判断出AE=DE ,即可得出结论;(2)①利用折叠的性质,得出∠PGC=∠PBC=90°,∠BPC=∠GPC ,进而判断出∠GPF=∠PFB 即可得出结论;②判断出△ABE ∽△DEC ,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出△ECF ∽△GCP ,进而求出PC ,即可得出结论;③判断出△GEF ∽△EAB ,即可得出结论.答案:(1)在矩形ABCD 中,∠A=∠D=90°,AB=DC ,∵E 是AD 中点,∴AE=DE ,在△ABE 和△DCE 中,90AB DC A D AE DE =⎧⎪∠=∠=︒⎨⎪=⎩,,,∴△ABE ≌△DCE(SAS);(2)①在矩形ABCD ,∠ABC=90°,∵△BPC 沿PC 折叠得到△GPC ,∴∠PGC=∠PBC=90°,∠BPC=∠GPC ,∵BE ⊥CG ,∴BE ∥PG ,∴∠GPF=∠PFB ,∴∠BPF=∠BFP ,∴BP=BF ;②当AD=25时,∵∠BEC=90°,∴∠AEB+∠CED=90°,∵∠AEB+∠ABE=90°,∴∠CED=∠ABE ,∵∠A=∠D=90°,∴△ABE ∽△DEC ,∴AB DE AE CD =, 设AE=x ,∴DE=25-x ,∴122512x x -=,∴x=9或x=16, ∵AE <DE ,∴AE=9,DE=16,∴CE=20,BE=15,由折叠得,BP=PG ,∴BP=BF=PG ,∵BE ∥PG ,∴△ECF ∽△GCP ,∴EF CE PG CG=, 设BP=BF=PG=y ,∴152025y y -=,∴252533y BP =∴=,, 在Rt △PBC中,cos 33BC PC PCB PC =∠==; ③如图,连接FG ,∵∠GEF=∠BAE=90°,∵BF ∥PG ,BF=PG ,∴平行四边形BPGF 是菱形,∴BP ∥GF ,∴∠GFE=∠ABE ,∴△GEF ∽△EAB ,∴EF AB GF BE=,∴BE ·EF=AB ·GF=12×9=108.24.如图,在平面直角坐标系中,矩形OADB 的顶点A ,B 的坐标分别为A(-6,0),B(0,4).过点C(-6,1)的双曲线y= k x(k ≠0)与矩形OADB 的边BD 交于点E(1)填空:OA= ,k= ,点E 的坐标为 ;(2)当1≤t ≤6时,经过点M(t-1,213522t t -+-)与点N(-t-3,217322t t -+-)的直线交y 轴于点F ,点P 是过M ,N 两点的抛物线y=-12x 2+bx+c 的顶点. ①当点P 在双曲线y=k x 上时,求证:直线MN 与双曲线y=k x没有公共点; ②当抛物线y=-12x 2+bx+c 与矩形OADB 有且只有三个公共点,求t 的值; ③当点F 和点P 随着t 的变化同时向上运动时,求t 的取值范围,并求在运动过程中直线MN 在四边形OAEB 中扫过的面积.解析:(1)根据题意将先关数据带入(2)①用t 表示直线MN 解析式,及b ,c ,得到P 点坐标带入双曲线y=k x解析式,证明关于t 的方程无解即可;②根据抛物线开口和对称轴,分别讨论抛物线过点B 和在BD 上时的情况;③由②中部分结果,用t 表示F 、P 点的纵坐标,求出t 的取值范围及直线MN 在四边形OAEB 中所过的面积.答案:(1)∵A 点坐标为(-6,0),∴OA=6,∵过点C(-6,1)的双曲线y=k x ,∴k=-6,y=4时,x=6342-=-, ∴点E 的坐标为(-32,4),故答案为:6,-6,(-32,4) (2)①设直线MN 解析式为:y 1=k 1x+b 1, 由题意得:()()211211135122173322t t k t b t t k t b ⎧-+-=-+⎪⎪⎨⎪-+-=--+⎪⎩,, 解得12111422k b t t =⎧⎪⎨=-+-⎪⎩,,∵抛物线y=-12x 2+bx+c 过点M 、N ,∴()()()()2222131511222171333222t t t b t c t t t b t c -+-=--+-+-+-=---+⎧⎪⎪⎨⎪--+⎪⎩,,解得152b c t =-⎧⎨=-⎩,,∴抛物线解析式为:y=-12x 2-x+5t-2, ∴顶点P 坐标为(-1,5t-32) ∵P 在双曲线y=-6x 上,∴(5t-32)×(-1)=-6,∴t=32, 此时直线MN 解析式为:y=x+358, 联立3586y x y x ⎧=+⎪⎪⎨⎪=-⎪⎩,,∴8x 2+35x+49=0,∵△=352-4×8×48=1225-1536<0,∴直线MN 与双曲线y=-6x 没有公共点. ②当抛物线过点B ,此时抛物线y=-12x 2+bx+c 与矩形OADB 有且只有三个公共点,∴4=5t-2,得t=65, 当抛物线在线段DB 上,此时抛物线与矩形OADB 有且只有三个公共点, ∴1032t -=4,得t=1110,∴t=65或t=1110, ③∵点P 的坐标为(-1,5t-32),∴y P =5t-32, 当1≤t ≤6时,y P 随t 的增大而增大,此时,点P 在直线x=-1上向上运动,∵点F 的坐标为(0,211422t t -+-),∴y F =-()2115422t -+, ∴当1≤t ≤4时,随者yF 随t 的增大而增大,此时,随着t 的增大,点F 在y 轴上向上运动,∴1≤t ≤4.当t=1时,直线MN :y=x+3与x 轴交于点G(-3,0),与y 轴交于点H(0,3), 当时,直线MN 过点A.当1≤t ≤4时,直线MN 在四边形AEBO 中扫过的面积为131216433=2222S ⎛⎫ ⎪⎝⎭=⨯+⨯-⨯⨯.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。

湖北省宜昌市中考数学试卷及答案解析

湖北省宜昌市中考数学试卷及答案解析

2018 年湖北省宜昌市中考数学试卷一、选择题(每题只有一个正确选项,本题共15 小题,每题 3 分,共 45 分)1.(3 分)﹣ 2018 的绝对值是()A.2018B.﹣ 2018 C.D.﹣2.(3 分)以下字体的四个汉字中,是轴对称图形的是()A.B.C.D.3.(3 分)工信部公布《中国数字经济发展与就业白皮书(2018)》)显示, 2017年湖北数字经济总量 1.21 万亿元,列全国第七位、中部第一位.“万”用科学记数法表示为()A.×103B.×103C.×104D.×1054.(3 分)计算 4+(﹣ 2)2×5=()A.﹣ 16B.16C. 20 D.245.(3 分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.B.C.D.6.( 3 分)如图,是由四个同样的小正方体组合而成的几何体,它的左视图是()A.B.C.D.7.(3 分)以下运算正确的选项是()A.x2+x2=x4 B.x3?x2 =x6 C.2x4÷x2=2x2 D.(3x)2=6x28.( 3 分)1261 年,我国南宋数学家杨辉用图中的三角形解说二项和的乘方规律,比欧洲的同样发现要早三百多年,我们把这个三角形称为“杨辉三角”,请察看图中的数字摆列规律,则a, b, c 的值分别为()A.a=1, b=6,c=15 B. a=6,b=15,c=20C.a=15,b=20,c=15D.a=20,b=15,c=69.(3 分)如图,正方形ABCD的边长为 1,点 E,F 分别是对角线 AC上的两点,EG⊥AB.EI⊥AD,FH⊥ AB,FJ⊥ AD,垂足分别为G,I, H, J.则图中暗影部分的面积等于()A.1B.C.D.10.(3 分)为参加学校举办的“诗意校园 ?致远方”朗读艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的均匀数是90,方差是 2;小强五次成绩的均匀数也是90,方差是.以下说法正确的选项是()A.小明的成绩比小强稳固B.小明、小强两人成绩同样稳固C.小强的成绩比小明稳固D.没法确立小明、小强的成绩谁更稳固11.(3 分)如图,在平面直角坐标系中,把△ ABC绕原点 O 旋转 180°获得△ CDA,点A,B,C 的坐标分别为(﹣ 5,2),(﹣ 2,﹣2),(5,﹣ 2),则点 D 的坐标为()A.(2,2) B.(2,﹣ 2)C.(2,5) D.(﹣ 2,5)12.( 3 分)如图,直线 AB 是⊙ O 的切线, C 为切点, OD∥ AB 交⊙ O 于点 D,点E 在⊙ O 上,连结 OC, EC,ED,则∠ CED的度数为()A.30°B.35°C.40°D.45°13.( 3 分)尺规作图:经过已知直线外一点作这条直线的垂线,以下作图中正确的是()A.B.C.D.14.(3 分)如图,要丈量小河两岸相对的两点P,A 的距离,能够在小河畔取PA 的垂线 PB上的一点 C,测得 PC=100米,∠ PCA=35°,则小河宽 PA等于()A.100sin35 米° B.100sin55 米° C. 100tan35 °米 D.100tan55 米°15.( 3 分)如图,一块砖的 A,B,C 三个面的面积比是4:2:1.假如 A,B,C面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为 p=,其中 P 是压强,F 是压力,S是受力面积,则 p1,p2,p3,的大小关系正确的选项是()A.p1>p2>p3B.p1>p3>p2C. p2>p1> p3D.p3>p2>p1二、解答题(本题共9 题, 75 分)16.( 6 分)先化简,再求值: x( x+1) +( 2+x)( 2﹣ x),此中 x=﹣4.17.( 6 分)解不等式组,并把它的解集在数轴上表示出来.18.( 7 分)如图,在 Rt△ ABC 中,∠ ACB=90°,∠ A=40°,△ ABC 的外角∠ CBD 的均分线 BE交 AC的延伸线于点 E.(1)求∠ CBE的度数;(2)过点 D 作 DF∥BE,交 AC的延伸线于点 F,求∠ F 的度数.19.( 7 分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5 个大桶加上1 个小桶能够盛酒3 斛(斛,是古代的一种容量单位),1 个大桶加上 5 个小桶能够盛酒 2 斛. 1 个大桶、 1 个小桶分别能够盛酒多少斛?请解答.20.( 8 分)某校创立“环保示范学校”,为认识全校学生参加环保类杜团的意向,在全校随机抽取了 50 名学生进行问卷检查,问卷给出了五个社团供学生选择(学生可依据自己的喜好选择一个社团,也能够不选),对选择了社团的学生的问卷状况进行了统计,如表:社团名称A.酵素制B.回收材C.垃圾分D.环保义E.绿植养作社团料小制作类社团工社团护社团社团人数10155105( 1)填空:在统计表中,这 5 个数的中位数是;(2)依据以上信息,补全扇形图(图 1)和条形图(图 2);(3)该校有 1400 名学生,依据检查统计状况,请预计全校有多少学生愿意参加环保义工社团;(4)若小诗和毛毛雨两名同学在酵素制作社团或绿植保养社团中随意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植保养社团的概率.21.( 8 分)如图,在△ ABC中, AB=AC,以 AB 为直径的圆交 AC于点 D,交BC 于点 E,延伸 AE 至点 F,使 EF=AE,连结 FB, FC.(1)求证:四边形 ABFC是菱形;(2)若 AD=7,BE=2,求半圆和菱形 ABFC的面积.22.(10 分)某市创立“绿色发展典范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中办理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污介入数记为 Q,沿江工厂用乙方案进行一次性治理(当年竣工),从当年开始,所治理的每家工厂一年降低的 Q 值都以均匀值 n 计算.第一年有 40 家工厂用乙方案治理,共使 Q 值降低了 12.经过三年治理,境内长江水质显然改良.(1)求 n 的值;(2)从第二年起,每年用乙方案新治理的工厂数目比上一年都增添同样的百分数 m,三年来用乙方案治理的工厂数目共190 家,求 m 的值,并计算第二年用乙方案新治理的工厂数目;(3)该市生活污水用甲方案治理,从第二年起,每年所以降低的 Q 值比上一年都增添个同样的数值 a.在( 2)的状况下,第二年,用乙方案所治理的工厂共计降低的 Q 值与当年因甲方案治理降低的 Q 值相等,第三年,用甲方案使 Q 值降低了.求第一年用甲方案治理降低的 Q 值及 a 的值.23.(11 分)在矩形ABCD中,AB=12,P 是边AB 上一点,把△PBC沿直线PC折叠,极点 B 的对应点是点 G,过点 B 作 BE⊥ CG,垂足为 E 且在 AD 上, BE 交 PC 于点 F.(1)如图 1,若点 E 是 AD 的中点,求证:△ AEB≌△ DEC;(2)如图 2,①求证: BP=BF;②当 AD=25,且 AE<DE 时,求 cos∠ PCB的值;③当 BP=9时,求 BE?EF的值.24.( 12 分)如图,在平面直角坐标系中,矩形OADB 的极点 A,B 的坐标分别为 A(﹣ 6,0),B(0,4).过点 C(﹣ 6,1)的双曲线 y= ( k≠0)与矩形 OADB 的边 BD 交于点 E.( 1)填空: OA=,k=,点E的坐标为;( 2)当 1≤t≤ 6 时,经过点 M( t﹣1,﹣t 2+5t﹣)与点N(﹣t﹣3,﹣t2 +3t ﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c 的极点.①当点 P 在双曲线 y=上时,求证:直线MN 与双曲线 y= 没有公共点;②当抛物线 y=﹣ x2 +bx+c 与矩形 OADB有且只有三个公共点,求 t 的值;③当点F 和点 P 跟着 t 的变化同时向上运动时,求 t 的取值范围,并求在运动过程中直线MN 在四边形 OAEB中扫过的面积.2018 年湖北省宜昌市中考数学试卷参照答案与试题分析一、选择题(每题只有一个正确选项,本题共15 小题,每题 3 分,共 45 分)1.(3 分)﹣ 2018 的绝对值是()A.2018B.﹣ 2018 C.D.﹣【剖析】依据绝对值的定义即可求得.【解答】解:﹣ 2018 的绝对值是 2018.应选: A.【评论】本题主要考察的是绝对值的定义,娴熟掌握有关知识是解题的重点.2.(3 分)以下字体的四个汉字中,是轴对称图形的是()A.B.C.D.【剖析】依据轴对称图形的定义逐一判断即可.【解答】解: A、不是轴对称图形,故本选项不切合题意;B、不是轴对称图形,故本选项不切合题意;C、不是轴对称图形,故本选项不切合题意;D、是轴对称图形,故本选项切合题意;应选: D.【评论】本题考察了轴对称图形的定义,能够正确察看图形和理解轴对称图形的定义是解本题的重点.3.(3 分)工信部公布《中国数字经济发展与就业白皮书(2018)》)显示, 2017年湖北数字经济总量 1.21 万亿元,列全国第七位、中部第一位.“万”用科学记数法表示为()A.×103B.×103C.×104D.×105【剖析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.【解答】解: 1.21 万×104,应选: C.【评论】本题考察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤| a| <10,n 为整数,表示时重点要正确确立 a 的值以及 n 的值.4.(3 分)计算 4+(﹣ 2)2×5=()A.﹣ 16 B.16 C. 20 D.24【剖析】依占有理数的乘方、乘法和加法能够解答本题.【解答】解: 4+(﹣ 2)2×5=4+4×5=4+20=24,应选: D.【评论】本题考察有理数的混淆运算,解答本题的重点是明确有理数的混淆运算的计算方法.5.(3 分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.B.C.D.【剖析】直接利用概率公式求解.【解答】解:这句话中任选一个汉字,这个字是“绿”的概率=.应选: B.【评论】本题考察了概率公式:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数除以全部可能出现的结果数.6.( 3 分)如图,是由四个同样的小正方体组合而成的几何体,它的左视图是()A.B.C.D.【剖析】左视图是从左侧看得出的图形,联合所给图形及选项即可得出答案.【解答】解:该几何体的主视图为:;左视图为;俯视图为;应选: C.【评论】本题考察了简单几何体的三视图,属于基础题,解答本题的重点是掌握左视图的察看地点.7.(3 分)以下运算正确的选项是()A.x2+x2=x4 B.x3?x2 =x6 C.2x4÷x2=2x2 D.(3x)2=6x2【剖析】依据整式运算法例,分别求出四个选项中算式的值,比较后即可得出结论.【解答】解: A、x2+x2=2x2,选项 A 错误;B、x3?x2=x3+2=x5,选项 B 错误;C、2x4÷x2=2x4﹣2=2x2,选项 C 正确;D、(3x)2=32?x2=9x2,选项 D 错误.应选: C.【评论】本题考察了整式的混淆运算,切记整式混淆运算的运算法例是解题的关键.8.( 3 分)1261 年,我国南宋数学家杨辉用图中的三角形解说二项和的乘方规律,比欧洲的同样发现要早三百多年,我们把这个三角形称为“杨辉三角”,请察看图中的数字摆列规律,则a, b, c 的值分别为()A.a=1, b=6,c=15 B. a=6,b=15,c=20C.a=15,b=20,c=15D.a=20,b=15,c=6【剖析】依据图形中数字规模:每个数字等于上一行的左右两个数字之和,可得a、b、c 的值.【解答】解:依据图形得:每个数字等于上一行的左右两个数字之和,∴a=1+5=6, b=5=10=15, c=10+10=20,应选: B.【评论】本题是一道找规律的题目,这种题型在中考取常常出现.对于找规律的题目第一应找出哪些部散发生了变化,是依照什么规律变化的.9.(3 分)如图,正方形 ABCD的边长为 1,点 E,F 分别是对角线 AC上的两点,EG⊥AB.EI⊥AD,FH⊥ AB,FJ⊥ AD,垂足分别为 G,I, H, J.则图中暗影部分的面积等于()A.1B.C.D.【剖析】依据轴对称图形的性质,解决问题即可;【解答】解:∵四边形 ABCD是正方形,∴直线 AC是正方形 ABCD的对称轴,∵EG⊥AB.EI⊥AD,FH⊥AB, FJ⊥AD,垂足分别为 G,I, H, J.∴依据对称性可知:四边形 EFHG的面积与四边形 EFJI的面积相等,∴ S阴= S 正方形ABCD= ,应选: B.【评论】本题考察正方形的性质,解题的重点是利用轴对称的性质解决问题,属于中考常考题型.10.(3 分)为参加学校举办的“诗意校园 ?致远方”朗读艺术大赛,八年级“屈原读书社”组织了五次选拔赛,这五次选拔赛中,小明五次成绩的均匀数是90,方差是 2;小强五次成绩的均匀数也是90,方差是.以下说法正确的选项是()A.小明的成绩比小强稳固B.小明、小强两人成绩同样稳固C.小强的成绩比小明稳固D.没法确立小明、小强的成绩谁更稳固【剖析】方差是反应一组数据的颠簸大小的一个量.方差越大,则均匀值的失散程度越大,稳固性也越小;反之,则它与其均匀值的失散程度越小,稳固性越好.【解答】解:∵小明五次成绩的均匀数是 90,方差是 2;小强五次成绩的均匀数也是 90,方差是.均匀成绩同样,小明的方差小,成绩稳固,应选: A.【评论】本题考察方差、均匀数的定义,解题的重点是娴熟掌握基本知识,属于中考基础题.11.(3 分)如图,在平面直角坐标系中,把△ ABC绕原点 O 旋转 180°获得△ CDA,点A,B,C 的坐标分别为(﹣ 5,2),(﹣ 2,﹣2),(5,﹣ 2),则点 D 的坐标为()A.(2,2) B.(2,﹣ 2)C.(2,5) D.(﹣ 2,5)【剖析】依照四边形 ABCD是平行四边形,即可获得 BD 经过点 O,依照 B 的坐标为(﹣ 2,﹣ 2),即可得出 D 的坐标为( 2, 2).【解答】解:∵点 A,C 的坐标分别为(﹣ 5, 2),(5,﹣ 2),∴点 O 是 AC的中点,∵AB=CD, AD=BC,∴四边形 ABCD是平行四边形,∴ BD经过点 O,∵B 的坐标为(﹣2,﹣2),∴ D 的坐标为( 2,2),应选: A.【评论】本题主要考察了坐标与图形变化,图形或点旋转以后要联合旋转的角度和图形的特别性质来求出旋转后的点的坐标.12.( 3 分)如图,直线 AB 是⊙ O 的切线, C 为切点, OD∥ AB 交⊙ O 于点 D,点E 在⊙ O 上,连结 OC, EC,ED,则∠ CED的度数为()A.30°B.35°C.40°D.45°【剖析】由切线的性质知∠ OCB=90°,再依据平行线的性质得∠COD=90°,最后由圆周角定理可得答案.【解答】解:∵直线 AB 是⊙ O 的切线, C 为切点,∴∠ OCB=90°,∵OD∥ AB,∴∠ COD=90°,∴∠ CED= ∠COD=45°,应选: D.【评论】本题主要考察切线的性质,解题的重点是掌握圆的切线垂直于经过切点的半径及圆周角定理.13.( 3 分)尺规作图:经过已知直线外一点作这条直线的垂线,以下作图中正确的是()A.B.C.D.【剖析】依据过直线外一点向直线作垂线即可.【解答】已知:直线 AB 和 AB 外一点 C.求作: AB 的垂线,使它经过点C.作法:(1)随意取一点 K,使 K 和 C 在 AB 的两旁.(2)以 C 为圆心, CK的长为半径作弧,交 AB 于点 D 和 E.(3)分别以 D 和 E 为圆心,大于 DE 的长为半径作弧,两弧交于点 F,(4)作直线 CF.直线 CF就是所求的垂线.应选: B.【评论】本题主要考察了过一点作直线的垂线,娴熟掌握基本作图方法是解决问题的重点.14.(3 分)如图,要丈量小河两岸相对的两点P,A 的距离,能够在小河畔取PA 的垂线 PB上的一点 C,测得 PC=100米,∠ PCA=35°,则小河宽 PA等于()A.100sin35 米° B.100sin55 米° C. 100tan35 °米D.100tan55 米°【剖析】依据正切函数可求小河宽 PA的长度.【解答】解:∵ PA⊥PB,PC=100米,∠ PCA=35°,∴小河宽 PA=PCtan∠PCA=100tan35°米.应选: C.【评论】考察认识直角三角形的应用,解直角三角形的一般过程是:①将实质问题抽象为数学识题(画出平面图形,结构出直角三角形转变为解直角三角形问题).②依据题目已知特色采用适合锐角三角函数或边角关系去解直角三角形,获得数学识题的答案,再转变获得实质问题的答案.15.( 3 分)如图,一块砖的 A,B,C 三个面的面积比是4:2:1.假如 A,B,C 面分别向下放在地上,地面所受压强为p1,p2,p3,压强的计算公式为 p=,其中 P 是压强,F 是压力,S是受力面积,则p1,2,3,的大小关系正确的选项是()p pA.p1>p2>p3B.p1>p3>p2C. p2>p1> p3D.p3>p2>p1【剖析】直接利用反比率函数的性质从而剖析得出答案.【解答】解:∵ p=,F>0,第15页(共 28页)∵ A, B, C 三个面的面积比是4: 2: 1,∴p1,p2, p3的大小关系是: p3>p2>p1.应选: D.【评论】本题主要考察了反比率函数的性质,正确掌握反比率函数的性质是解题重点.二、解答题(本题共9 题, 75 分)16.( 6 分)先化简,再求值: x( x+1) +( 2+x)( 2﹣ x),此中 x=﹣4.【剖析】依据单项式乘多项式、平方差公式能够化简题目中的式子,而后将x 的值代入化简后的式子即可解答本题.【解答】解: x(x+1)+(2+x)(2﹣x)=x2+x+4﹣ x2=x+4,当 x=﹣4时,原式=﹣4+4=.【评论】本题考察整式的混淆运算﹣化简求值,解答本题的重点是明确整式的化简求值的计算方法.17.( 6 分)解不等式组,并把它的解集在数轴上表示出来.【剖析】解一元一次不等式组的方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分;并把它的解集在数轴上表示出来即可.【解答】解:解不等式①,得: x≥ 1;解不等式②,得: x< 2;∴原不等式组的解集是1≤ x< 2..【评论】本题主要考察认识一元一次不等式组的方法,要娴熟掌握,解答本题的重点是要明确方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.18.( 7 分)如图,在 Rt△ ABC 中,∠ ACB=90°,∠ A=40°,△ ABC 的外角∠ CBD 的均分线 BE交 AC的延伸线于点 E.(1)求∠ CBE的度数;(2)过点 D 作 DF∥BE,交 AC的延伸线于点 F,求∠ F 的度数.【剖析】(1)先依据直角三角形两锐角互余求出∠ ABC=90°﹣∠ A=50°,由邻补角定义得出∠ CBD=130°.再依据角均分线定义即可求出∠ CBE= ∠CBD=65°;(2)先依据三角形外角的性质得出∠ CEB=90°﹣65°=25°,再依据平行线的性质即可求出∠ F=∠CEB=25°.【解答】解:(1)∵在 Rt△ABC中,∠ ACB=90°,∠A=40°,∴∠ ABC=90°﹣∠ A=50°,∴∠ CBD=130°.∵BE是∠CBD的均分线,∴∠ CBE= ∠CBD=65°;(2)∵∠ ACB=90°,∠ CBE=65°,∴∠ CEB=90°﹣ 65°=25°.∵DF∥BE,∴∠ F=∠CEB=25°.【评论】本题考察了三角形内角和定理,三角形外角的性质,平行线的性质,邻补角定义,角均分线定义.掌握各定义与性质是解题的重点.19.( 7 分)我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5 个大桶加上1 个小桶能够盛酒3 斛(斛,是古代的一种容量单位),1 个大桶加上 5 个小桶能够盛酒 2 斛. 1 个大桶、 1 个小桶分别能够盛酒多少斛?请解答.【剖析】直接利用 5 个大桶加上 1 个小桶能够盛酒 3 斛,1 个大桶加上 5 个小桶能够盛酒 2 斛,分别得出等式构成方程组求出答案.【解答】解:设 1 个大桶能够盛酒 x 斛, 1 个小桶能够盛酒y 斛,则,解得:,答: 1 个大桶能够盛酒斛,1个小桶能够盛酒斛.【评论】本题主要考察了二元一次方程组的应用,正确得出等量关系是解题重点.20.( 8 分)某校创立“环保示范学校”,为认识全校学生参加环保类杜团的意向,在全校随机抽取了 50 名学生进行问卷检查,问卷给出了五个社团供学生选择(学生可依据自己的喜好选择一个社团,也能够不选),对选择了社团的学生的问卷状况进行了统计,如表:社团名称A.酵素制B.回收材C.垃圾分D.环保义E.绿植养作社团料小制作类社团工社团护社团社团人数10155105( 1)填空:在统计表中,这 5 个数的中位数是 10;(2)依据以上信息,补全扇形图(图 1)和条形图(图 2);(3)该校有 1400 名学生,依据检查统计状况,请预计全校有多少学生愿意参加环保义工社团;(4)若小诗和毛毛雨两名同学在酵素制作社团或绿植保养社团中随意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植保养社团的概率.【剖析】(1)依据中位数的定义即可判断;(2)求出没有选择的百分比,高度和 E 同样,即可画出图形;(3)利用样本预计整体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:( 1)这 5 个数从小到大摆列: 5,5,10,10,15,故中位数为 10,故答案为 10.(2)没有选择的占 1﹣ 10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和 E 同样;以下图:(3) 1400× 20%=280(名)答:预计全校有多少学生愿意参加环保义工社团有280 名;( 4)酵素制作社团、绿植保养社团分别用A、B 表示:树状图以下图,共有 4 种可能,两人同时选择绿植保养社团只有一种情况,∴这两名同学同时选择绿植保养社团的概率=.【评论】本题考察了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率 =所讨状况数与总状况数之比.21.( 8 分)如图,在△ ABC中, AB=AC,以 AB 为直径的圆交AC于点 D,交 BC 于点 E,延伸 AE 至点 F,使 EF=AE,连结 FB, FC.(1)求证:四边形 ABFC是菱形;(2)若 AD=7,BE=2,求半圆和菱形 ABFC的面积.【剖析】(1)依据对角线互相均分的四边形是平行四边形,证明是平行四边形,再依据邻边相等的平行四边形是菱形即可证明;(2)设CD=x,连结BD.利用勾股定理建立方程即可解决问题;【解答】(1)证明:∵ AB 是直径,∴∠ AEB=90°,∴ AE⊥BC,∵AB=AC,∴BE=CE,∵ AE=EF,∴四边形ABFC是平行四边形,∵ AC=AB,∴四边形 ABFC是菱形.(2)设 CD=x.连结 BD.∵ AB是直径,∴∠ ADB=∠BDC=90°,∴AB2﹣AD2 2﹣ CD2, =CB∴( 7+x)2﹣72=42﹣x2,解得 x=1 或﹣ 8(舍弃)∴ AC=8, BD==,∴ S菱形ABFC=8.【评论】本题考察平行四边形的判断和性质、菱形的判断、线段的垂直均分线的性质勾股定理等知识,解题的重点是灵巧运用所学知识解决问题,学会增添常用协助线,结构直角三角形解决问题,属于中考常考题型.22.(10 分)某市创立“绿色发展典范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中办理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污介入数记为 Q,沿江工厂用乙方案进行一次性治理(当年竣工),从当年开始,所治理的每家工厂一年降低的 Q 值都以均匀值 n 计算.第一年有 40 家工厂用乙方案治理,共使 Q 值降低了 12.经过三年治理,境内长江水质显然改良.(1)求 n 的值;(2)从第二年起,每年用乙方案新治理的工厂数目比上一年都增添同样的百分数 m,三年来用乙方案治理的工厂数目共190 家,求 m 的值,并计算第二年用乙方案新治理的工厂数目;(3)该市生活污水用甲方案治理,从第二年起,每年所以降低的 Q 值比上一年都增添个同样的数值 a.在( 2)的状况下,第二年,用乙方案所治理的工厂合计降低的 Q 值与当年因甲方案治理降低的 Q 值相等,第三年,用甲方案使 Q 值降低了.求第一年用甲方案治理降低的 Q 值及 a 的值.【剖析】(1)直接利用第一年有 40 家工厂用乙方案治理,共使 Q 值降低了 12,得出等式求出答案;(2)利用从第二年起,每年用乙方案新治理的工厂数目比上一年都增添同样的百分数 m,三年来用乙方案治理的工厂数目共 190 家得出等式求出答案;(3)利用 n 的值即可得出对于 a 的等式求出答案.【解答】解:(1)由题意可得: 40n=12,解得:;(2)由题意可得: 40+40(1+m) +40(1+m)2=190,解得: m1= , m2=﹣(舍去),∴第二年用乙方案新治理的工厂数目为: 40( 1+m)=40( 1+50%)=60(家),(3)设第一年用乙方案治理降低了 100n=100× 0.3=30,则( 30﹣ a),解得:,则.设第一年用甲方案整理降低的 Q 值为 x,第二年 Q 值因乙方案治理降低了 100n=100×0.3=30,解法一:(30﹣a)解法二:解得:【评论】考察了一元二次方程和一元一次方程的应用.解题重点是要读懂题目的意思,依据题目给出的条件,找出适合的等量关系,列出方程,再求解.第22页(共 28页)23.(11 分)在矩形ABCD中,AB=12,P 是边AB 上一点,把△PBC沿直线PC折叠,极点 B 的对应点是点 G,过点 B 作 BE⊥ CG,垂足为 E 且在 AD 上, BE 交 PC 于点 F.(1)如图 1,若点 E 是 AD 的中点,求证:△ AEB≌△ DEC;(2)如图 2,①求证: BP=BF;②当 AD=25,且 AE<DE 时,求 cos∠ PCB的值;③当 BP=9时,求 BE?EF的值.【剖析】(1)先判断出∠ A=∠D=90°,AB=DC再判断出 AE=DE,即可得出结论;( 2)①利用折叠的性质,得出∠ PGC=∠PBC=90°,∠BPC=∠GPC,从而判断出∠GPF=∠PFB即可得出结论;②判断出△ ABE∽△ DEC,得出比率式成立方程求解即可得出AE=9, DE=16,再判断出△ ECF∽△ GCP,从而求出 PC,即可得出结论;③判断出△ GEF∽△ EAB,即可得出结论.【解答】解:(1)在矩形 ABCD中,∠ A=∠D=90°, AB=DC,∵ E 是 AD 中点,∴ AE=DE,在△ ABE和△ DCE中,,∴△ ABE≌△ DCE(SAS);(2)①在矩形 ABCD,∠ ABC=90°,∵△ BPC沿 PC折叠获得△ GPC,∴∠ PGC=∠PBC=90°,∠BPC=∠GPC,∵ BE⊥CG,∴ BE∥PG,∴∠ GPF=∠PFB,∴∠ BPF=∠BFP,∴BP=BF;②当AD=25时,∵∠BEC=90°,∴∠ AEB+∠CED=90°,∵∠ AEB+∠ABE=90°,∴∠ CED=∠ABE,∵∠A=∠ D=90°,∴△ABE∽△ DEC,∴,设AE=x,∴ DE=25﹣x,∴,∴x=9 或 x=16,∵ AE<DE,∴AE=9, DE=16,∴CE=20,BE=15,由折叠得, BP=PG,∴BP=BF=PG,∵BE∥PG,∴△ ECF∽△ GCP,∴,设BP=BF=PG=y,∴,∴y= ,∴BP= ,在Rt△PBC中, PC=,cos∠PCB= =;③如图,连结 FG,∵∠ GEF=∠BAE=90°,∵BF∥PG,BF=PG,∴?BPGF是菱形,∴ BP∥GF,∴∠ GFE=∠ABE,∴△ GEF∽△ EAB,∴,∴BE?EF=AB?GF=12×9=108.【评论】本题是四边形综合题,主要考察了矩形的性质,全等三角形的判断和性质,相像三角形的判断和性质,折叠的性质,利用方程的思想解决问题是解本题的重点.24.( 12 分)如图,在平面直角坐标系中,矩形OADB 的极点 A,B 的坐标分别为 A(﹣ 6,0),B(0,4).过点 C(﹣ 6,1)的双曲线 y= ( k≠0)与矩形 OADB 的边 BD 交于点 E.( 1)填空: OA= 6,k=﹣6,点E的坐标为(﹣,4);( 2)当 1≤t≤ 6 时,经过点 M( t﹣1,﹣t 2+5t﹣)与点N(﹣t﹣3,﹣t2 +3t ﹣)的直线交y轴于点F,点P是过M,N两点的抛物线y=﹣x2+bx+c 的极点.①当点 P 在双曲线 y=上时,求证:直线MN 与双曲线 y= 没有公共点;②当抛物线 y=﹣ x2 +bx+c 与矩形 OADB有且只有三个公共点,求 t 的值;③当点F 和点 P 跟着 t 的变化同时向上运动时,求 t 的取值范围,并求在运动过程中直线MN 在四边形 OAEB中扫过的面积.【剖析】(1)依据题意将先关数据带入( 2)①用 t 表示直线 MN 分析式,及 b,c,获得 P 点坐标带入双曲线y=分析式,证明对于 t 的方程无解即可;②依据抛物线张口和对称轴,分别议论抛物线过点 B 和在 BD 上时的状况;③由②中部分结果,用t 表示 F、 P 点的纵坐标,求出t 的取值范围及直线MN 在四边形 OAEB中所过的面积.【解答】解:(1)∵ A 点坐标为(﹣ 6,0)∴OA=6∵过点 C(﹣ 6,1)的双曲线 y=∴k=﹣6y=4 时, x=﹣∴点 E 的坐标为(﹣,4)故答案为: 6,﹣ 6,(﹣,4)( 2)①设直线 MN 分析式为: y1=k1x+b1由题意得:解得∵抛物线 y=﹣过点M、N∴解得∴抛物线分析式为: y=﹣x2﹣x+5t﹣ 2∴极点 P 坐标为(﹣ 1,5t﹣)∵P 在双曲线 y=﹣上∴( 5t﹣)×(﹣ 1) =﹣ 6∴t=此时直线 MN 分析式为:联立∴8x2+35x+49=0∵△ =352﹣ 4× 8× 48=1225﹣ 1536<0∴直线 MN 与双曲线 y=﹣没有公共点.②当抛物线过点B,此时抛物线 y=﹣x2+bx+c 与矩形 OADB有且只有三个公共点∴4=5t﹣2,得 t=当抛物线在线段DB 上,此时抛物线与矩形OADB有且只有三个公共点∴,得 t=∴t= 或 t=③∵点 P 的坐标为(﹣ 1,5t﹣)∴y P=5t﹣当1≤t≤ 6 时, y P随 t 的增大而增大此时,点 P 在直线 x=﹣ 1 上向上运动∵点 F 的坐标为( 0,﹣)∴y F=﹣∴当 1≤t ≤4 时,随者 y F随 t 的增大而增大此时,跟着 t 的增大,点 F 在 y 轴上向上运动∴1≤ t≤4当t=1 时,直线 MN :y=x+3 与 x 轴交于点 G(﹣ 3, 0),与 y 轴交于点 H(0,3)当t=4﹣时,直线 MN 过点 A.当1≤t≤ 4 时,直线 MN 在四边形 AEBO中扫过的面积为S=【评论】本题为二次函数与反比率函数综合题,考察了数形联合思想和分类议论的数学思想.解题过程中,应注意充足利用字母t 表示有关点坐标.。

湖北省宜昌市中考数学试题含答案(Word版).docx

湖北省宜昌市中考数学试题含答案(Word版).docx

2018年湖北省宜昌市初中毕业生学业考试数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2018-的绝对值是( )A .2018B .2018-C .12018 D . 12018- 2.如下字体的四个汉字中,是轴对称图形的是( )A .B .C .D .3.工信部发布《中国数字经济发展与就业白皮书(2018)》显示,2017年湖北数字经济总量1.21万亿元,列全国第七位、中部第一位.“1.21万”用科学记数法表示为( ) A .31.2110⨯ B .312.110⨯ C .41.2110⨯ D .50.12110⨯4.计算24(2)5+-⨯=( )A .16-B .16 C.20 D .245.在“绿水青山就是金山银山”这句话中任选一个汉子,这个字是“绿”的概率为( ) A .310 B .110 C.19 D .186.如图,是由四个相同的小正方体组合而成的几何体,它的左视图是( )A .B . C.D .7.下列运算正确的是( )A .224x x x +=B .326x x x =g C.42222x x x += D .22(3)6x x =8.1261年,我国南宋数学家杨辉用下图中的三角形解释二项和的惩罚规律,比欧洲的相同发现要早三百多年,我们把这个三角形称为“杨辉三角”.请观察图中的数字排列规律,则,a b ,c 的值分别为( )A .1,6,15a b c ===B .6,15,20a b c === C.15,20,15a b c === D .20,15,6a b c ===9. 如图,正方形ABCD 的边长为1,点E, F 分别是对角线AC 上的两点, E G AB ⊥ ,EI AD ⊥,FH AB ⊥,FJ AD ⊥,垂足分别为G I, H, J ,,则图中阴影部分的面积等于( )A .1B .12 C.13 D .1410.为参加学校举办的“诗意校园·致远方”朗诵艺术大赛,八年级“屈原读书社”组织了五次选拔赛.这五次选拔赛中,小明五次成绩的平均数是90,方差是2;小强五次成绩的平均数也是90,方差是14.8.下列说法正确的是( )A.小明的成绩比小强稳定B.小明、小强两人成绩一样稳定C.小强的成绩比小明稳定D.无法确定小明、小强的成绩谁更稳定 11. 如图,在平面直角坐标系中,把ABC V 绕原点O 旋转180°得到CDA ∆.点A,B, C 的坐标分别为(5,2)-,(22)(52)---,,,,则点D 的坐标为( )A .(2, 2)B .(2 -2) C. (2,5) D .(2,5)-12.如图,直线AB 是O e 的切线,C 为切点,//OD AB 交O e 于点D ,点E 在O e 上,连接,,OC EC ED ,则CED ∠的度数为( )A .30°B .35° C.40° D .45°13.尺规作图:经过已知直线外一点作这条直线的垂直.下列作图中正确的是( )A. B.C. D.14.如图,要测量小河两岸相对的两点,P A 的距离,可以在小河边取PA 的垂线PB 上的一点C ,测得100PC =米,35PCA ∠=o ,则小河宽PA 等于( )A.100sin 35o 米B.100sin 55o 米C.100tan 35o 米D.100tan 55o 米15.如图,一块砖的,,A B C 三个面的面积比是4:2:1,如果,,A B C 面分别向下放在地上,地面所受压强为123,,p p p 的大小关系正确的是( )A.123p p p >>B.132p p p >>C.213p p p >>D.321p p p >>第Ⅱ卷(共90分)三、解答题 (本大题共9小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.先化简,再求值:()()()122x x x x +++-,其中4x =.17. 解不等式组1021320xx x -⎧≤+⎪⎨⎪-<⎩,并把它的解集在数轴上表示出来.18. 如图,在Rt ABC ∆中,90ACB ∠=o ,40A ∠=o ,ABC ∆的外角CBD ∠的平分线BE 交AC 的延长线于点E . (1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F .求F ∠的度数.19. 我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶。

2018年湖北省各市中考数学压轴大题

2018年湖北省各市中考数学压轴大题

1 1.(2018年武汉)抛物线L :y=﹣x 2+bx+c 经过点A (0,1),与它的对称轴直线x=1交于点B .(1)直接写出抛物线L 的解析式;(2)如图1,过定点的直线y=kx ﹣k+4(k <0)与抛物线L 交于点M 、N .若△BMN 的面积等于1,求k 的值;(3)如图2,将抛物线L 向上平移m (m >0)个单位长度得到抛物线L 1,抛物线L 1与y 轴交于点C ,过点C 作y 轴的垂线交抛物线L 1于另一点D .F 为抛物线L 1的对称轴与x 轴的交点,P 为线段OC 上一点.若△PCD 与△POF 相似,并且符合条件的点P 恰有2个,求m 的值及相应点P 的坐标.2.(2018年黄石)已知抛物线2(1)y a x =-过点(3,1),D 为抛物线的顶点. (1)求抛物线的解析式;(2)若点B 、C 均在抛物线上,其中点B (0,14),且∠BDC=90°,求点C 的坐标;(3)如图,直线4y kx k =+-与抛物线交于P 、Q 两点. ①求证:∠PDQ=90°;② 求△PDQ 面积的最小值.x3.(2018年襄阳)直线y=-32x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=-34x2+2mx-3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另个点也随之停止运动,设运动时间为t秒.PQ交线段AD 于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.4.(2018年黄冈)长OA=8.点M从原点O出发沿x轴正半轴以每秒1个单位长的速度作匀速运动,点N从A出发沿边AB﹣BC﹣CO以每秒2个单位长的速度作匀速运动,过点M作直线MP垂直于x轴并交折线OCB于P,交对角线OB 于Q,点M和点N同时出发,分别沿各自路线运动,点N运动到原点O时,M 和N两点同时停止运动.(1)当t=2时,求线段PQ的长;(2)求t为何值时,点P与N重合;(3)设△APN的面积为S,求S与t的函数关系式及t的取值范围.235.(2018•天门)抛物线y=﹣x 2+x ﹣1与x 轴交于点A ,B (点A 在点B 的左侧),与y 轴交于点C ,其顶点为D .将抛物线位于直线l :y=t (t<)上方的部分沿直线l 向下翻折,抛物线剩余部分与翻折后所得图形组成一个“M”形的新图象.(1)点A ,B ,D 的坐标分别为 , , ;(2)如图①,抛物线翻折后,点D 落在点E 处.当点E 在△ABC 内(含边界)时,求t 的取值范围;(3)如图②,当t=0时,若Q 是“M”形新图象上一动点,是否存在以CQ 为直径的圆与x 轴相切于点P ?若存在,求出点P 的坐标;若不存在,请说明理由.6.(2018年宜昌)如图,在平面直角坐标系中,矩形OADB 的顶点A ,B 的坐标分别为A (-6,0),B (0,4).过点C (-6,1)的双曲线ky x=(0k ≠)与矩形OADB 的边BD 交于点E .(1)填空:OA =____,k =_____,点E 的坐标为__________;4 (2)当1≤t ≤6时,经过点M (1t -,213522t t -+-)与点N (3t --,217322t t -+-)的直线交y 轴于点F ,点P 是过M ,N 两点的抛物线212y x bx c =-++的顶点.①当点P 在双曲线k y x =上时,求证:直线MN 与双曲线k y x=没有公共点;②当抛物线212y x bx c =-++与矩形OADB 有且只有三个公共点,求t 的值;③当点F 和点P 随着t 的变化同时向上运动时,求t 的取值范围,并求在运动过程中直线MN 在四边形...OAEB ....7.(2018•恩施州)如图,已知抛物线交x 轴于A 、B 两点,交y 轴于C 点,A 点坐标为(﹣1,0),OC=2,OB=3,点D 为抛物线的顶点. (1)求抛物线的解析式;(2)P 为坐标平面内一点,以B 、C 、D 、P 为顶点的四边形是平行四边形,求P 点坐标;(3)若抛物线上有且仅有三个点M 1、M 2、M 3使得△M 1BC 、△M 2BC 、△M 3BC 的面积均为定值S ,求出定值S 及M 1、M 2、M 3这三个点的坐标.(第24题参考图)8. (2018年咸宁)如图,直线y=﹣x+3与x轴交于点A,与y轴交于点B.抛物线y=﹣x2+bx+c经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)点P是第一象限抛物线上的点,连接OP交直线AB于点Q.设点P的横坐标为m,PQ与OQ的比值为y,求y与m的函数关系式,并求出PQ与OQ的比值的最大值;(3)点D是抛物线对称轴上的一动点,连接OD、CD,设△ODC外接圆的圆心为M,当sin∠ODC的值最大时,求点M的坐标.9.(2018年鄂州)如图,已知直线y= 12x+12与抛物线y =ax2+bx+c相交于A(–1 ,0),B (4 ,m)两点,抛物线y=ax2+bx+c交y轴于点C(0 ,–32),交x轴正半轴于D点,抛物线的顶点为M .(1)求抛物线的解析式及点M的坐标;5(2)设点P为直线AB下方的抛物线上一动点,当△PAB的面积最大时,求此时△PAB的面积及点P的坐标;(3)点Q为x轴上一动点,点N是抛物线上一点,当△QMN∽△MAD (点Q与点M对应),求Q点坐标10.(2018年十堰))已知抛物线y=x2+bx+c经过点A(﹣2,0),B(0、﹣4)与x轴交于另一点C,连接BC.(1)求抛物线的解析式;(2)如图,P是第一象限内抛物线上一点,且S△PBO=S△PBC,求证:AP∥BC;(3)在抛物线上是否存在点D,直线BD交x轴于点E,使△ABE与以A,B,C,E中的三点为顶点的三角形相似(不重合)?若存在,请求出点D的坐标;若不存在,请说明理由.11.(2018•随州)如图1,抛物线C1:y=ax2﹣2ax+c(a<0)与x轴交于A、B 两点,与y轴交于点C.已知点A的坐标为(﹣1,0),点O为坐标原点,OC=3OA,抛物线C1的顶点为G.6(1)求出抛物线C1的解析式,并写出点G的坐标;(2)如图2,将抛物线C1向下平移k(k>0)个单位,得到抛物线C2,设C2与x轴的交点为A′、B′,顶点为G′,当△A′B′G′是等边三角形时,求k的值:(3)在(2)的条件下,如图3,设点M为x轴正半轴上一动点,过点M作x 轴的垂线分别交抛物线C1、C2于P、Q两点,试探究在直线y=﹣1上是否存在点N,使得以P、Q、N为顶点的三角形与△AOQ全等,若存在,直接写出点M,N的坐标:若不存在,请说明理由.12.(2018•孝感)如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt△A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.7(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.13.(2018年荆州))阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q(x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q(3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx +交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是;(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函8数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.9。

湖北省宜昌市2018年中考数学试题及答案(版)

湖北省宜昌市2018年中考数学试题及答案(版)

②当抛物线 y 1 x2 bx c 与矩形 OAOB 有且只有三个 2
公共点,求 t 的值; ③当点 F 和点 P 随着 t 的变化同时向上运动时, 求 t
的取值范围,并求在运动过程中直线 MN 在四.边.形. OAEB中扫过的面积 .
一、选择题
2018 年湖北省宜昌市初中毕业生学业考试 数学试题参考答案

A. 1.21 103
B
. 12.1 103
C
. 1.21 104
D. 0.121 105
4. 计算 4 ( 2)2 5 (

A. 16
B
.16
C.
20
D
.24
5. 在“绿水青山就是金山银山” 这句话中任选一
个汉子,这个字是“绿”的概率为 ( )
A. 3 10
B
.1
C.
1
10
9
D
.1
8
6. 如图,是由四个相同的小正方体组合而成的几
湖北省宜昌市 2018 年中考数学 试题及答案 (Word 版)
2018 年湖北省宜昌市初中毕业生学业考试
数学试题
第Ⅰ卷(共 60 分) 一、选择题:本大题共 12 个小题 , 每小题 5 分 , 共 60 分. 在每小题给出的四个选 项中,只有一项是符合题目要求的 .
1. 2018的绝对值是 ( )
Q AB AC ,
CE BE ,
又Q EF AE , ∴四边形 ABFC 是平行四边形 . 又Q AB AC , (或 AEB 90o ,) ∴平行四边形 ABFC 是菱形 . (2) 解:∵ AD 7, BE CE 2 , 设 CD x ,则 AB AC 7 x , 解法一:连接 BD ,(如图)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年宜昌市近五届中考数学应用题(22题)汇编及答案
(本大题一般2小问,共10分)上传校勘:柯老师
【2013/22】
[背景资料]
一棉花种植区的农民研制出采摘棉花的单人便携式采棉机(如图),采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,购买一台采棉机需900元,雇人采摘棉花,按每采摘1公斤棉花a元的标准支付雇工工钱,雇工每天工作8小时.
[问题解决]
(1)一个雇工手工采摘棉花,一天能采摘多少公斤?
(2)一个雇工手工采摘棉花7.5天获得的全部工钱正好购买一台采棉机,求a的值;
(3)在(2)的前提下,种植棉花的专业户张家和王家均雇人采摘棉花,王家雇佣的人数是张家的2倍,张家雇人手工采摘,王家所雇的人中有的人自带彩棉机采摘,的人手工采摘,两家采摘完毕,采摘的天数刚好一样,张家付给雇工工钱总额为14400元,王家这次采摘棉花的总重量是多少?
【2014/22】文化宜昌•全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.
(1)求2014年全校学生人数;
(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本。

(注:阅读总量=人均阅读量×人数)
①求2012年全校学生人均阅读量;
②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2013年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.
【2015/22】全民健身和医疗保健是社会普遍关注的问题,2014年,某社区共投入30万元用于购买健身器材和药品.
(1)若2014年社区购买健身器材的费用不超过总投入的,问2014年最低投入多少万元购买药品?(2)2015年,该社区购买健身器材的费用比上一年增加50%,购买药品的费用比上一年减少,但社区在这两方面的总投入仍与2014年相同.
①求2014年社区购买药品的总费用;
②据统计,2014年该社区积极健身的家庭达到200户,社区用于这些家庭的药品费用明显减少,只占当年购买药品总费用的,与2014年相比,如果2015年社区内健身家庭户数增加的百分比与平均每户健身家庭的药品费用降低的百分比相同,那么,2015年该社区用于健身家庭的药品费用就是当年购买健身器材费用的,求2015年该社区健身家庭的户数.
【2016/22】某蛋糕产销公司A品牌产销线,2015年的销售量为9.5万份,平均每份获利1.9元,预计以后四年每年销售量按5000份递减,平均每份获利按一定百分数逐年递减;受供给侧改革的启发,公司早在2014年底就投入资金10.89万元,新增一条B品牌产销线,以满足市场对蛋糕的多元需求,B品牌产销线2015年的销售量为1.8万份,平均每份获利3元,预计以后四年销售量按相同的份数递增,且平均每份获利按上述递减百分数的2倍逐年递增;这样,2016年,A、B两品牌产销线销售量总和将达到11.4万份,B品牌产销线2017年销售获利恰好等于当初的投入资金数.
(1)求A品牌产销线2018年的销售量;
(2)求B品牌产销线2016年平均每份获利增长的百分数.
【2017/22】某市总预算a亿元用三年时间建成一条轨道交通线.轨道交通线由线路敷设、搬迁安置、辅助配套三项工程组成.从2015年开始,市政府在每年年初分别对三项工程进行不同数额的投资.
2015年年初,对线路敷设、搬迁安置的投资分别是辅助配套投资的2倍、4倍.随后两年,线路敷设投资每年都增加b亿元,预计线路敷设三年总投资为54亿元时会顺利如期完工;搬迁安置投资从2016年初开始遂年按同一百分数递减,依此规律,在 2017年年初只需投资5亿元,即可顺利如期完工;辅助配套工程在2016年年初的投资在前一年基础上的增长率是线路敷设2016年投资增长率的1.5倍,2017年年初的投资比该项工程前两年投资的总和还多4亿元,若这样,辅助配套工程也可以如期完工.经测算,这三年的线路敷设、辅助配套工程的总投资资金之比达到3: 2.
(1)这三年用于辅助配套的投资将达到多少亿元?
(2)市政府2015年年初对三项工程的总投资是多少亿元?
(3)求搬迁安置投资逐年递减的百分数.
参考答案:
【2013/22】解:(1)∵一个人操作该采棉机的采摘效率为35公斤/时,大约是一个人手工采摘的3.5倍,
∴一个人手工采摘棉花的效率为:35÷3.5=10(公斤/时),
∵雇工每天工作8小时,
∴一个雇工手工采摘棉花,一天能采摘棉花:10×8=80(公斤);
(2)由题意,得80×7.5a=900,
解得a=;
(3)设张家雇佣x人采摘棉花,则王家雇佣2x人采摘棉花,其中王家所雇的人中有的人自带彩棉机采摘,
的人手工采摘.
∵张家雇佣的x人全部手工采摘棉花,且采摘完毕后,张家付给雇工工钱总额为14400元,
∴采摘的天数为:=,
∴王家这次采摘棉花的总重量是:(35×8×+80×)×=51200(公斤).
【2014/22】
解:(1)由题意,得
2013年全校学生人数为:1000×(1+10%)=1100人,
∴2014年全校学生人数为:1100+100=1200人;
(2)①设2012人均阅读量为x本,则2013年的人均阅读量为(x+1)本,由题意,得
1100(x+1)=1000x+1700,
解得:x=6.
答:2012年全校学生人均阅读量为6本;
②由题意,得
2012年读书社的人均读书量为:2.5×6=15本,
2014年读书社人均读书量为15(1+a)2本,
2014年全校学生的读书量为6(1+a)本,
80×15(1+a)2=1200×6(1+a)×25%
2(1+a)2=3(1+a),
∴a1=﹣1(舍去),a2=0.5.
答:a的值为0.5.
【2015/22】解:(1)设2014年购买药品的费用为x万元,
根据题意得:30﹣x≤×30,
解得:x≥10,
则2014年最低投入10万元购买商品;
(2)①设2014年社区购买药品的费用为y万元,则购买健身器材的费用为(30﹣y)万元,
2015年购买健身器材的费用为(1+50%)(30﹣y)万元,购买药品的费用为(1﹣)y万元,
根据题意得:(1+50%)(30﹣y)+(1﹣)y=30,
解得:y=16,30﹣y=14,
则2014年购买药品的总费用为16万元;
②设这个相同的百分数为m,则2015年健身家庭的药品费用为200(1+m),
2015年平均每户健身家庭的药品费用为(1﹣m)万元,
依题意得:200(1+m)•(1﹣m)=(1+50%)×14×,
解得:m=±,
∵m>0,∴m==50%,
∴200(1+m)=300(户),
则2015年该社区健身家庭的户数为300户.
【2016/22】
解:(1)9.5﹣(2018﹣2015)×0.5=8(万份);
答:品牌产销线2018年的销售量为8万份;
(2)设A品牌产销线平均每份获利的年递减百分数为x,B品牌产销线的年销售量递增相同的份数为k万份;根据题意得:,
解得:,或(不合题意,舍去),
∴,
∴2x=10%;
答:B品牌产销线2016年平均每份获利增长的百分数为10%.
【2017/22】。

相关文档
最新文档