全国数学建模竞赛b题优秀论文
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,是一道涉及复杂系统分析与优化的实际问题。
该题目要求参赛者运用数学建模的方法,对给定的问题进行深入分析,并寻求最优解决方案。
本文将对B 题的解题过程进行详细分析,并总结经验教训。
二、题目概述B题主要围绕某大型网络公司的员工分配问题展开。
公司需根据员工的能力、需求以及项目的要求,合理分配员工到各个项目组,以实现公司整体效益的最大化。
该问题涉及到多目标决策、优化算法以及复杂系统分析等多个方面。
三、解题分析1. 问题理解:首先,我们需要对题目进行深入理解,明确问题的背景、目标和约束条件。
在这个阶段,我们需要对员工的能力、需求以及项目的要求进行详细的分析,为后续的建模打下基础。
2. 数学建模:根据问题的特点,我们选择建立多目标决策模型。
模型中,我们将员工的能力、需求以及项目的要求作为决策变量,以公司整体效益作为目标函数。
同时,我们还需要考虑各种约束条件,如员工数量的限制、项目需求的满足等。
3. 算法设计:在建立模型后,我们需要设计合适的算法来求解模型。
在这个阶段,我们选择了遗传算法和模拟退火算法进行求解。
遗传算法能够在大范围内搜索最优解,而模拟退火算法则能够在局部范围内进行精细搜索,两种算法的结合能够更好地求解该问题。
4. 求解与优化:在算法设计完成后,我们开始进行求解与优化。
首先,我们使用遗传算法对模型进行粗略求解,得到一组初步的解决方案。
然后,我们使用模拟退火算法对初步解决方案进行优化,以得到更优的解决方案。
在优化过程中,我们还需要不断调整模型的参数和算法的参数,以获得更好的求解效果。
5. 结果分析:在得到求解结果后,我们需要对结果进行分析。
首先,我们需要对结果进行验证,确保结果的正确性和有效性。
然后,我们需要对结果进行敏感性分析,分析各种因素对结果的影响程度。
最后,我们需要提出一些管理建议和改进措施,以帮助公司更好地解决实际问题。
数学建模优秀论文
(数学建模B题)北京水资源短缺风险综合评价参赛队员:甘霖(20093133,数学科学学院)李爽(20093123,数学科学学院)崔骁鹏(20091292,计算机科学学院)参赛时间:2011年4月30 - 5月13日承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D 中选择一项填写):B所属学校(请填写完整的全名):黑龙江大学参赛队员:1.甘霖2、李爽3、崔骁鹏日期:2011 年5月12日目录1.摘要 -----------------------------------------42.关键词 ---------------------------------------43.问题重述 ---------------------------------------54.模型的条件和假设 ------------------------------55.符号说明 --------------------------------------56.问题的分析及模型的建立 ------------------------66.1问题一的分析与求解 -----------------------66.2问题二的分析与求解 -----------------------106.3问题三的分析与求解 -----------------------186.4问题死的求解 -----------------------------217.模型的评价 ------------------------------------238.参考文献 --------------------------------------239.附录 ------------------------------------------23北京水资源短缺风险综合评价甘霖﹑李爽﹑崔骁鹏【摘要】本文针对水资源短缺风险问题求出主要风险因子,并建立了水资源短缺风险评价模型,以北京为实例,做出了北京1979年到2009年的水资源短缺风险的综合风险评价,划分出了风险等级,以评价水资源短缺风险的程度。
全国大学生数学建模竞赛b题全国优秀论文
基于打车软件的出租车供求匹配度模型研究与分析摘要目前城市“出行难”、“打车难”的社会难题导致越来越多的线上打车软件出现在市场上。
“打车难”已成为社会热点。
以此为背景,本文将要解决分析的三个问题应运而生。
本文运用主成分分析、定性分析等分析方法以及部分经济学理论成功解决了这三个问题,得到了不同时空下衡量出租车资源供求匹配程度的指标与模型以及一个合适的补贴方案政策,并对现有的各公司出租车补贴政策进行了分析。
针对问题一,根据各大城市的宏观出租车数据,绘制柱形图进行重点数据的对比分析,首先确定适合进行分析研究的城市。
之后,根据该市不同地区、时间段的不同特点选择多个数据样本区,以数据样本区作为研究对象,进行多种数据(包括出租车分布、出租车需求量等)的采集整理。
接着,通过主成分分析法确定模型的目标函数、约束条件等。
最后运用spss软件工具对数据进行计算,求出匹配程度函数F与指标的关系式,并对结果进行分析。
针对问题二,在各公司出租车补贴政策部分已知的情况下,综合考虑出租车司机以及顾客两个方面的利益,分别就理想情况与实际情况进行全方位的分析。
在问题一的模型与数据结果基础上,首先分别从给司机和乘客补贴两个角度定性分析了补贴的效果。
重点就给司机进行补贴的方式进行讨论,定量分析了目前补贴方案的效果,得出了如果统一给每次成功的打车给予相同的补贴无法改善打车难易程度的结论,并对第三问模型的设计提供了启示,即需要对具有不同打车难易程度和需求量的区域采取分级的补贴政策。
针对问题三,在问题二的基础上我们设计了一种根据不同区域打车难易程度和需求量来确定补贴等级的方法。
设计了相应的量化指标,以极大化各区域打车难易程度降低的幅度之和作为目标,建立该问题的规划模型。
目的是通过优化求解该模型,使得通过求得的优化补贴方案,能够优化调度出租车资源,使得打车难区域得到缓解。
通过设计启发式原则和计算机模拟的方法进行求解,并以具体案例分析得到,本文方法相对统一的补贴方案而言的确可以一定程度缓解打车难的程度。
大学生数学建模竞赛B题优秀论文
关于高等教育学费标准的评价及建议摘要本文通过对近几年来学费变化的研究,综合分析影响学费变化的五个要素,引入了三个变因:学校属性、专业类型、地域差异对学费的影响,对其合理性进行了定量的分析和评价。
首先,我们基于层次分析法建立了模型一。
模型一以五个要素,即教育市场供求关系、全国家庭支付承受力、国家财政及相关社会捐助、个人收益率、教育成本为方案层。
对于教育市场的供求关系我们用灰色预测GM(1,1)模型预测出未来几年的招生人数,用蛛网模型求解稳定的价格点为3225.51 元;对于国家财政及相关社会捐助,我们用回归分析得出其效应关系。
模型一以效率和公平两个标准作为准则层,应用极差归一化思想,构造指标函数,综合建立成对比较矩阵。
我们定义学费合理化指数为目标层,经准则层,得出五个要素对学费合理化指数的组合权重向量。
考虑到成对比较矩阵仍有一定主观因素,我们用熵值取权法修正组合权重向量。
最后,拟合出最佳学费曲线及其波动区间,其中 2007 年的结论值为 3370.75 元。
模型一的突出优点是客观可信,美中不足的是结论为一个平均最优值,没有考虑其他变因的影响,使用的局限性较大。
然后,我们基于学校属性、专业类型、地域差异三个变因对结论的影响建立了模型二。
评价了这三个变因对五个要素的综合影响,修正了五个要素对学费合理化指数的影响,使得结论更趋于合理,应用范围更加广泛。
修正后通过若干数据的检验,得出平均最佳学费约为 3000 元。
基于这两个模型,以及对高校学费现状的了解,我们提出三点主要建议: 1.鼓励高校开拓资金来源渠道,学习国外筹款方式,如发行教育彩票等; 2.建议国家增加助学贷款发放力度,并能够分类别基于不同金额的贷款,并出台一些补贴政策弥补不同地区的差异; 3.大力扶持民办高等院校发展,实现高等教育大众化,这样不仅缓解高等院校招生压力,并且能够促进高校教育健康发展。
本文的特色在于基于翔实丰富的资料,根据五个要素及三个变因的分析,建立了一种合理的高校学费评价体系,其拥有适用性广,稳定性好,灵敏度高等特点,对三个变因,即学校属性、专业类型、地域差异进行了深入定量的分析,并根据模型结论给提出了我们的一些可行性建议。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛(CUMCM)是衡量各高校数学类学科学生学习与实践能力的标志性竞赛之一。
其中,B题以真实问题的复杂性吸引了广大参赛选手的关注。
本文将对B题的具体题目内容、解题过程、常见方法和误区进行分析,并结合实例对竞赛结果进行总结,以期为其他参赛同学提供一定的参考。
二、题目分析B题通常关注某一实际领域的复杂问题,涉及多个因素的综合考量。
其要求参赛者通过建立数学模型,解决实际问题。
具体问题包括某个地区的旅游经济预测和资源合理配置。
针对此问题,首先需要对旅游业的各项数据进行详细分析,然后构建适当的数学模型,并使用合适的数学工具和软件进行计算和模拟。
三、解题过程1. 数据收集与分析:收集该地区的历史旅游数据,包括游客数量、消费水平、旅游景点分布等。
同时,分析该地区的经济、文化、交通等影响旅游业的因素。
2. 模型构建:根据收集的数据和实际情况,选择合适的数学模型进行建模。
常见的模型包括时间序列预测模型(如ARIMA 模型)、多元回归模型等。
3. 模型求解与验证:利用数学软件(如MATLAB、SPSS等)对模型进行求解,并对模型的预测结果进行验证。
验证方法包括与历史数据进行对比、进行敏感性分析等。
4. 资源合理配置:根据预测结果和实际情况,制定合理的资源分配方案,如旅游景点的开发策略、交通设施的优化配置等。
四、常见方法与误区1. 常见方法:在建模过程中,应选择合适的数学模型和方法。
对于时间序列预测问题,常用的有ARIMA模型、指数平滑法等;对于多元回归问题,则需要考虑各因素之间的相互关系。
同时,还应充分利用计算机技术进行数据分析和模拟。
2. 误区提示:在建模过程中,要避免陷入一些常见的误区。
例如,过分追求模型的复杂性和精确度而忽视模型的实用性和可解释性;忽视数据的预处理和清洗工作;忽略模型的验证和修正等。
五、实例分析以某次B题竞赛的优秀解决方案为例,详细分析其解题过程和关键点。
全国大学生数学建模竞赛B题优秀论文
(1) 表示客流量随时间的变化值,R、RW、RG分别表示上海国际旅游入境人数本底值、外国游客入境人数本底值、港澳台游客入境人数本底值;
(2)R1表示2010年1、2、3、4、11、12月上海国际旅游入境实际人数,R2表示世博会期间上海国际旅游入境实际人数,RZ表示2010年上海国际旅游总入境实际人数;
最后,通过对模型结果的分析,量化评估上海世博会的影响力。从世博会对以上各个指标的贡献率可以看出:世博会极大地促进了旅游业的发展,并且对上海的财政收入做出了巨大的贡献。在分析所得结果的基础上,客观评价此模型,并指出其优点和缺点。
关键词:上海 世博会 影响力 本底趋势线 内插值
1.问题重述
2010年上海世博会是首次在中国举办的世界博览会。从1851年伦敦的“万国工业博览会”开始,世博会正日益成为各国人民交流历史文化、展示科技成果、体现合作精神、展望未来发展等的重要舞台。请你们选择感兴趣的某个侧面,建立数学模型,利用互联网数据,定量评估2010年上海世博会的影响力。
2.模型的假设与符号说明
2.1模型的假设
2010年上海世博会作为一场世界级的盛宴,要对其影响力进行定量评估,尚存在一些不确定因素。故为了研究方便,我们给出以下假设:
(1)假设世博会不受偶然事件严重冲击和干扰;
(2)假设旅游人数只受主要因素影响,其他一些因素可以忽略,比如天气等因素;
(3)假设世博会期间每月游览总人数波动不大,非世博会期间每月游览总人数波动也不大。
第二步,用Excel的指数模型、乘幂模型和SPSS的指数-三角函数复合模型 、直线-逻辑线增长复合模型 、直线-三角函数复合模型 对各个指标进行拟合,确定有关参数,获得各个指标的趋势线模型和方程,并计算各年的本底值;
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(CUMCM)是面向全国各高校学生的大型数学建模类比赛。
在众多赛题中,B题以其复杂的实际问题背景和深入的应用数学知识引起了广泛关注。
本文旨在针对B题的解题过程进行详细分析,并做出相应的总结。
二、题目概述B题主要描述了一个实际生活中遇到的问题:基于网络平台的交通流量预测。
题目要求参赛者根据历史交通流量数据,分析交通流量的变化规律,并建立数学模型进行预测。
三、解题分析1. 数据收集与预处理首先,我们需要收集相关的历史交通流量数据。
这些数据可能包括时间、地点、交通流量等信息。
收集到的原始数据需要进行清洗和预处理,例如去除异常值、缺失值等,以获得更为准确的数据。
2. 建立数学模型根据数据的特点和问题需求,我们选择合适的数学模型进行建模。
考虑到交通流量与时间的关系较为密切,我们可以选择时间序列分析模型,如ARIMA模型等。
此外,考虑到不同地点之间的交通流量可能存在相互影响,我们还可以引入空间相关性分析,如空间自回归模型等。
3. 模型优化与验证建立数学模型后,我们需要对模型进行优化和验证。
这包括调整模型的参数、对模型进行诊断分析等。
我们可以通过对比模型的预测值与实际值,计算误差指标(如均方误差、平均绝对误差等)来评估模型的性能。
同时,我们还可以使用交叉验证等方法来验证模型的稳定性。
4. 模型应用与结果展示最后,我们将建立的数学模型应用于实际问题中,对未来的交通流量进行预测。
我们将预测结果以图表等形式进行展示,方便评委和观众理解。
同时,我们还可以对结果进行解释和讨论,说明模型的优点和局限性。
四、总结通过本文总结:经过详细的分析与探讨,针对2016年全国大学生数学建模竞赛B题,我们采取了有效的解决策略。
从数据收集与预处理到模型建立与优化,每一步都紧密联系实际,充分考虑了交通流量数据的特性和问题需求。
在建模过程中,我们选择了合适的时间序列分析模型和空间相关性分析模型,旨在捕捉交通流量的变化规律。
B题:电工杯数学建模竞赛获奖论文
1.预测每次航行各周预订舱位的人数,完善各航次每周实际预订人数非完全 累积表 sheet2。要求至少采用三种预测方法进行预测,并分析结果。
2.预测每次航行各周预订舱位的价格,完善每次航行预订舱位价格表 sheet3。 3.依据附件中表 sheet4 给出的每周预订价格区间以及每周意愿预订人数,预 测出公司每周给出的预订平均价格。 4.依据附件中表 sheet1-sheet4,建立邮轮每次航行的最大预期售票收益模型, 并计算第 8 次航行的预期售票收益。 5.在头等、二等舱位未满的情况下,游客登船后,可进行升舱(即原订二等 舱游客可通过适当的加价升到头等舱,三等舱游客也可通过适当的加价升到头等 舱、二等舱)。建立游客升舱意愿模型,为公司制定升舱方案使其预期售票收益 最大。
3.模型的假设与符号说明
3.1 模型的假设
1.假设邮轮旅游不存在高峰期,邮轮票价、预定人数等保持平稳状态; 2.假设题目表格中给出的平均价格在价格浮动比之内; 3.假设邮轮各个舱位预定平均价格和距离邮轮出发时间的关系保持一致; 4.假设意愿预定人数和实际预定人数的转换只和价格、舱位种类有关。 5.假设游客上船之后升舱没有任何手续费; 6.假设每个舱位中的人数和舱位的价格成反比例关系,并且三种舱位的比例 关系相同;
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言全国大学生数学建模竞赛是具有广泛影响力的学术竞赛活动,旨在培养大学生的创新能力、实践能力和团队协作精神。
本文将针对2016年竞赛中的B题进行详细的解题分析与总结,以期为参赛者提供有益的参考。
二、题目概述B题主要涉及城市空气质量预测问题。
题目要求参赛者根据历史数据,建立数学模型预测未来一段时间内某城市的空气质量指数(AQI)。
此题重点考察参赛者的数据处理能力、模型构建能力以及预测精度。
三、解题分析1. 数据收集与预处理首先,我们需要收集该城市的历史空气质量数据,包括但不限于PM2.5、PM10、SO2、NO2等污染物的浓度数据,以及气象数据(如温度、湿度、风速等)。
对收集到的数据进行清洗,去除异常值和缺失值,并进行归一化处理,以便进行后续分析。
2. 模型构建根据数据的特性,我们选择时间序列分析方法进行建模。
具体而言,可以采用自回归积分滑动平均模型(ARIMA)或其变体如SARIMA等。
这些模型能够较好地捕捉时间序列数据的变化规律,并预测未来趋势。
在建模过程中,我们需要通过交叉验证等方法确定模型的参数。
3. 模型验证与优化建立初步模型后,我们需要用验证集对模型进行验证,计算预测值与实际值之间的误差。
根据误差情况,对模型进行优化,如调整参数、引入其他影响因素等。
同时,我们还可以尝试使用其他模型进行对比,如神经网络、支持向量机等,以找到最优的预测模型。
四、模型应用与结果分析经过优化后的模型可以用于预测未来一段时间内该城市的空气质量指数。
我们可以通过绘制预测曲线、计算预测值的置信区间等方式对预测结果进行分析。
同时,我们还可以根据预测结果提出相应的空气质量改善措施和建议。
五、总结与展望通过对2016年全国大学生数学建模竞赛B题的分析与求解,我们掌握了空气质量预测的基本方法和技巧。
在未来的学习和工作中,我们可以将所学知识应用到更广泛的领域,如气候变化预测、经济预测等。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题,以其独特的实际应用背景和复杂的数学建模需求,吸引了众多参赛者的关注。
本文旨在分析该题目的解题思路、方法及过程,并总结经验教训,以期为后续参赛者提供参考。
二、题目概述B题主要围绕“空气质量预测与治理”展开,要求参赛者建立数学模型,对某城市的空气质量进行预测,并探讨治理措施的效果。
题目既涉及数学建模的理论知识,又具有实际应用价值。
三、解题分析1. 数据收集与预处理在解题过程中,首先需要收集该城市的历史空气质量数据,包括PM2.5、PM10、SO2、NO2等主要污染物的浓度数据,以及气象数据、交通流量等影响因素数据。
对收集到的数据进行清洗、整理和标准化处理,以便进行后续的建模分析。
2. 模型选择与建立根据题目要求和数据特点,可以选择时间序列分析模型、多元线性回归模型、神经网络模型等。
在建立模型时,需要考虑各种影响因素的相互作用,以及模型的预测精度和泛化能力。
同时,还需要对模型进行参数估计和假设检验,以确保模型的可靠性。
3. 模型应用与验证将建立的模型应用于实际数据,进行空气质量预测。
通过对比预测值与实际值的差异,评估模型的预测精度和效果。
此外,还需要探讨治理措施对空气质量的影响,评估治理措施的效果。
四、解题方法与技巧1. 多角度综合分析在建模过程中,需要从多个角度综合分析问题。
既要考虑空气质量的主要影响因素,又要考虑各因素之间的相互作用;既要关注模型的预测精度,又要考虑模型的泛化能力。
只有综合考虑各种因素,才能建立更加准确、可靠的数学模型。
2. 合理选择模型与方法根据问题的特点和数据的特点,选择合适的模型与方法。
不同的模型与方法有不同的适用范围和优缺点,需要根据实际情况进行选择和调整。
同时,还需要对所选模型与方法进行充分的了解和掌握,以确保建模过程的顺利进行。
3. 注意数据的处理与分析数据是建模的基础,数据的处理与分析对建模的结果具有重要影响。
2019年全国大学生数学建模竞赛B题题目及论文精选
2019高教社杯全国大学生数学建模竞赛B题目及优秀论文精选B题“同心协力”策略研究“同心协力”(又称“同心鼓”)是一项团队协作能力拓展项目。
该项目的道具是一面牛皮双面鼓,鼓身中间固定多根绳子,绳子在鼓身上的固定点沿圆周呈均匀分布,每根绳子长度相同。
团队成员每人牵拉一根绳子,使鼓面保持水平。
项目开始时,球从鼓面中心上方竖直落下,队员同心协力将球颠起,使其有节奏地在鼓面上跳动。
颠球过程中,队员只能抓握绳子的末端,不能接触鼓或绳子的其他位置。
图片来源:https:///_mediafile/yjs/2017/10/26/32yuesec78.png 项目所用排球的质量为270 g。
鼓面直径为40 cm,鼓身高度为22 cm,鼓的质量为3.6 kg。
队员人数不少于8人,队员之间的最小距离不得小于60 cm。
项目开始时,球从鼓面中心上方40 cm处竖直落下,球被颠起的高度应离开鼓面40 cm以上,如果低于40cm,则项目停止。
项目的目标是使得连续颠球的次数尽可能多。
试建立数学模型解决以下问题:1. 在理想状态下,每个人都可以精确控制用力方向、时机和力度,试讨论这种情形下团队的最佳协作策略,并给出该策略下的颠球高度。
2. 在现实情形中,队员发力时机和力度不可能做到精确控制,存在一定误差,于是鼓面可能出现倾斜。
试建立模型描述队员的发力时机和力度与某一特定时刻的鼓面倾斜角度的关系。
设队员人数为8,绳长为1.7m,鼓面初始时刻是水平静止的,初始位置较绳子水平时下降11 cm,表1中给出了队员们的不同发力时机和力度,求0.1 s时鼓面的倾斜角度。
表1 发力时机(单位:s)和用力大小(单位:N)取值3. 在现实情形中,根据问题2的模型,你们在问题1中给出的策略是否需要调整?如果需要,如何调整?4. 当鼓面发生倾斜时,球跳动方向不再竖直,于是需要队员调整拉绳策略。
假设人数为10,绳长为2m,球的反弹高度为60cm,相对于竖直方向产生1度的倾斜角度,且倾斜方向在水平面的投影指向某两位队员之间,与这两位队员的夹角之比为1:2。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛(以下简称国赛)是中国大学最为盛大的数学建模比赛,汇集了来自全国各高校顶尖的数学建模团队。
在本次比赛中,B题题目独特且挑战性强,使得各队参赛选手展现出了超凡的建模和解决实际问题的能力。
本文旨在深入探讨该题的解题思路与总结,以便于为其他数学建模爱好者提供借鉴和参考。
二、B题概述题目B涉及到了金融领域的风险管理问题,主要考察了参赛选手在金融领域的数学建模和解决问题的能力。
具体来说,题目要求通过构建数学模型来分析不同类型股票之间的价格关系,以及在给定市场条件下如何确定风险阈值并有效地控制投资风险。
三、解题思路(一)明确问题在分析B题时,我们首先明确了题目的要求和目的,确定了对金融领域相关概念和理论的研究方向。
我们认识到这是一个典型的金融风险管理问题,需要运用数学建模的方法来分析股票价格之间的关系以及风险控制策略。
(二)数据收集与处理在收集了相关股票的历史数据后,我们进行了数据清洗和预处理工作,以确保数据的准确性和可靠性。
这包括剔除异常数据、填补缺失值、对数据进行归一化处理等。
(三)构建模型针对题目要求,我们选择了合适的方法和模型来分析股票价格之间的关系。
首先,我们使用相关性分析来探究不同股票之间的价格关系;其次,我们运用回归分析来建立股票价格与风险之间的数学模型;最后,我们利用蒙特卡洛模拟等方法来模拟市场环境并确定风险阈值。
(四)模型验证与优化在构建了数学模型后,我们通过实际数据对模型进行了验证和优化。
我们比较了模型的预测结果与实际市场数据,不断调整模型参数以优化模型的性能。
四、解题方法与技巧(一)熟悉金融领域相关知识在解决B题时,我们需要对金融领域的相关知识有充分的了解,包括股票价格的形成机制、风险控制策略等。
这有助于我们更好地理解题目要求并选择合适的建模方法。
(二)合理选择数学建模方法针对不同的金融问题,我们需要选择合适的数学建模方法。
09数学建模B题获奖论文
5.2
由已知数据可得2008-07-13到2008-09-11这段时间每天白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的病人到医院就诊的人数,这段时间白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的病人的总数分别为:100、133、170、63、64。
5.3
由附录可得2008-07-13到2008-09-11这段时间白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的康复时间可得白内障单眼、白内障双眼、视网膜疾病、青光眼和外伤的康复时间分别为[2,4]、[4,6]、[5,15]、[4,12]、[3,10],且它们各自占到的比例分别如表5-1,5-2,5-3,5-4所示。
视网膜
康复天数
5
6
7
8
9
10
11
12
13
14
15
康复人数
全国大学生数学建模优秀论文 B题:产品销量预测
承诺书我们仔细阅读了数学建模竞赛选拔的规则.我们完全明白,在做题期间不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人研究、讨论与选拔题有关的问题。
我们知道,抄袭别人的成果是违反选拔规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守选拔规则,以保证选拔的公正、公平性。
如有违反选拔规则的行为,我们将受到严肃处理。
我们选择的题号是(从A/B/C中选择一项填写):队员签名:1.2.3.日期:年月_日编号专用页评阅编号(评阅前进行编号):评阅记录(评阅时使用):评阅人评分备注B 题 产品销量预测摘要产品销量预测问题是当前世界上所有企业最关心的问题之一。
企业若想长期生存发展,就必须做销量预测。
本文对产品的销量及其影响因素进行了讨论。
对于问题一,鉴于比例系数未知,给出比例系数为每一产品在单位时间内平均吸引k 个顾客,使其购买k 个该产品这一假设,建立Malthus 模型,预测出0t 时刻的产品销量0()x t 。
分析得Malthus 模型所得结果只与实际销售量在初始阶段的增长情况比较符合,不宜用于销售量的中、长期预测。
对于问题二,结合问题一并假设一个消费者仅购买一种该产品。
此时问题可理解为在某时刻t 时,产品销量的增长率既与到时刻t 为止的已经购买该种产品消费者数目)(t x 成正比,也与尚未购买该产品的潜在消费者数目)(t x N 成正比。
建立Logistic 模型,预测出0t 时的产品销量0()x t 。
分析得,产品销售情形与此模型非常相似,特别在销售后期更加吻合。
对于问题三,根据产品生命周期理论,结合龚柏兹曲线,运用三段对数和法,建立模型,预测出市场容量N 。
对于问题四,考虑到影响产品销量的因素有广告、企业竞争、产品竞争、消费者的购买能力、国家的经济水平等。
结合本文,选取广告、企业竞争、产品竞争三个因素分别建立独家销售的广告模型、竞争销售的广告模型、同类产品的竞争模型来预测0t 时的产品销量0()x t 。
第二届研究生数学建模竞赛B题优秀论文(1).
全国第二届部分高校研究生数模竞赛题 目 B 题 空中加油问题摘 要:空中加油问题是在油料,时间和地点约束下的寻优问题。
论文将作战方案建模成二叉树结构,给出了计算二叉树各结点坐标的公式。
对问题1,2,论文给出二叉树穷举搜索和叶子结点生长两种搜索方法,能够计算任意n 架辅机的最优作战方案和最大作战半径。
证明了时,给出了上界n r n →∞n r →∞()211log 263n ++⎡⎤⎢⎥和下界()311lo +g 123n +⎢⎥⎣⎦。
对问题3,论文用试凑法得到的n=1~3的最大作战半径n R ,并给出一种加进松弛条件的次优搜索法,能够计算满足松弛条件的次优作战半径ˆnR 。
问题4,给出了任意一个基地辅机数量为n 时最优作战方案搜索方法,进而确定辅机在各基地的分配方案,并计算出此时的作战半径n R *。
下面给出n=1~5时各最大作战半径表。
n 1 2 3 4 5 n r 0.66667 0.83333 0.91667 1.000001.05556n R0.83333 1.00000 1.15694 ˆnR 0.83333 1.00000 1.15556 1.23889 1.26667 n R *1.500002.500002.944443.388893.72222参赛队号 1415空中加油问题的讨论一. 问题重述空中加油技术可以大大提高飞机的直航能力。
作战飞机称为主机,加油机称为辅机。
已知:(1)主机和辅机载油量、速度、单位时间的耗油量完全一样,且为常数;(2)飞机载油量可供飞行L 公里;(3)辅机可以给主机或其他辅机加油;(4)执行完任务后,所有飞机必须返回基地;(5)飞机的起飞、降落、转向、加油的耗时和主机执行任务的时间忽略不计。
A 空军基地有一架主机和n 架辅机,主机最大作战半径指主机在辅机加油协助下能飞到(并安全返回)离基地A 的最远距离。
有如下问题:问题1:每架飞机只能上天一次,求n=1,2,3,4时的最大作战半径。
数学建模大赛-2008-B题-优秀论文1
B题高等教育学费标准探讨【摘要】本文探讨了高等教育学费标准高低对社会的影响,从培养质量、收益、教育成本、支付能力与入学率等几方面入手,构建了学费制定加权模型,举例计算得到几类有代表性的专业的具体学费,并进一步讨论了确定助学金发放对象及具体金额的方法。
论文第一步按照教育部教学评价优秀标准对学校教育质量指标量化,考虑教育成本,从整体上构建学校学费的最低标准计算模型。
通过分析我国财政指标、人民生活水平指标相关数据,可得支付能力和个人、社会收益与学费的关系的一些结论,在这些结论和最低标准计算模型的基础上进一步建立完整学费计算模型。
所建学费计算模型学费分为两个部分:个人收益学费和支付能力学费。
其中利益获得学费与所在专业的个人收益获得率和专业的生均成本有关,支付能力学费与我国国民经济水平有关,进而有区别的建立了不同专业学费的普遍加权模型和某家庭实际可以承受的学费具体模型,给出了确定某专业学费的具体步骤,这是论文的核心。
在模型计算中,首先根据全国统计数据确定了模型中的加权系数α,β,得到了计算特定专业学费具体的经验公式,并对其方法进行了单因素方差分析,证实了这样计算的合理性;然后再有选择的计算出了一些学科专业的学费标准(见表6)。
在计算所得学费基础上说明了助学金的必要性,进一步拓展模型,按照不同收入人群分类计算应补助学费金额,并设立公平度指标,讨论了给谁发放助组学金和最终发放金额。
模型的验证尝试新的思路,借鉴蚁群和蒙特卡罗算法的一些思想,从微观到宏观验证模型。
通过定义个体行为,设定意愿度指标,用matlab编程,以计算机仿真的形式试验,用统计学观点说明学费是否合理。
这是本文的亮点之一。
讨论了模型的优缺点后,本文提出了问题拓展的几点思路,一是综合考虑各种因素,量化指标,给出建立优化模型,直接计算学费的思路;二是讨论了文章前一部份没有考虑的各种因素对学费的影响,以及加入这些因素后建模的思路。
文末以报告的形式给出了关于学费制定标准的一些研究结论和建议(附录5)。
《2024年2016年全国大学生数学建模竞赛B题解题分析与总结》范文
《2016年全国大学生数学建模竞赛B题解题分析与总结》篇一一、引言2016年全国大学生数学建模竞赛B题是一道涉及复杂系统建模与优化的题目,要求参赛者对城市交通拥堵问题进行分析,并构建数学模型进行优化。
本文将对本次竞赛B题的解题过程进行详细分析,并对所运用的方法进行总结。
二、题目概述B题主要针对城市交通拥堵问题,要求参赛者建立一个数学模型,以解决城市交通流量的优化问题。
题目涉及城市交通网络的复杂性、不同交通工具的流量分布、交通拥堵的成本等多个方面。
三、解题思路1. 问题分析:首先,我们需要对城市交通拥堵问题进行深入分析,了解其成因及影响因素。
这包括对交通网络的结构、不同交通工具的流量分布、交通规则、道路状况等进行调查和研究。
2. 模型构建:根据问题分析的结果,我们构建了一个多因素影响的城市交通流量优化模型。
该模型考虑了交通网络的结构、交通流量、交通拥堵成本等多个因素,并采用了系统动力学的方法进行建模。
3. 模型求解:在模型构建完成后,我们采用数值分析和仿真方法对模型进行求解。
通过不断调整模型参数,使模型能够更好地反映实际情况,并找出最优的交通流量分配方案。
4. 结果分析:我们对求解结果进行了详细分析,包括对不同交通流量分配方案下的交通拥堵情况、成本等进行了比较和分析。
同时,我们还对模型的可靠性和有效性进行了评估。
四、解题方法与技巧1. 充分利用现有数据:在建模过程中,我们需要充分利用现有数据,如交通流量数据、道路状况数据等,以提高模型的准确性和可靠性。
2. 采用系统动力学方法:系统动力学方法可以更好地反映系统的动态性和复杂性,使我们能够更好地理解城市交通拥堵问题的本质。
3. 数值分析和仿真相结合:在模型求解过程中,我们采用了数值分析和仿真相结合的方法,以便更好地找出最优的交通流量分配方案。
4. 重视结果分析:在结果分析阶段,我们需要对不同方案下的交通拥堵情况、成本等进行详细比较和分析,以便找出最优的解决方案。
2023年高教社杯全国数学建模竞赛B题省级二等奖论文
2023年高教社杯全国数学建模竞赛B题省级二等奖论文一、引言2023年高教社杯全国数学建模竞赛是一项重要的学术竞赛活动,旨在激发青年学生对数学建模的兴趣,提高他们的数学建模能力。
本文主要介绍我们参与竞赛中的B题的省级二等奖论文。
二、问题描述本次竞赛的B题要求我们通过分析某地区近几年的降雨数据和水库蓄水量数据,预测未来一段时间内的降雨情况以及水库的蓄水量变化情况。
三、数据分析与处理为了分析和处理题目所给的数据,我们采用了以下的方法:1.数据的清洗:对于给定的降雨数据和水库蓄水量数据,我们首先对其进行清洗,去除异常值和缺失值,确保数据的准确性和完整性。
2.数据的可视化:通过使用Python的Matplotlib库,我们将清洗后的数据进行可视化展示,以便更好地理解数据的分布情况和趋势变化。
3.数据的分析与建模:根据题目的要求,我们运用统计学和数学建模的方法对数据进行分析。
首先对降雨数据进行时间序列分析,探究其周期性和趋势性;然后,利用回归分析的方法建立降雨量与水库蓄水量之间的数学模型,以预测未来的蓄水量变化情况。
四、结果与讨论经过上述的分析和处理,我们得到了以下的结果:1.降雨数据的分析结果显示,该地区的降雨量呈现出明显的季节性变化,并且存在一定的趋势性。
通过对降雨数据进行拟合,我们成功建立了一个能够预测未来降雨量的数学模型。
2.利用回归分析的方法,我们建立了一个能够预测水库蓄水量的数学模型。
通过对模型的检验和验证,我们发现该模型对未来水库蓄水量的预测具有较高的准确性。
基于上述结果,我们得出了以下的结论:1.未来一段时间内,该地区的降雨量将继续呈现出季节性的变化,并且可能会有一定的增加趋势。
2.水库的蓄水量将会随着降雨量的变化而变化,预测的数据显示蓄水量将保持在一个相对稳定的水平。
五、结论本文以2023年高教社杯全国数学建模竞赛B题省级二等奖论文标题为中心,描述了我们在竞赛中的研究过程和结果。
我们通过对降雨数据和水库蓄水量数据的分析和处理,成功建立了能够预测未来降雨量和水库蓄水量变化情况的数学模型。
全国大学生数学建模竞赛B题全国一等奖论文
全国大学生数学建模竞赛B题全国一等奖论文IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。
本文主要解决碎纸机切割后的碎纸片拼接复原问题。
针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。
利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan 距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。
最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录、,纵切中文及英文结果表分别如下:心思想仍为贪心算法,整体思路为先对209张碎纸片进行聚类还原成11行,再对分好的每行进行横向排序,最后对排序好的各行进行纵向排序。
本文在充分考虑汉字与拉丁字母结构特征差异以及每块碎纸片携带信息减少的基础上,创新地提出一种特征线模型来分别描述汉字及拉丁文字母的特征用于行聚类。
对于行聚类后碎片的横向排序,本文综合了广义Jaccard系数、一阶差分法、二阶差分法、Spearman系数等来构建扩展的边界差异度模型,刻画碎片间的差异度。
对于计算机横向排序存在些许错误的情况,本文给出了人工干预的位置节点和方式。
对于横向排序后的各行,由于在一页纸上,文字的各行是均匀分布的,本文基于各行文字的特征线,在确定首行的位置后,估计出其他行的基准线位置,得到一页的基准线网格,并通过各行基准线在基准线网格上的适配实现纵向的排序。
最终,本文成功的将附件3、4碎纸片分别拼接复原得到复原图片及结果表见附录、、、,同时本文给出了横向排序中人工干预的位置节点和方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。
针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。
经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。
附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01,09,13,10,08,12,14,17,16,04。
针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。
我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。
针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。
经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。
关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。
近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。
传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。
特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。
随着计算机技术的发展,人们试图开发碎纸片的自动拼接技术,以提高拼接复原效率。
对于一页印刷文档,针对不同的破碎方法,讨论下列三个问题:(1)将给定的一页印刷文字文件纵切,建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。
(2)对于碎纸机既纵切又横切的情形,设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。
(3)对于双面打印文档,研究如何进行碎纸片的拼接复原问题。
附件5给出的是一页英文印刷文字双面打印文件的碎片数据。
要求尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果。
二、模型的基本假设(1)待拼接的碎纸片来自同一页印刷文字文件。
(2)待拼接复原的碎纸片是规整的矩形。
(3)模型中的碎纸片长度、宽度和面积都相等。
(4)附件中照片都是同标准拍摄。
三、符号说明,209)=1,2,,209),209)=1,2,,209)=1,2,,209)四、问题分析将不规则的文档碎纸片进行拼接,一般是利用碎纸片的边缘曲线,尖点、尖角、面积等几何特征,搜索与之匹配的相邻碎纸片。
但对于边缘形状相似的碎纸片,这种基于边界几何特征的拼接方法失效,拼接时不但要考虑待拼接碎纸片边缘是否匹配,还要判断碎片内的字迹断线或碎片内的文字内容是否匹配。
本问题给定的碎纸片有以下几个特点: 1、每一张碎纸片都是规整的矩形;2、所有的碎纸片的长度、宽度都相等,形状是完全一样的;3、每一张碎纸片里都包含着文字(汉字、英文),不存在空白的碎纸片;4、不同的碎纸片之间没有重叠部分。
由于碎纸片的形状相同,因而不能针对碎纸片的几何特征建立数学模型;碎纸片间无重叠,也不能利用图像融合技术进行图像配准。
根据上述分析,我们考虑将图片进行数字化处理,根据每张碎纸片上的边缘文字特征进行匹配,也就是利用图片边缘文字的像素进行最优化匹配。
五、模型的建立与求解5.1问题一的建模与算法由于碎纸片本身不具有体现其拼接特性的数字特征,我们需要将其数字化、矩阵化,将问题转化为矩阵之间的相关性。
5.1.1图片的灰度处理利用photoshop 软件,将附件中所给的BMP 格式的图片转化成JPG 格式,去除图片的多彩性。
为了对碎纸片进行数字化,我们将图像进行灰度处理,取出图像中每一个像素点的灰度值,灰度值的大小与像素点颜色的红绿蓝成分有关。
根据文献[1],每个像素点的=0.30+0.59+0.11⨯⨯⨯灰度值红色绿色蓝色,即0.300.590.11Gray r g b =⨯+⨯+⨯,其中,,,r g b 的取值范围是0~255。
问题一将同一页印刷文字文件纵切为19张图片(见图1),根据实际情况,我们将每张图片设置为198072⨯格式,于是,每张图片对应一个198072⨯的灰度矩阵。
图1附件1未进行拼接的19张碎纸片5.1.2图片的二值化处理将图片进行灰度处理以后,每个像素的灰度值介于0~255之间。
灰度值不能直接用于文字图片的拼接,还须进行二值化处理。
将图片放入直角坐标系,规定:若(,)x y 点的像素灰度值大于或等于T ,该点用数值1表示,并将其设定为白色;若(,)x y 点的像素灰度值小于T ,该点用数值0表示,并将其设定为黑色。
由此得到像素点的二值化函数:其中,T 为预先设定的全局灰度阈值。
于是,每张图片的灰度矩阵转化为下列198072⨯的0,1数字矩阵:1117219801198072a a A a a ⨯⨯⨯⎛⎫⎪=⎪ ⎪⎝⎭,其中5.1.3最小二乘法1、图片左右拼接的数学模型设,A B 分别表示左右放置的两张图片对应的数字矩阵,定义前一个矩阵的最后一列与后一个矩阵的第一列之间的偏差函数为:其中,(,72),(,1)A i B i 分别表示矩阵,A B 第72列和第1列的元素。
对于给定的矩阵A ,若存在矩阵B ,使得A 与B 之间的偏差函数(,)f A B 达到最小,则称A 与B 可以匹配,此时A 与B 对应的图片可以左右拼接。
2、图片上下拼接的数学模型类似地,设,C D 分别表示上下放置的两张图片对应的数字矩阵,定义上面矩阵的最后一行与下面矩阵的第一行之间的偏差函数为:其中,(1980,),(1,)C j D j 分别表示矩阵,C D 第1980行和第1行的元素。
对于给定的矩阵C ,若存在矩阵D ,使得C 与D 之间的偏差函数(,)h C D 达到最小,则称C 与D 可以匹配,此时C 与D 对应的图片可以上下拼接。
我们称上述基于数字矩阵之间列(或行)距离的图片拼接模型为最小二乘法拼接复原模型。
5.1.4算法与求解(一)算法思想第一步,对附件中的19幅图片分别进行灰度处理,然后取灰度阈值125T =,进行二值化,得到19个0,1数字矩阵,即图片的数字化。
第二步,对上述19个数字矩阵进行检测,若存在一个矩阵的最左侧一列元素全是1,根据破碎图片的特点,则该图片即为从左边起第一张碎纸片,记为1A 。
第三步,计算1A 与其余18张图片对应矩阵的列偏差值。
若存在2A ,使得12(,)f A A 达到最小,则2A 即位第二张图片。
重复上述的步骤,依次得到所有碎纸片的排列,即可拼接成完整图片。
(二)附件1、2的拼接复原结果 附件1和附件2的拼接顺序如下表:(附件1的算法程序见附录一,复原图片见附录二;附件2的算法程序见附录三,复原图片见附录四)5.2问题二的模型建立与算法 5.2.1图片的数字化处理步骤一:将附件所给的BMP 格式图片转换成JPG 格式的图片; 步骤二:对图片进行灰度处理; 步骤三:然后进行二值化处理;最后,得到209张图片的数字化矩阵。
5.2.2聚类分析对于碎纸机既纵切又横切的情形,与问题一仅纵切相比,图片变小,因而每张图片包含的信息量明显变小,如果仅利用最小二乘法,碎片之间的匹配不唯一。
为了解决这个问题,我们利用聚类分析法,对碎片先进行分类。
经观察测试,原始文档碎片具有下列特点:(1)字体大小:字体的最大高度和最大宽度一致。
(2)切割的均匀性:同方向的切割线平行,图片大小均相等,沿纵横方向按直线切割。
(3)文字的行距:文字的行间距等同,段落间距为定值。
为了对209幅图片进行聚类分析,如图2所示,我们定义聚类指标如下:i a 表示图片上端裁接处的字体长度,我们称之为裁截文字长度;i b 为行间距;ic 表示图片上端文字与切割线之间的空白距离,我们称之为裁截空白距离;id 为字体高度,其中,=1,2,,209i 。
图2图片聚类指标示意图令i i i D a b =+或i i i D c d =+,称i D 为第i 张图片的裁截距(=1,2,,209)i ,由图2,如1212,a a b b ≠=,则12D D ≠。
一般地,图片从上往下看,不同的裁截线形成的裁截文字长度不同,文字间的行间距相同,所以,如果裁接处的文字长度不相等,那么文字与空白间距之和就不相等。
根据i D 的不同取值,下面对图片进行分类。
根据二值化矩阵的特点以及文字的特征,只要存在文字,则矩阵的某一行元素一定存在0元素,且在文字之间的元素为1。
如下图所示:图3文字特征图利用matlab 软件进行编程,将每个图片的裁截文字长度、行间距、裁截空白距离、字体高度以及裁截距的结果以excel 的形式输出到表格之中。
(程序见附录五)按裁接距进行聚类分析,使用spss软件分析处理后,得到聚类中心分布图如下所示:所示:根据聚类结果发现,并不能将图片平均分成11个组。
这时需要增加信息量来更好地进行分类,进一步观察图2,我们可以发现:图片的上端裁截处可能是文字,也可能D可能相等,此时通过图片上端裁截处是空白还是文字加以人工分为空白。
但是裁截距i类。
用matlab将数据导出到excel中并进行分析,结果如下:图4分析结果由图4可以看出:图片大体分为11个组别,为了得到更精确地聚类结果,通过spss 软件,我们再次确立聚类中心如下图所示:通过上面两次聚类,确立了两个不同聚类中心。
利用第一次确立的裁接距的聚类中心对图片进行初步分类,然后利用裁截文字或者裁接空白再次进行判别,最终将图片分组。
如下表所示:(以上的算法都是在matlab软件下操作,程序见附件六)成了115.2.3图片的拼接模型、算法与求解(一)算法思想下面我们分两步来做,第一步,对每组碎纸片进行拼接;第二步,将各组进行拼接。
最终完成文件复原。
在已知文件切为11×19的碎纸片情况下,将图片进行聚类分析得到了11个组后。
利用碎纸片左右边缘为空白的特点判断出文件左侧11个碎纸片,再利用问题一模型和算法,对每个组进行匹配拼接,可得到11个拼接好的图片,之后仍然按照问题一的模型和算法将这11张图片拼接成完整的图片。