5kw移相全桥ZVS DCDC变化器(开关电源)的研究
第十章-软开关技术2——移相控制ZVS-PWM-DC-DC全桥变换器
loss
TS / 2
而 t25
Lr [ I 2 I Lf (t5 ) / K ] Vin
那么有:Dloss
2Lr [ I 2 I Lf (t5 ) / K ] Vin TS
Dloss 越大;②负载越大, Dloss越大;③ Vin越低,Dloss 越大。 可知:① Lr 越大, Dloss 的产生使DS 减小,为了得到所要求的输出电压,就必须减小原副边的 匝比。而匝比的减小,带来两个问题: ①原边电流增加,开关管电流峰值也要增加,通态损耗加大; ②副边整流桥的耐压值要增加。
6.
Vin i p (t ) (t t4 ) Lr
到 t5 时刻,原边电流达到折算到原 边的负载电流 I Lf (t5 ) / K值,该开 关模态结束。 持续时间为:
t45
Lr I Lf (t5 ) / K Vin
7. 开关模态6 在这段时间里,电源给负载供电 原边电流为:
10.3. 3 两个桥臂实现ZVS的差异
1.实现ZVS的条件 要实现开关管的零电压开通,必须有足够的能量: ①抽走将要开通的开关管的结电容(或外部附加电容)上的电荷; ②给同一桥臂关断的开关管的结电容(或外部附加电容)充电; 考虑到变压器的原边绕组电容,还要有能量用来: ③抽走变压器原边绕组寄生电容CRT 上的电荷。
ip (t ) I p (t0 ) I1
vC1 (t )
I1 (t t0 ) 2Clead I1 vC 3 (t ) Vin (t t0 ) 2Clead
在
C3 电压降到零,D3 自 t1时刻,
然导通。
3.开关模态2
td (lead ) t01
D3导通后,将Q3 的电压箝在零位 此时开通Q3 ,则Q3是零电压开通。 Q3和Q1驱动信号之间的死区时间 ,即
移相全桥DCDC变换器的设计与研究
i
ABSTRACT
With China's rapid economic development, electronic technology and computer technology become more and more widely. It makes the power supply develop in the direction of lighter , smaller, high-frequency and high-efficiency. While increasing the operating frequency, the power switch voltage and current stress increases as well.Soft-switching technology can achieve zero-voltage start or zero current shutdown. It can also improve the efficiency and reduce the electromagnetic interference. In the field of high-power applications,the phase-shifted full-bridge DC/DC converter has a simple circuit structure, a small switching loss, and it is easy to control.So it has been generally applied on many occasions.
第二章 移相全桥 DC/DC 变换器............................................................................................7 2.1 移相全桥 ZVS DC/DC 变换器 ....................................................................................7 2.2 移相全桥 DC/DC 变换器控制方式...........................................................................13 2.2.1 PID 控制............................................................................................................13 2.2.2 电压和电流双闭环控制 .................................................................................. 13 2.2.3 模糊控制 .......................................................................................................... 13 2.3 移相全桥 DC/DC 变换器关键问题的分析 ..............................................................14 2.3.1 两个桥臂实现 ZVS 的差异.............................................................................14 2.3.2 副边占空比的丢失 .......................................................................................... 16 2.3.3 整流二极管的换流 .......................................................................................... 17 2.4 改进型全桥移相 ZVS-PWM DC/DC 变换器电路 ..................................................21 2.5 本章小结 .....................................................................................................................28
最新-改进型全桥移相ZVS-PWMDCDC变换器 精品
改进型全桥移相ZVS-PWMDCDC变换器
摘要介绍了一种能在全负载范围内实现零电压开关的改进型全桥移相-变换器。
在分析其开关过程的基础上,得出了实现全负载范围内零电压开关的条件,并将其应用于一台486的变换器。
关键词全桥变换器;零电压开关;死区时间
引言
移相控制的全桥变换器是在中大功率变换电路中最常用的电路拓扑形式之一。
移相控制方式利用开关管的结电容和高频变压器的漏电感作为谐振元件,使开关管达到零电压开通和关断。
从而有效地降低了电路的开关损耗和开关噪声,减少了器件开关过程中产生的电磁干扰,为变换器提高开关频率、提高效率、降低尺寸及重量提供了良好的条件。
同时保持了电路拓扑结构简洁、控制方式简单、开关频率恒定、元器件的电压和电流应力小等一系列优点。
移相控制的全桥变换器存在一个主要缺点是,滞后臂开关管在轻载下难以实现零电压开关,使得它不适合负载范围变化大的场合[1]。
电路不能实现零电压开关时,将产生以下几个后果
1由于开关损耗的存在,需要增加散热器的体积;
2开关管开通时存在很大的,将会造成大的;
3由于副边二极管的反向恢复,高频变压器副边漏感上的电流瞬变作用,在二极管上产生电压过冲和振荡,所以,在实际应用中须在副边二极管上加入-吸收。
针对上述问题,常见的解决方法是在变压器原边串接一个饱和电感,扩大变换器的零电压开关范围[2][3]。
但是,采用这一方法后,电路仍不能达到全工作范围的零电压开关。
而且,由于饱和电感在实际应用中不可能具有理想的饱和特性,这将会导致1增加电路环流,从而增加变换器的导通损耗;。
移相全桥ZVS PWM DC/DC变换器的仿真分析
移相全桥ZVSPWMDC/DC变换器的仿真分析作者:龙泽彪施博文来源:《消费导刊·理论版》2008年第17期[摘要]本文首先在研究硬开关的缺陷上,提出软开关技术。
对移相控制ZVS PWM DC/DC 变换器的工作原理进行分析研究的基础上,使用PSpice9.2计算机仿真软件对变换器的主电路进行仿真和分析,验证该新型DC/DC变换器的拓扑结构设计的正确性和可行性。
[关键词]软开关 DC/DC ZVS 移相控制 PSpice9.2作者简介:龙泽彪(1985-),男,湖北仙桃人,贵州大学电气工程学院在读硕士研究生,研究方向:异步电机控制;施博文(1985-),男,贵州大学电气工程学院在读硕士研究生,研究方向:电力电子与电气传动。
一、引言随着新型电力电子器件以及适用于更高频率的电路拓扑和新型控制技术的不断出现,开关电源朝着小型化、高效化、低成本、低电磁干扰、高可靠性、模块化、智能化的方向发展。
硬开关DC/DC变换器在电流连续工作模式下会遇到严重的问题,这一般都与有源开关器件的体内寄生二极管有关,其关断过程中的反向恢复电流产生的电流尖峰对开关器件有极大的危害。
本文在对DC/DC变换器的基本工作原理进行分析、研究的基础上,对已经出现的软开关DC/DC变换器拓扑结构进行分析研究,提出的一种新型的DC/DC变换器的拓扑结构,并进行深入的研究。
二、移相控制ZVS PWM DC/DC全桥变换器的工作原理移相控制ZVS PWM DC/DC全桥变换器(Phase-Shifted zero-voltage-switching PWMDC/DC Full-Bridge Converter,PS ZVS PWM DC/DC FB Converter),是利用变压器的漏感或原边串联的电感和功率管的寄生电容或外接电容来实现开关管的零电压开关,其主电路拓扑结构及主要波形如图1所示。
其中,D1~D4分别是S1~S4的内部寄生二极管,C1~C4分别是S1~S4的寄生电容或外接电容,Lr是谐振电感,它包含了变压器的漏感。
5kw移相全桥ZVSDCDC变化器(开关电源)的研究要点
5kw移相全桥ZVSDCDC变化器(开关电源)的研究要点学校代码:10213国际图书分类号:621.3 密级:公开工学硕士学位论文5kW 移相全桥ZVS DC/DC 变换器的研究硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学科:电气工程所在单位:电气工程及自动化学院答辩日期:2011 年6 月授予学位单位:哈尔滨工业大学r the Master Degree in EngineeringRESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTERCandidate:Liu XinSupervisor:Prof.Ma HongfeiAcademic Degree Applied for:Master of EngineeringSpeciality:Power Electronics and ElectricDriversAffiliation:School of Electrical Engineering andAutomationDate of Defence:June, 2011Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学硕士学位论文- I -摘要DC/DC 变换器是电力电子领域重要组成部分,在能源紧张的今天,提高DC/DC变换器的效率及功率密度,具有重要的意义。
功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。
移相全桥ZVS DC/DC 变换器是一种能够实现软开关和大功率能量变换的变换器。
本文围绕移相全桥ZVS DC/DC 变换器的特点,分析了其工作原理、占空比丢失、变压器副边整流二极管振荡、滞后臂软开关实现条件等关键问题,并设计和制作了一款5kW 的原理样机。
第一章介绍了DC/DC 变换器的背景及发展方向,其中包括器件、软开关技术和目前DC/DC 变换器研究的热点。
移相全桥零电压PWM软开关电路的研究
略大于开关管自身的寄生电容可减小管子之间的差
异。 实际中,可根据实验波形对其进行调整。 计算得
Llk=7.2 μH,实际取10~20 μH。 由于 要 兼 顾 轻 载 和 重 载,同 时 电 感 在 超 前 臂 谐 振 和 续 流 时 有 能 量 损 失 ,故
实际中取值较计算值略大为宜。
5 整机最大占空比合理性计算
第 43 卷第 1 期 2009 年 1 月
电力电子技术 Power Electronics
移相全桥零电压 PWM 软开关电路的研究
胡红林, 李春华, 邵 波 (黑龙江科技学院, 黑龙江 哈尔滨 150027)
Vol.43 No.1 January,2009
摘要:介绍了移相全桥零电压 PWM 软开关电路的组成及工作原理,从时域上详细分析了软开关的工作过程,阐述了
在开关电源中具有谐振开关和 PWM 控制特点 的移相全桥零 电 压 PWM 变 换 器 得 到 了 广 泛 应 用 , 该 类 变 换 器 实 现 了 零 电 压 开 关 (ZVS),减 小 了 开 关 损耗,提高了电源系统的稳定性。 同时,电源可在较 高的开关频率下工作,因而大大减小了无源器件的 体积。 但移相全桥 ZVS 电路存在对谐振电感和电容 的合理选择及占空比丢失的问题,这就要求 ZVS 软 开关有一个合理的最大占空比。
实现 VQ1 零电压关断需要有:
uC1=
iCb 2C1
td1=
is 2nC1
td1≥Uin
(6)
式中:td1 为 VQ1,VQ3 死区时间;n 为变比。
要在全范围内实现超前臂的零电压开通, 必须
以 最 小 输 出 电 流 Iomin 和 最 大 输 入 电 压 Uinmax 来 选 取 C1,C3,即 C1=C3≤Iomintd1/(2nUinmax)。 4.2 串联电感的取值及滞后臂并联电容的选取
带饱和电感的移相控制ZVS全桥变换器研究_马昆林
2
2. 1
电感的移相全桥 ZVS 变换器分析
移相全桥 ZVS 变换器原理 移相全桥 ZVS 变换器主拓扑结构如图 1 所示。 Q1 ~ Q4 是 IGBT 开关管, C1 ~ C4 分别是开关管 图 1 中,
; 电路参数的选取多为经验
精度不高且可靠性较低 。 值或试凑法, 为此, 本文引入饱和电感, 利用非线性的饱和电感来替 代普通的线性谐振电感 , 这样可在不改变电路结构的情况下 从根本上改善电路性能 。对于电路器件参数的选取 , 本文在
— 230 —
U c2 ( t) = V i - I c Z r sin( ω r t) U c4 ( t) = I c Z r sin( ω r t) i p = I c cos( ω r t) U ab ( t) = - U c4 ( t) = - I c Z r sin( ω r t) ωr =
VD1 ~ VD4 分别是 Q1 ~ Q4 寄 的寄生电容或外接谐振电容 , L r 为线性谐振电感。 生二极管, 每个桥臂 的 两 个 开 关 管 成 180 ° 互补导通, 两个桥臂的导通角相差一个相位 ( 即移相角 α) , 通过移相控制方式改变移相角的大小来调节输出电压 。
收稿日期: 2014 - 01 - 26
第 31 卷
第7 期
计
算
机
仿
真
2014 年 7 月
文章编号: 1006 - 9348 ( 2014 ) 07 - 0229 - 05
带饱和电感的移相控制 ZVS 全桥变换器研究
马昆林, 闫昌盛
( 中国人民解放军驻 703 所军事代表室, 黑龙江 哈尔滨 150078 ) 摘要: 研究移相全桥变换器性能优化及设计问题 。传统的移相控制 ZVS 全桥变换器占空比丢失大、 环流损耗多、 电能利用率 不高, 并且以往没有较为系统的针对电路各器件参数的计算方法 , 电路设计难度较大。针对以上问题, 采用饱和电感对电路 进行改进, 并设计出一套完整的电路参数计算方法 。首先从变换器的原理入手, 详细分析饱和电感特性及带饱和电感的移 相全桥 ZVS 变换器工作过程, 其次对电路各重要参数进行分析设计与计算, 最后利用 MATLAB 平台进行仿真。 仿真结果表 明, 饱和电感可提高电路性能并且证明了参数分析与设计的正确性与可行性 。 关键词: 移相全桥; 饱和电感; 零电压; 死区时间 中图分类号: TM743 文献标识码: B
移相全桥ZVS变换器整流桥寄生振荡的抑制.
移相全桥ZVS变换器整流桥寄生振荡的抑制作者:皮之军上传时间:2006-7-26 13:37:56摘要:移相全桥ZVS变换器是中大功率DC/DC变换场合的理想拓扑之一,但在其输出整流二极管反向恢复时,整流桥产生寄生振荡,二极管上存在很高的尖峰电压。
这将带来电路损耗,并影响整流桥的使用寿命。
本文分析了振荡产生的原因,并介绍了抑制的方法。
重点分析了一种原边加箝位二极管的缓冲电路形式,制做了一个5.5kW样机,并给出了对比实验结果。
叙词:寄生振荡;尖峰电压;箝位二极管Abstract:There exists a problem of the Phase-shifted full-bridge zero-voltage-switching(PS-FB-ZVS) PWM converter, which is widely used at medium and high power levels, that the output rectifier diodes suffer the parasitic oscillation and voltage spike resulted by the reverse recovery of the rectifier diodes. In this paper, the reasons and restraining methods are discussed, and a novel ZVS converter is proposed which adopts two clamping diodes in the first side of transformer. The operation principle of the novel converter is analyzed and the experimental results of a 5.5kW prototype converter are also given. Keyword:parasitic oscillation; voltage spike; clamping diodes1引言移相全桥零电压开关PWM变换器(PS-FB- ZVS-PWM converter)利用变压器的漏感或原边串联电感和功率管的寄生电容或外接电容来实现零电压开关,同时又实现了PWM控制。
移相全桥ZVS变换器的研究与优化设计
Байду номын сангаас
Re s e a r c h a n d o pt i mi z a t i o n de s i g n o f ph a s e — s h i f t
f u l l b r i dg e ZVS c o n v e r t e r
SH I Yo ng ~ s he ng ,LI U Ya n — xi n ,W A NG Xi — f e n g。
( 1 . Co l l e g e o f S c i e n c e ,S h a a n x i Un i v e r s i t y o f S c i e n c e 8 L Te c h n o l o g y,Xi a n 7 1 0 0 2 1,C h i n a ;2 . Co l l e g e o f El e c t r i c a l a n d I n f o r ma t i o n En g i n e e r i n g,S h a a n x i Un i v e r s i t y o f S c i e n c e& Te c h n o l o g y,Xi a n 7 1 0 0 2 1 ,Ch i n a )
摘 要 : 传统 的移 相全桥 Z VS变 换 器 存 在 诸 多 缺 点 , 如 滞后桥 臂 零 电压 范 围小、 副 边 占 空 比 丢
失、 副 边寄 生震 荡 、 变压 器磁 饱 和等 问题. 针对 这 些 问题 进行 分析 , 设计 了一 种 改进 型 的移相 全
桥 Z VS 变换 器. 其主要 采 用饱 和 电感做 谐振 电感 来 增 大零 电压 范 围及 减 小 副边 占空 比丢 失 ,
移相全桥ZVZCSDCDC变换器综述.
移相全桥ZVZCSDC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。
关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。
ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。
图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。
即当原边电流减小到零后,不允许其继续反方向增长。
原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。
图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。
图4 1)NhoE.C. 电路如图1所示[1]。
该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。
这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。
变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。
电流模式控制移相全桥零电压软开关(ZVS)DC-DC功率变换器
引言随着计算机与通信技术的飞速发展,作为配套设备的开关电源也获得了长足进步,并随着新器件、新理论、新电磁材料和变换技术以及各种辅助设计分析软件的不断问世,开关电源的性能不断提高。
本文介绍一种新型的高频DC/DC开关变换器,并成功地应用在军用充电机上。
DC/DC变换器主电路改进型移相全桥ZVS DC/DC变换器主电路结构和各点波形对照如图1、图2所示。
由于电路工作状态在一个周期内可以分为两个完全一样的过程,所以以下仅仅分析半个周期的情况,而这半个周期又可分为以下三种开关模态。
● 开关模态1,t0<t<t1,其中t1=DT s/2此时Q1和Q4同时导通,变压器副边电感L1和整流管D S2导通,原边能量向负载端传递。
此模态的等效电路见图3。
其中,a为变压器变比,V in是直流母线电压,I1和I2分别是电感L1和L2电流(L1=L2=LS),此时有等式(1)成立。
(1)(2)I p(t)=aI1(t)(3)当Q4关断时该模态过程结束。
● 开关模态2,t1<t<t2,其中t2≤T s/2在t1时刻关断Q4,此时副边电感L1中储存的能量给Q4电容(或并联电容)充电,同时将Q3两端电容电荷放掉。
为了实现软开关,Q4关断和Q3开通之间至少要存在一死区时间Δt1,使得在Q3开通前D3首先导通,且有下式成立。
I p1Δt1=2C eff V in(4)其中C eff是开关管漏源两端等效电容,I P1为t1时刻变压器原边流过电流。
当D3导通后,变压器副边两个二极管D S1和D S2同时导通,电路工作在续流状态。
此时等效电路如图4所示。
此时有如下电路方程成立。
(5)(6)(7)(8)r t=r mosfet+r xfmr (9)其中D为脉冲占空比,f S为电路工作频率,L’ik为主边变压器漏感(或与外接电感的串联值),rt是变压器原边等效电阻,τ是原边等效电流衰减时间常数,Vfp是反并联二极管导通压降。
移相全桥ZVS控制的电动汽车DCDC转换器设计研究
116AUTO TIMEAUTOMOBILE DESIGN | 汽车设计移相全桥ZVS 控制的电动汽车DC/DC 转换器设计研究王迎斌南京长安汽车有限公司 江苏省南京市 211200摘 要: 本文采用移相全桥控制策略,设计了一种应用于电动汽车的DC/DC 变换器并能实现功率开关的零电压导通。
本文对其进行了简要介绍移相全桥ZVS-DC 变换器的拓扑结构。
制造了一个原型进行了一系列的实验。
最终的实验结果与仿真结果相一致,且满足要求设计要求,证明设计方案的可行性。
关键词:移相全桥 电动汽车 拓扑结构 ZVS 控制1 引言伴随着全球能源危机情况的日益严重,节能环保汽车需求不断增加,大力发展电动汽车已成为国家重要战略的目标之一,而作为电动汽车核心部件的DC/DC 转换器,对其进行更深入的研究和改进也变得愈发迫切。
开关电源由于效率高、可靠性好等优点近年来逐渐受到设计人员的关注,其高频状态下的功率器件具有非线性特性,寄生电路参数在高频工况下效应明显,可以通过平稳的系统操作达到高效传输的目的。
在此设计中,相移全桥ZVS DC/DC 设计了电动汽车用变频器。
相移全桥ZVS DC/DC 转换器适用于中功率和大功率场合。
它可以充分利用功率器件的寄生参数来实现零电压开关并提高开关的开关频率[1]。
2 移相全桥ZVS DC / DC 转换器的结构和特征DC/DC 转换器可以将不可调节的直流电压转换成可调节的直流电压。
随着电动汽车的发展,DC/DC 转换器越来越多地应用于电动汽车中广泛。
由于动力电池的高压电源可以转换为低压电源通过DC/DC 转换器可以替代传统车辆中的小型发电机车辆的布局和结构可以优化。
相移全桥ZVS DC/DC 转换器的拓扑如图1所示。
全桥逆变器电路用于变压器的一次电路。
Q 1,Q 2,Q 3和Q 4是功率器件,例如IGBT 或MOSFET。
D 1,D 2,D 3和D 4是Q i 的寄生二极管分别。
C i 是寄生电容。
通信电源DC-DC变换器的移相全桥电路分析
通信电源DC-DC变换器的移相全桥电路分析通信电源DC/DC变换器的移相全桥电路分析本文针对通信电源中DC/DC变换器的移相全桥主电路进行了分析及研究,并提出了采用改进型倍流整流移相全桥电路,来克服传统ZVS PWM全桥变换器存在的一些问题。
1 集中供电方式通信电源系统为了保证稳定、可靠、安全供电,通信电源系统可采用集中供电、分散供电、混合供电或一体化供电方式。
其中集中供电方式通信电源系统的组成框图如图1 所示。
图1 集中供电通信电源系统示意图目前,国内外通信电源仍然大都采用模拟和数字相结合的控制方式,大量应用数字化技术的还主要是保护和监控电路以及与系统的通信,完成电源的起动、输入与输出的过、欠压保护,输出的过流与短路保护及过热保护等,通过特定的界面电路,也能完成与系统间的通信与显示,但PWM 部分仍然采用专门的模拟芯片。
如中兴和华为目前还是采用传统的模拟技术,艾默生已有部分产品采用了全数字的控制,但其EMC、环路稳定性等问题还有待于改善。
本文针对通信电源的特点及现状,采用倍流整流的移相全桥变换器作为主电路,进行了关键参数的计算,并设计出样机进行分析仿真结果。
2 改进型倍流整流移相全桥变换器关键参数设计倍流整流主电路结构如所图2 示。
该电路由全桥逆变和倍流整流电路组成,根据负载大小的不同,该电路可工作在断续和连续模式,在断续状态下,副边二极管自然换流,没有反向恢复引起的电压尖峰,也没有占空比丢失的情况发生,但占空比较小,效率较低。
图2 倍流整流主电路在连续模式下(如图3 所示),要从实现副边整流二极管的自然换流以及实现滞后管ZVS 两个方面着手。
而实现这两点的关键在于阻断电容和输出滤波电感的优化设计。
图3 电路连续模式波形图下面对这两个元件的选择作出分析。
2.1 阻断电容设计阻断电容上的电压使得原边电流在零电平时快速下降,所以副边整流二极管在副边电压为零阶段能换流结束,从而避免了二极管的反向恢复问题,并且二极管换流结束后,由于二极管的自然阻断能力,电感上的电流反向后可以流经副边,从而折射回原边给滞后管提供能量实现ZVS。
9种移相全桥ZVZCSDCDC变换器
摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考.关键词:移相控制;零电压零电流开关;全桥变换器1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断.ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响.滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的.即当原边电流减小到零后,不允许其继续反方向增长.原边电流复位目前主要有以下几种方法:1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件;3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件.2电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考.1)NhoE.C.电路如图1所示[1].该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关.这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高.变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大.该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计.2)ChenK.电路如图2所示[2][3].该电路超前桥臂并联有串联的电感和电容.电感L1和L2很小,不影响开关管的ZVS,但有两个好处:一是限制振荡的电流峰值;二是在负载很小,开关管不能实现ZVS时,限制开关管的开通电流尖峰.该拓扑结构利用IGBT的反向击穿特性,解决了滞后桥臂IGBT关断时的电流拖尾问题,可以提高IGBT的开关频率,而且在负载很小时也能实现零电流开关.但是,这个电路也付出了代价,漏感L1k中的能量反向时漏感L1k中的能量全部消耗在反向击穿的IGBT中.3)原边加隔直电容和饱和电感的FB-ZVZCS-PWM变换器如图3[4]所示.它在基本的移相全桥变换器的基础上增加了一个饱和电感Ls,并在主电路上增加了一个阻挡电容Cb,阻挡电容Cb与饱和电感Ls适当配合,能使滞后桥臂上的主开关管实现零电流开关.在原边电压过零阶段,饱和电感工作在线性状态,阻止原边电流ip反向流动,在原边电压为Vin或-Vin时,它工作在饱和状态.尽管它有许多明显的优势,但也有不足之处,如最大占空比范围仍受到很多限制,特别是饱和电感上有很大的损耗,饱和电感磁芯的散热问题是一个必须解决的问题.4)副边采用有源箝位开关的FB-ZVZCS-PWM变换器如图4所示[5].这种电路没有使用耗能元件,在副边增加有源箝位开关S,并通过对有源箝位开关的适当控制,为滞后桥臂创造零电流开关条件.超前桥臂在零电压导通与关断的过程中,输出滤波电感Lf参与了谐振过程,而输出滤波电感通常具有很大的值,超前桥臂开关管可以在很大的负载范围内满足零电压开关条件,开关管的导通与关断的死区时间间隔受原边电压最大占空比的限制.在此种拓扑结构中,可能会出现副边整流输出电压的占空比大于原边电压最大占空比的现象,这种现象称为“占空比增大效应”(dutycycleboosteffect)这种现象是由箝位电容Cc和箝位开关的作用造成的.此电路的主要缺点是控制上稍微复杂一些,以及有源箝位开关采用的是硬开关,但是,有源箝位开关在一个开关周期中仅工作很短一段时间,对变换器整体效率影响很小.5)利用变压器辅助绕组的FB-ZVZCS-PWM变换器电路拓扑如图5所示[6].该电路通过在副边增加一个变压器辅助绕组和一个简单的辅助线路,无须增加耗能元件或有源开关来取得滞后桥臂ZCS.其副边整流电压可由箝位电容箝位,一般可将其限制在120%额定值内,该方案可在大功率场合应用.该电路拓扑的优点是负载范围宽,占空比损失小,器件的电压应力、电流应力小,成本低.但是它也有缺点,即副边结构复杂,设计时有些困难.6)副边带能量恢复缓冲电路的FB-VZCS-PWM变换器如图6所示[7].它的副边增加了由3个快恢复二极管和2个小电容构成的能量恢复缓冲电路,此电路在能量传递初始期间,电容Cs1和Cs2与漏感谐振,电容上的电压达到2nVin,超前桥臂开关管一关断,电容上电压就折合到原边,在漏感上产生一反压,使得原边电流下降.而且,通过能量恢复电路的低阻抗路径使副边整流二极管实现了ZVS.该结构稍微复杂些,最大缺点是,由于电容Cs1和Cs2与漏感谐振,使得副边整流电压几乎是正常电压nVin的2倍,增加了整流管的电压应力,并且由于存在大量环流,也增加了导通损耗.7)使用改进的能量恢复缓冲电路的FB-ZVZCS-PWM变换器如图7所示[8].它运用改进的能量恢复缓冲电路来减小循环电流和副边瞬间超压.除了增加二极管Ds4外,其工作原理和线路与6)相同.8)滞后桥臂中串入二极管的FB-ZVZCS-PWM变换器如图8所示[9].它利用串联二极管阻断电容电压可能引起的原边电流的反向流动.可以在任意负载和输入电压变化范围内实现滞后桥臂的零电流开关.9)副边利用简单辅助电路的FB-ZVZCS-PWM变换器如图9所示[10].此电路副边由一个简单辅助电路构成:包括一个小电容和两个小二极管,结构简单,整流电压不恒定,取决于占空比.该方案不含饱和电感,辅助开关,不产生大的环流,没有额外的箝位电路,这是因为,副边整流电压被箝位于箝位电容电压与输出电压之和.所用的元器件均在低电压,低电流下工作,还有负载范围宽,占空比损失小等优点,从而使此变换器具有高效率,低成本,解决了目前常见变换器的许多问题.在高功率场合很有发展前途.3结语综上所述可知,图2和图3电路使用耗能元件来复位原边电流,降低了总效率并阻碍功率超过5kW;图4电路通过副边增加有源箝位开关来复位原边电流,价格较贵并且控制复杂,有源箝位开关采用的是硬开关,开关频率是原边的两倍,开关损耗大;图5电路所有有源和无源元器件都工作在最小电流应力和电压应力下,有较宽的ZVZCS范围,较小的占空比损耗,不存在严重的寄生环流,功率超过5kW,但是辅助电路复杂;图6电路中电容Cs1和Cs2与漏感谐振引起大的循环能量,降低了总效率并使得副边整流电压几乎是正常电压nVs的二倍,增加了副边整流管的电流应力,变压器和开关的导通损耗也增加了;图7电路是对图6电路的改进,它减小了副边瞬间超压和环流,也能使开关损耗传到负载;通过比较图6和图7缓冲电路中Cs放电时间和漏感L1k 复位时间,可以看出吸收电容复位变压器漏感能量的能力和容量,后者比前者加倍,因而使用图7电路能扩展到重载范围.图9电路简化了前几种ZVZCS方案,仅仅增加由一个小电容和两个小二极管组成的简单辅助电路,无须增加耗能元件和有源开关实现ZVZCS,不仅为原边开关提供ZVZCS条件,而且箝位副边整流二极管,效率高而且价格便宜.。
5kW移相全桥ZVSDCDC变换器的研究_图文(精)
硕士学位论文5kW 移相全桥ZVS DC/DC变换器的研究RESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTER刘鑫哈尔滨工业大学2011年6月国内图书分类号:TM614 学校代码:10213 国际图书分类号:621.3 密级:公开工学硕士学位论文5kW 移相全桥ZVS DC/DC变换器的研究硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学科:电气工程所在单位:电气工程及自动化学院答辩日期:2011年6月授予学位单位:哈尔滨工业大学Classified Index:TM614 U.D.C:621.3Dissertation for the Master Degree in EngineeringRESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTERCandidate : Supervisor : Speciality :Liu XinAcademic Degree Applied for:Prof.Ma HongfeiMaster of EngineeringPower Electronics and Electric DriversSchool of Electrical Engineering and Automation June, 2011Affiliation : Date of Defence:Degree-Conferring-Institution : Harbin Institute of Technology哈尔滨工业大学硕士学位论文摘要DC/DC变换器是电力电子领域重要组成部分,在能源紧张的今天,提高DC/DC变换器的效率及功率密度,具有重要的意义。
功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。
移相全桥ZVS DC/DC变换器是一种能够实现软开关和大功率能量变换的变换器。
移相ZVS-PWM全桥变换器综述
移相ZVS-PWM全桥变换器综述移相ZVS-PWM全桥变换器概述摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。
重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。
关键词:移相全桥变换器零电压开关(ZVS)Overview of Phase Shift ZVS-PWM Full Bridge ConverterAbstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter.Key words:phrase shift,full bridge converter,ZVS引言全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校代码:10213国际图书分类号:621.3 密级:公开工学硕士学位论文5kW 移相全桥ZVS DC/DC 变换器的研究硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学科:电气工程所在单位:电气工程及自动化学院答辩日期:2011 年 6 月授予学位单位:哈尔滨工业大学r the Master Degree in EngineeringRESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTERCandidate:Liu XinSupervisor:Prof.Ma HongfeiAcademic Degree Applied for:Master of EngineeringSpeciality:Power Electronics and ElectricDriversAffiliation:School of Electrical Engineering andAutomationDate of Defence:June, 2011Degree-Conferring-Institution:Harbin Institute of Technology哈尔滨工业大学硕士学位论文- I -摘要DC/DC 变换器是电力电子领域重要组成部分,在能源紧张的今天,提高DC/DC变换器的效率及功率密度,具有重要的意义。
功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。
移相全桥ZVS DC/DC 变换器是一种能够实现软开关和大功率能量变换的变换器。
本文围绕移相全桥ZVS DC/DC 变换器的特点,分析了其工作原理、占空比丢失、变压器副边整流二极管振荡、滞后臂软开关实现条件等关键问题,并设计和制作了一款5kW 的原理样机。
第一章介绍了DC/DC 变换器的背景及发展方向,其中包括器件、软开关技术和目前DC/DC 变换器研究的热点。
同时还介绍了全桥变换器常见的控制策略,以及移相全桥变换器常见的问题和国内外学者提出的改进方法。
第二章针对课题内容,分析了移相全桥变换器的工作原理,对各个模态进行了详细的分析,并就移相全桥变换器的几个关键问题进行了详细分析:占空比丢失、ZVS 的实现、损耗分析和整流二极管振荡问题。
第三章针对技术指标,设计了一款5kW 的样机,其中包括各器件的选型和相关参数的计算,损耗计算。
这些参数计算主要有:全桥开关管电压电流应力的计算与选型、变压器的设计、整流二极管的选择、输出LC滤波电路的设计、隔直电容的选择、谐振电感电容的选择和死区时间的计算、箝位电路的设计。
并根据计算结果使用Saber 软件进行了开环仿真,验证了设计参数的正确性。
第四章主要介绍了变换器控制系统分析与设计,其中有控制芯片UCC2895 的功能介绍,外围元件的选择与保护与采样电路的设计,移相全桥ZVSDC/DC 变换器的小信号模型和利用MATLAB 软件进行反馈回路的补偿设计。
第五章给出了实验结果和分析,验证了设计的正确性。
关键词移相全桥;软开关;UCC2895;小信号模型硕士学位论文5kW 移相全桥ZVS DC/DC 变换器的研究RESEARCH ON 5kW PHASE-SHIFT FULL BRIDGEZVS DC/DC CONVERTER刘鑫哈尔滨工业大学2011 年6 月哈尔滨工业大学硕士学位论文- II -AbstractDC/DC converter is a main part of power electronic converter. As the energyproblem increasingly concerned in modern society, improving the efficient and powerdensity have the significant advantages. The developing of power device and inventionof soft-switching technique make the high efficient and high power density of DC/DC converter possible.The zero-voltage-switching (ZVS) phase-shift full bridge DC/DC converter is anadvanced DC/DC converter with soft-switching technology which can achieve highpower converting. Based on the characteristics of the converter, this paper analyses thebasic operation theory and some typical problems like secondary duty ratio loss and the parasitic oscillation of output rectifier diodes as well as the difficulty for lagging legsachieve ZVS. The simulation and experiments are also given.Firstly, this paper introduces the background and development of the converter,including power device and soft-switching technology and the hot points inresearching DC/DC converter as well as some typical problems and someimprovements. Secondly, this paper analyses the basic operation theory and sometypical problems like secondary duty ratio loss and the parasitic oscillation of outputrectifier diodes and power losses as well as the difficulty for lagging legs achieve ZVS.Thirdly, this paper calculates the main parameters including the selection of bridgeMOSFET and the design of transformer as well as the output filter and so on. The lastof the third part uses the software SABER to simulate the main circuit to verify thecorrection of the calculations. Fourthly, this paper introduces the control system of the converter including the UCC2895 chip, sampling circuit, protection circuit, and thesmall signal model of the converter, as well as the compensation of the feedbackloops.Eventually, the paper explains the experimental result and analyzes the result indetail.Keywords phase shift full bridge, soft-switching, UCC2895, small signal model哈尔滨工业大学硕士学位论文- III -目录摘要 (I)Abstract (II)第1 章绪论 (1)1.1 DC/DC 变换器背景及发展方向 (1)1.1.1 电力电子器件是主要推动力 (1)1.1.2 软开关技术概述 (1)1.1.3 DC/DC 变换器的发展趋势 (4)1.2 全桥ZVS PWM 变换器的概述 (5)1.2.1 全桥变换器的控制策略 (5)1.2.2 移相全桥ZVS PWM 变换器常见的问题和拓扑改进 (6)1.3 本文研究方向及主要内容 (8)1.3.1 本文研究方向 (8)1.3.2 本文主要内容 (9)第2 章移相全桥ZVS DC/DC 变换器拓扑的研究 (10)2.1 移相开关ZVS DC/DC 变换器基本的拓扑分析 (10)2.2 移相全桥ZVS DC/DC 变换器中关键问题的研究 (14)2.2.1 占空比丢失问题 (14)2.2.2 超前臂和滞后臂ZVS 的实现 (15)2.2.3 损耗分析 (16)2.2.4 整流二极管寄生振荡 (17)2.3 本章小结 (21)第3 章5kW 移相全桥ZVS DC/DC 变换器的设计 (22)3.1 5kW 移相全桥ZVS DC/DC 变换器的技术指标 (22)3.2 变换器的各器件选型及相关参数计算 (22)3.2.1 全桥开关管的选择 (22)3.2.2 主变压器的设计 (22)3.2.3 整流二极管的选择 (25)3.2.4 输出LC 滤波电路的设计 (25)3.2.5 隔直电容的选择 (26)3.2.6 谐振电感电容的选择和死区时间的计算............................... 27哈尔滨工业大学硕士学位论文- IV -3.2.7 箝位电路的设计 (28)3.3 损耗计算 (29)3.3.1 MOSFET 的相关损耗计算 (29)3.3.2 副边整流二极管的通态损耗计算 (30)3.3.3 箝位电路的损耗计算 (31)3.4 开环仿真 (31)3.5 本章小结 (35)第4 章基于UCC2895 的控制系统的设计 (36)4.1 控制器UCC2895 介绍及外围元件的选择 (36)4.1.1 UCC2895 芯片的介绍 (36)4.1.2 UCC2895 外围元件的选择 (38)4.1.3 采样和保护电路的设计 (39)4.2 补偿系统的设计 (41)4.2.1 移相全桥ZVS DC/DC 变换器的小信号模型 (41)4.2.2 反馈补偿网络的设计 (46)4.3 本章小结 (49)第5 章实验结果及分析 (50)5.1 测试设备说明 (50)5.2 测试波形及其分析 (51)5.2.1 驱动波形及其分析 (51)5.2.2 主电路测试波形及分析 (52)5.3 变换器结构设计 (54)5.4 本章小结 (56)结论 (57)参考文献 (58)攻读硕士学位期间发表的论文及其它成果 (61)哈尔滨工业大学学位论文原创性声明及使用授权说明 (62)致谢...........................................................................................63哈尔滨工业大学硕士学位论文- 1 -第1 章绪论1.1 DC/DC 变换器背景及发展方向目前世界上绝大部分的电力在使用前都要经过电力电子设备的处理,以满足不同的电压等级和使用环境[1]。