高考物理动力学经典试题

合集下载

高考物理动力学问题典型问题训练

高考物理动力学问题典型问题训练

高考物理动力学问题典型问题训练1、如图1所示的装置中,木块B 与水平面间接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起做为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中 ( )A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒2、两球在光滑的地面上做相向运动并发生碰撞, 碰撞后两球都静止, 则( )A. 碰撞前, 两球的动量一定相同B. 碰撞前, 两球的速度大小一定相等, 方向相反C. 碰撞前, 两球的动量之和一定等于0D. 两球组成的系统, 在碰撞过程中的任意时刻动量之和都等于03、下列运动中,在任何相等的时间内物体的动量变化量完全相同的是( ) A.竖直上抛运动(不计空气阻力) B.平抛运动(不计空气阻力) C.匀速圆周运动 D.简谐振动4、甲、乙两个物体分别在恒力甲F 、乙F 的作用下沿同一直线运动,甲运动时间为1t ,乙运动时间为2t ,动量p 与时间t 的关系如图2所示,设甲F 在1t 时间内的冲量为甲I ,乙F 在2t 时间内的冲量为乙I I 乙.则甲、乙两个物体受到的外力F 与I 的大小关系为( ) A .乙甲F F >,乙甲I I > B .乙甲F F >,乙甲=I I C . 乙甲F F <,乙甲I I < D .乙甲F F =,乙甲I I =5、一个单摆的摆长为l ,摆球质量为m ,最大偏角为θ(05<θ),当摆球从最大偏角位置第一次摆到平衡位置的过程中:下面说法正确的是:( ) A.重力的冲量为gl m π21; B.合力的冲量为m )cos 1(2θ-glC.拉力的冲量为零D.拉力做功为零6、质量为M 的木块放在光滑水平面上,一质量为m 的子弹以水平速度v 射击木块,但未穿出,在此过程中( )A 、 子弹的末动能与木块的末动能之和等于子弹的初动能B 、 子弹的末动量与木块的末动量之和等于子弹的初动量C 、 子弹与木块所受的作用力,一个为动力,一个是阻力,两者做功的数值相等D 、 子弹克服阻力所做的功等于木块的末动能与系统内能增加之和 7.两个木块A 和B 的质量分别为3=A m kg,2=B m kg ,A 、B 之间用一轻弹簧连接在一起.A 靠在墙壁上,用力F 推B 使两木块之间弹簧压缩,地面光滑,如图3所示。

2024届全国高考复习物理历年好题专项(动力学方法和能量观点的综合应用)练习(附答案)

2024届全国高考复习物理历年好题专项(动力学方法和能量观点的综合应用)练习(附答案)

2024届全国高考复习物理历年好题专项(动力学方法和能量观点的综合应用)练习1.[2023ꞏ天津十二校模拟]滑雪是一种常见的体育项目,具有很强的观赏性.半径为R 的四分之一圆弧轨道如图所示,质量为m 的运动员(含滑板)从A 点由静止开始滑下,到达最低点B 时,运动员对轨道的压力为2mg ,已知轨道半径远大于运动员的身高,重力加速度为g ,则运动员下滑的过程中,下列说法正确的是( )A .机械能守恒B .先失重后超重C .重力的功率一直变大D .阻力做功为12 mgR2.[2023ꞏ天津河东区一模](多选)某实验室模拟物流分拣装置,让物块在表面粗糙的水平传送带上随传送带传输时,经过一段风洞区域,使物块恰好被分拣到传送带一侧的平台上.已知传送带的宽度d =0.98 m (物块位于传送带中间位置),传送带的速度v 0=1 m /s ,物块到达风洞区域前与传送带共速.物块的质量m =500g ,物块在风洞区域受到恒定的作用力F =2 N ,物块与传送带之间的动摩擦因数为μ=0.2,风洞区域的长度为L =0.7 m .假设最大静摩擦力等于滑动摩擦力,物块的尺寸远小于传送带的宽度,重力加速度g =10 m /s 2.下列说法正确的是( )A .物块进入风洞区域后的加速度为2 5 m /s 2B .物块落到平台上时的速度约为1.7 m /sC .物块与传送带间的摩擦生热为0.49 JD .若增大传送带的速度,物块将不能落入平台 3.[2023ꞏ湖南邵阳二中模拟](多选)如图所示,现将一长为L 、质量为m 且分布均匀的金属链条通过装有传送带的斜面输送到高处.斜面与传送带靠在一起连成一直线,与水平方向夹角为θ,斜面部分光滑,链条与传送带之间的动摩擦因数为常数.传送带以较大的恒定速率顺时针转动.已知链条处在斜面或者传送带上任意位置时,支持力都均匀作用在接触面上.将链条放在传送带和斜面上,当位于传送带部分的长度为L4 时,链条恰能保持静止.现将链条从位于传送带部分的长度为L3的位置由静止释放,则下列说法正确的是(假设最大静摩擦力等于滑动摩擦力)()A.链条与传送带之间的动摩擦因数μ=4tan θB.释放瞬间链条的加速度为13g sin θC.释放后,链条运动的加速度均匀增大D.从开始到链条离开斜面的过程中,传送带对链条做的功等于链条动能的增加4.(多选)如图所示,一水平传送带右端与半径为R=0.5 m的竖直光滑固定圆弧轨道的内侧相切于Q点,传送带以某一速度顺时针匀速转动.现将质量为m=0.2 kg的小物块由静止放在传送带的左端P点,小物块随传送带向右运动,后经Q点滑上圆弧轨道,并能通过最高点N.小物块与传送带之间的动摩擦因数为μ=0.5,已知P、Q之间的距离为L=4 m,取g=10 m/s2,小物块可视为质点.下列说法正确的是()A.传送带的最小转动速率为v0=5 m/sB.若传送带以最小速率v0转动,小物块从P运动到Q的时间t=1.5 sC.若传送带以最小速率v0转动,则整个过程中小物块与传送带间因摩擦产生的热量Q =5 JD.若传送带以最小速率v0转动,则因传送小物块电动机对传送带多做的功W=5 J5.在倡导“节约型社会”的氛围下,自动充电式电动自行车应运而生.电动车的前轮装有发电机,发电机与蓄电池连接,当下坡或刹车时,自行车就可自动连通发电机向蓄电池充电,将机械能转化成电能储存起来.当人骑车以500 J的初动能在粗糙的水平路面上运动,第一次关闭自动充电装置,让车自由滑行,其动能—位移关系如图线①所示;第二次启动自动充电装置,其动能—位移关系如图线②所示.设转化装置的效率为100%,则() A.自由滑行时,人和车所受的合力为100 NB.启动充电装置后,人和车所受的合力先减小后增大C.启动充电装置后向蓄电池所充电能为200 JD.启动充电装置后转化为电能的功率保持不变[答题区]题号 1 2 3 4 5答案6.[2023ꞏ江苏南京一中检测]如图所示,一小物块(视为质点)从H=10 m高处,由静止开始沿光滑弯曲轨道AB进入半径R=2 m的光滑竖直圆环内侧,弯曲轨道AB在B点与圆环轨道平滑相接.之后物块沿CB圆弧滑下,由B点(无机械能损失)进入右侧的粗糙水平面上压缩弹簧.已知物块的质量m=2 kg,与水平面间的动摩擦因数μ=0.2,弹簧自然状态下最左端D点与B点距离L=15 m,g=10 m/s2,求:(1)物块从A滑到B时的速度大小;(2)物块到达圆环顶点C时对轨道的压力;(3)若弹簧最短时压缩量为10 m,求此时弹簧弹性势能.7.[2023ꞏ湘鄂豫名校4月联考]雪车是冬奥会的比赛项目之一,风驰电掣般的高速行驶是雪车的最大看点之一.北京2022年冬奥会雪车项目的比赛将在延庆赛区的国家雪车雪橇中心进行.雪车比赛所用赛道长1.5 km左右,落差在100 m至150 m之间.比赛可以分为两个过程:过程1中运动员手推雪车沿斜向下的赛道奔跑获得初始速度,如图1所示;过程2中运动员跳入车体内,呈坐姿在弯曲的赛道上无动力滑行,如图2所示.设雪车的质量为m1,运动员的总质量为m2,重力加速度为g,忽略冰面与雪车之间的摩擦.(1)过程1中运动员推车奔跑使雪车获得速度v0,这一过程中赛道的落差为h,求这一过程中运动员对雪车做的功W.(2)过程2中为了让运动员乘坐雪车能高速且安全地通过弯道,弯道处的赛道均向内侧倾斜.若雪车以速度v通过半径为r的一小段弯道,弯道落差可忽略.建立图3所示的模型,将运动员和雪车整体看作质点,求在弯道处赛道对雪车的支持力F N的大小.8.[2023ꞏ湖北武汉武昌区一模]如图所示,从A点以水平速度v0=2 m/s抛出质量m=1 kg的小物块P(可视为质点),当物块P运动至B点时,恰好沿切线方向进入半径R=2 m、圆心角θ=60°的固定光滑圆弧轨道BC,轨道最低点C与水平地面相切,C点右侧水平地面某处固定挡板上连接一水平轻质弹簧.物块P与水平地面间动摩擦因数μ为某一定值,g取10 m/s2,弹簧始终在弹性限度内,不计空气阻力.求:(1)抛出点A距水平地面的高度H;(2)若小物块P第一次压缩弹簧被弹回后恰好能回到B点,求弹簧压缩过程中的最大弹性势能E p.参考答案1.答案:B答案解析:运动员在最低点时根据牛顿第二定律有F N -mg =m v 2R ,解得v =gR ,12 m v 2<mgR 可知运动员的机械能不守恒,可知有阻力做功,根据功能关系有W f +mgR =12 m v 2,W f =-12 mgR ,选项A 、D 错误;运动员在圆弧轨道上加速度先向下后向上,先失重后超重,故B 正确;重力的功率开始时为零,到达最低点时重力与速度方向垂直,则重力的功率也为零,则重力的功率先增大后减小,选项C 错误.2.答案:BC答案解析:进入风洞区域后,物块与传送带在沿着传送带运动的方向共速,在垂直于传送带运动的方向上,由于F >μmg ,物块与传送带发生相对滑动,由牛顿第二定律F -μmg =ma 解得a =2 m/s 2,故A 错误;物块经过风洞区域所用时间t =Lv 0=0.7 s ,此过程中物块垂直于传送带运动方向发生的位移y =12 at 2=0.49 m =d2 ,物块刚好在离开风洞区域时做类平抛运动落入平台,物块落入平台时的速度等于物块离开传送带时的速度v =v 20 +(at )2 = 2.96 m/s ≈1.7 m/s ,故B 正确;物块与传送带间的摩擦生热Q =μmgx 相对=μmgy =0.49 J ,故C 正确;若增大传送带的速度,则物块经过风洞区域时间t 减小,在垂直于传送带运动方向位移y 减小,则物块在出风洞区域时没有落入平台,但其在垂直于传送带运动方向上仍有分速度,在摩擦力的作用下,在该方向上做匀减速运动,因此仍有可能落入平台,故D 错误.3.答案:AB答案解析:设整个链条的总质量为m ,当位于传送带部分的长度为L4 时,链条恰能保持静止,则mg sin θ=μꞏ14 mg cos θ,解得μ=4tan θ,A 正确;释放的瞬间,根据牛顿第二定律得μꞏ13 mg cos θ-mg sin θ=ma ,解得a =13 g sin θ,B 正确;链条从静止释放后,链条所受的摩擦力随着链条位于传送带部分的长度增加而均匀增大,则链条的加速度在增大,但不是均匀增大,C 错误;从开始到链条离开斜面的过程中,根据动能定理得W -W G =ΔE k ,传送带对链条做的功大于链条动能的增加,D 错误.4.答案:AD答案解析:由题意知,传送带转动速率最小时,小物块到达Q 点已与传送带共速且小物块刚好能到达N 点.在N 点有mg =m v 2NR 小物块从Q 点到N 点,由动能定理得-mg ꞏ2R =12 m v 2N -12 m v 20 联立解得v 0=5 m/s ,故A 正确;设小物块经过时间t 1加速到与传送带共速,则μmg =ma ,v 0=at 1小物块的位移x 1=12 at 21 代入数据可得x 1=2.5 m ,t 1=1 s ,1 s 后小物块与传送带相对静止,匀速到达Q ,设时间为t 2,t 2=L -x 1v 0 =0.3 s ,则小物块从P 运动到Q 的时间t =t 1+t 2=1.3 s ,故B 错误;传送带在t 1时间内的位移x 2=v 0t ,根据题意则有Δx =x 2-x 1;Q =μmg Δx 联立解得Q =2.5 J ,故C 错误;由能量守恒定律可知,因传送小物块电动机对传送带多做的功W =Q +12 m v 20 ,代入数据解得W =5 J ,故D 正确. 5.答案:C答案解析:自由滑行时人和车所受的合力为摩擦力,设其大小为F f ,在整个运动过程中,由动能定理得-F f x =-E k 解得F f =50 N ,A 错误;启动充电装置后,设人和车所受的合力大小为F ,在很短的一段位移Δx 内动能的变化量为ΔE k ,由动能定理得-F ꞏΔx =ΔE k ,则ΔE kΔx =-F 由数学知识知,F 等于图线切线斜率的绝对值,由题图知,图线的切线斜率逐渐减小,故人和车所受的合力F 减小,B 错误;启动充电装置后,在整个过程中,由能量守恒定律得ΔE k =F f x 1+W 解W =ΔE k -F f x 1=500 J -50×6 J =200 J ,C 正确;设在很短的一段时间Δt 内通过的位移为Δx ,由能量守恒定律得,转化的电能ΔW =F ꞏΔx -F f ꞏΔx ,则ΔWΔt =F ꞏΔx Δt -F f ꞏΔxΔt ,即P =()F -F f v 因为人和车所受的合力F 减小,人和车的速度v 减小,故转化的电能的功率P 减小,D 错误.6.答案:(1)102 m/s (2)100 N (3)100 J答案解析:(1)物块从A 滑到B 的过程由动能定理得mgH =12 m v 2B 解得v B =102 m/s.(2)物块从A 滑到C 的过程由动能定理得mg (H -2R )=12 m v 2C 在C 点由牛顿第二定律得mg +F N =m v 2CR 联立解得F N =100 N.(3)从B 点到弹簧压缩最短时的过程由功能关系得12 m v 2B =μmg (L +x )+E p 解得E p =100 J .7.答案:(1)12 m 1v 20 -m 1gh (2)(m 1+m 2)g 2+v 4r 2答案解析:(1)运动员推车奔跑过程中对雪车由动能定理有W +m 1gh =12 m 1v 20 解得W =12 m 1v 20 -m 1gh .(2)根据牛顿第二定律,转弯过程中运动员和雪车需要的向心力F 向=(m 1+m 2)v 2r对运动员和雪车进行受力分析,如图所示根据平行四边形定则可知F 2N =(m 1+m 2)2g 2+F 2向 代入解得F N =(m 1+m 2) g 2+v 4r 2 .8.答案:(1)1.6 m (2)14 J答案解析:(1)物块经过B 点时有tan θ=v yv 0可得v y =23 m/s小物块运动至B 点的竖直分位移y =v 2y2g =0.6 mA 点距地面的高度H =y +R (1-cos 60°)=1.6 m. (2)以地面为零势面,设物块在水平地面向右运动的位移为x ,从A 点水平抛出到第一次返回B 点过程中有12m v 20 +mgH =μmg ꞏ2x +mgR (1-cos 60°) 可得μmgx =4 J从A 点水平抛出到弹簧压缩最短过程中有12 m v 20 +mgH =μmgx +E p E p =14 J .。

(完整版)高考物理动力学经典试题

(完整版)高考物理动力学经典试题

1.汽车前方120m处有一自行车正以6m/s的速度匀速前进,汽车以18m/s的速度追赶自行车,若两车在同一条公路不同车道上做同方向的直线运动,求:(1)经多长时间,两车第一次相遇?(2)若汽车追上自行车后立即刹车,汽车刹车过程中的加速度大小为2m/s2,则再经多长时间两车第二次相遇?2.如图2-1-2所示,一个球形物体静止于光滑水平面上,并与竖直光滑墙壁接触,A、B两点是球跟墙和地面的接触点,则下列说法中正确的是()图2-1-2A.物体受重力、B点的支持力、A点的弹力作用B.物体受重力、B点的支持力作用C物体受重力、B点的支持力、地面的弹力作用D.物体受重力、B点的支持力、物体对地面的压力作用3.小车上固定一根弹性直杆A,杆顶固定一个小球B(如图2-1-3所示),现让小车从光滑斜面上自由下滑,在下图的情况中杆发生了不同的形变,其中正确的是()图2-1-34.如图2-1-7所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为仇在斜杆的下端固定有质量为m的小球。

下列关于斜杆对小球的作用力F的判断中,正确的是()图2-1-7A.小车静止时,F=mg sin仇方向沿杆向上8.小车静止时,F=mg cos仇方向垂直于杆向上C.小车向右匀速运动时,一定有F=mg,方向竖直向上D.小车向右匀加速运动时,一定有F>mg,方向一定沿杆向上5.图2-1-9的四个图中,AB、BC均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链连接,且系统均处于静止状态。

现用等长的轻绳来代替轻杆,能保持平衡的是()图2-1-9A.图中的AB杆可以用轻绳代替的有甲、乙、丙B.图中的AB杆可以用轻绳代替的有甲、丙、丁C.图中的BC杆可以用轻绳代替的有乙、丙、丁D.图中的BC杆可以用轻绳代替的有甲、乙、丁6.足球运动是目前全球体育界最具影响力的运动项目之一,深受青少年喜爱。

如图1所示为四种与足球有关的情景,下列说法正确的是()图1A.图甲中,静止在草地上的足球受到的弹力就是它的重力B.图乙中,静止在光滑水平地面上的两个足球由于接触而受到相互作用的弹力C.图丙中,即将被踢起的足球一定不能被看作质点D.图丁中,落在球网中的足球受到弹力是由于球网发生了形变7.在半球形光滑碗内斜搁一根筷子,如图2所示,筷子与碗的接触点分别为A、B,则碗对筷子A、B两点处的作用力方向分别为()图2A.均竖直向上8.均指向球心OC A点处指向球心O,B点处竖直向上D.A点处指向球心O,B点处垂直于筷子斜向上8.如图4所示,质量为m的球置于斜面上,被一个竖直挡板挡住。

高考物理专项练习44 用动力学与能量观点分析多过程问题

高考物理专项练习44  用动力学与能量观点分析多过程问题

高考物理专项练习44 用动力学与能量观点分析多过程问题1. 如图所示,MN 为光滑的水平面,NO 是一长度s =1.25 m 、倾角为θ=37°的光滑斜面(斜面体固定不动),OP 为一粗糙的水平面.MN 、NO 间及NO 、OP 间用一小段光滑圆弧轨道相连.一条质量为m =2 kg ,总长L =0.8 m 的均匀柔软链条开始时静止的放在MNO 面上,其AB 段长度为L 1=0.4 m ,链条与OP 面的动摩擦因数μ=0.5.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8),现自由释放链条,求: (1) 链条的A 端滑到O 点时,链条的速率为多大?(2) 链条在水平面OP 停下时,其C 端离O 点的距离为多大?2. 如图是某“吃货”设想的“糖炒栗子”神奇装置:炒锅的纵截面与半径R =1.6 m 的光滑半圆弧轨道位于同一竖直面内,炒锅纵截面可看做是长度均为L =2.5 m 的斜面AB 、CD 和一小段光滑圆弧BC 平滑对接组成.假设一栗子从水平地面上以水平初速度v 0射入半圆弧轨道,并恰好能从轨道最高点P 飞出,且速度恰好沿AB 方向从A 点进入炒锅.已知两斜面的倾角均为θ=37°,栗子与两斜面之间的动摩擦因数均为μ=38,栗子在锅内的运动始终在图示纵截面内,整个过程栗子质量不变,重力加速度取g =10m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1) 栗子的初速度v 0的大小及A 点离地高度h ; (2) 栗子在斜面CD 上能够到达的距C 点最大距离x .3.如图所示,倾角θ=30°的光滑斜面底端固定一块垂直斜面的挡板.将长木板A静置于斜面上,A上放置一小物块B,初始时A下端与挡板相距L=4 m,现同时无初速度释放A和B.已知在A停止运动之前B始终没有脱离A且不会与挡板碰撞,A和B的质量均为m=1 kg,它们之间的动摩擦因数μ=3 3,A或B与挡板每次碰撞损失的动能均为ΔE=10 J,忽略碰撞时间,重力加速度大小g取10 m/s2.求:(1)A第一次与挡板碰前瞬间的速度大小v;(2)A第一次与挡板碰撞到第二次与挡板碰撞的时间Δt;(3)B相对于A滑动的可能最短时间t.4.如图所示,一根轻弹簧左端固定于竖直墙上,右端被质量m=1 kg可视为质点的小物块压缩而处于静止状态,且弹簧与物块不拴接,弹簧原长小于光滑平台的长度.在平台的右端有一传送带,AB长L=5 m,物块与传送带间的动摩擦因数μ1=0.2,与传送带相邻的粗糙水平面BC长s=1.5 m,它与物块间的动摩擦因数μ2=0.3,在C点右侧有一半径为R的光滑竖直圆弧与BC平滑连接,圆弧对应的圆心角为θ=120°,在圆弧的最高点F处有一固定挡板,物块撞上挡板后会以原速率反弹回来.若传送带以v=5 m/s的速率顺时针转动,不考虑物块滑上和滑下传送带的机械能损失.当弹簧储存的E p=18 J能量全部释放时,小物块恰能滑到与圆心等高的E点,取g=10 m/s2.(1)求右侧圆弧的轨道半径R;(2)求小物块最终停下时与C点的距离;(3)若传送带的速度大小可调,欲使小物块与挡板只碰一次,且碰后不脱离轨道,求传送带速度的可调节范围.参考答案1. (1)3 m/s (2)0.98 m解析 (1)链条的A 端滑到O 点的过程中,因为只有重力做功,所以机械能守恒.设水平面为重力势能的零势能面,设链条开始运动时的机械能为E 1,AB 段链条质量为m 1=1 kg ,BC 段链条质量为m 2=1 kg.E 1=m 2gs sin θ+m 1g (s sin θ-L 12sin θ)=1×10×1.25×0.6 J +1×10×(1.25×0.6-0.2×0.6) J =13.8 J因为s >L ,链条的A 端滑到O 点时,C 点已在斜面上.设此时的机械能为E 2,E 2=mg L 2sin θ+12mv 2由机械能守恒定律:E 1=E 2 链条的A 端滑到O 点时的速率v 解得v =2E 1-mgL sin θm=2×13.8-2×10×0.8×0.62m/s =3 m/s(2)链条在开始进入水平面阶段,摩擦力是变力.但摩擦力随距离均匀增大,可以用平均摩擦力求摩擦力做功.从链条的A 端滑到O 点到最终链条停下的过程,由动能定理:mg L 2sin θ-12μmgL -μmgx =0-12mv 2链条在水平面OP 停下时,其C 端离O 点的距离x =gL sin θ-μgL +v 22μg =10×0.8×0.6-0.5×10×0.8+322×0.5×10m =0.98 m2. (1)4 5 m/s 2.75 m (2)209m解析 (1)设栗子质量为m ,在P 点的速度为v P ,在A 点的速度为v A 栗子沿半圆弧轨道运动至P点的过程中由机械能守恒定律有12mv 02=2mgR +12mv P 2恰能过P 点,满足的条件为mg =m v P 2R代入数据解得v P =4 m/s ,v 0=4 5 m/s栗子从P 至A 做平抛运动,在A 点的速度方向沿AB ,故竖直分速度v Ay =v P tan θ 由平抛运动规律,栗子从P 至A 下落的高度为y =v Ay 22g又h =2R -y代入数据解得h =2.75m(2)栗子在A 点的速度为v A =v Pcos θ由动能定理有mg sin θ(L -x )-μmg cos θ(L +x )=0-12mv A 2代入数据解得x =209 m3. (1)210 m/s (2)255 s (3)355s 解析 (1)B 和A 一起沿斜面向下运动,由机械能守恒定律有2mgL sin θ=12(2m )v 2① 由①式得v =210m/s ②(2)第一次碰后,对B 有mg sin θ=μmg cos θ③ 故B 匀速下滑对A 有:mg sin θ+μmg cos θ=ma 1④ 得A 的加速度a 1=10 m/s 2,方向始终沿斜面向下⑤设A 第一次反弹的速度大小为v 1,由动能定理有12mv 2-12mv 12=ΔE ⑥Δt =2v 1a 1⑦由⑥⑦式得Δt =255s ⑧(3)设A 第二次反弹的速度大小为v 2,由动能定理有12mv 2-12mv 22=2ΔE ⑨得v 2=0 m/s ⑩即A 与挡板第二次碰后停在底端,B 继续匀速下滑,与挡板碰后B 反弹的速度为v ′,加速度大小为a ′,由动能定理有 12mv 2-12mv ′2=ΔE ⑪mg sin θ+μmg cos θ=ma ′⑫由⑪⑫式得B 沿A 向上做匀减速运动的时间t 2=v ′a ′=55 s ⑬当B 速度为0时,因mg sin θ=μmg cos θ≤F fm ,B 将静止在A 上.当A 停止运动时,B 恰好匀速滑至挡板处,B 相对A 运动的时间t 最短,故t =Δt +t 2=355 s4. (1)0.8 m (2)13m (3)37 m/s≤v ≤43 m/s解析 (1)物块被弹簧弹出,由E p =12mv 02,可知:v 0=6 m/s因为v 0>v ,故物块滑上传送带后先减速,物块与传送带相对滑动过程中,由:μ1mg =ma 1,v =v 0-a 1t 1,x 1=v 0t 1-12a 1t 12得到a 1=2 m/s 2,t 1=0.5 s ,x 1=2.75 m因为x 1<L ,故物块与传送带同速后相对静止,最后物块以5 m/s 的速度滑上水平面BC ,物块滑离传送带后恰到E 点,由动能定理可知:12mv 2=μ2mgs +mgR ,代入数据整理可以得到R =0.8 m.(2)设物块从E 点返回至B 点的速度为v B ,有12mv 2-12mv B 2=μ2mg ·2s解得v B =7 m/s ,因为v B >0,故物块会再次滑上传送带,物块在恒定摩擦力的作用下先减速至0再反向加速,由运动的对称性,可知其以相同的速率离开传送带,设最终停在距C 点x 处,有12mv B 2=μ2mg (s-x ) 解得x =13m(3)设传送带速度为v 1时物块恰能到F 点,在F 点满足mg sin 30°=m v F 2R从B 到F 过程中由动能定理可知:12mv 12-12mv F 2=μ2mgs +mg (R +R sin 30°)解得:v 1=37 m/s设传送带速度为v 2时,物块撞挡板后返回能再次上滑恰到E 点由12mv 22=μ2mg ·3s +mgR 解得v 2=43m/s若物块在传送带上一直加速运动,由12mv B m 2-12mv 02=μ1mgL知其到B 点的最大速度v B m =56 m/s综合上述分析可知,只要传送带速度37 m/s≤v ≤43 m/s 就满足条件.。

高考物理专题《动力学与能量观点的综合应用》原卷

高考物理专题《动力学与能量观点的综合应用》原卷

12.(2022 届江西省宜春市上高二中高三(下)第七次月考理综物理试题)如图所示,倾角为 θ=37°的足够 长光滑斜面 AB 与长 LBC=2m 的粗糙水平面 BC 用一小段光滑圆弧(长度不计)平滑连接,半径 R=1.5m 的 光滑圆弧轨道 CD 与水平面相切于 C 点,OD 与水平方向的夹角也为 θ=37°。质量为 M 的小滑块从斜面上距 B 点 L0=2m 的位置由静止开始下滑,恰好运动到 C 点。已知重力加速度 g=10m/s2,sin37°=0.6,cos37°=0.8。 (1)求小滑块与粗糙水平面 BC 间的动摩擦因数 μ; (2)改变小滑块从斜面上开始释放的位置,小滑块能够通过 D 点,求小滑块的释放位置与 B 点的最小距离。
(2)斜面倾角 。
(3)B 的最大速度 vBm 。
6.(2022 届云南省昆明市第一中学高三(下)第十次考前适应性训练理综物理试题)如图甲所示,两个不同材 料制成的滑块 A、B 静置于水平桌面上,滑块 A 的右端与滑块 B 的左端接触。某时刻开始,给滑块 A 一个 水平向右的力 F,使滑块 A、B 开始滑动,当滑块 A、B 滑动 1.0m 时撤去力 F。整个运动过程中,滑块 A、
13.(2022 届四川省绵阳市高三(下)第三次诊断性考试理综物理试题)电池技术作为电动汽车的核心和瓶 颈,是电动汽车研究的重点和热点方向。国内某公司研发的全气候电池,在低温条件下,能实现充电时间 缩短到 1h 内,自加热速率达到 7℃/min,-10℃环境下电池总能量最多可释放 90%。搭载该型号电池的国产 电动汽车作为交通服务用车为北京冬奥会提供了交通保障。已知该型号电动汽车配置的全气候电池总能量 是 60kW·h,汽车电动机最大功率是 160kW,最大车速是 180km/h,在平直公路上行驶过程中受到阻的力 f 与车速 v 的关系式可以认为 f=kv2,k 为比例系数。求: (1)电动汽车以最大速度行驶时的牵引力和比例系数 k; (2)电动汽车在电池充满电后,在-10℃的环境下,以 54km/h 的速度在平直公路匀速行驶时的最大续航里 程(汽车电动机驱动汽车行驶的能量占电池释放能量的 80%)。 14.(2022 届云南省高三(下)第二次复习统一检测理综能力测试物理试题)某幼儿园要修建一个如图甲所示

高考物理试题讲解第3章第2讲牛顿第二定律两类动力学问题

高考物理试题讲解第3章第2讲牛顿第二定律两类动力学问题

第三章 第2讲知识巩固练习1.如图,顶端固定着小球的直杆固定在小车上,当小车向右做匀加速运动时,球所受合外力的方向沿图中的( )A .OA 方向B .OB 方向C .OC 方向D .OD 方向【答案】D【解析】据题意可知,小车向右做匀加速直线运动,由于球固定在杆上,而杆固定在小车上,则三者属于同一整体,根据整体法和隔离法的关系分析可知,球和小车的加速度相同,所以球的加速度也应该向右,D 正确.2.将一只皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a 与时间t 关系的图像,可能正确的是( )【答案】C【解析】皮球上升过程中受重力和空气阻力作用,由于空气阻力大小与速度成正比,速度v 减小,空气阻力f =k v 也减小,根据牛顿第二定律mg +f =ma ,知a =k vm +g ,则a 随v的减小而减小.又v 变化得越来越慢,所以a 随时间t 减小且变化率减小,选项C 正确.3.(2019年南通模拟)如图所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A 小球,同时水平细线一端连着A 小球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A 、B 两小球分别连在另一根竖直弹簧两端.开始时A 、B 两小球都静止不动,A 、B 两小球的质量相等,重力加速度为g ,若不计弹簧质量,在水平细线被剪断瞬间,A 、B 两小球的加速度分别为( )A .a A =aB =g B .a A =2g ,a B =0C .a A =3g ,a B =0D .a A =23g ,a B =0【答案】D【解析】设两个小球的质量都为m ,以A 、B 小球整体作为研究对象,A 处于静止状态,受力平衡,由平衡条件得细线拉力T =2mg tan 60°=23mg ,剪断细线瞬间弹簧的弹力没有变化,A 球受到的合力与原来细线的拉力大小相等,方向相反,由牛顿第二定律得a A =23mg m =23g ,B 球的受力情况不变,则加速度仍为0.故D 正确.4.沿固定斜面下滑的物体受到与斜面平行向上的拉力F 的作用,其下滑的速度—时间图像如图所示.已知物体与斜面之间的动摩擦因数为常数,在0~5 s ,5~10 s,10~15 s 内F 的大小分别为F 1、F 2和F 3,则( )A .F 1<F 2B .F 2>F 3C .F 1>F 3D .F 1=F 3【答案】A5.(2018年浙江月考)如图为“中国好歌声”娱乐节目所设计的“导师战车”,战车可以在倾斜直轨道上运动.当坐在战车中的导师按下按钮,战车就由静止开始沿长10 m 的斜面冲到学员面前,最终刚好停在斜面的末端,此过程约历时4 s .在战车的运动过程中,下列说法正确的是( )A .战车在运动过程中导师处于失重状态B .战车在运动过程中所受外力始终不变C .战车在倾斜导轨上做匀变速直线运动D .根据题中信息可以估算导师运动的平均速度【答案】D【解析】由题可知,“导师战车”沿斜面的方向先加速后减速,加速的过程中有沿斜面向下的分加速度,车处于失重状态,当车减速时,车有向上的分加速度,车处于超重状态,导师与战车状态相同,故A 错误;由题可知,“导师战车”沿斜面的方向先加速后减速,结合牛顿第二定律可知,车受到的合外力先沿斜面向下,后沿斜面向上,故B 错误; “导师战车”沿斜面的方向先加速后减速,故C 错误;车的位移是10 m ,时间是4 s ,所以可以求出平均速度v =x t =104m/s ,故D 正确.6.(2019年舒城月考)m 1、m 2组成的连接体,在拉力F 作用下,沿光滑斜面向上运动,m 1对m 2的拉力为T ,则( )A .T =m 2m 1+m 2FB .T =m 1m 1+m 2FC .T =m 2m 1+m 2(F +m 1g sin θ)D .T =m 2m 1+m 2(F +m 2g sin θ)【答案】A【解析】对整体做受力分析可知,整体受重力、拉力、支持力,F -(m 1+m 2)g sin θ=(m 1+m 2)a ;再对m 2做受力分析可知,其受重力、绳子的拉力、支持力,T -m 2g sin θ=m 2a .联立解得T =m 2m 1+m 2F ,故选A .7.(2018年河北模拟)如图所示,质量为m 的球置于斜面上,被一个竖直挡板挡住.现用一个力F 拉斜面,使斜面在水平面上做加速度为a 的匀加速直线运动,忽略一切摩擦,以下说法中正确的是( )A .若加速度足够小,竖直挡板对球的弹力可能为零B .若加速度足够大,斜面对球的弹力可能为零C .斜面和挡板对球的弹力的合力等于maD .斜面对球的弹力不仅有,而且是一个定值 【答案】D【解析】小球受到重力mg 、斜面的支持力F N2、竖直挡板的水平弹力F N1作用.设斜面的倾斜角为α,则竖直方向有F N2cos α=mg ,因为mg 和α不变,所以无论加速度如何变化,F N2不变且不可能为零,选项B 错误,D 正确;水平方向有F N1-F N2sin α=ma ,因为F N2sin α≠0,竖直挡板的水平弹力不可能为零,选项A 错误;斜面和挡板对球的弹力的合力即为竖直方向的F N2cos α与水平方向的力ma 的合力,因此大于ma ,选项C 错误.8.如图所示,圆柱形的仓库内有三块长度不同的滑板aO 、bO 、cO ,其下端都固定于底部圆心O ,而上端则搁在仓库侧壁上,三块滑板与水平面的夹角依次是30°、45°、60°.若有三个小孩同时从a 、b 、c 处开始下滑(忽略阻力),则( )A .a 处小孩最先到O 点B .b 处小孩最后到O 点C .c 处小孩最先到O 点D .a 、c 处小孩同时到O 点 【答案】D【解析】设圆柱半径为R ,滑板长l =Rcos θ,a =g sin θ,t =2la=4Rg sin 2θ,分别将θ=30°,45°,60°代入计算可知,t a =t c ≠t b ,故D 正确.9.(多选)如图所示,A 、B 球的质量相等,弹簧的质量不计,倾角为θ的斜面光滑,系统静止时,弹簧与细线均平行于斜面,在细线被烧断的瞬间,下列说法正确的是( )A .两个小球的瞬时加速度均沿斜面向下,大小均为g sin θB .B 球的受力情况未变,瞬时加速度为零C .A 球的瞬时加速度沿斜面向下,大小为2g sin θD .弹簧有收缩的趋势,B 球的瞬时加速度向上,A 球的瞬时加速度向下,瞬时加速度都不为零【答案】BC【解析】细线烧断前,对B 球有kx =mg sin θ.细线烧断瞬间,弹簧弹力与原来相等,B 球受力平衡,a B =0,A 球所受合力为mg sin θ+kx =2mg sin θ,解得a A =2g sin θ,故A 、D 错误,B 、C 正确.综合提升练习10.(多选)两实心小球甲和乙由同一种材料制成,甲球质量大于乙球质量.两球在空气中从静止开始下落,假设它们运动时受到的阻力与球的半径成正比,与球的速率无关.若它们下落相同的距离,则( )A .甲球用的时间比乙球长B .甲球末速度的大小大于乙球末速度的大小C .甲球加速度的大小小于乙球加速度的大小D .甲球克服阻力做的功大于乙球克服阻力做的功 【答案】BD11.如图所示,光滑水平桌面上的布带上静止放着一质量为m =1.0 kg 的小铁块,它离布带右端的距离为L =0.5 m ,铁块与布带间动摩擦因数为μ=0.1.现用力从静止开始向左以a 0=2 m /s 2的加速度将布带从铁块下抽出,假设铁块大小不计,铁块不滚动,g 取10 m/s 2,求:(1)将布带从铁块下抽出需要的时间; (2)铁块离开布带时的速度大小. 【答案】(1)1 s (2)1 m/s【解析】(1)设铁块离开布带时,相对桌面移动的距离为x ,布带移动的距离为L +x ,铁块滑动的加速度为a ,由牛顿第二定律得μmg =ma ,a =μg =1 m/s 2. 根据运动学公式有 L +x =12a 0t 2,x =12at 2, 解得t =2La 0-μg =1 s. (2)由v =at 得铁块速度v =1×1 m /s =1 m/s.12.如图甲所示,L 形木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图乙所示.已知sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2.求:(1)斜面BC 的长度; (2)滑块的质量;(3)运动过程中滑块发生的位移. 【答案】(1)3 m (2)2.5 kg (3)8 m【解析】(1)分析滑块受力,如图所示,由牛顿第二定律得a 1=g sin θ=6 m/s 2, 通过图乙可知滑块在斜面上运动的时间为t 1=1 s , 由运动学公式得s =12a 1t 21=3 m.(2)滑块对斜面的压力为N ′1=N 1=mg cos θ, 木块对传感器的压力为F 1=N ′1sin θ, 由图乙可知F 1=12 N , 解得m =2.5 kg.(3)滑块滑到B 点的速度为:v 1=a 1t 1=6 m/s , 由图乙可知:f 1=f 2=5 N ,t 2=2 s , a 2=f 2m =2 m/s 2,s 2=v 1t 2-12a 2t 22=8 m.。

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关 动力学、动量和能量观点在力学中的应用-高考物理专题复习及典型试题

第八关动力学、动量和能量观点在力学中的应用1.动量和能量综合应用例 1 (多选)如图甲所示,质量M=0.8kg的足够长的木板静止在光滑的水平面上,质量m=0.2kg的滑块静止在木板的左端,在滑块上施加一水平向右、大小按图乙所示随时间变化的拉力F,4 s后撤去力F.若滑块与木板间的动摩擦因数μ=0.2,最大静摩擦力等于滑动摩擦力,重力加速度g=10m/s2,则下列说法正确的是()A.0∼4s时间内拉力的冲量共为3.2N⋅sB.t=4s时滑块的速度大小为9.5m/sC.木板受到滑动摩擦力的冲量共为2.8N⋅sD.木板的速度最大为2m/s练习1-1如图所示,带有圆管轨道的长轨道水平固定,圆管轨道竖直(管内直径可以忽略),底端分别与两侧的直轨道相切,圆管轨道的半径R=0.5 m,P点左侧轨道(包括圆管)光滑,右侧轨道粗糙.质量m=1 kg的物块A以v0=10 m/s的速度滑入圆管,经过竖直圆管轨道后与直轨道上P处静止的质量M=2 kg的物块B发生碰撞(碰撞时间极短),碰后物块B在粗糙轨道上滑行18 m后速度减小为零.已知物块A、B与粗糙轨道间的动摩擦因数均为μ=0.1,取重力加速度大小g=10 m/s2,物块A、B均可视为质点.求:(1)物块A滑过竖直圆管轨道最高点Q时受到管壁的弹力;(2)最终物块A静止的位置到P点的距离.2.综合分析多过程问题例2如图所示,有一个可视为质点的质量为m=1 kg的小物块,从光滑平台上的A点以v0=2 m/s的初速度水平抛出,到达C点时,恰好沿C点的切线方向进入固定在水平地面上的光滑圆弧轨道,最后小物块滑上紧靠轨道末端D点的质量为M=3 kg的长木板.已知木板上表面与圆弧轨道末端切线相平,木板下表面与水平地面之间光滑,小物块与长木板间的动摩擦因数μ=0.3,圆弧轨道的半径为R=0.4 m,C点和圆弧的圆心连线与竖直方向的夹角θ=60°,不计空气阻力,g取10 m/s2.求:(1)小物块到达C点时的速度大小;(2)小物块刚要到达圆弧轨道末端D点时对轨道的压力;(3)要使小物块不滑出长木板,木板的长度L至少多大.练习2-1如图所示,半径为R的四分之一光滑圆弧轨道竖直固定在水平地面上,下端与水平地面在P点相切,一个质量为2m的物块B(可视为质点)静止在水平地面上,左端固定有水平轻弹簧,Q点为弹簧处于原长时的左端点,P、Q间的距离为R,PQ段地面粗糙、动摩擦因数为μ=0.5,Q点右侧水平地面光滑,现将质量为m的物块A(可视为质点)从圆弧轨道的最高点由静止开始下滑,重力加速度为g.求:(1)物块A沿圆弧轨道滑至P点时对轨道的压力大小;(2)弹簧被压缩的最大弹性势能(未超过弹性限度);(3)物块A最终停止位置到Q点的距离.课后检测1. 质量为1 kg的物体静止在水平面上,t=0时受到水平拉力F的作用开始运动,F随时间t 变化的关系图象如图所示.已知t=4 s时物体刚好停止运动,取g=10m/s2,以下判断正确的是()A.物体所受摩擦力为3 NB.t=2 s时物体的速度最大C.t=3 s时物体的动量最大D.物体的最大动能为2 J2. 粗糙水平地面上的物体,在一个水平恒力作用下做直线运动,其v-t图象如图所示,下列物理量中第1 s内与第2 s内相同的是()A.摩擦力的功B.摩擦力的冲量C.水平恒力的功D.水平恒力的冲量3. 如图所示,质量均为m的两带电小球A与B,带电荷量分别为+q、+2q,在光滑绝缘水平桌面上由静止开始沿同一直线运动,当两带电小球运动一段时间后A球速度大小为v,在这段时间内,下列说法正确的是()A.任一时刻B的加速度比A的大B.两球均做加速度增大的加速运动C.两球组成的系统电势能减少了mv2,但动能和电势能之和不变D.两球动量均增大,且总动量也增大4.如图所示,质量为m、带有半圆形轨道的小车静止在光滑的水平地面上,其水平直径AB 的长度为2R,现将质量也为m的小球从距A点正上方为h的位置由静止释放,然后由A点ℎ(不计空气阻力),则() 进入半圆形轨道后从B点冲出,在空中上升的最大高度为12A.小球冲出B点后做斜上抛运动B.小球第二次进入轨道后恰能运动到A点C.小球第一次到达B点时,小车的位移大小是RmgℎD.小球第二次通过轨道克服摩擦力所做的功等于125.光滑水平面上放有质量分别为2m和m的物块A和B,用细线将它们连接起来,两物块中间加有一压缩的轻质弹簧(弹簧与物块不相连),弹簧的压缩量为x.现将细线剪断,此刻物块A的加速度大小为a,两物块刚要离开弹簧时物块A的速度大小为v,则()A.物块B的加速度大小为a时弹簧的压缩量为x3xB.物块A从开始运动到刚要离开弹簧时位移大小为23mv2C.物块开始运动前弹簧的弹性势能为32D.物块开始运动前弹簧的弹性势能为3mv26. “飞针穿玻璃”是一项高难度的绝技表演,曾度引起质疑.为了研究该问题,以下测量能够得出飞针在穿越玻璃的时间内,对玻璃平均冲击力大小的是()A.测出玻璃厚度和飞针穿越玻璃前后的速度B.测出玻璃厚度和飞针穿越玻璃所用的时间C.测出飞针质量、玻璃厚度和飞针穿越玻璃所用的时间D.测出飞针质量、飞针穿越玻璃所用时间和穿越玻璃前后的速度7.如图,立柱固定于光滑水平面上O点,质量为M的小球a向右运动,与静止于Q点的质量为m的小球b发生弹性碰撞,碰后a球立即向左运动,b球与立柱碰撞能量不损失,所有碰撞时间均不计,b球恰好在P点追到a球,Q点为OP间中点,则a、b球质量之比M:m=()A.3:5B.1:3C.2:3D.1:28. (多选)如图,在光滑的水平面上有一个长为L的木板,小物块b静止在木板的正中间,小物块a以某一初速度v0从左侧滑上木板.已知物块a、b与木板间的摩擦因数分别为μa、μb,木块与木板质量均为m,a、b之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力.下列说法正确的是()mv02A.若没有物块从木板上滑下,则无论v0多大整个过程摩擦生热均为13B.若μb<2μa,则无论v0多大,a都不会从木板上滑落μa gL,则ab一定不相碰C.若v0≤√32D.若μb>2μa,则a可能从木板左端滑落9.(多选)如图所示,甲、乙两个小滑块(视为质点)静止在水平面上的A、B两处,B处左侧水平面光滑,右侧水平面粗糙.若甲在水平向右的拉力F=kt(其中k=2N/s)的作用下由静止开始运动,当t=3s时撤去力F,随后甲与乙发生正碰而粘合在一起,两滑块共同滑行2.4m后停下,已知甲的质量为1kg,两滑块与粗糙水平面间的动摩擦因数均为0.75,取g=10m/s2,则()A.0∼3s内,力F的冲量大小为18N⋅sB.撤去力F时甲的速度大小为9m/sC.两滑块正碰后瞬间的速度大小为4.5m/sD.乙的质量为0.5kg10. 如图所示,质量为M的木块位于光滑水平面上,在木块与墙壁之间用轻质弹簧连接,当木块静止时刚好位于A点,现有一质量为m的子弹以水平速度v0射向木块并嵌入其中(作用时间极短),求:(1)当木块回到A点时的速度大小;(2)从开始到木块回到A点的过程中,墙壁对弹簧的冲量.11. 如图所示,一轻质弹簧的一端固定在小球A上,另一端与小球B接触但未连接,该整体静止放在离地面高为H=5m的光滑水平桌面上.现有一小球C从光滑曲面上离桌面ℎ= 1.8m高处由静止开始滑下,与小球A发生碰撞(碰撞时间极短)并粘在一起压缩弹簧推动小球B向前运动,经一段时间,小球B脱离弹簧,继续在水平桌面上匀速运动一段时间后从桌面边缘飞出.小球均可视为质点,忽略空气阻力,已知m A=2kg,m B=3kg,m C=1kg,g=10m/s2.求:(1)小球C与小球A碰撞结束瞬间的速度;(2)小球B落地点与桌面边缘的水平距离.12. 如图所示,在水平桌面上放有长度为L=2m的木板C,C上右端是固定挡板P,在C 中点处放有小物块B,A、B的尺寸以及P的厚度皆可忽略不计.C上表面与固定在地面上半径为R=0.45m的圆弧光滑轨道相切,质量为m=1kg的小物块A从圆弧最高点由静止释放,设木板C与桌面之间无摩擦,A、C之间和B、C之间的滑动摩擦因数均为μ,A、B、C(包含挡板P)的质量相同,开始时,B和C静止,(g=10m/s2)(1)求滑块从释放到离开轨道受到的冲量大小;(2)若物块A与B发生碰撞,求滑动摩擦因数μ应满足的条件;(3)若物块A与B发生碰撞(设为完全弹性碰撞)后,物块B与挡板P发生碰撞,求滑动摩擦因数μ应满足的条件.13.一质量为m的烟花弹获得动能E后,从地面竖直升空.当烟花弹上升的速度为零时,弹中火药爆炸将烟花弹炸为质量相等的两部分,两部分获得的动能之和也为E,且均沿竖直方向运动.爆炸时间极短,重力加速度大小为g,不计空气阻力和火药的质量.求:(1)烟花弹从地面开始上升到弹中火药爆炸所经过的时间;(2)爆炸后烟花弹向上运动的部分距地面的最大高度.14. 如图所示,水平光滑地面上有两个静止的小物块A和B(可视为质点),A的质量m=1.0 kg,B的质量M=4.0 kg,A、B之间有一轻质压缩弹簧,且A、B间用细线相连(图中未画出),弹簧的弹性势能E p=40 J,弹簧的两端与物块接触但不固定连接.水平面的左侧有一竖直墙壁,右侧与倾角为30°的光滑斜面平滑连接.将细线剪断,A、B分离后立即撤去弹簧,物块A与墙壁发生弹性碰撞后,A在B未到达斜面前追上B,并与B相碰后结合在一起向右运动,g取10 m/s2,求:(1)A与弹簧分离时的速度大小;(2)A、B沿斜面上升的最大距离.15. 如图所示,半径R1=1 m的四分之一光滑圆弧轨道AB与平台BC在B点平滑连接,半径R2=0.8 m的四分之一圆弧轨道上端与平台C端连接,下端与水平地面平滑连接,质量m =0.1 kg的乙物块放在平台BC的右端C点,将质量也为m的甲物块在A点由静止释放,让其沿圆弧下滑,并滑上平台与乙相碰,碰撞后甲与乙粘在一起从C点水平抛出,甲物块与平台间的动摩擦因数均为μ=0.2,BC长L=1 m,重力加速度g取10 m/s2,不计两物块的大小及碰撞所用的时间,求:(1)甲物块滑到B点时对轨道的压力大小;(2)甲和乙碰撞后瞬间共同速度的大小;(3)粘在一起的甲、乙两物块从C点抛出到落到CDE段轨道上所用的时间.16. 如图所示,一圆心为O、半径为R的光滑半圆轨道固定在竖直平面内,其下端和粗糙的水平轨道在A点相切,AB为圆弧轨道的直径.质量分别为m、2m的滑块1、2用很短的细线连接,在两滑块之间夹有压缩的短弹簧(弹簧与滑块不固连),滑块1、2位于A点.现剪断两滑块间的细线,滑块1恰能过B点,且落地点恰与滑块2停止运动的地点重合.滑块1、2可视为质点,不考虑滑块1落地后反弹,不计空气阻力,重力加速度为g,求:(1)滑块1过B点的速度大小;(2)弹簧释放的弹性势能大小;(3)滑块2与水平轨道间的动摩擦因数.17. 汽车A在水平冰雪路面上行驶.驾驶员发现其正前方停有汽车B,立即采取制动措施,但仍然撞上了汽车B.两车碰撞时和两车都完全停止后的位置如图所示,碰撞后B车向前滑动了4.5 m,A车向前滑动了2.0 m.已知A和B的质量分别为2.0×103 kg和1.5×103 kg,两车与该冰雪路面间的动摩擦因数均为0.10,两车碰撞时间极短,在碰撞后车轮均没有滚动,重力加速度大小g=10 m/s2.求:(1)碰撞后的瞬间B车速度的大小;(2)碰撞前的瞬间A车速度的大小.。

天津高考物理动力学大题经典例题

天津高考物理动力学大题经典例题

天津高考物理动力学大题经典例题
1.一个质量为m的小球,由静止开始在水平地面上滑动。

当它滑行了一段距离后,突然受到一个水平方向的恒力 F,小球受到的摩擦力也是恒定的。

求小球从开始滑行到停下所需的时间、停下时的速度和小球所滑行的距离。

2. 一个质量为 m 的小球,从山顶 O 沿着抛物线轨迹下滑,与地面碰撞时速度大小为 v0。

已知小球在竖直方向上的重力加速度为g,山顶 O 到地面距离为 h。

求小球从山顶 O 滑落到地面的时间、速度大小和在竖直方向上的加速度大小。

3. 一个质量为 m1 的物体悬挂在另一个质量为 m2 的物体上方,两者之间系有一根轻绳。

当下挂物体从静止开始自由落下时,上挂物体受到的拉力大小为多少?两个物体下落的加速度大小又是多少?
4. 在一平直水平路面上,一质量为 m 的小球以初速度 v0 水平运动。

小球与地面之间的摩擦系数为μ,求小球在不断受到一个垂直于运动方向的恒力 F 的情况下,小球从开始运动到停止所需的时间、停止时小球的位置以及小球所走过的距离。

- 1 -。

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题

高考物理《电磁感应中的动力学问题》真题练习含答案专题1.(多选)如图所示,有两根和水平方向成α角的光滑平行的金属轨道,上端接有可变电阻R ,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感应强度为B ,一根质量为m 的金属杆(电阻不计)从轨道上由静止滑下.经过足够长的时间,金属杆的速度趋近于一个最大速度v m ,则( )A .如果B 增大,v m 将变大B .如果α变大,v m 将变大C .如果R 变大,v m 将变大D .如果m 变大,v m 将变大答案:BCD解析:当加速度为零时,速度最大,则有mg sin α=BIL ,又I =BL v m R ,解得v m =mgR sin αB 2L 2,如果B 增大,v m 将变小;如果α变大,v m 将变大;如果R 变大,v m 将变大;如果m 变大,v m 将变大,B 、C 、D 正确.2.(多选)如图所示,水平放置足够长光滑金属导轨abc 和de ,ab 与de 平行,bc 是以O 为圆心的圆弧导轨,圆弧be 左侧和扇形Obc 内有方向如图的匀强磁场,金属杆OP 的O 端与e 点用导线相接,P 端与圆弧bc 接触良好,初始时,可滑动的金属杆MN 静止在平行导轨上,若杆OP 绕O 点在匀强磁场区内从b 到c 匀速转动时,回路中始终有电流,则此过程中,下列说法正确的有( )A .杆OP 产生的感应电动势恒定B .杆OP 受到的安培力不变C .杆MN 做匀加速直线运动D .杆MN 中的电流逐渐减小答案:AD解析:OP 转动切割磁感线产生的感应电动势为E =12Br 2ω,因为OP 匀速转动,所以杆OP 产生的感应电动势恒定,故A 正确;杆OP 匀速转动产生的感应电动势,产生的感应电流由M 到N 通过MN 棒,由左手定则可知,MN 棒会向左运动,MN 棒运动会切割磁感线,产生的电动势与原来电流方向相反,让回路电流减小,MN 棒所受合力为安培力,电流减小,安培力会减小,加速度减小,故D 正确,B 、C 错误.3.(多选)如图,横截面积为S 的n 匝线圈,线圈总电阻为R ,其轴线与大小均匀变化的匀强磁场B 1平行.间距为L 的两平行光滑倾斜轨道PQ 、MN 足够长,轨道平面与水平面的夹角为α,底部连有一阻值2R 的电阻,磁感应强度B 2的匀强磁场与轨道平面垂直.K 闭合后,质量为m 、电阻也为2R 的金属棒ab 恰能保持静止,金属棒始终与轨道接触良好,其余部分电阻不计,下列说法正确的是( )A .B 1均匀减小B .B 1的变化率为ΔB 1Δt =4mgR sin αnB 2SLC .断开K 之后,金属棒ab 将做匀加速直线运动D .断开K 之后,金属棒的最大速度为v =4Rmg sin αB 22 L 2 答案:ABD解析:由平衡条件知金属棒所受安培力的方向应平行轨道向上,电流大小恒定,磁场B 1均匀变化;根据左手定则判断金属棒中电流方向由b 指向a ,线圈中感应电流磁场方向与原磁场方向相同,则可判断B 1减小,A 正确;设B 1的变化率为ΔB 1Δt,螺线管中感应电动势E =n ΔB 1Δt S ,回路中总电阻R 总=R +R =2R ,电路中总电流I =E R 总 =E 2R,安培力F =B 2IL 2 ,由平衡条件得F =mg sin α,解得ΔB 1Δt =4mgR sin αnB 2SL,B 正确;断开K 之后,金属棒ab 将做变加速直线运动,C 错误;断开K 之后,金属棒速度最大时,受力平衡,有B 2I ′L =mg sin α,且电流I ′=E 4R =B 2L v 4R ,联立解得v =4Rmg sin αB 22 L 2 ,D 正确. 4.如图所示,这是感受电磁阻尼的铜框实验的简化分析图,已知图中矩形铜框(下边水平)的质量m=2 g,长度L=0.5 m,宽度d=0.02 m,电阻R=0.01 Ω,该铜框由静止释放时铜框下边与方向水平向里的匀强磁场上边界的高度差h=0.2 m,磁场上、下水平边界间的距离D=0.27 m,铜框进入磁场的过程恰好做匀速直线运动.取重力加速度大小g=10 m/s2,不计空气阻力.下列说法正确的是()A.铜框进入磁场的过程中电流方向为顺时针B.匀强磁场的磁感应强度的大小为0.5 TC.铜框下边刚离开磁场时的速度大小为3 m/sD.铜框下边刚离开磁场时的感应电流为0.3 A答案:C解析:铜框下边进入磁场过程,由右手定则判断感应电流为逆时针方向,A错误;铜框下边刚进入磁场时的速度大小v1=2gh ,此时感应电动势E=BL v1,电流I=ER,铜框受的安培力大小F=BIL,由平衡条件得F=mg,解得磁感应强度B=0.2 T,B错误;铜框全部进入磁场后开始做加速度为g的匀加速直线运动,设铜框下边刚离开磁场时速度大小为v2,根据运动学公式得v22-v21=2g(D-d),解得v2=3 m/s,C正确;铜框下边刚离开磁场时,感应电流大小I′=BL v2R=3 A, A、D错误.5.(多选)如图所示,两条足够长的平行光滑长直导轨MN、PQ固定于同一水平面内,它们之间的距离为l;ab和cd是两根质量皆为m的金属细杆,杆与导轨垂直,且与导轨接触良好.两杆的电阻皆为R.cd的中点系一轻绳,绳的另一端绕过定滑轮悬挂一质量为M的重物,滑轮与杆cd之间的轻绳处于水平伸直状态并与导轨平行.不计滑轮与转轴、细绳之间的摩擦,不计导轨的电阻.导轨和金属细杆都处于匀强磁场中,磁感应强度大小为B,方向竖直向上.现将两杆及重物同时由静止释放,下列说法正确的是()A.释放重物瞬间,其加速度大小为Mg m+MB.最终回路中的电流为MmgBl(m+M)C.最终ab杆所受安培力的大小为mMg2m+MD .最终ab 和cd 两杆的速度差恒为2MmgR B 2l 2(2m +M )答案:ACD解析:释放重物瞬间,ab 杆和cd 杆均不受安培力,设重物的加速度大小为a 1,则对重物,有Mg -T 1=Ma 1;对cd 杆,有T 1=ma 1,解得a 1=Mg m +M,A 项正确;最终ab 杆、cd 杆和重物三者的加速度大小相等,设其为a ,对重物,有Mg -T 2=Ma ;对cd 杆,有T 2-BIl =ma ;对ab 杆,有BIl =ma ,解得I =Mmg (2m +M )Bl ,F 安=BIl =Mmg 2m +M,B 项错误,C 项正确;设最终两杆速度差为Δv ,回路中感应电动势为E =Bl Δv ,I =E 2R,解得Δv =2MmgR B 2l 2(2m +M ),D 项正确. 6.(多选)如图所示,倾角θ=30°的斜面上放置一间距为L 的光滑U 形导轨(电阻不计),导轨上端连接电容为C 的电容器,电容器初始时不带电,整个装置放在磁感应强度大小为B 、方向垂直斜面向下的匀强磁场中.一质量为2m 、电阻为R 的导体棒垂直放在导轨上,与导轨接触良好,另一质量为m 的重物用一根不可伸长的绝缘轻绳通过光滑的定滑轮与导体棒拴接,定滑轮与导体棒间的轻绳与斜面平行.将重物由静止释放,在导体棒到达导轨底端前的运动过程中(电动势未到达电容器的击穿电压),已知重力加速度为g ,下列说法正确的是( )A .电容器M 板带正电,且两极板所带电荷量随时间均匀增加B .经时间t 导体棒的速度为v =2mgt 3m +CB 2L 2C.回路中电流与时间的关系为I =2BLmg (3m +CB 2L 2)Rt D .重物和导体棒在运动过程中减少的重力势能转化为动能和回路的焦耳热答案:AB解析:设运动过程中经时间Δt ,导体棒的速度增加Δv ,对电容器,两极板的充电电流I =ΔQ Δt =C ΔU Δt =CBL Δv Δt,对导体棒受力分析,由牛顿第二定律有2mg sin 30°+F T -BIL =2ma ;对重物分析,有mg -F T =ma ,又Δv Δt =a ,解得a =2mg 3m +CB 2L 2,加速度恒定,所以导体棒在到达导轨底端前做匀加速直线运动,电容器两极板所带电荷量随时间均匀增加,由右手定则可知,M 板带正电,A 项正确;经时间t ,导体棒的速度v =2mgt 3m +CB 2L 2,B 项正确;由A 项分析可知回路中电流恒定,C 项错误;重物和导体棒在运动过程中减少的重力势能一部分转化为动能和回路的焦耳热,一部分转化为电容器储存的电能,D 项错误.7.[2024·河北省邢台市五岳联盟联考]游乐园中的过山车因能够给游客带来刺激的体验而大受欢迎.为了保证过山车的进站安全,过山车安装了磁力刹车装置,将磁性很强的铷磁铁安装在轨道上,正方形导体框安装在过山车底部.磁力刹车装置的工作原理可简化为如图所示的模型:质量m =5 kg 、边长L =2 m 、电阻R =1.8 Ω的单匝导体框abcd 沿着倾角为θ的光滑斜面由静止开始下滑x 0=4.5 m 后,下边框bc 进入匀强磁场区域时导体框开始减速,当上边框ad 进入磁场时,导体框刚好开始做匀速直线运动.已知磁场的上、下边界与导体框的上、下边框平行,磁场的宽度也为L =2 m ,磁场方向垂直斜面向下、磁感应强度大小B =3 T ,sin θ=0.4,取重力加速度大小g =10 m/s 2,求:(1)上边框ad 进入磁场时,导体框的速度大小v ;(2)下边框bc 进入磁场时,导体框的加速度大小a 0.答案:(1)1 m/s (2)20 m/s 2解析:(1)当导体框的上边框ad 进入磁场时,上边框ad 切割磁感线产生的感应电动势为E =BL v导体框中的感应电流为I =E R导体框的上边框在磁场中受到的安培力大小F A =BIL导体框刚好做匀速直线运动,根据受力平衡有mg sin θ=F A联立解得v =1 m/s(2)导体框沿斜面由静止开始到下边框bc 进入匀强磁场的过程中,根据机械能守恒定律有mgx 0sin θ=12m v 20 当导体框的下边框进入磁场时,导体框的下边框在磁场中受到的安培力大小F A0=B2L2v0 R对导体框受力分析,根据牛顿第二定律有F A0-mg sin θ=ma0联立解得a0=20 m/s2.。

高考物理复习两类动力学问题专题练习(含解析)-最新教学文档

高考物理复习两类动力学问题专题练习(含解析)-最新教学文档

高考物理复习两类动力学问题专题练习(含解析)动力学是理论力学的一个分支学科,它主要研究作用于物体的力与物体运动的关系。

查字典物理网整理了两类动力学问题专题练习,请大家练习。

一、选择题(在题后给的选项中,第1~4题只有一项符合题目要求,第5~9题有多项符合题目要求.)1.(2019年广州调研)静止在光滑水平面上O点的物体,从t=0时刻开始受到水平力作用,设向右为F的正方向,则物体()A.一直向左运动B.一直向右运动C.一直匀加速运动D.在O点附近左右运动【答案】B【解析】设物体质量为m,由图象可知,0~1 s内物体向右做匀加速直线运动,1 s末的速度v1=;1~2 s内物体以初速度v1=向右做匀减速直线运动,2 s末的速度v2=v1-=0;综上可知,物体会一直向右运动.选项B正确.2.质量为 2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t=0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F的作用,F随时间t的变化规律.重力加速度g取10 m/s2,则物体在t=0至t=12 s这段时间的位移大小为()图K3-2-2A.18 mB.54 mC.72 mD.198 m【答案】B【解析】滑动摩擦力大小Fmg=4 N,则0~3 s物体静止,6~9 s物体做匀速直线运动,3~6 s和9~12 s做加速度相等的匀加速直线运动,加速度a=m/s2=2 m/s2.6 s末的速度v1=23 m/s=6 m/s,12 s末的速度v2=6 m/s+23 m/s=12 m/s.3~6 s发生的位移大小x1=3 m=9 m,6~9 s 发生的位移大小x2=63 m=18 m,9~12 s发生的位移大小x3=3 m=27 m,则0~12 s发生的位移大小x=x1+x2+x3=54 m,故选项B正确. 3.(2019年江苏卷)将一个皮球竖直向上抛出,皮球运动时受到空气阻力的大小与速度的大小成正比.下列描绘皮球在上升过程中加速度大小a与时间t的图象,可能正确的是() A B C D【答案】C【解析】对皮球进行受力分析,受到竖直向下的重力、阻力作用,根据牛顿第二定律,知皮球在上升过程中的加速度大小a=,因皮球上升过程中速度v减小,加速度减小,当v=0时,加速度最终趋近一条平行于t轴的直线,选项C正确,A、B、D错误.4. (2019年河南模拟)2019年8月14日,中国乒乓球公开赛在苏州市体育中心体育馆拉开战幕,吸引了上千市民前往观看.假设运动员在训练中手持乒乓球拍托球沿水平面做匀加速运动,球拍与球保持相对静止且球拍平面和水平面之间的夹角为.设球拍和球质量分别为M、m,不计球拍和球之间的摩擦,不计空气阻力,则()A.运动员的加速度大小为gsinB.球拍对球的作用力大小为mgcosC.运动员对球拍的作用力大小为D.运动员对地面的作用力方向竖直向下【答案】C【解析】以乒乓球为研究对象,球受重力和球拍的支持力,不难求出球受到的合力为mgtan ,其加速度为gtan ,受到球拍的支持力为mg/cos ,由于运动员、球拍和球的加速度相等,选项A、B错误;同理运动员对球拍的作用力大小为(M+m)g/cos ,选项C正确;将运动员看做质点,由上述分析知道运动员在重力和地面的作用力的合力作用下产生水平方向的加速度,地面对运动员的作用力应该斜向上,由牛顿第三定律知道,运动员对地面的作用力方向斜向下,选项D 错误.5.(2019年黑龙江模拟)A、B两物块的质量分别为2 m和m, 静止叠放在水平地面上. A、B间的动摩擦因数为,B与地面间的动摩擦因数为.最大静摩擦力等于滑动摩擦力,重力加速度为 g.现对A施加一水平拉力F,则()图K3-2-4A.当 F mg时,A、B都相对地面静止B.当 F=mg时,A的加速度为gC.当 Fmg时,A相对B滑动D.无论F为何值,B的加速度不会超过g【答案】BCD【解析】当A、B刚要发生相对滑动时,A、B间的摩擦力达到最大静摩擦力,即f=2mg ,隔离B分析,根据牛顿第二定律得,23mg=ma,解得a=g.对整体分析,根据牛顿第二定律有:F-3mg=3ma,解得F=3mg.故当Fmg时,A、B发生相对滑动,故C正确;通过隔离B分析,知B的加速度不会超过g,故D正确;当F=mg时,A、B保持相对静止,对整体分析,加速度a===g,故B正确;当Fmg,知小于A、B之间的最大静摩擦力,则A、B不发生相对滑动,对整体分析,由于整体受到地面的最大静摩擦力fm=3mg=mg,知A、B不能相对地面静止,故A错误.6.(2019年潮州模拟)如图K3-2-5所示,一小车放在水平地面上,小车的底板上放一光滑小球,小球通过两根轻弹簧与小车两壁相连.当小车匀速运动时,两弹簧L1、L2恰处于自然状态.当发现L1变长、L2变短时,下列判断正确的是() 图K3-2-5A.小车可能正在向右做匀加速运动B.小车可能正在向右做匀减速运动C.小车可能正在向左做匀加速运动D.小车可能正在向左做匀减速运动【答案】BC【解析】L1变长,L2变短,小球受到L1向左的拉力和L2向左的弹力,合力方向向左,则加速度方向向左,选项B、C 正确.7.如图K3-2-6所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端的距离为L,稳定时绳与水平方向的夹角为,当传送带分别以v1、v2的速度做逆时针转动时(v1图K3-2-6A.F1C.t1一定大于t2D.t1可能等于t2【答案】BD【解析】皮带以不同的速度运动,物体所受的滑动摩擦力相等,物体仍处于静止状态,故F1=F2;物体在两种不同速度下运动时有可能先加速再匀速,也可能一直加速,故t1可能等于t2.8甲、乙两图都在光滑的水平面上,小车的质量都是M,人的质量都是m,甲图人推车、乙图人拉绳子(绳与轮的质量和摩擦均不计)的力都是F,对于甲、乙两车的加速度大小,下列说法正确的是()图K3-2-7A.甲车的加速度大小为B.甲车的加速度大小为0C.乙车的加速度大小为D.乙车的加速度大小为0【答案】BC【解析】对于甲,以人、车整体为研究对象,水平方向合力为零,由牛顿第二定律,得a甲=0;对于乙,水平方向整体受力为2F,再由牛顿第二定律,得a乙=,所以选项B、C正确.9.(2019年全国卷Ⅰ)2019年11月,歼15舰载机在辽宁号航空母舰上着舰成功.图K3-2-8(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止.某次降落,以飞机着舰为计时零点,飞机在t=0.4 s时恰好钩住阻拦索中间位置,其着舰到停止的速度时间图线如图K3-2-8(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约为1 000 m.已知航母始终静止,重力加速度的大小为g.则()图K3-2-8A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的1/10B.在0.4~2.5 s时间内,阻拦索的张力几乎不随时间变化C.在滑行过程中,飞行员所承受的加速度大小会超过2.5gD.在0.4~2.5 s时间内,阻拦系统对飞机做功的功率几乎不变【答案】AC【解析】速度时间图象中,图线与坐标轴所围图形的面积为物体的位移,所以可以计算飞机受阻拦时运动的位移约为x=700.4 m+(3.0-0.4)70 m=119 m,A正确;0.4 s到2.5 s时间内,速度时间图象的斜率不变,说明两条绳索张力的合力不变,但是两力的夹角不断变小,所以绳索的张力不断变小,B错;0.4 s到2.5 s时间内平均加速度约为a= m/s2=26.7 m/s2;C正确;0.4 s到2.5 s时间内,阻拦系统对飞机的作用力不变,飞机的速度逐渐减小,由P=Fv可知,阻拦系统对飞机做功的功率逐渐减小,D错.二、非选择题10.(2019年汕头模拟)一质量m=2.0 kg的小物块以一定的初速度冲上一倾角为37、足够长的斜面,某同学利用传感器测出小物块从一开始冲上斜面到往后上滑过程中多个时刻的瞬时速度,并用计算机作出了小物块上滑过程的速度-时间图象,如图K3-2-9所示,求:(已知sin 37=0.6,cos 37=0.8,g取10 m/s2)图K3-2-9(1)小物块冲上斜面过程中加速度的大小;(2)小物块与斜面间的动摩擦因数;(3)小物块所到达斜面最高点与斜面底端的距离.【答案】(1)8 m/s2 (2)0.25 (3)4.0 m【解析】(1)由小物块上滑过程的速度时间图象,可得小物块冲上斜面过程中的加速度a==m/s2=-8 m/s2,加速度大小为8 m/s2.(2)对小物块进行受力分析如图所示,有mgsin 37+f=ma,FN-mgcos 37=0,f=FN.代入数据,得=0.25.(3)由图象知距离s=t=1.0 m=4.0 m.11.消防队员为缩短下楼的时间,往往抱着竖直的杆直接滑下.假设一名质量为60 kg、训练有素的消防队员从7楼(即离地面18 m的高度)抱着竖直的杆以最短的时间滑下.已知杆的质量为200 kg,消防队员着地的速度不能大于6 m/s,手和腿对杆的最大压力为1 800 N,手和腿与杆之间的动摩擦因数为0.5,设当地的重力加速度g=10 m/s2.假设杆是固定在地面上的,杆在水平方向不移动.试求:(1)消防队员下滑过程中的最大速度;(2)消防队员下滑过程中杆对地面的最大压力;(3)消防队员下滑的最短时间.【答案】(1)12 m/s (2)2 900 N (3)2.4 s【解析】(1)消防队员开始阶段自由下落的末速度即为下滑过程的最大速度vm,有2gh1=v.消防队员受到的滑动摩擦力Ff=FN1=0.51 800 N=900 N.减速阶段的加速度大小a2==5 m/s2,减速过程的位移为h2,由v-v2=2a2h2,又h=h1+h2,以上各式联立,可得vm=12 m/s.(2)以杆为研究对象,得FN2=Mg+Ff=2 900 N.根据牛顿第三定律,得杆对地面的最大压力为2 900 N. (3)最短时间tmin=+=2.4 s.12.(2019年中山模拟)如图K3-2-10所示,一光滑斜面固定在水平地面上,质量m=1 kg的物体在平行于斜面向上的恒力F作用下,从A点由静止开始运动,到达B点时立即撤去拉力F.此后,物体到达C点时速度为零.每隔0.2 s通过速度传感器测得物体的瞬时速度,下表给出了部分测量数据. 图K3-2-10t/s 0.0 0.2 0.4 2.2 2.4 v/(ms-1) 0.0 1.0 2.0 3.3 2.1 试求:(1)斜面的倾角(2)恒力F的大小;(3)t=1.6 s时物体的瞬时速度.【答案】(1)37 (2)11 N (3)6.9 m/s【解析】(1)物体从A到B做匀加速运动,设加速度为a1. 则a1= m/s2=5 m/s2,若物体加速了2.2 s,则2.2 s末速度为11 m/s,由表格数据知2.2 s末的速度为3.3 m/s,故当t=2.2 s时,物体已通过B点.因此减速过程加速度大小a2= m/s2=6 m/s2,mgsin =ma2,解得=37.(2)由(1)知a1=5 m/s2,F-mgsin =ma1,解得F=11 N.(3)设第一阶段运动的时间为t1,在B点时有5t1=2.1+6(2.4-t1),t1=1.5 s.可见,t=1.6 s的时刻处在第二运动阶段,由逆向思维可得v=2.1 m/s+6(2.4-1.6) m/s=6.9 m/s.两类动力学问题专题练习及答案的内容就是这些,查字典物理网预祝考生取得更好的成绩。

2022高考物理第一轮复习 06 动力学综合二 功、能、动量

2022高考物理第一轮复习 06 动力学综合二 功、能、动量

2022高考物理第一轮复习 06 动力学综合二功、能、动量一、单选题1.“复兴号”动车组用多节车厢提供动力,从而达到提速的目的。

总质量为m的动车组在平直的轨道上行驶。

该动车组有四节动力车厢,每节车厢发动机的额定功率均为P,若动车组所受的阻力与其速率成正比(F阻=kv,k为常量),动车组能达到的最大速度为v m。

下列说法正确的是()A.动车组在匀加速启动过程中,牵引力恒定不变B.若四节动力车厢输出功率均为额定值,则动车组从静止开始做匀加速运动C.若四节动力车厢输出的总功率为2.25P,则动车组匀速行驶的速度为34v mD.若四节动力车厢输出功率均为额定值,动车组从静止启动,经过时间t达到最大速度v m,则这一过程中该动车组克服阻力做的功为12mv m2−Pt2.物体的运动状态可用位置x和动量p描述,称为相,对应p−x图像中的一个点。

物体运动状态的变化可用p−x图像中的一条曲线来描述,称为相轨迹。

假如一质点沿x轴正方向做初速度为零的匀加速直线运动,则对应的相轨迹可能是()A.B.C.D.3.如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦。

用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动。

在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统()A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒4.一半径为R 的圆柱体水平固定,横截面如图所示,长度为 πR 、不可伸长的轻细绳,一端固定在圆柱体最高点P 处,另一端系一个小球,小球位于P 点右侧同一水平高度的Q 点时,绳刚好拉直,将小球从Q 点由静止释放,当与圆柱体未接触部分的细绳竖直时,小球的速度大小为(重力加速度为g ,不计空气阻力)( )A .√(2+π)gRB .√2πgRC .√2(1+π)gRD .√2gR5.如图所示,粗糙程度处处相同的水平桌面上有一长为L 的轻质细杆,一端可绕竖直光滑轴O 转动,另一端与质量为m 的小木块相连。

圆周运动高考题(含答案)

圆周运动高考题(含答案)

匀速圆周运动二、匀速圆周运动的描述1.线速度、角速度、周期和频率的概念(1)线速度v 是描述质点沿圆周运动快慢的物理量,是矢量,其大小为Tr t s v π2==; 其方向沿轨迹切线,国际单位制中单位符号是m/s ;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量,其大小为Tt πφω2==; 在国际单位制中单位符号是rad /s ;(3)周期T 是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s ;(4)频率f 是质点在单位时间内完成一个完整圆运动的次数,在国际单位制中单位符号是 Hz ;(5)转速n 是质点在单位时间内转过的圈数,单位符号为r /s ,以及r /min .2、速度、角速度、周期和频率之间的关系线速度、角速度、周期和频率各量从不同角度描述质点运动的快慢,它们之间有关系v =r ω.f T 1=,Tv π2=,f πω2=。

由上可知,在角速度一定时,线速度大小与半径成正比;在线速度一定时,角速度大小与半径成反比.三、向心力和向心加速度1.向心力(1)向心力是改变物体运动方向,产生向心加速度的原因.(2)向心力的方向指向圆心,总与物体运动方向垂直,所以向心力只改变速度的方向.2.向心加速度(1)向心加速度由向心力产生,描述线速度方向变化的快慢,是矢量.(2)向心加速度方向与向心力方向恒一致,总沿半径指向圆心;向心加速度的大小为22224T r r rv a n πω=== 公式:1.线速度V =s/t =2πr/T2.角速度ω=Φ/t =2π/T =2πf3.向心加速度a =V 2/r =ω2r =(2π/T)2r4.向心力F 心=mV 2/r =m ω2r =mr(2π/T)2=m ωv=F 合5.周期与频率:T =1/f6.角速度与线速度的关系:V =ωr7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)8.主要物理量及单位:弧长s:米(m);角度Φ:弧度(rad );频率f :赫(Hz );周期T :秒(s );转速n :r/s ;半径r :米(m );线速度V :(m/s );角速度ω:(rad/s );向心加速度:(m/s 2)。

2025届高考物理复习:经典好题专项(动力学中的图像问题)练习(附答案)

2025届高考物理复习:经典好题专项(动力学中的图像问题)练习(附答案)

2025届高考物理复习:经典好题专项(动力学中的图像问题)练习1.(多选)一物体静止在粗糙程度均匀的水平地面上,在0~4 s内所受水平拉力F随时间t的变化关系图像如图甲所示,在0~2 s内的速度与时间关系图像如图乙所示,最大静摩擦力大于滑动摩擦力。

关于物体的运动,下列说法正确的是()A.物体的质量为2 kgB.0~4 s内物体的位移为8 mC.0~4 s内拉力F做功为16 JD.在4 s末物体的速度大小为4 m/s2.(2023ꞏ内蒙古包头市二模)水平力F方向确定,大小随时间变化的图像如图a所示,用力F 拉静止在水平桌面上的小物块,在F从0开始逐渐增大的过程中,物块的加速度a随时间变化的图像如图b所示,重力加速度大小为10 m/s2,最大静摩擦力大于滑动摩擦力,由图示可知()A.物块的质量m=2 kgB.物块与水平桌面间的动摩擦因数为0.2C.在4 s末,物块的动量大小为12 kgꞏm/sD.在2~4 s时间内,小物块速度均匀增加3. 在用DIS探究超重和失重的实验中,某同学蹲在压力传感器上完成一次起立动作,在计算机屏幕上得到压力传感器示数F随时间t变化的图像如图所示,则此过程该同学重心的运动速度v随时间t变化的图像最接近图()4.(多选)如图甲所示,用一水平力F 拉着一个静止在倾角为θ的光滑固定斜面上的物体。

逐渐增大F ,物体做变加速运动,其加速度a 随外力F 变化的图像如图乙所示,g =10 m/s 2,sin 37°=0.6,最大静摩擦力等于滑动摩擦力。

根据图乙中所提供的信息可以计算出( )A .物体的质量B .斜面的倾角C .物体能静止在斜面上所施加的最小外力D .加速度为6 m/s 2时物体的速度5.(多选)如图甲所示,一倾角θ=30°的足够长斜面体固定在水平地面上,一个物块静止在斜面上。

现用大小为F =kt (k 为常量,F 、t 的单位分别为N 和s)的拉力沿斜面向上拉物块,物块受到的摩擦力F f 随时间变化的关系图像如图乙所示,物块与斜面间的最大静摩擦力等于滑动摩擦力,重力加速度g 取10 m/s 2。

高考物理二轮精选题组:专练3动力学综合问题(含解析)

高考物理二轮精选题组:专练3动力学综合问题(含解析)

高考物理二轮精选题组:专练3动力学综合问题(含解析)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN专练3动力学综合问题一、单项选择题1.(2014·北京卷,18)应用物理知识分析生活中的常见现象,可以使物理学习更加有趣和深入.例如平伸手掌托起物体,由静止开始竖直向上运动,直至将物体抛出.对此现象分析正确的是() A.手托物体向上运动的过程中,物体始终处于超重状态B.手托物体向上运动的过程中,物体始终处于失重状态C.在物体离开手的瞬间,物体的加速度大于重力加速度D.在物体离开手的瞬间,手的加速度大于重力加速度解析手掌平托物体由静止开始竖直向上运动直至将物体抛出前的过程中,物体与手掌相对静止,先向上加速运动后减速运动,即物体先处于超重状态后处于失重状态,故A、B错误;当物体和手分离时,二者速度相同,又因均做减速运动,故分离条件为a手>a物,分离瞬间物体的加速度等于重力加速度,则手的加速度大于重力加速度,选项D正确,C错误.答案D2.(2014·浙江五校一联)“儿童蹦极”中,拴在腰间左右两侧的是弹性极好的橡皮绳.质量为m的小明如图1所示静止悬挂时,两橡皮绳的拉力大小均恰为mg,若此时小明左侧橡皮绳在腰间断裂,则小明此时()图1A.加速度为零,速度为零B.加速度a=g,沿断裂橡皮绳未断裂之前的方向斜向下C.加速度a=g,沿未断裂橡皮绳的方向斜向上D.加速度a=g,方向竖直向下解析小明静止时受到重力和两根橡皮绳的拉力,处于平衡状态,如图所示,由于F T1=F T2=mg,故两个拉力的合力一定在角平分线上,且在竖直线上,故两个拉力的夹角为120°,当右侧橡皮绳断裂时,左侧橡皮绳拉力不变,重力也不变,由于三力平衡时,三个力中任意两个力的合力与第三个力等大、反向、共线,故此时左侧橡皮绳拉力与重力的合力与右侧橡皮绳断裂前的拉力大小相等等于mg,方向相反,故此时加速度大小为g,方向沿右侧橡皮绳未断裂之前的方向斜向下,所以选项B正确.答案 B3.(2014·浙江杭州学军期中,9)如图2所示,两个倾角相同的滑杆上分别套有A、B两个圆环,两个圆环上分别用细线悬吊着两个物体C、D,当它们都沿滑杆向下滑动时,A的悬线与杆垂直,B的悬线竖直向下.则下列说法中正确的是()图2A.C物体做的是匀速运动B.D物体做的是匀加速运动C.B环与滑杆间没有摩擦力D.A环与滑杆间没有摩擦力解析设环A受杆的摩擦力为F f,方向沿杆向上,对环A受力分析,如图所示,则沿杆方向,由牛顿第二定律,有m A g sin θ-F f=m A a A,对C,有m C g sin θ=m C a C,因环A与物体C通过细线相连,故a A=a C,联立以上三式,解得F f=0,a C=g sin θ,故选项A错误,选项D正确;对物体D受力分析,受重力、竖直向上的拉力,又因为物体D沿杆方向做直线运动,合力与速度在一条直线上,故合力必为零,物体D做匀速运动,因为环B与物体D以细线相连,所以环B也做匀速运动,故环B所受合力为零,则环B与杆间一定存在摩擦力,选项BC错误.答案 D4.2013年6月20日中国载人航天史上的首堂太空授课开讲,“天宫一号”中的质量测量仪上的弹簧能够产生一个恒定的力F,航天员把一个物体固定在质量测量仪支架一端,然后轻轻拉开支架,一放手,支架便在弹簧的作用下回到原位,若测速装置测量出支架复位的速度v和时间t,则待测物体的质量为()A.Fv t B.Ft vC.vFt D.v tF解析设待测物体的质量为m,根据题意,放手后待测物体在恒力F作用下做匀加速运动,其加速度a=vt,由牛顿第二定律F=ma可得待测物体的质量为m=Ft v,选项B正确.答案 B5.如图3所示,A、B两小球分别连在轻线两端,B球另一端与弹簧相连,弹簧固定在倾角为30°的光滑斜面顶端.A、B两小球的质量分别为m A、m B,重力加速度为g,若不计弹簧质量,在线被剪断瞬间,A、B两球的加速度大小分别为()图3A .都等于g 2 B.g 2和0 C.g 2和m A mB ·g 2 D.m A m B·g 2和g 2 解析 由整体法知,F 弹=(m A +m B )g sin 30°剪断线瞬间,由牛顿第二定律:对B :F 弹-m B g sin 30°=m B a B ,得a B =m A m B ·g 2.对A :m A g sin 30°=m A a A ,得a A =12g .所以C 项正确. 答案 C6.(2014·安徽省级示范高中联考,17)高空跳伞运动是跳伞者乘飞机、气球等航空器或其他器械升至高空后跳下,或者从陡峭的山顶、高地上跳下,如图4所示,在张开降落伞之前可看做是自由落体运动,开伞后受到的空气阻力与速度成正比,运动员减速下降,最后匀速下降,在指定区域安全着陆,从下落时开始计时,在整个过程中,用v 表示运动员下落的速度,h 表示运动员从初位置开始下落的高度,F 表示运动员受到的合力,E p 表示运动员的重力势能(选地面为零势能面).下列图象正确的是 ( )图4解析跳伞运动员先做自由落体运动,再做加速度减小的减速运动,最后所受合外力为零,做匀速运动,A、B错;打开降落伞后做加速度逐渐减小的减速运动,所受合外力向上,与开始时的合外力方向相反,为负值且逐渐减小;最后匀速下降,合外力为零,C错;运动员的重力势能E p=mg(H -h),D正确.答案 D7.(2014·浙江杭州学军期中)利用传感器和计算机可以研究快速变化的力的大小,实验时让质量为M的某消防员从一平台上自由下落,落地过程中先双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了一段距离,最后停止,用这种方法获得消防员受到地面冲击力随时间变化的图线如图5所示.根据图线所提供的信息,以下判断正确的是()图5A.t1时刻消防员的速度最大B.t2时刻消防员的速度最大C.t3时刻消防员的速度最大D.t4时刻消防员的速度最大解析t1时刻消防员双脚触地,t1至t2时间内,消防员所受地面支持力小于重力,合力向下,加速度向下,故消防员向下加速运动,t2至t4时间内,消防员所受地面支持力大于重力,合力向上,故消防员向下减速运动,故t2时刻消防员的速度最大,选项B正确.答案 B8.(2014·皖北协作区联考)一足够长的倾角为θ的斜面固定在水平面上,在斜面顶端放置一长木板,木板与斜面之间的动摩擦因数为μ,木板上固定一力传感器,连接传感器和光滑小球间是一平行于斜面的轻杆,如图6所示,当木板固定时,传感器的示数为F1.现由静止释放木板,木板沿斜面下滑,稳定时传感器的示数为F2.则下列说法正确的是()图6A.稳定后传感器的示数一定为零B.tan θ=μF1 F2C.tan θ=F1μF2D.tan θ=F2μF1解析木板与球的质量分别为M和m,对球由平衡条件和牛顿第二定律得:F1-mg sin θ=0,mg sin θ-F2=ma,对木板和球整体得:(M+m)g sin θ-μ(M+m)g cos θ=(M+m)a,则a<g sin θ,解得F2=mg sin θ-ma>0,A项错;tan θ=μF1F2,B项对,C、D项错.答案 B9.(2014·云南第一次检测,15)物块A放置在与水平地面成30°角倾斜的木板上时,刚好可以沿斜面匀速下滑;若该木板与水平面成60°角倾斜,取g=10 m/s2,则物块A沿此斜面下滑的加速度大小为() A.5 3 m/s2 B.3 3 m/s2C.(5-3) m/s2 D.1033 m/s2解析由物块在倾角为30°的木板上匀速下滑,得F f=mg sin θ,又F N1=mg cos 30°,F f=μF N1,求得动摩擦因数μ=3;3在倾角为60°的木板上物块加速下滑,有F N2=mg cos 60°,mg sin 60°-μF N2=ma,求得a=102,D对.3 3 m/s答案 D10.一皮带传送装置如图7所示,皮带的速度v足够大,轻弹簧一端固定,另一端连接一个质量为m的滑块,已知滑块与皮带之间存在摩擦,当滑块放在皮带上时,弹簧的轴线恰好水平,若滑块放在皮带的瞬间,滑块的速度为零,且弹簧正好处于自然长度,则当弹簧从自然长度到第一次达最长这一过程中,滑块的速度和加速度变化的情况是图7A.速度增大,加速度增大B.速度增大,加速度减小C.速度先增大后减小,加速度先增大后减小D.速度先增大后减小,加速度先减小后增大解析滑块在水平方向受向左的滑动摩擦力F f和弹簧向右的拉力F拉=kx,合力F合=F f-F拉=ma,当弹簧从自然长度到第一次达最长这一过程中,x 逐渐增大,拉力F拉逐渐增大,因为皮带的速度v足够大,所以合力F合先减小后反向增大,从而加速度a先减小后反向增大;滑动摩擦力与弹簧弹力相等之前,加速度与速度同向,滑动摩擦力与弹簧拉力相等之后,加速度便与速度方向相反,故滑块的速度先增大,后减小.答案 D11.如图8所示,在倾角为α的光滑绝缘斜面上放两个质量分别为m1和m2的带电小球A 、B (均可视为质点),m 1=2m 2,相距为L .两球同时由静止开始释放时,B 球的初始加速度恰好等于零.经过一段时间后,当两球距离为L ′时A 、B 的加速度大小之比为a 1∶a 2=3∶2,则L ′∶L 等于图8A .3∶2B.2∶1C.10∶5D.5∶10解析 由B 球初始加速度恰好等于零得初始时刻A 对B 的库仑力F =m 2g sinα,当两球距离为L ′时,A 球的加速度a 1=m 1g sin α+F ′m 1,初始时B 球受力平衡,两球相互排斥运动一段距离后,两球间距增大,库仑力一定减小,当两球距离为L ′时库仑力小于m 2g sin α,所以加速度a 2的方向应该沿斜面向下,a 2=m 2g sin α-F ′m 2.由a 1∶a 2=3∶2得F ′=0.25m 2g sin α,由库仑力公式F =k qQ L 2,F ′=k qQ L ′2可求得L ′∶L =F ∶F ′=2∶1. 答案 B二、多项选择题12.(2014·江西师大附中、临川一中联考)如图9甲所示,物块的质量m =1 kg ,初速度v 0=10 m/s ,在一水平向左的恒力F 作用下从O 点沿粗糙的水平面向右运动,某时刻后恒力F 突然反向,整个过程中物块速度的平方随位置坐标变化的关系图象如图乙所示,g =10 m/s 2.下列说法中正确的是 ( )图9A.0~5 s内物块做匀减速运动B.在t=1 s时刻,恒力F反向C.恒力F大小为10 ND.物块与水平面的动摩擦因数为0.3解析由图象得物块在前5 m位移内做匀减速运动,在5~13 m位移内做匀加速运动,且由图象斜率得匀减速运动的加速度大小a1=1002×5m/s2=10m/s2,匀加速运动的加速度大小a2=642×(13-5)m/s2=4 m/s2,匀减速运动的时间t=v0a1=1 s,又由牛顿第二定律得,F+μmg=ma1和F-μmg=ma2,联立解得F=7 N,动摩擦因数μ=0.3.选项B、D正确.答案BD13.(2014·江西南昌调研)如图10甲所示,在电梯箱内轻绳AO、BO、CO连接吊着质量为m的物体,轻绳AO、BO、CO对轻质结点O的拉力分别为F1、F2、F3.现电梯箱竖直向下运动,其速度v随时间t的变化规律如图乙所示,重力加速度为g,则()图10A.在0~t1时间内,F1与F2的合力等于F3B.在0~t1时间内,F1与F2的合力大于mgC.在t1~t2时间内,F1与F2的合力小于F3D.在t1~t2时间内,F1与F2的合力大于mg解析对轻质结点O,因没质量,故其无论在何状态下,F1、F2、F3三个力的合力都为零,即F1与F2的合力与F3等大、反向,选项A正确,C错误;对物体进行受力分析,其受到竖直向下的重力mg和竖直向上的绳子的拉力F3,在0~t1时间内,电梯加速向下运动,物体处于失重状态,F3<mg,即F1与F2的合力小于mg,选项B错误;在t1~t2时间内,电梯减速向下运动,物体处于超重状态,F3>mg,即F1与F2的合力大于mg,选项D正确.答案AD14.一年一度的疯狂蹦极跳于2013年12月15日在澳门旅游塔61层隆重举行.为庆祝蹦极跳进驻澳门旅游塔七周年,今年比赛以“运动”为主题.如图11甲所示,蹦极比赛中,质量为60 kg的运动员系在橡皮绳上,橡皮绳另一端固定在O点.运动员从O点由静止下落,下落过程中运动员的速度与下落距离间的关系如图乙所示.橡皮绳的自然长度为12 m,且始终在弹性限度内,遵循胡克定律,不计橡皮绳的质量及空气阻力,重力加速度g=10 m/s2,则()图11A.运动员下落过程中橡皮绳的平均拉力大小约为2 700 NB.运动员下落过程中的最大加速度大小约为20 m/s2C.运动员下落过程中橡皮绳的弹性势能最大值约为2.16×104 JD.当橡皮绳上的拉力为1 200 N时,运动员的速度大小约为18 m/s解析由图乙可知,当运动员速度最大时,橡皮绳的伸长量Δx1=8 m,有kΔx1=mg,解得k=75 N/m.橡皮绳的最大伸长量Δx2=24 m,最大拉力F=kΔx2=1 800 N,则运动员下落过程中橡皮绳的平均拉力F=900 N,A项错误.根据牛顿第二定律得F-mg=ma,最大加速度a=20 m/s2,B项正确.根据机械能守恒定律得E p=mgh=60×10×36 J=2.16×104J,C项正确.当橡皮绳上的拉力为1 200 N时,橡皮绳的伸长量Δx3=16 m,运动员下落的距离x=28 m,由图乙可知,对应的速度大小约为15 m/s,D项错误.答案BC15.(2014·河北省衡水中学调研)如图12甲所示,A、B两长方体叠放在一起,放在光滑的水平面上,B物体从静止开始受到一个水平变力的作用,该力与时间的关系如图乙所示,运动过程中A、B始终保持相对静止.则在0~2t0时间内,下列说法正确的是()图12A.t0时刻,A、B间的静摩擦力最大,加速度最小B.t0时刻,A、B的速度最大C.0时刻和2t0时刻,A、B间的静摩擦力最大D.2t0时刻,A、B离出发点最远,速度为0解析t0时刻,A、B受力F为0,A、B加速度为0,A、B间静摩擦力为0,加速度最小,选项A错误;在0至t0过程中,A、B所受合外力逐渐减小,即加速度减小,但是加速度与速度方向相同,速度一直增加,t0时刻A、B速度最大,选项B正确;0时刻和2t0时刻A、B所受合外力F最大,故A、B在这两个时刻加速度最大,为A提供加速度的A、B间静摩擦力也最大,选项C正确;A、B先在F的作用下加速,t0后F反向,A、B继而做减速运动,到2t0时刻,A、B速度减小到0,位移最大,选项D正确.答案BCD。

高考物理真题分类汇编附答案--动力学问题

高考物理真题分类汇编附答案--动力学问题

动力学部分高考试题选编运动学部分1、(2018∙全国II卷)甲、乙两汽车同一条平直公路上同向运动,其速度—时间图像分别如图中甲、乙两条曲线所示。

已知两车在t2时刻并排行驶,下列说法正确的是()A. 两车在t1时刻也并排行驶B. t1时刻甲车在后,乙车在前C. 甲车的加速度大小先增大后减小D. 乙车的加速度大小先减小后增大2、(2019·新课标全国Ⅱ卷)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。

某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v表示他在竖直方向的速度,其v–t图像如图(b)所示,t1和t2是他落在倾斜雪道上的时刻。

则A.第二次滑翔过程中在竖直方向上的位移比第一次的小B.第二次滑翔过程中在水平方向上的位移比第一次的大C.第二次滑翔过程中在竖直方向上的平均加速度比第一次的大D .竖直方向速度大小为v 1时,第二次滑翔在竖直方向上所受阻力比第一次的大3、(2017新课标II ,24)(12分)为提高冰球运动员的加速能力,教练员在冰面上与起跑线距离s 0和s 1(s 1<s 0)处分别设置一个挡板和一面小旗,如图所示。

训练时,让运动员和冰球都位于起跑线上,教练员将冰球以初速度v 0击出,使冰球在冰面上沿垂直于起跑线的方向滑向挡板;冰球被击出的同时,运动员垂直于起跑线从静止出发滑向小旗。

训练要求当冰球到达挡板时,运动员至少到达小旗处。

假定运动员在滑行过程中做匀加速运动,冰球到达挡板时的速度为v 1。

重力加速度大小为g 。

求(1)冰球与冰面之间的动摩擦因数; (2)满足训练要求的运动员的最小加速度。

参考答案与解析1.解析:试题分析:在v-t 图像中图像包围的面积代表了运动走过的位移,图像的斜率代表加速度,解本题要利用这个知识点求解。

AB ,v-t 图像中图像包围的面积代表运动走过的位移,两车在t 2时刻并排行驶,利用逆向思维并借助于面积可知在t 1时刻甲车在后,乙车在前,故A 错误,B 正确;CD 、图像的斜率表示加速度,所以甲的加速度先减小后增大,乙的加速度也是先减小后增大,故C 错D 正确; 答案:BD2.解析:A .由v –t 图面积易知第二次面积大于等于第一次面积,故第二次竖直方向下落距离大于第一次下落距离,所以,A 错误;B .由于第二次竖直方向下落距离大,由于位移方向不变,故第二次水平方向位移大,故B 正确C .由于v –t 斜率知第一次大、第二次小,斜率越大,加速度越大,或由0v v a t-=,易知a 1>a 2,故C 错误;D .由图像斜率,速度为v 1时,第一次图像陡峭,第二次图像相对平缓,故a 1>a 2,由G –f y =ma ,可知,f y 1<f y 2,故D正确。

2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)

2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)

错误!错误!错误!错误!错误!错误!错误!错误! 2025年高考人教版物理一轮复习专题训练—电磁感应中的动力学和能量问题(附答案解析)1.如图所示,在一匀强磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动。

杆ef及线框的电阻不计,开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速运动B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动2.如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下,导线框以某一初速度向右运动,t=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域。

下列v-t图像中,正确描述上述过程的可能是()3.(2023·陕西咸阳市模拟)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻。

线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直。

设OO′下方磁场区域足够大,不计空气阻力影响,则下列图像不可能反映线框下落过程中速度v随时间t变化的规律的是()4.(2023·江苏盐城市模拟)如图所示,MN和PQ是竖直放置的两根平行光滑金属导轨,导轨足够长且电阻不计,MP间接定值电阻R,金属杆cd保持与导轨垂直且接触良好。

杆cd由静止开始下落并计时,杆cd两端的电压U、杆cd所受安培力的大小F随时间t变化的图像,以及通过杆cd的电流I、杆cd加速度的大小a随杆的速率v变化的图像,合理的是()5.(多选)如图所示,两根间距为d 的足够长光滑金属导轨,平行放置在倾角为θ=30°的绝缘斜面上,导轨的右端接有电阻R ,整个装置放在磁感应强度大小为B 的匀强磁场中,磁场方向垂直于导轨平面向上。

有关牛顿第二定律的动力学问题(原卷版)-2023年高考物理压轴题专项训练(全国通用)

有关牛顿第二定律的动力学问题(原卷版)-2023年高考物理压轴题专项训练(全国通用)

压轴题01有关牛顿第二定律的动力学问题考向一/选择题:有关牛顿第二定律的连接体问题考向二/选择题:有关牛顿第二定律的动力学图像问题考向二/选择题:有关牛顿第二定律的临界极值问题考向一:有关牛顿第二定律的连接体问题1.处理连接体问题的方法:①当只涉及系统的受力和运动情况而不涉及系统内某些物体的受力和运动情况时,一般采用整体法。

②当涉及系统(连接体)内某个物体的受力和运动情况时,一般采用隔离法。

2.处理连接体问题的步骤:3.特例:加速度不同的连接体的处理方法:①方法一(常用方法):可以采用隔离法,对隔离对象分别做受力分析、列方程。

②方法二(少用方法):可以采用整体法,具体做法如下:此时牛顿第二定律的形式: +++=x x x x a m a m a m F 332211合;+++=y y y y a m a m a m F 332211合说明:①F 合x 、F 合y 指的是整体在x 轴、y 轴所受的合外力,系统内力不能计算在内;②a 1x 、a 2x 、a 3x 、……和a 1y 、a 2y 、a 3y 、……指的是系统内每个物体在x 轴和y 轴上相对地面的加速度。

考向二:有关牛顿第二定律的动力学图像问题常见图像v ­t 图像、a ­t 图像、F ­t 图像、F ­a 图像三种类型(1)已知物体受到的力随时间变化的图线,求解物体的运动情况。

(2)已知物体的速度、加速度随时间变化的图线,求解物体的受力情况。

(3)由已知条件确定某物理量的变化图像。

解题策略(1)问题实质是力与运动的关系,要注意区分是哪一种动力学图像。

(2)应用物理规律列出与图像对应的函数方程式,进而明确“图像与公式”“图像与物体”间的关系,以便对有关物理问题作出准确判断。

破题关键(1)分清图像的类别:即分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图像所反映的物理过程,会分析临界点。

(2)注意图线中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等。

2023高考物理真题分类汇编(动力学部分)

2023高考物理真题分类汇编(动力学部分)

2023年高考真题(动力学部分)一、单选题1.(全国乙卷)一同学将排球自O点垫起,排球竖直向上运动,随后下落回到O点。

设排球在运动过程中所受空气阻力大小和速度大小成正比。

则该排球()A.上升时间等于下落时间B.被垫起后瞬间的速度最大C.达到最高点时加速度为零D.下落过程中做匀加速运动2.(全国甲卷)一小车沿直线运动,从t=0开始由静止匀加速至t=t1时刻,此后做匀减速运动,到t=t2时刻速度降为零。

在下列小车位移x与时间t的关系曲线中,可能正确的是()A.B.C.D.3.(北京卷)如图所示,在光滑水平地面上,两相同物块用细线相连,两物块质量均为1kg,细线能承受的最大拉力为2N。

若在水平拉力F作用下,两物块一起向右做匀加速直线运动。

则F的最大值为()A.1N B.2N C.4N D.5N4.(山东卷)餐厅暖盘车的储盘装置示意图如图所示,三根完全相同的弹簧等间距竖直悬挂在水平固定圆环上,下端连接托盘。

托盘上叠放若干相同的盘子,取走一个盘子,稳定后余下的正好升高补平。

已知单个盘子的质量为300g,相邻两盘间距1.0cm,重力加速度大小取10m/s2。

弹簧始终在弹性限度内,每根弹簧的劲度系数为()A.10N/m B.100N/m C.200N/m D.300N/m5.(山东卷)如图所示,电动公交车做匀减速直线运动进站,连续经过R、S、T三点,已知ST间的距离是RS的两倍,RS段的平均速度是10m/s,ST段的平均速度是5m/s,则公交车经过T点时的瞬时速度为()A.3m/s B.2m/s C.1m/s D.0.5m/s6.(海南卷)如图所示,工人利用滑轮组将重物缓慢提起,下列说法正确的是()A.工人受到的重力和支持力是一对平衡力B.工人对绳的拉力和绳对工人的拉力是一对作用力与反作用力C.重物缓慢拉起过程,绳子拉力变小D.重物缓慢拉起过程,绳子拉力不变7.(浙江卷)如图所示,轻质网兜兜住重力为G的足球,用轻绳挂于光滑竖直墙壁上的A点,轻绳的拉力为T F,墙壁对足球的支持力为N F,则()A.T NF F<B.T NF F=C.T F G>D.T F G=8.(浙江卷)在足球运动中,足球入网如图所示,则()A.踢香蕉球时足球可视为质点B.足球在飞行和触网时惯性不变C.足球在飞行时受到脚的作用力和重力D.触网时足球对网的力大于网对足球的力9.(浙江卷)如图所示,水平面上固定两排平行的半圆柱体,重为G的光滑圆柱体静置其上,a、b为相切点,90aOb∠=︒,半径Ob与重力的夹角为37°。

高中动力学试题及答案

高中动力学试题及答案

高中动力学试题及答案一、选择题(每题3分,共30分)1. 质量为m的物体在水平面上受到一个水平方向的恒定力F作用,物体的加速度大小为a,若物体的质量增加到2m,而力F不变,则物体的加速度大小变为:A. a/2B. 2aC. 2a/3D. a2. 根据牛顿第二定律,作用在物体上的合力等于物体质量与加速度的乘积。

若物体的质量为m,加速度为a,则合力F的大小为:A. F = maB. F = m/aC. F = a/mD. F = a^2/m3. 一个物体从静止开始做匀加速直线运动,加速度为a,经过时间t 后,其速度v和位移s的关系为:A. v = atB. s = 1/2at^2C. v = 2s/tD. s = vt - 1/2at^24. 牛顿第三定律指出,作用力和反作用力大小相等、方向相反。

如果一个物体对地面施加了100N的力,地面对这个物体的反作用力大小为:A. 100NB. 50NC. 200ND. 0N5. 一个物体在水平面上做匀速直线运动,其受到的摩擦力为f,若物体速度增加,则摩擦力:A. 增加B. 减少C. 不变D. 无法确定6. 根据动能定理,一个物体的动能变化等于作用在物体上的合外力做的功。

如果一个物体的动能从E1增加到E2,则合外力做的功W为:A. W = E1 - E2B. W = E2 - E1C. W = (E1 + E2)/2D. W = E1 * E27. 一个物体从高度h处自由下落,忽略空气阻力,其下落过程中重力做的功W与物体的质量m和高度h的关系为:A. W = mgB. W = mghC. W = h/mD. W = g/mh8. 一个物体在斜面上做匀速直线运动,斜面的倾角为θ,物体的重力为G,摩擦力为f,则物体所受的合力为:A. G*sinθ - fB. G*cosθ - fC. G*sinθ + fD. G*cosθ + f9. 一个物体在水平面上做匀加速直线运动,其加速度为a,若物体的质量为m,作用力为F,则物体所受的合力为:A. F - maB. F + maC. maD. F10. 一个物体在竖直方向上做自由落体运动,其加速度大小为g,则物体的位移s与时间t的关系为:A. s = 1/2gt^2B. s = gt^2C. s = 2gtD. s = gt二、填空题(每题3分,共30分)1. 一个物体的质量为2kg,受到的力为10N,根据牛顿第二定律,其加速度大小为______ m/s^2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理力学复习11.如图所示,一个球形物体静止于光滑水平面上,并与竖直光滑墙壁接触,A、B两点是球跟墙和地面的接触点,则下列说法中正确的是()A.物体受重力、B点的支持力、A点的弹力作用B.物体受重力、B点的支持力作用C.物体受重力、B点的支持力、地面的弹力作用D.物体受重力、B点的支持力、物体对地面的压力作用2.小车上固定一根弹性直杆A,杆顶固定一个小球B(如图2-1-3所示),现让小车从光滑斜面上自由下滑,在下图的情况中杆发生了不同的形变,其中正确的是()3,.如图所示为位于水平面上的小车,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆的下端固定有质量为m的小球。

下列关于斜杆对小球的作用力F的判断中,正确的是()A.小车静止时,F=mg sin θ,方向沿杆向上B.小车静止时,F=mg cos θ,方向垂直于杆向上C.小车向右匀速运动时,一定有F=mg,方向竖直向上D.小车向右匀加速运动时,一定有F>mg,方向一定沿杆向上4.图2-1-9的四个图中,AB、BC均为轻质杆,各图中杆的A、C端都通过铰链与墙连接,两杆都在B处由铰链连接,且系统均处于静止状态。

现用等长的轻绳来代替轻杆,能保持平衡的是()A.图中的AB杆可以用轻绳代替的有甲、乙、丙B.图中的AB杆可以用轻绳代替的有甲、丙、丁C.图中的BC杆可以用轻绳代替的有乙、丙、丁D.图中的BC杆可以用轻绳代替的有甲、乙、丁5.在半球形光滑碗斜搁一根筷子,如图2所示,筷子与碗的接触点分别为A、B,则碗对筷子A、B两点处的作用力方向分别为()A.均竖直向上B.均指向球心OC.A点处指向球心O,B点处竖直向上D.A点处指向球心O,B点处垂直于筷子斜向上6.如图4所示,质量为m的球置于斜面上,被一个竖直挡板挡住。

现用一个力F拉斜面,使斜面在水平面上做加速度为a的匀加速直线运动,忽略一切摩擦,以下说法中正确的是()A.若加速度足够小,竖直挡板对球的弹力可能为零B.若加速度足够大,斜面对球的弹力可能为零C.斜面和挡板对球的弹力的合力等于maD.挡板对球的弹力不仅有,而且是一个定值9.如图5所示,质量为2 kg的物体B和质量为1 kg的物体C用轻弹簧连接并竖直地静置于水平地面上。

再将一个质量为3 kg的物体A轻放在B上的一瞬间,弹簧的弹力大小为(取g=10 m/s2)()图5A.30 N B.0C.20 N D.12 N10.如图9所示,A、B两个物块的重力分别是G A=3 N,G B=4 N,弹簧的重力不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力F=2 N,则天花板受到的拉力和地板受到的压力,有可能是()图9A.3 N和4 N B.5 N和6 NC.1 N和2 N D.5 N和2 N11.一个长度为L的轻弹簧,将其上端固定,下端挂一个质量为m的小球时,弹簧的总长度变为2L。

现将两个这样的弹簧按如图10所示方式连接,A、B两小球的质量均为m,则两小球平衡时,B小球距悬点O的距离为(不考虑小球的大小,且弹簧都在弹性限度围)()图10A.3L B.4LC.5L D.6L12.完全相同质量均为m的物块A、B用轻弹簧相连,置于带有挡板C的固定斜面上。

斜面的倾角为θ,弹簧的劲度系数为k。

初始时弹簧处于原长,A恰好静止。

现用一沿斜面向上的力拉A,直到B刚要离开挡板C,则此过程中物块A的位移为(弹簧始终处于弹性限度)()图12A .mg kB .mg sin θkC .2mg kD .2mg sin θk13.如图2-2-4所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力( )图2-2-4A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小14. 如图2-2-6,滑块A 置于水平地面上,滑块B 在一水平力作用下紧靠滑块A (A 、B 接触面竖直),此时A 恰好不滑动,B 刚好不下滑。

已知A 与B 间的动摩擦因数为μ1,A 与地面间的动摩擦因数为μ2,最大静摩擦力等于滑动摩擦力。

A 与B 的质量之比为( )图2-2-6A .1μ1μ2B .1-μ1μ2μ1μ2C .1+μ1μ2μ1μ2D .2+μ1μ2μ1μ215.如图2-2-8所示,质量为10 kg 的物体A 拴在一个被水平拉伸的弹簧一端,弹簧的拉力为5 N 时,物体A 处于静止状态。

若小车以1 m/s 2的加速度向右运动后,则(g =10 m/s 2)( )图2-2-8A .物体A 相对小车向右运动B .物体A 受到的摩擦力减小C .物体A 受到的摩擦力大小不变D .物体A 受到的弹簧拉力增大16.(多选)将力传感器A 固定在光滑水平桌面上,测力端通过轻质水平细绳与滑块相连,滑块放在较长的小车上。

如图2-2-9甲所示,传感器与计算机相连接,可获得力随时间变化的规律。

一水平轻质细绳跨过光滑的定滑轮,一端连接小车,另一端系砂桶,整个装置开始处于静止状态。

在滑块与小车分离前缓慢向砂桶里倒入细砂,力传感器采集的F-t图像如图乙所示。

则()图2-2-9A.2.5 s前小车做变加速运动B.2.5 s后小车做变加速运动(假设细砂仍在加注中)C.2.5 s前小车所受摩擦力不变D.2.5 s后小车所受摩擦力不变17.如图2所示,有一重力不计的方形容器,被水平力F压在竖直的墙面上处于静止状态,现缓慢地向容器注水,直到注满为止,此过程中容器始终保持静止,则下列说确的是()图2A.容器受到的摩擦力不断增大B.容器受到的摩擦力不变C.水平力F必须逐渐增大D.容器受到的合力逐渐增大18.如图4所示,重为G的木棒,可绕光滑轴O自由转动,现将棒搁在表面粗糙的小车上,小车原来静止,如果用水平力F拉动小车,则棒受到的摩擦力方向()图4A.向右B.向左C.等于零D.都有可能19.如图5所示,建筑装修中工人用质量为m的磨石对斜壁进行打磨,当对磨石加竖直向上大小为F的推力时,磨石恰好沿斜壁向上匀速运动,已知磨石与斜壁之间的动摩擦因数为μ,则磨石受到的摩擦力是()图5A.(F-mg)cos θB.(F-mg)sin θC.μ(F-mg)cos θD.μ(F-mg)20.长直木板的上表面的一端放有一铁块,木板由水平位置缓慢向上转动(即木板与水平面的夹角α变大),另一端不动,如图6所示。

则铁块受到的摩擦力F f 随角度α的变化图像可能正确的是下图中的(设最大静摩擦力等于滑动摩擦力)( )图621.如图8所示,物体A 置于倾斜的传送带上,它能随传送带一起向上或向下做匀速运动,下列关于物体A 在上述两种情况下的受力描述,正确的是( )图8A .物体A 随传送带一起向上运动时,A 所受的摩擦力沿斜面向下B .物体A 随传送带一起向下运动时,A 所受的摩擦力沿斜面向下C .物体A 随传送带一起向下运动时,A 不受摩擦力作用D .无论A 随传送带一起向上还是向下运动,传送带对物体A 的作用力均相同22.如图9所示,物体B 叠放在物体A 上,A 、B 的质量均为m ,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C 匀速下滑,则( )图9A .A 、B 间没有静摩擦力B .A 受到B 的静摩擦力方向沿斜面向上C .A 受到斜面的滑动摩擦力大小为2mg sin θD .A 与B 间的动摩擦因数μ=tan θ23. 如图11所示,物体A 、B 置于水平地面上,与地面间的动摩擦因数均为μ,物体A 、B 用一跨过动滑轮的细绳相连,现用逐渐增大的力向上提升滑轮,某时刻拉A 物体的绳子与水平面成53°,拉B 物体的绳子与水平面成37°,此时A 、B 两物体刚好处于平衡状态,则A 、B 两物体的质量之比m Am B 为(认为最大静摩擦力等于滑动摩擦力,sin 37°=0.6,cos 37°=0.8)( )图11A .4μ+33μ+4B .3μ+44μ+3C .4μ-33μ-4D .3μ-44μ-324. 如图12所示,A 、B 两物体叠放在水平地面上,A 物体质量m =20 kg ,B 物体质量M =30 kg 。

处于水平位置的轻弹簧一端固定于墙壁,另一端与A 物体相连,轻弹簧处于自然状态,其劲度系数为250 N/m ,A 与B 之间、B 与地面之间的动摩擦因数均为μ=0.5。

现有一水平推力F 作用于物体B 上使B 缓慢地向墙壁移动,当移动0.2 m 时,水平推力F 的大小为(已知A 、B 之间的最大静摩擦力等于滑动摩擦力,g 取10 m/s 2)( )图12A .350 NB .300 NC .250 ND .200 N25.如图13所示,在水平桌面上叠放着质量相等的A 、B 两块木板,在木板A 上放着质量为m 的物块C ,木板和物块均处于静止状态。

A 、B 、C 之间以及B 与地面之间的动摩擦因数均为μ,设最大静摩擦力与滑动摩擦力大小相等,重力加速度为g ,现用水平恒力F 向右拉木板A ,则以下判断正确的是( )图13A .不管F 多大,木板B 一定保持静止 B .B 受到地面的摩擦力大小一定小于FC .A 、C 之间的摩擦力大小一定等于μmgD .A 、B 之间的摩擦力大小不可能等于F。

相关文档
最新文档