机械设备故障诊断技术

合集下载

机械设备故障诊断技术研究

机械设备故障诊断技术研究

机械设备故障诊断技术研究随着工业化的不断发展,机械设备的应用范围越来越广泛,而机械设备故障诊断技术的研究也变得越来越重要。

机械设备故障诊断技术是通过对机械设备进行故障分析,确定故障原因和解决方法的一种技术。

一、机械设备故障的类型机械设备故障类型繁多,主要分为以下几类:1.电路故障:包括电气控制中的故障和电源系统中的故障。

2.机械故障:包括机械结构失效、零部件损坏等。

3.液压故障:主要指液压系统中的故障,包括系统压力不足、油液渗漏等。

4.气动故障:主要指气动系统中的故障,包括气压不足、气管阻塞等。

二、机械设备故障诊断技术的研究机械设备故障诊断技术已经成为了机械设备维护和管理的重要技术,其研究涉及了多个领域,包括机械结构分析、电气控制、液压技术、气动技术等。

1.机械结构分析对于机械结构失效等问题,需要对机械结构进行全面的分析。

在机械结构分析中,一般采用有限元分析技术。

这种技术可以通过计算机仿真来分析机械结构在加工、运动和载荷作用下的变形、应力等因素。

2.电气控制电气控制是机械设备中的一个重要部分,其故障和问题也比较常见。

对于电气控制中的问题,需要有电气工程师进行相应的诊断和维修。

电气工程师需要对电气元件的工作原理、电路板以及电气控制系统等方面进行了解和掌握。

3.液压技术液压技术是机械设备中的常见技术,而在液压系统中常见的故障包括系统压力不足、腐蚀、泄漏等。

对于液压技术中的问题,需要有液压工程师进行相应的诊断和维修。

液压工程师需要对液压元件的特性、液压控制系统等方面进行了解和掌握。

4.气动技术与液压技术类似,气动技术也是机械设备中的重要技术,而在气动系统中常见的故障包括气压不足、气管阻塞等。

对于气动技术中的问题,需要有气动工程师进行相应的诊断和维修。

气动工程师需要对气动元件的特性、气动控制系统等方面进行了解和掌握。

三、机械设备故障诊断技术的应用机械设备故障诊断技术的应用范围非常广泛,包括航空、航天、冶金、化工、石化、能源、交通等多个领域。

机械设备状态监测与故障诊断技术

机械设备状态监测与故障诊断技术
等。
优点与局限性
温度监测技术具有简单 、直观和易于实现的优 点。然而,对于非热力 设备或低温设备,温度 变化可能不明显,需要
采用其他监测方法。
油液分析技术
总结词
油液分析技术是通过分析机械设备的润滑油或液 压油的成分和性能指标,从而判断设备运行状态 的一种方法。
适用范围
油液分析技术适用于各种类型的机械设备,特别 是润滑系统和液压系统,如轴承、齿轮和液压缸 等。
温度监测技术是通过测 量机械设备的温度变化 ,分析其特征参数,从 而判断设备运行状态的 一种方法。
详细描述
温度监测技术主要应用 于热力设备、电机和电 子设备的监测。通过测 量和分析温度信号的变 化趋势、波动幅度和温 差等参数,可以判断设
备的运行状态。
适用范围
温度监测技术适用于各 种类型的热力设备和电 子设备,如锅炉、汽轮 机、变压器和集成电路
技术应用前景
工业4.0
机械设备状态监测与故障诊断技术是工业4.0的重要组成部分,能 够提高生产效率和设备利用率,降低维护成本。
智能制造
在智能制造领域,该技术能够实现设备的远程监控和预测性维护, 提高制造过程的可靠性和效率。
航空航天领域
在航空航天领域,该技术对于保障飞行安全和提高飞行器寿命具有 重要意义。
机械设备状态监测与故障诊断 05 技术的挑战与未来发展
技术挑战
监测设备兼容性
不同品牌和型号的机械设备可能 需要特定的监测设备,导致监测
设备的兼容性成为一大挑战。
数据处理与分析
机械设备产生的数据量庞大,如何 高效地处理和分析这些数据以提取 有价值的信息是一个技术难题。
故障预测准确性
准确预测机械设备故障的发生时间 和部位是一个具有挑战性的任务, 需要不断优化算法和提高预测模型 的精度。

机械设备故障诊断技术及方法

机械设备故障诊断技术及方法

机械设备故障诊断技术及方法
机械设备故障诊断技术及方法包括以下几种:
1.经验诊断法:基于经验推理,通过对已知故障的分析,对新问题进
行判断和诊断。

但该方法受限于经验的丰富性和专业性。

2.故障树分析法(FTA):将机械设备的故障按照原因和后果的逻辑
关系绘制成树状结构,以便确定故障的根本原因和可能的组合条件。

3.事件树分析法(ETA):与FTA类似,但是从事件的发生过程角度
切入。

通过对事件的因果关系进行分析,以确定故障的可能原因。

4.信号处理法:通过采集机械设备运行过程中的各种信号,比如温度、压力、振动等,进行分析和处理,以确定故障原因。

该方法适用于那些难
以进行物理实验的设备。

5.模型建立法:建立机械设备运行模型,并通过模型分析来确定故障
原因。

该方法需要丰富的模型知识和数据。

综上所述,机械设备故障诊断技术及方法各有优缺点,选用合适方法
需要根据具体情况灵活运用。

机械故障诊断的方法

机械故障诊断的方法

机械故障诊断的方法
机械故障诊断的方法可以分为以下几种:
1. 观察法:通过观察机械设备的运转过程中是否存在异常现象来判断故障原因。

例如,机械噪音变大、部件振动、热量异常等。

2. 测试法:通过使用仪器设备对机械设备进行测试,测量关键参数,比如温度、压力、电流、电压等,从而找出故障的原因。

3. 比对法:将已知正常的机械设备与出故障的设备进行比对,找出两者之间的差异并分析可能的故障原因。

4. 故障代码法:一些机械设备会记录故障代码,通过查阅故障代码手册,可以迅速定位到故障原因。

5. 试验法:通过对机械设备进行一系列试验,例如拉力试验、冲击试验、振动试验等,来模拟实际使用过程中可能发生的故障情况。

6. 经验法:依靠工程师或技术人员的丰富经验和专业知识,根据故障的症状和手头的情况进行判断和诊断。

以上方法可以单独或者组合使用,根据具体的机械设备故障情况选择合适的方法
进行诊断。

机械设备故障诊断的前沿技术是什么

机械设备故障诊断的前沿技术是什么

机械设备故障诊断的前沿技术是什么在现代工业生产中,机械设备的稳定运行是保障生产效率和产品质量的关键。

然而,由于长时间的运行、复杂的工作环境以及各种不可预见的因素,机械设备难免会出现故障。

及时准确地诊断出故障,并采取有效的维修措施,对于减少生产损失、提高设备利用率具有重要意义。

随着科技的不断进步,机械设备故障诊断领域涌现出了一系列前沿技术,为设备的可靠运行提供了更强大的支持。

一、基于深度学习的故障诊断技术深度学习作为人工智能领域的重要分支,在机械设备故障诊断中展现出了巨大的潜力。

传统的故障诊断方法往往依赖于人工提取特征,这不仅需要丰富的专业知识和经验,而且容易受到主观因素的影响。

深度学习模型,如卷积神经网络(CNN)和循环神经网络(RNN),能够自动从大量的监测数据中学习到有效的特征表示,从而实现更准确的故障诊断。

例如,通过将振动信号、温度数据等输入到深度学习模型中,模型可以自动识别出正常运行状态和故障状态之间的差异,并对故障类型进行分类。

此外,深度学习还可以用于预测设备的剩余使用寿命,为设备的维护计划提供科学依据。

二、无线传感器网络与故障诊断的融合无线传感器网络(WSN)的发展为机械设备故障诊断带来了新的机遇。

通过在设备上布置多个无线传感器,可以实时采集设备的运行参数,如振动、声音、压力等。

这些传感器节点之间可以相互通信,将采集到的数据传输到中央处理单元进行分析。

与传统的有线监测系统相比,无线传感器网络具有安装方便、成本低、可扩展性强等优点。

同时,结合先进的信号处理和数据分析算法,可以从海量的监测数据中提取出有价值的信息,实现对设备故障的早期预警和诊断。

三、基于模型的故障诊断方法基于模型的故障诊断方法是通过建立机械设备的数学模型,来预测设备在正常运行条件下的输出,并将实际监测到的输出与模型预测值进行比较。

如果两者之间存在较大偏差,则表明设备可能出现了故障。

这种方法需要对设备的工作原理和结构有深入的了解,建立精确的数学模型。

机械设备故障检测诊断技术发展前景(三篇)

机械设备故障检测诊断技术发展前景(三篇)

机械设备故障检测诊断技术发展前景机械设备故障检测诊断技术的发展前景无疑是非常广阔的,随着科学技术的不断进步,人们对机械设备故障检测诊断技术的需求也越来越高。

下面将从技术创新、应用领域和市场前景三个方面进行分析。

一、技术创新方面1. 传感器技术的创新:传感器是机械设备故障检测诊断技术的核心,近年来传感器技术不断创新,出现了更加精确、灵敏的传感器。

例如温度传感器、振动传感器、声音传感器等,可以更加准确地监测机械设备的运行状态,及时发现并诊断潜在故障。

2. 数据分析技术的发展:随着大数据时代的来临,机械设备产生的数据量越来越大。

数据分析技术的发展使得人们可以更好地利用这些数据,提取有价值的信息,判断机械设备是否存在故障,并进行诊断。

例如,人工智能和机器学习技术可以对数据进行快速分析和处理,从而提高机械设备故障检测诊断的准确性和效率。

3. 无损检测技术的突破:无损检测技术是一种非破坏性的检测方法,可以通过测量材料的某些特性,如声音、振动、电磁等来判断机械设备是否存在故障。

随着超声波、热像仪等无损检测技术的不断突破,人们可以更加方便地进行机械设备故障检测诊断。

二、应用领域方面1. 工业制造领域:在工业制造过程中,机械设备的正常运行直接关系到产品的质量和效益。

因此,机械设备故障检测诊断技术在工业制造领域具有广泛的应用前景。

例如,可以通过对机床、钢铁设备、电力设备等进行故障检测诊断,减少设备故障引起的生产停工和能源浪费,提高生产效率和产品质量。

2. 能源领域:能源设备的运行稳定性对能源的安全供应至关重要。

通过机械设备故障检测诊断技术,可以实时监测和预防能源设备的故障,提高能源设备的效率和可靠性。

例如,对发电机组、风力发电设备等进行故障检测诊断,可以减少停电事故的发生,降低能源浪费。

3. 交通运输领域:机械设备在交通运输领域的应用广泛,包括汽车、火车、飞机等。

机械设备故障检测诊断技术在交通运输领域的发展前景较为广阔。

机械设备状态监测和故障诊断技术

机械设备状态监测和故障诊断技术
详细描述
旋转机械如电机、压缩机、轴承等在长期运行过程中,容易出现磨损、疲劳、腐蚀等问题,导致设备性能下降或 失效。通过振动分析、声音分析、温度监测等故障诊断技术,可以及时发现异常现象,判断故障类型和程度,为 维修保养提供依据。
故障诊断在液压系统中的应用
总结词
液压系统在机械设备中起到传递动力和调节控制的作用,其运行状态直接影响到 整个设备的性能。对液压系统进行状态监测和故障诊断,有助于保障设备的稳定 性和可靠性。
早期的状态监测主要依靠人工检 查和简单的仪表测量,受限于技 术和认知水平,监测的准确性和
可靠性较低。
发展阶段
随着电子技术和计算机技术的进 步,状态监测技术逐渐向自动化 、智能化方向发展,出现了各种 传感器、数据采集与处理系统等

成熟阶段
现代的状态监测技术已经形成了 集信号处理、模式识别、预测评 估等多学科于一体的综合性技术 体系,广泛应用于各种机械设备
详细描述
液压系统中的各种元件,如泵、阀、缸等,在长期使用过程中可能会出现泄漏、 堵塞、磨损等问题。通过对液压油的温度、压力、流量等参数进行监测,结合压 力波动、噪声等信号分析,可以快速定位故障位置,提高维修效率。
故障诊断在生产设备中的应用
要点一
总结词
要点二
详细描述
生产设备是工业生产中的重要工具,其运行状态直接关系 到生产效率和产品质量。通过状态监测和故障诊断技术, 可以及时发现设备潜在问题,保障生产的顺利进行。
多技术融合的监测与诊断技术
多技术融合的监测与诊断技术是指将多种技术手段融合在一 起,形成综合性的监测和诊断系统。这些技术手段包括振动 分析、油液分析、声发射等,能够从多个角度对机械设备进 行全面监测和分析。
多技术融合的监测与诊断技术能够提高故障诊断的准确性和 可靠性,为维修工作提供更加全面的技术支持。同时,这种 技术需要专业人员对各种技术手段进行综合分析和判断,以 保证监测和诊断结果的准确性。

机械设备故障应用诊断技术

机械设备故障应用诊断技术
自然因素影响而引起的故障,如磨损、老化等。
机械设备故障应用诊断技术
按故障造成的后果分类
1)、致命故障:这是指危及或导致人身伤亡,引起机械设备报废或造成重大经
济损失的故障。
2)、严重故障:是指严重影响机械设备正常使用,在较短的有效时间内可以排
除的故障。
3)、一般故障:明显影响机械设备正常使用,在较短的有效时间内可以排除的
故障。
4)、轻度故障:轻度影响机械设备正常使用,能在日常保养中用随机工具轻易
排除的故障。如零件松动等。
机械设备故障应用诊断技术
第三部分 故障概率与故障率
机械设备故障应用诊断技术
故障概率
设备的技术状况总是随着时间的延长而逐渐恶 化的因而设备的使用寿命总是有限的。由此可知, 设备发生故障的可能性总是随着时间的延长而增大 的,因而它可以看作是时间的函数。但同于设备故 障的发生具有随机性,即无论哪一种故障、人们都 难以预料它的确切发生时间。故设备发生故障的情 况都只能用概率来表示,称为故障概率
机械设备在规定当的t=条∞件时下,和即规定F的( 时)间内0 不f发(t生)d故 障t1的概率称为无故障概率,用R(t)
表示。
故障概率与无故障概率构成了一个完整的事件组,即

F(t) R(t) 1 R(t)1f(t)
机械设备故障应用诊断技术
故障率
故障率是指在每一个时间增量里产生故障的次数或在时间t之尚未发生故障,而在随后 的αt时间之内可能发生故障的条件概率,用 λ(t )来表示,其数学关系式为:
发的阶段。当这种情况能够鉴别时,即认为是一种故障现象称为潜在故 障。
机械设备故障应用诊断技术
根据故障产生的原因分类
1)、人为故障:由于在设计、制造、大修、使用、运输、管理等方面存在问题,

机械设备故障诊断实施技术

机械设备故障诊断实施技术

也就是指采集器可同步统计旳信号路数 一般为1、2、4、8、16不等
指采集器采集数据旳快慢,单位为Hz, 其值越大越好。
是指采集器感知信号幅值微小变化旳能力
(5)信噪比 是决定采集器动态范围旳指标,单位 为dB,要求越大越好。
(6)输入输出阻抗 是采集器与其他仪器相联时需要考虑 旳指标,要求输入阻抗尽量大些而输 出阻抗尽量小些。
对于与固有振动频率有关旳 高频振动 振动加速度作为检测参数。
为了提升诊疗旳有效性 , 可考虑用两种措施同步进行检测。
2. 检测部位与检测方向
一般减速器 , 其检测部位选择在轴承座盖
高速增速器 , 如轴承座在机箱内部 , 则选择轴承座附近刚性 很好旳部位 , 或测量基础旳振动。通 常要求测定部位旳表面 应是光滑旳 , 而且为了取得精确旳测定值 , 应保持每次旳检 测位置不变。
-0.14
0.12
-0.05
0
0.05
0.15
0.1
0.15
-

0.07
编码值
12
13
6
3
12
10
11
14
13
6
3
3
二进制
110
1101
0110
0101
1100
1010
1011 1110 1101 0110
0101 0101
0
2 . 力
(7)存贮容量
4.1.2.3 信号分析与处理设备
理论上旳多种数学运算必须借助一定旳硬件设备才 干真正得以实现,这就是信号旳分析与处理设备。
信号分析与处理设备分为两大类
通用型和专用型
所谓通用型信号分析与处理设备,是指由通用计算机 硬件和基于其上旳信号分析与处理软件构成旳系统; 所谓专用型信号分析与处理设备,则是指除通用型之 外旳其他多种信号分析与处理设备。

机械设备故障诊断技术及方法

机械设备故障诊断技术及方法

机械设备故障诊断技术及方法
一、机械设备故障诊断技术
1、图像识别技术
图像识别技术是基于图像处理、模式识别和计算机视觉等多学科的一
种技术,可以通过机器自动识别图像中的特征,从而诊断出机械设备故障。

它利用图像识别算法,根据特定设备上细致的拍摄图像的信息,经过计算
机识别,分析出模式、参数、结构信息,从而诊断出机械设备故障。

2、传感器技术
传感器技术是指利用传感器可以直接检测机械设备上可测量参数的改变,从而诊断出机械设备故障。

这种技术可以检测温度、压力、流量、振动、电弧等物理参数的变化情况,然后对机械设备故障进行诊断。

3、机器学习技术
机器学习技术是指智能系统能够通过不断自学习,从大量数据中学习
出若干模型,并根据这些模型进行精确判断,从而诊断出机械设备故障。

机器学习技术可以根据搜集的大量数据建立模型,分析其中的规律,从而
对机械设备状态和参数变化进行判断,从而诊断出机械设备故障。

二、机械设备故障诊断方法
1、直接诊断法
直接诊断法是指利用传感器和测量仪表直接对机械设备的参数进行测量,从而判断出机械设备故障的方法。

机械设备故障诊断技术

机械设备故障诊断技术

信号的概率密度函数分析称为幅值域分析
2、故障诊断的动态指标
(1)峰值 x p :指信号可能出现的最大瞬时值 max x(t) 。 (2)均值 µ x 和绝对平均值 µ x :均值是指信号幅值的算术平均值
∫ µ x
=
1 T
T
x(t)dt
0
∫ µ x
=1 T
T
x(t) dt
0
假如信号 x(t) 的离散值为 xi (i = 1,2,⋯, N ) ,则可得到均值和绝对平均值的一致
1
1.2 设备故障的信息获取和检测方法
1.2.1 设备故障信息的获取方法
监测对象 特征信信号息测取 征 兆信息提取 状 态状态诊断
故障情况
设整备、干控预制(、维诊修断、)调
决 决策形成策 状态趋势
图 1-1 设备诊断过程框图
1、直接观测法 2、参数测定法 3、磨损残余物的测定 4、设备性能指标的测定 1.2.2 设备故障的检测方法 1、振动和噪声的故障检测 (1)振动法:对机器主要部位的振动值如位移、速度、加速度、转速及相位 值等进行测定,与标准值进行比较,据此可以宏观地对机器的运行状况进行评定,
1
xi2 ] 2
i=1
(4)方差:方差的定义为
∫ σ
2 x
=
1 T
T 0
[
x(t
)

µ
x
]2
dt
∑ σ ˆ
2 x
=
1 N
N
(xi
i=1
2
− µˆ x )
(5)偏斜度和峭度:两者的数值可以如下确定
机械设备故障诊断技术及应用
第一章 绪 论
1.1 机械设备故障诊断技术的意义、目的和内容 设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局 部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。 机械设备故障诊断技术日益获得重视与发展的原因是,随着科学技术与生产 的发展,机械设备工作强度不断增大,生产效率、自动化程度越来越高,同时设 备更加复杂,各部分的关联愈加密切,往往某处微小故障就爆发链锁反应,导致 整个设备乃至与设备有关的环境遭受灾难性的毁坏。例如,1973 年美国三里岛核 电站堆芯损坏事故;1985 年美国航天飞机“挑战者号”的坠毁;1984 年印度博帕 尔市农药厂异氰酸甲酯毒气外泄事故;1986 年前苏联切尔诺贝利核电站泄漏事故; 1986 年欧洲莱因河瑞士化学工业污染事故等。重要设备因事故停机造成的损失极 为严重;一个乙烯球罐停产一天,损失产值 500 万元,利润 200 万元;一台大型 化纤设备停产 1 小时,损失产值 80 万元。对大型汽轮发电机组进行振动监视,获 利与投资之比为 17:1。 设备诊断技术日益获得重视与发展的另一个重要原因是能改革维修体制,大 量节省维修费用。 日本有资料指出,采用诊断技术后,每年设备维修费减少 20%~50%,故障停 机减少 75%。 设备诊断技术包括以下 5 方面内容。 1、正确选择与测取设备有关状态的特征信号 2、正确地从特征信号中提取设备有关状态的有用信息 3、根据征兆正确地进行设备的状态诊断 4、根据征兆与状态正确地进行设备的状态分析 5、根据状态分析正确地作出决策

机械设备故障诊断与监测的常用方法

机械设备故障诊断与监测的常用方法

机械设备故障诊断与监测的常用方法
机械设备故障诊断与监测是保证机械设备正常运行和提高设备可靠性的重要手段。


面介绍一些常用的方法。

1.物理观察与检查:通过人工观察和仪器测量来发现机械设备的故障现象。

比如观察
设备的运行状态、噪音、振动、排放物等,可以初步判断设备是否存在故障。

2.故障统计分析:通过对设备历史故障的统计分析,找出常见故障的发生规律和原因。

可以利用故障统计分析的数据,预测设备的寿命和故障发生的可能性,制定相应的维护计划。

3.振动诊断:通过对设备振动的监测和分析,判断设备的工作状态和故障情况。

可以
通过振动传感器采集机械设备的振动信号,并通过对信号的频谱分析和特征提取,判断设
备是否存在故障。

7.红外热像诊断:通过红外热像仪对设备表面的红外热像进行拍摄与分析,判断设备
的工作状态和故障情况。

可以通过设备表面的热量分布图,发现设备存在的异常热点,进
而判断设备是否存在故障。

机械故障诊断技术

机械故障诊断技术

机械故障诊断技术序言:随着科学技术的发展,机械设备越来越复杂,自动化水平越来越高,机械设备在现代工业生产中的作用和影响越来越大,与其有关的费用越来越高,机器运行中发生的任何故障或失效不仅会造成重大的经济损失,甚至还可能导致人员伤亡。

通过对设备工况进行检测,对故障发展趋势进行早期诊断,找出故障原因,采取措施避免设备的突然损坏,使之安全经济地运转,在现代工业生产中起着重要的作用。

开展机械设备故障检测与诊断技术的研究具有重要的现实意义。

本文简单的介绍了机械故障诊断方面的含义、内容、常用方法和研究现状等,并介绍了一些技术及案例分析。

一、故障诊断的意义、含义、基本内容、常用方法及机械故障诊断的研究现状1-1 故障诊断技术简介1. 故障诊断的意义:保障生产安全、改革设备维修制度、提高生产率。

2. 故障的含义:机械系统偏离功能;功能失效。

3. 故障诊断技术:是了解、掌握设备在使用中的状态,确定其整体或局部是否正常,早期发现故障及其原因,并预报故障发展趋势的技术。

4. 故障诊断基本内容:①设备运行状态的监测--利用监测信息,判断是否正常?发现故障苗头;②设备运行状态的趋势预报--利用运行状态的发展趋势,预知设备的劣化速度,为生产安排、维修计划做准备。

③故障类型、程度、部位和原因的确定--为诊断决策提供依据。

5. 故障诊断方法①按诊断环境分类:离线与在线诊断;②按监测手段分类:振动监测诊断法、噪声监测诊断法、温度监测诊断法、声发射监测诊断法、压力监测诊断法、油液监测诊断法、金相分析诊断法等;③按诊断方法、原理分类:频域诊断法、时域诊断法、统计分析法、信息理论分析法、模式识别法、人工神经网络、专家系统等等;④按诊断对象分类:军械装备,矿山机械、选矿机械、旋转机械等。

1-2 故障诊断技术的发展①第二次世界大战中,认识到这种技术的重要性;②第二次世界大战后,因对应技术未发展而发展不快;③60年代后,电子技术、计算机技术发展、1965年FFT方法和对应的数字信号处理和分析技术的发展为设备诊断技术奠定了技术基础美国:1967年成立美国机械故障预防小组,在航空、航天、军事、核能等尖端部门目前处于领先地位。

2024年机械设备故障检测诊断技术发展前景(三篇)

2024年机械设备故障检测诊断技术发展前景(三篇)

2024年机械设备故障检测诊断技术发展前景随着科技的快速发展,如今的机械设备越来越精密,造价也越来越高,而如果机械设备在使用过程中出现故障就会对企业的生产和工作人员的人身安全构成威胁。

机械设备故障检测诊断技术是在设备运行状态下能够实时检测并诊断设备是否存在故障隐患的部位,做到及时发现及时解决,从而避免人员伤亡以及经济损失,是当前国内外研究的热点技术。

本文介绍了当前主要的机械设备故障检测诊断技术,并指出其未来的发展趋势。

随着科学技术的发展,如今机械设备的精密程度和造价都越来越高,因此,一旦出现故障就会导致严重的后果,首先是机械设备损坏带来的修理费用、停工等直接经济损失,其次在机械出现故障时可能会导致工作人员的伤亡,除此之外还会导致环境的污染等,因此,要对机械设备在运行过程中的状态进行检测、诊断,并根据诊断结果及时采取相关措施,力求将损失降为最小的同时,保证机械设备的运行安全、防止突发事故的产生,机械设备故障检测诊断技术就是基于这样的需要而迅速发展起来的。

1.机械设备故障检测诊断技术现状1.1.振动监测诊断振动监测诊断技术是目前机械设备故障检测诊断技术领域应用最广泛的技术,是根据机械设备的振动状态和振动特征来判断设备运行是否正常、是否存在潜在故障。

一般来讲,振动监测诊断技术在监测过程中对设备无任何干扰,因此在实际工作中具有简便易行的优点。

在实践中,要根据机械设备本身的振动特点来选择合适的传感器对其振动速度、加速度、位移等参数进行采集,然后通过A/D转换器将采集到的模拟信号转化为数字信号,并传输给数据诊断系统,诊断系统对所传过来的数据进行分析,将分析结果以曲线图的形式输出在显示屏上,供工作人员参考,工作人员凭借这些谱图来判断机械设备运转是否正常,是否存在异常部位。

1.2.噪声监测诊断技术在机械设备运行过程中,机械的振动总是不可避免的,尤其是在某些部位异常的情况下,通常会产生异常的噪声,这就给机械设备故障检测诊断提供了一个出路。

机械故障诊断方法

机械故障诊断方法

机械故障诊断方法
机械故障诊断方法指的是通过观察、测试和分析来确定机械系统故障原因的方法。

下面列举了几种常用的机械故障诊断方法:
1. 观察法:通过观察机械设备运行时的现象和表现来初步判断故障原因。

例如,观察机械设备的噪音、振动、温度等变化情况。

2. 测试法:通过各种测试手段对机械设备进行测试,获取实际数据来判断故障原因。

例如,使用检测仪器测量电流、电压、转速等参数来确定故障。

3. 分析法:根据机械设备的故障现象和测试数据,进行数据处理和分析,找出可能的故障原因。

例如,通过振动分析、谱图分析等方法来识别故障。

4. 对比法:将正常工作状态的机械设备与故障设备进行对比,找出差异和异常之处,确定故障原因。

5. 经验法:根据经验,通过感觉和直觉判断机械设备的故障原因。

这种方法通常适用于经验丰富的维修人员。

无论采用哪种故障诊断方法,都需要综合考虑多种因素,包括机械设备的结构、工作原理、使用环境等,以便更准确地确定和解决故障原因。

机械设备故障诊断的前沿技术是什么

机械设备故障诊断的前沿技术是什么

机械设备故障诊断的前沿技术是什么在现代工业生产中,机械设备的稳定运行是保障生产效率和质量的关键。

然而,由于长时间的运行、复杂的工作环境以及各种不可预见的因素,机械设备难免会出现故障。

及时准确地诊断出故障,并采取有效的维修措施,对于减少停机时间、降低维修成本、提高设备可靠性和安全性具有重要意义。

随着科技的不断进步,机械设备故障诊断技术也在不断发展,涌现出了一系列前沿技术。

一、基于大数据分析的故障诊断技术随着工业互联网和物联网技术的普及,大量的机械设备运行数据被实时采集和存储。

这些数据包含了设备的各种运行状态信息,如温度、压力、振动、电流等。

通过对这些大数据的分析,可以挖掘出设备运行的潜在规律和模式,从而实现故障的诊断和预测。

大数据分析在机械设备故障诊断中的应用主要包括数据预处理、特征提取、模型建立和故障诊断等步骤。

首先,需要对采集到的原始数据进行清洗和预处理,去除噪声和异常值,以提高数据质量。

然后,通过特征工程技术提取能够反映设备故障的关键特征。

接下来,利用机器学习或深度学习算法建立故障诊断模型,如支持向量机、决策树、神经网络等。

最后,将实时采集的数据输入模型中,进行故障诊断和预测。

基于大数据分析的故障诊断技术具有数据驱动、自适应性强、能够发现潜在故障等优点。

然而,该技术也面临着数据质量、数据安全、计算资源等方面的挑战。

二、基于深度学习的故障诊断技术深度学习是近年来人工智能领域的热门技术,在机械设备故障诊断中也得到了广泛的应用。

深度学习模型,如卷积神经网络(CNN)、循环神经网络(RNN)和长短时记忆网络(LSTM)等,能够自动从大量的数据中学习到复杂的特征和模式,从而实现高精度的故障诊断。

以卷积神经网络为例,它可以直接处理原始的振动信号等数据,通过卷积层和池化层自动提取故障特征。

循环神经网络和长短时记忆网络则适用于处理具有时间序列特性的数据,能够捕捉故障发展的动态过程。

深度学习在机械设备故障诊断中的应用需要大量的标注数据进行训练,以提高模型的准确性和泛化能力。

设备的机械故障诊断及排除

设备的机械故障诊断及排除

机械设备故障诊断及排除机械设备故障是机械设备应有的工作能力或特性的明显降低,甚至根本不能工作的现象.机械设备的技术状况是随着使用时间的延长而逐渐恶化的,因而机械设备的使用寿命总是有限的,由此可知,机械设备发生故障的可能性总是随着使用时间的延长而增大.虽然机械设备故障的发生具有随机性,即无论哪一类故障,人们都难以预料它的确切地发生时间,但是故障的产生是可以预防,发现和排除的.故障的分类对于预防机械设备故障的发生起到指导作用;故障的诊断方法可以及时准确地确定故障的种类和具体位置,并初步判定故障的严重程度,为排除故障提供有价值的参考信息.确保机械设备的正常工作.一、机械设备故障分类:一临时性故障临时性故障又称间断故障,多半是由机械设备的外部原因引起的.如操作失误等造成,当这些外部干扰消除后机械设备即可正常运转.二永久性故障1.按故障发生的时间分类:1早发性故障:这是由于机械设备在设计,制造,装配,调试等方面存在问题引起的.如新购入机床液压系统严重漏油或噪声很大.2突发性故障:这是由于各种不利因素和偶然的外界因素共同作用的结果.故障发生的特点是具有偶然性和突发性,事先无任何征兆,一般与使用情况有关,难以预测,但它容易排除,通常对机械设备寿命影响不大.3渐进性故障:它是因机械设备技术特性参数的劣化包括腐蚀,疲劳,老化等,逐渐发展而成的.其特点是故障发生的概率与使用时间有关,只是在机械设备有效寿命的后期才明显的表现出来.故障一经发生,就标志着寿命的终结.通常它可以进行预测,大部分机械设备的故障属于这一类.4复合型故障:这类故障包括上述故障的特征,其故障发生的时间不定.机械设备工作能力耗损过程的速度与其耗损的性能有关.如摩擦副的磨损过程引起的渐进性故障,而外界的磨粒会引起突发性故障.2.按故障表面形式分类:1功能故障:机械设备应有的工作能力或特性明显降低,甚至根本不能工作,即丧失了它应有的功能.这类故障可通过操作者的直接感受或测定其输出参数而判断.例如:精度丧失,传动效率降低,速度达不到标准值.2潜在故障:故障逐渐发展,但尚未在功能方面表现出来,却又接近萌发的阶段.当这种情况能够鉴别时,即认为是一种故障现象称为潜在故障.3.根据故障产生的原因分:1人为故障:由于在设计,制造,大修,使用,运输,管理等方面存在问题,使机械设备过早地丧失了应有的功能.2自然故障:机械设备在其使用期内,因受到外部或内部各种不同的自然因素影响而引起的故障,如磨损,老化等.4.按故障造成的后果分:1致命故障:这是指危及或导致人身伤亡,引起机械设备报废或造成重大经济损失的故障. 2严重故障:是指严重影响机械设备正常使用,在较短的有效时间内无法排除的故障. 3一般故障:明显影响机械设备正常使用,在较短时间内可以排除的故障. 4轻度故障:轻度影响机械设备正常使用,能在日常保养中用随机工具排除的故障.如:零件松动等.二、影响机械设备故障产生的因素1.设计规划:1在设计规划中,应对机械设备未来的工作条件有准确估计,对可能出现的变异有充分考虑. 2设计方案不完善:设计图样和技术文件的审查不严是产生故障的重要原因.2.材料选择:在设计,制造和维修中,都要根据零件的性质和特点正确选择材料.1材料选用不当,或材质不符合标准规定,或选用了不适当的代用品是产生磨损,腐蚀,过度变形,疲劳破裂,老化等现象的主要原因.2此外在制造和维修过程中,很多材料要经过铸,锻,焊和热处理等热加工工序,在工艺过程中材料的金属显微组织,力学性质等要经常发生变化,其中加热和冷却的影响尤为重要.3.制造质量:在制造工艺的每道工序中都存在误差.1工艺条件和材质的某些性质必然使零件在铸,锻,焊,热处理和切削加工过程中积累了应力集中,局部和金属的显微组织缺陷,微观裂纹等.这些缺陷往往在工序检验时容易被疏忽.2零件制造质量不能满足要求是机械设备产生故障的重要原因.4.装配质量:1首先要有正确的配合要求.2初始间隙过大,有效寿命期就会缩短.3装配中各零部件之间的相互位置精度也很重要,若达不到要求,会引起附加应力,偏磨等后果加速失效.5.合理维修:根据工艺合理,经济合算,生产可能的原则,合理进行维修,保证维修质量.这里最重要,最关键的是合理选择和运用修复工艺,注意修复前准备,修复过程中按规程执行操作,做好修复后的处理工作.6.正确使用:在正常使用条件下,机械设备有其自身的故障规律.使用条件改变故障规律也随之变化. 1工作载荷:机械设备发生损耗故障的主要原因是零件的磨损和疲劳破坏,在规定的使用条件下,零件的磨损在单位时间内是与载荷的大小呈直线关系.零件的疲劳损坏是在一定的交变载荷下发生,并随其增大而加剧,因此,磨损和疲劳都与载荷有关.当载荷超过设计的额定值后,将引起剧烈的破坏,这是不允许的.2工作环境:包括气候,腐蚀介质和其它有害介质影响,以及工作对象的状况等.第一,温度升高,磨损和腐蚀加剧;第二,过高的湿度和空气中的腐蚀介质存在,造成腐蚀和磨损;第三,空气中含尘量过多,工作条件恶劣都会影响机械设备的损坏.3保养和操作:建立合理的维护保养制度,严格执行技术保养和使用操作规程,是保证机械设备工作的可靠和提高使用寿命的重要条件,此外,需要对人员进行培训,提高职业素质和工作水平.三、机械设备故障的诊断一故障诊断技术分类:1.简易诊断:简易诊断也就是初级诊断.为了能对设备的状态迅速有效地做出概括和评价,简易诊断通常有现场工作人员实施.2.精密诊断:精密诊断是根据简易诊断认为有异常的设备,需要进行比较详细的诊断,其目的是判定异常部位,研究异常的种类和程度.精密诊断有专门技术人员实施.3.功能诊断和运行诊断:1功能诊断是对新安装或刚维修后的设备进行运行情况和功能是否正常的诊断.并按检查的结果对设备或机组进行调整.2运行诊断是对正常工作设备故障特征的发生和发展的监测.4.定期诊断和连续监控:1定期诊断是每隔一段时间,对工作的设备进行定期的检测.2连续监控则是采用仪表和计算机信息处理系统对机器运行状态进行监视和控制;连续监控用于因故障而造成生产损失重大,事故影响严重以及故障出现频繁和易发生故障的设备,也用于因安全和劳动保护方面上的原因不能点检的设备.5.直接诊断和间接诊断:1直接诊断是直接确定关键零部件的状态,直接诊断往往受到机器结构和工作条件的限制而难以实现,这时就不得不采用间接诊断.2间接诊断是通过来自故障源的二次效应,如按震动的信号来间接判断设备中关键件的状态变化,用于诊断的二次效应往往综合了多种信息.6.常规诊断与特殊诊断1常规诊断属于机械设备正常运行条件下进行的诊断,一般情况下常规诊断是最常用的.2特殊诊断即对正常运行条件难以取得的诊断信息,通过创造一个非正常运行条件取得的信息进行诊断,成为特殊诊断.二诊断技术的形式1.外观检查:利用人体的感官,听其音,嗅其味,看其动,感其温,从而直接观察到故障信号,并以丰富的经验和维修技术判定故障可能出现的部位和原因.达到预测的目的.这些经验与技术对于小厂和普通机械设备是非常重要的.2.振动:振动是一切作回转或往复运动的机械设备最普通的现象,状态特征凝结在振动信息中.振动的增强无一不是由故障引起的.产生振动的根本原因是机械设备本身及其周围环境介质受到振源的振动.振动来源于两类因素:第一,旋转件或往复件的缺陷,主要包括失衡,即相对于回转轴线的质量分布不均,在运转时产生惯性力,构成振动的原因.往复件的冲击,如以平面连杆机构原理作运动的机械设备,连杆往复运动产生的惯性力,其方向作周期性变化,形成了冲击作用,这在结构上很难避免.转子弯曲变形和零件失落,形成质量分布不均,在回转时产生离心惯性力导致振动.制造质量不高,特别是零件或构件的形状位置精度不高是质量失衡的原因之一.回转体上的零件松动增加了质量分布不均,轴与孔的间隙因磨损加大也增加了失衡.第二,机械设备的结构因素,主要包括齿轮制造误差导致齿轮啮合不正确,轮齿间的作用力在大小,方向上发生周期性变化.随着齿轮在运转中的磨损和点蚀等现象日益严重,这种周期性的振动也日趋恶化.轴上的联轴器和离合器的结构不合理带来失衡和冲击;滑动轴承的油膜涡动和振荡;滚动轴承中滚动体不平衡及径向游隙;基座扭曲;电源激励,压力脉动等都是产生振动的原因.3.噪声:机械振动在媒质中的传播过程是物体的机械振动通过弹性媒质向远处传播的结果,发生声音的振动系统称为声源,如机械振动系统是机械噪声的声源,机械振动通过媒质传播而得到声音,即为机械噪声.噪声大小既是反映机械技术状况的一个指标,也减少环境污染所要控制的一个重要内容.机械设备噪声源主要有两类:第一,运动的零部件,如电机,液压泵,齿轮,轴承等,其噪声频率与其运动频率或固有频率有关.第二,不动的零件,如箱体,盖板,支架等,其噪声是由于受其它声源或振源的诱发而产生共鸣引起的.4.温度:温度是一种表象,它的升降状态反映机械设备机件的热力过程,异常的温升或温降说明产生了热故障.例如:内燃机燃烧不正常,温度分布不均匀;轴承损坏,发热量增加;冷却系统发生故障,零件表面温度上升等.5.油样:在机械设备的运转过程中,润滑油必不可少.由于在润滑油中带有大量的部件磨损状况的信息,所以通过对润滑油样的分析可间接监测磨损的类型和程度,判断磨损的部位,找出磨损的原因,进而预测寿命,为维修提供依据.润滑油样分析包括采样,检测,诊断,预测,和处理等步骤.6.泄漏:在机械设备运行中,气态,液态和粉尘状的介质从其裂缝,孔眼和空隙中溢出或进入,造成泄漏,使能源浪费,工况恶化,环境污染,损坏加速这是机械设备使用中力图防止的现象.7.主要精度:包括主要几何精度,位置精度,接触精度,配合精度等的检测,这是一些异常故障的主要诊断途径之一.8.内部缺陷:机械设备及其主要零部件的内部缺陷检测,经常是诊断或排除故障的重要方法之一,例如对变形,裂纹,应力变化,材料组织缺陷等故障的检测.四、机械故障的排除一机械维修工艺纪律:1.维修前:安全与现场5S 1机械维修工在检修机械前必须先切断电源,锁好开关箱,应挂有安全锁和“正在修理禁止合闸开动”标志;有几人维修挂几把安全锁,严格按照公司规定进行安全锁定.非检修人员,一律不准起动设备;2严格根据公司规定进行PPE佩戴,对受限空间在维修前做好充分评估和准备;3机械维修工在维修机械的时候应该尽量保证工作环境应干燥整洁,不得堵塞通道;4在机械维修过程中,清洗用油、润滑油脂及废油渣及废油、绵纱不得随地乱丢,必须在指定地点存放;5将设备及设备周围清扫干净,达到无油污、杂物等,禁止在机床周围放置障碍物;6机械维修工在修理机械时要注意扁铲、冲子等尾部不准淬火;出现卷边裂纹时应及时处理;剔铲工件时应防止铁屑飞溅伤人;活动板手不准反向使用;打大锤不准戴手套;大锤甩转方向不准有人;7机械维修工用台钳夹工作,应夹紧夹牢,所夹工件不得超出钳口最大行程三分之二;8机械解体要用支架,架稳垫实,有回转机构的要卡牢,与所拆卸机构相连接其他可能坠落部件要固定;9机械维修工不准在发动着的车辆下面操作;不准在车辆下面工作或检查,不准在车辆前方站立;10检修时,不准将手伸进齿轮箱或用手指找正对孔;11使用气枪时需要确保喷射杂物不会溅入自己及周围人眼中;12对液压系统,气压系统等在维修前,需要将压力充分释放;13严格执行公司相关安全操作规范;2.维修中:设备维修常见事项1轴承安装1轴承安装前需要将工作场地清理干净,所有工具归拢好,润滑油,轴承,轴承加热器,煤油,无纺布,各种检具等都准备好;2轴和座孔的装配表面上如有碰伤、毛刺、锈斑或固体微粒如磨屑、砂粒、泥土等存在, 不仅会使轴承安装困难并使安装位置不正确,而且固体微粒如落入轴承内就会起研磨作用,当轴承旋转时就会磨伤或擦伤的工作表面,所以在之前必须仔细加以检查,如发现有上述缺陷,应加以修正;例如利用油锉除去毛刺、凸起碰痕、锈斑,并用细砂布打光,又如清洗固体微粒、污物等;3应将装配表面用洁净的煤油清洗洁净,并用洁净的无纺布擦干,安装轴承前涂抹一层薄薄的润滑油;4临安装时打开轴承封装,将它浸入干净的煤油中以手轻缓地转动,要保证保持架,滚动体以及滚道表面的封装油彻底被清洗洁净;5清洗洁净后,应将轴承放在工作台上的洁净的布上或纸上晾干,注意防止杂质落入;6注意带密封轴承不可清洗;7轴承需要加热安装时,温度不能超过100度;8若轴承为润滑油润滑,则安装时不要涂抹润滑脂,需要涂抹润滑脂的轴承,涂抹量要感觉转速来判断,高速下一般涂抹轴承空间的1/3即可,低速下涂抹2/3左右;9轴承安装时,轴承密封未安装入前不能使用铜棒;10轴承安装时要认真、仔细,不允许强力冲击,不允许用锤直接敲打;11轴承安装时选用合适、准确的安装工具,尽量使用专用工具,尽量避免使用布类或纤维之类的东西;;12轴承安装时不能戴面手套,并且保证手干净,有条件戴干净的薄膜手套吃排骨用的那种即可;13轴承清理时不能使用压缩空气喷射轴承旋转;14轴承外端盖安装时注意泄露孔朝下,气密封孔对上;15主轴转速较高时,恢复后有条件先在低速旋转10分钟确认状态正常无异响,正常转速旋转2小时测量判断温升,应比室温高20度左右内跟主轴结构,轴承型号等有关,无异常噪音,加工尺寸合格温升在40度以下均可接受;16特殊或高精度轴承安装请参照安装手册;1精度测量:1精度测量前将测量位置周边清理干净,做好5S,所有工具进行归拢;2测量表面使用油石或剖光带处理,并擦干净有条件使用煤油清理,确保无灰垢,毛刺, 高点;3测量时尽量让开测量面有缺陷/打号或不连续部位;4打表时不能戴手套;5用百分表或千分表测量零件时,测量杆必须垂直于被测量表面;杠杆千分表的测量杆轴线与被测工件表面的夹角愈小,误差就愈小;6指针跳针颤抖:如导向槽内不平 ,有油污、杂质或齿轮啮合面之间有污垢、毛刺等出现跳针现象,可细心查找,逐一排除解决;7打表时根据打表表面状态,和使用表的精度调整压表量;3液压系统维修1拆卸液压部件前,应使液压回路卸压;否则,当把与油缸相联接油管接头拧松时,回路中的高压油就会迅速喷出;特别注意蓄能器中的压力释放;拆卸液压油缸活塞杆时应防止损伤活塞杆顶端螺纹、油口螺纹和活塞杆表面、缸套内壁等;为了防止活塞杆等细长件弯曲或变形,放置时应尽量用垫木支承均衡;2液压系统的故障70%以上都是由于油液污染引起,在拆卸液压系统原件时应将各裸露油口密封,防止异物进入元件造成污染;例如,拆卸时应尽量在干净的环境下进行;拆卸后所有零件要用塑料布盖好,不要用棉布或其他工作用布覆盖;拆卸后使用塑料布将结构包裹好,放在不易脏处;维修过程注意不能脚踩到油管结构,装配前使用干净煤油对各零件仔细清洗吹干;3阀的安装螺栓拧紧时应使用专用扳手,扭力矩应符合标准要求,否则扭矩过大容易导致阀块变形,容易导致阀芯卡滞常见M5使用扭曲;4液压原件禁止使用棉类,丝类,化纤类,防止脱落纤维进入到液压系统中;5阀,泵类拆卸组装时使用煤油清理后,应在原件表面干后安装;6液压阀类安装时不能戴手套;7阀,泵类等安装时若需要敲击,禁止使用铁锤,可是有橡胶锤或木锤;8安装液压接头时,接头体安装前用煤油清洗干净,并用洁净压缩空气吹干;尽量不使用生胶带,若必须时,缠生料带时要注意2点:a.顺螺纹方向缠绕;b.生料带不宜超过螺纹端部,否则,超出部分在拧紧过程中会被螺纹切断进入系统;9液压系统恢复时需要将拆卸过程中进入到液压缸和管路中的空气排除,将液压油管接头拧松动,开启液压,使用扳手敲击结构,将气泡放出,注意接头不能拧松太多,否则液压油射出或将接头崩开存在安全隐患;10维修完确认设备恢复正常,液压系统应将压力调节阀的压力调整到最低开启液压后,逐渐提高系统压力,检查油管接头处是否有泄露;11若液压系统维修完放气结束后,设备仍然动作缓慢,则手动捅阀反复多动作几次,不要急于再次拆解;12维修完设备后需要确认液压软管同周边无干涉,接触摩擦,弯曲弧度较大;4丝杠安装常见丝杠结构1)丝杠一侧承受轴承载荷的轴承的轴承室安装尺寸和需要测量保证轴向间隙;2)丝杠安装时先将两侧轴承安装好后,再将丝母螺栓紧固,防止丝杠承受径向力;3)丝杠若为国产件或厂家变更时,安装前测量丝杠长度,跟旧丝杠进行比较;4)丝杠安装时注意螺母润滑油口的位置对上;5)丝杠安装时触摸丝杠时禁止戴线手套,并保证周边环境洁净;6)丝杠安装完可以在丝杆上先撒一层润滑油;7)特殊或高精度丝杠安装请参照安装手册;5三角皮带的安装1)主、从动皮带轮的轴线应保持平行;2)轮槽必须在同一平面内, 不得扭曲;3)三角胶带的张紧度要符合要求;4)多根三角皮带传动时, 各根长度、张紧度应基本一致; 并要安装防护罩;5)安装三角皮带时不许用铁制工具强行撬入, 这样会严重损坏三角皮带的被撬部分, 使三角皮带内层与强力层之间发生剥离或表皮被划破, 造成被撬局部的松弛, 同时还可能撬坏三角皮带轮槽;6)皮带更换时尽量避免将手放在皮带内侧,禁止手指放在皮带内侧接近皮带轮处;7)更换时,在同一个皮带轮上的全部皮带应同时更换, 否则由于新旧不同, 长短不一, 使三角皮带上的载荷分布不均匀, 造成三角皮带的振动, 传动不平稳, 降低了三角皮带传动的工作效率;8)使用中, 三角皮带运行温度不应超过 60度;9)对于各种型号的三角皮带, 不宜涂松香或黏性物质, 也要防止三角皮带污染上机油、黄油、柴油和汽油, 否则会腐蚀三角皮带, 缩短使用寿命;三角皮带的轮槽不许沾上油, 否则会打滑;6螺栓紧固1)内六角螺栓紧固前先确认内六角头内部铁屑杂质清理干净;2)拧内六角时,确认扳手已经完全插入到内六角头中;3)在拧紧方形或圆形布置的成组螺母时,必须对称进行,按一定顺序分次逐步拧紧一般分2~3次拧紧;4)拧紧长方形布置的成组螺母时,应从中间开始,逐渐向两边对称扩展;5)需要使用较大扭曲时禁止使用球头扳手;6)拧紧螺栓时参照扭矩标准进行;级螺栓拧紧标准如下表:级螺栓拧紧标准如下表:7直线导轨安装1)直线导轨在出厂前都会完成防锈处理,故使用前请先把防锈油清洗干净,并加注润滑油;2)垂直安装直线导轨时请特别留意滑块的滑出;3)成对导轨滑块安装时,需要注意两导轨的平行,有条件需要进行打表测量;4)安装前导轨接触面和定位面需要使用油石处理,使用煤油清理,确保无毛刺和高点;5)导轨安装时需要与其定位面侧面靠紧;6)导轨螺栓的紧固尽量使用扭曲扳手,保证所有螺栓的扭曲相同防止导轨变形;7 高精度导轨安装请参照安装手册;3. 维修结束后:1设备内外清洁,把设备周围的切屑、杂物、脏物要清扫干净,清点工具及附件,避免遗漏;2更换下来的部件要及时的维修处理或报废,严格按照PS失效件流程执行;3解除安全锁定,检查维修的各部位是否已恢复,未有遗漏,相关人员是否已在安全区域;4解除电源安全锁定,手动、单步、低倍率操作设备,对于更换更换伺服电机、滚珠丝杆重新进行原点的设定;5开机空运转,注意传动部位运转声音,设备的温度、压力、液位、电气、液压、气压系统是否正常,仪表信号,安全保险是否完好;6可能影响加工质量的,联系生产线进行加工工件验证三坐标、现场检具7填写TPM维修活动记录单和交接班记录;8建立此项维修活动的标准化作业单SOS以及相关的PM.9 对维修部位进行后续跟踪,总结维修经验;四数控车床主轴部件常见故障及排除1.加工精度达不到要求的故障原因及排除方法1机床在装箱,运输,开箱,安装过程中受到碰撞和冲击.排除方法是检查对机床精度有影响的各部位,特别是导轨副,并按出厂精度的要求从新调整和修复.2安装不牢固,安装精度低或有变化.排除方法是重新安装,调平,紧固.2.切削振动大的故障原因及排除方法1主轴箱和床身连接螺钉松动.排除方法是恢复机床精度后紧固连接螺钉.2轴承预紧力不够,游隙过大.排除方法使用适中的预紧力重新调整轴承游隙.3轴承预紧螺母松动,致使主轴窜动.排除方法是紧固螺母,确保主轴精度合格.4轴承拉毛或损坏.排除方法是应更换轴承.5主轴与箱体精度超差,排除方法是修理主轴或箱体,使其配合精度,形位精度达到图样上的要求.3.主轴噪声大的故障原因及排除方法1主轴部件动平衡不好,应重做动平衡.2齿轮啮合间隙不均匀或齿面严重磨损,应调整间隙或更换新齿轮.3轴承损坏或传动轴弯曲.应更换轴承,校直或更换传动轴.4传动带长度不一致或过松,应调整或全部更换新带.5齿轮精度差,应更换合格的齿轮.。

机械设备故障诊断及方法

机械设备故障诊断及方法

机械设备故障诊断及方法设备诊断技术就是掌握设备的现在状态与异常或故障之间的关系,以预测未来的技术。

它包含两方面的内容:一是对设备的运行状态进行监测;而是在发现异常情况后对设备的故障进行分析、诊断。

机械设备故障诊断技术是利用测取机械设备在运行中或相对静态条件下的状态信息,通过对所测得信号进行分析和处理,并结合诊断对象的历史状态,来定量识别机械设备及其零部件的实时技术状态,并预知有关异常故障和预测未来的技术状态,从而确定必要对策的技术。

总体上来讲,机械设备故障诊断技术的发展,大致可分为4个阶段;第一阶段是在19世纪,当时机械设备本身的技术水平和复杂程度都很低,因此采用事后维修的方式。

第二阶段是20世纪初到20世纪50年代,随着大生产的发展,机械设备本身的复杂程度也有了提高,机械设备故障或事故对生产的影响显著增加,在这种情况下,出现了定期维修的方式,这个时期,机械设备故障诊断技术处于孕育时期。

第三阶段是20世纪60~70年代,随着现代计算机技术、数据处理技术等的发展,机械设备出现了更加科学的按设备状态进行维修的方式。

第四阶段是进入20世纪80年代后,人工智能技术和专家系统、神经网络等开始发展,并在实际工程中应用,使机械设备诊断技术达到了智能化的程度。

机械设备故障诊断的实施包括两个部分,其一是简易诊断技术,主要是由现场工作人员实施初级技术职能,对设备的运行状态迅速而有效的作出概括评价,其主要手段是经验评价法,为了提高、维持生产设备的原有性能,通过人的五感(视、听、嗅、味、触)或者借助工具、仪器,按照预先设定的周期和方法,对设备上的规定部位(点)进行有无异常的预防性周密检查的过程,以使设备的隐患和缺陷能够得到早期发现、早期预防、早期处理,这样的设备检查称为点检。

其二是精密诊断技术,主要是由专业技术人员实施的高级精密技术,对简易诊断技术所测得的信息进行深入细致的分析和处理,从而确定故障的性质。

类别、部位、原因、程度乃至发展趋势等各种情况的技术。

机械设备故障诊断与监测的常用方法6篇

机械设备故障诊断与监测的常用方法6篇

机械设备故障诊断与监测的常用方法6篇第1篇示例:机械设备在使用过程中经常会出现各种故障,及时准确地进行故障诊断和监测对于设备的正常运行和维护是至关重要的。

下面将介绍一些机械设备故障诊断与监测的常用方法。

一、视觉检查法视觉检查法是最简单、最直观的故障诊断方法之一。

通过观察设备的外观、运转状况、连接部位是否松动、是否有明显的磨损痕迹等,初步判断设备是否存在问题。

这种方法适用于一些外在明显的故障,比如松动的螺丝、漏油现象等。

二、听觉检查法听觉检查法是通过听设备运行时的声音来判断设备是否存在故障。

比如机械设备在运行时出现异常的响声,可能是由于轴承损坏、齿轮啮合不良等原因引起的。

通过仔细倾听设备运行时的声音,可以初步判断设备存在的故障类型。

三、振动检测法振动检测法是一种通过监测设备在运行时的振动状况来判断设备是否存在故障的方法。

通常情况下,机械设备在正常运行时会有一定的振动,但如果振动异常明显,可能是设备出现了问题。

通过振动检测仪器对设备进行监测和分析,可以准确判断设备的故障类型和严重程度。

四、温度检测法温度检测法是通过监测设备运行时的温度变化来判断设备是否存在故障的方法。

比如设备某个部位温度异常升高,可能是由于摩擦引起的,也可能是由于电气元件故障引起的。

通过红外测温仪等工具对设备表面温度进行监测和分析,可以帮助工程师快速定位故障部位。

五、性能测试法性能测试法是一种通过对设备的各项性能指标进行测试和比较,来判断设备是否存在故障的方法。

比如通过功率测试仪器对设备的电流、电压等参数进行监测,比较实测数值与标准数值是否一致,可以准确判断设备是否存在故障。

六、故障诊断仪器法现代科技的发展,各种先进的故障诊断仪器也被广泛应用于机械设备的故障诊断和监测中。

比如红外热像仪可以通过红外辐射检测设备的热量分布,帮助工程师找出设备故障的根源;声发射仪器可以对设备在运行时的声音进行捕捉和分析;电动机绝缘测试仪器可以对设备的绝缘状态进行监测等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1
概述
机械设备故障诊断技术
§1.1 设备故障诊断的目的和意义
1.1.2 设备故障诊断技术的应用与发展 2. 发展 19 世纪:事后维修;20 世纪初~ 50 年代:定期维修,孕育时期 20 世纪 60~70 年代:设备状态维修。计算机技术、数据处理技术发展 20 世纪 80 年代以后:诊断智能化。人工智能、专家系统、神经网络发展 国内 20 世纪 80 年代初开始 高校和科研单位学术交流、理论研究和实际应用 大型企业建组织机构,技术应用发展,推动理论与方法研究 如数据采集,信号处理,故障特征、模式识别及人工智能等 诊断涉及多项学科知识,推动边缘学科相互交叉、渗透和发展 如故障机理研究推动转子动力学、结构动力学和模态分析技术的发展 故障诊断方法研究推动振动工程应用 模式识别,模糊数学、人工智能等数学物理方法应用和发展 状态监测技术推动测试技术、信号分析处理技术 和网络传输技术的发展 故障控制推动振动噪声控制理论研究与发展 设备故障评判结合故障诊断技术 与可靠性分析技术、失效分析技术
机械设备故障诊断技术
1.1.1 设备故障诊断的含义和特性 1. 设备故障诊断的含义 应用现代测试技术、诊断理论方法 识别诊断设备故障机理、原因、部位和程度 根据诊断结论,确定设备维修方案和防范措施 设备故障:设备丧失工作效能程度,设备丧失规定性能状态 诊 断:用测试分析技术和故障识别方法 确定故障性质、程度、类别和部位,研究故障机理的学科 诊断内容(三部分): 一、信号采集(状态监测):利用传感器和监测仪表,获取设备运行信息 信号分析处理,提取设备特征信息 二、故障诊断:获取特征参数,识别信息特征 利用专家知识经验,类似医生诊断疾病 诊断设备故障类型、故障部位、故障结论,采取控制、治理和预防措施的决策 设备故障诊断包含三部分内容和实施过程
§1
概述
机械设备故障诊断技术
§1.1 设备故障诊断的目的和意义
1.1.1 设备故障诊断的含义和特性 2. 设备故障诊断的特性 (2)层次性 设备故障现象(征兆)原因(症候、病症)深层次、多层次性
(3)多因素和相关性 设备故障因相互关系产生多因素和相关性 (4)延时性 故障形成,缺陷累积,状态劣化,量变转质变。故障过程延时性 (5)不确定性(模糊性) 故障频度、表现形式、特征差异、机理复杂
1.1.1 设备故障诊断的含义和特性 2. 设备故障诊断的特性 (1)多样性 化工过程装臵 静设备:如换热器、传质容器、反应器、变换器、塔设备等 动设备:如旋转机器和往复机器等 设备结构不同,工艺参数各异,制造安装差异 使用环境不同,产生各种故障 如离心式、轴流式压缩机、烟气轮机: 工艺气体粉料(催化剂),转子不平衡、振动、摩擦、磨损故障 高速旋转机器: 轴承油膜不稳定,转子不对中 高速高压旋转机器: 流体激振,转子自激振动 往复式压缩机: 管道振动故障,零件磨损、变形、断裂 高压容器: 裂纹扩展,内部腐蚀,密封泄漏
§1
概述
机械设备故障诊断技术
§1.1 设备故障诊断的目的和意义
1.1.3 设备故障诊断技术与维修方式的关系 定期维修(计划维修): 设备运行时间为基础,根据设备磨损和故障规律,事先制定计划 确定修理类别、间隔、内容及要求。分大修和项(目)修 适用掌握故障规律的流程工业生产设备、自动化生产线和连续运行设备 缺点:①检修量大耗时耗费;②要求精密机械,过多拆卸人为故障 ③备品备件种类多,检修费用大 技术发展和设备管理现代化,认识到采用一种预防性维修方式 即设备运行时进行状态监测,掌握技术状况 对将形成或已形成故障分析诊断,判定设备劣化程度和部位 故障前制订预知性维修计划,确定设备修理内容和时间 即为基于状态监测为基础的维修,最经济合理方式,又称预知性维修 预知性维修(状态监测维修): 测知设备状态参数,了解设备现状,判断故障类型、性质和程度 推测发展趋势,确定最佳维修时机,依据设备实际状态 以设备故障诊断为基础的先进维修方式 优点:①减少突发性事故;②减少停机时间;③延长检修周期 ④延长设备使用寿命;⑤节约维修费用
§1
概述
机械设备故障诊断技术
§1.1 设备故障诊断的目的和意义
1.1.1 设备故障诊断的含义和特性 1. 设备故障诊断的含义 设备故障诊断所包含的 三部分内容和实施过程 如图所示 一、状态监测(信号采集) 二、故障诊断(寿命估计) 三、诊断决策(防治控制)
§1
概述
机械设备故障诊断技术
§1.1 设备故障诊断的目的和意义
概述 §1 §1.1 设备故障诊断的目的和意义
1.1.2 设备故障诊断技术的应用与发展
机械设备故障诊断技术
1. 应用 现代化企业生产水平和经济效益提高,发展规模化和高技术含量 生产装臵大型化、高速高效化、自动化和连续化 设备要求性能好,效率高,少故障。否则故障损失巨大 如石油化工大型机组(离心、轴流压缩机,烟气轮机,汽轮机,风机和机泵) 单机、满负荷关键设备,故障停机导致停产损失惨重 大型炼油装臵,化肥装臵,乙烯装臵停产一天损失数百万 电力部门 300 MW发电机组停机一天少发电 720 万度损失数千万元 中国 1977~1987 年投产 6~7 个大化肥厂,机组故障停机 两年损失相当一个大化肥厂全年产量(30 万吨合成氨,48 万吨尿素) 高技术大型化设备,故障重大灾难性事故,经济损失惨重,严重政治影响 美国三里岛核电站放射性物质外逸,前苏联切尔诺贝利核电站爆炸 印度博帕尔市农药厂异氰酸甲醋毒气泄漏 美国 1986、2003 年 “挑战者” 号和 “哥伦比亚” 号航天飞机失事 中国 1980 年代 200 MW 汽轮发电机组事故 机组剧烈振动,转子断 7 段,联轴节飞出厂房,机组彻底破坏 大化肥合成气压缩机强烈振动,振因复杂,停产 2 月损失亿元 中国 20 世纪 70 年代开始应用
机械设备故障诊断技术
机械设备故障诊断技术
(教材内容)
课程内容
1 概论
2 故障诊断的信号处理方法
3 旋转机械故障诊断 4 往复式压缩机的故障分析和管道振动 5 齿轮故障诊断 6 滚动轴承故障诊断 7 无损检测技术在设备诊断中的应用 8 现代智能诊断技术的应用
概述 §1 §1.1 设备故障诊断的目的和意义
相关文档
最新文档