解三角形数列不等式
高考数学复习备考总结
高考数学复习备考总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲致辞、规章制度、策划方案、合同协议、条据文书、心得体会、职业规划、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, rules and regulations, planning plans, contract agreements, documentary evidence, insights, career planning, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!高考数学复习备考总结高考数学复习备考总结汇总7篇利用各类学习资源,如网课、教辅资料等。
周试2:(答案)解三角形及等差数列的通项和求和、不等式
郑州树人中学2017-2018学年(上)第二次周考高二数学(文)命题范围:解三角形、数列(通项、求和)、不等式命题人:刘中阳一、选择题:(本大题共12小题,每小题5分,共60分,每小题只有一个选项符合题目要求)1.若1a <1b<0(a ,b ∈R ),则下列不等式恒成立的是(D) A .a <b B .a +b >ab C .|a |>|b |D .ab <b 2 2.在平面直角坐标系中,若点(-2,t )在直线x -2y +4=0的上方,则t 的取值范围是( B ) A .(-∞,1) B .(1,+∞)C .(-1,+∞)D .(0,1) 3.设等比数列{a n }中,前n 项之和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9=( B )A .-18B.18C.578 D.558 4.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c ,若c -a cos B =(2a -b )cos A ,则△ABC 的形状为(D )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰或直角三角形5.不等式组⎩⎪⎨⎪⎧ x ≥0,x +y ≤3,y ≥x +1表示的平面区域为Ω,直线y =kx -1与区域Ω有公共点,则实数k 的取值范围为( D )A .(0,3]B .[-1,1]C .(-∞,3]D .[3,+∞)6.已知a >1,则不等式x 2-(a +1)x +a <0的解集为( C )A .(a ,+∞)B .(-∞,1)C .(1,a )D .(-∞,1)∪(a ,+∞)7.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n 的值是( B )A .5B .6C .7D .8 8.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧ x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a 的值为( A ).A .12B .1C .2D .139.已知不等式ax 2-5x +b >0的解集为{x |-3<x <2},则不等式bx 2-5x +a >0的解集为( B )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ -13<x <12B.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-13或x >12C .{x |-3<x <2}D.⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >13 10.设等比数列{a n }的前n 项和为S n .若S 2=3,S 4=15,则S 6等于( C )A .31B .32C .63D .6411.数列1,(1+2),(1+2+22),…,(1+2+22+…+2n -1)…的前n 项和为( D ) A .2n -1 B .n ·2n -n C .2n +1-n D .2n +1-2-n12.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( C ) A .3B.932 C.332 D .3 3二、填空题(本题共4个小题,每题5分,共20分)13.若x ,y 满足⎩⎪⎨⎪⎧ x -y ≤0,x +y ≤1,x ≥0,则z =x +2y 的最大值为_____2___.14.在等差数列{a n }中,S 10=100,S 100=10,则S 110=___-110_____.15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a -c =0,则角B =___π3_____. 16.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为____1941____. 三、解答题(本题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)已知f (x )=x 2-⎝⎛⎭⎫a +1a x +1. (1)当a =12时,解不等式f (x )≤0;(2)若a >0,解关于x 的不等式f (x )≤0. 解 (1)当a =12时,有不等式f (x )=x 2-52x +1≤0,所以⎝⎛⎭⎫x -12(x -2)≤0,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤2. (2)因为不等式f (x )=⎝⎛⎭⎫x -1a (x -a )≤0,当0<a <1时,有1a >a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪ a ≤x ≤1a ; 当a >1时,有1a <a ,所以不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a ≤x ≤a ; 当a =1时,不等式的解集为{x |x =1}.18.(本小题满分12分)在等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值.解 (1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3,得1+2d =-3,解得d =-2. 从而a n =1+(n -1)×(-2)=3-2n .(2)由(1)可知a n =3-2n ,所以S n =n [1+(3-2n )]2=2n -n 2.由S k =-35,可得2k -k 2=-35, 即k 2-2k -35=0,解得k =7或k =-5.又k ∈N *,故k =7.19.(本小题满分12分)某客运公司用A 、B 两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A 、B 两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2 400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B 型车不多于A 型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A 型车、B 型车各多少辆?解 设A 型、B 型车辆分别为x 、y 辆,相应营运成本为z 元,则z =1600x +2400y .由题意,得x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤21,y ≤x +7,36x +60y ≥900,x ,y ≥0,x ,y ∈N .作可行域如图所示,可行域的三个顶点坐标分别为P (5,12),Q (7,14),R (15,6).由图可知,当直线z =1600x +2400y 经过可行域的点P 时,直线z =1600x +2400y 在y 轴上的截距z 2400最小,即z 取得最小值.故应配备A 型车5辆、B 型车12辆,可以满足公司从甲地去乙地的营运成本最小.20.(本小题满分12分)如图,在△ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍.(1)求sin B sin C; (2)若AD =1,DC =22,求BD 和AC 的长. 解 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理可得sin B sin C =AC AB =12. (2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2.在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6,由(1)知AB =2AC ,所以AC =1.21.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =3b sin A -a cos B .(1)求角B ;(2)若b =2,△ABC 的面积为3,求a ,c .解 (1)由a =3b sin A -a cos B 及正弦定理,得sin A =3sin B ·sin A -sin A ·cos B ,∵0<A <π,∴sin A >0,∴3sin B -cos B =1,即sin ⎝⎛⎭⎫B -π6=12.又∵0<B <π,∴-π6<B -π6<5π6,∴B =π3. (2)∵S =12ac sin B =3,∴ac =4,①又∵b 2=a 2+c 2-2ac cos B ,即a 2+c 2=8.②由①②联立解得a =c =2.22.(本小题满分12分)已知数列{a n }的首项a 1=23,a n +1=2a n a n +1,n =1,2,3,…. (1)证明:数列⎩⎨⎧⎭⎬⎫1a n -1是等比数列;(2)求数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n . 解 (1)证明:因为a n +1=2a n a n +1,所以1a n +1=a n +12a n =12+12·1a n ,所以1a n +1-1=12⎝⎛⎭⎫1a n -1. 又a 1=23,所以1a 1-1=12,所以数列⎩⎨⎧⎭⎬⎫1a n -1是以12为首项,12为公比的等比数列. (2)由(1)知1a n -1=12·12n -1=12n ,即1a n =12n +1,所以n a n =n 2n +n . 设T n =12+222+323+…+n 2n ,①则12T n =122+223+…+n -12n +n 2n +1,② 由①-②得12T n =12+122+…+12n -n 2n +1=12⎝⎛⎭⎫1-12n 1-12-n 2n +1=1-12n -n 2n +1,所以T n =2-12n -1-n 2n , 又1+2+3+…+n =n (n +1)2.所以数列⎩⎨⎧⎭⎬⎫n a n 的前n 项和S n =2-2+n 2n +n (n +1)2=n 2+n +42-n +22n .要将两种大小不同的钢板截成A 、B 、C 三种规格,每张钢板可同时截成三种规格小钢板的块数如下表:每张钢板的面积,第一种1平方单位,第二种2平方单位,今需要A 、B 、C 三种规格的成品各12、15、27块,问各截这两种钢板多少张,可得到所需三种规格成品,且使所用钢板面积最小?解 设需截第一种钢板x 张,第二种钢板y 张,所用钢板面积为z 平方单位,则⎩⎪⎨⎪⎧ x +y ≥12,2x +y ≥15,x+3y ≥27,x ≥0,x ∈N ,y ≥0,y ∈N ,目标函数z =x +2y ,作出一组平行线x +2y =z ,作出不等式组表示的可行域.由⎩⎪⎨⎪⎧x +3y =27,x +y =12.解得x =92,y =152,点A ⎝⎛⎭⎫92,152不是可行区域内整点,在可行区域内的整点中,点(4,8)和(6,7)使目标函数取最小值20.答:符合题意要求的钢板截法有两种,第一种截法是截第一种钢板4张,第二种钢板8张.第二种截法是截第一种钢板6张,第二种钢板7张,两种方法都最少要截两种钢板20平方单位.设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n -2n (n -1)(n ∈N *).(1)求证:数列{a n }为等差数列,并分别写出a n 和S n 关于n 的表达式;(2)设数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和为T n .求证:15≤T n <14. 证明 (1)当n ≥2时,a n =S n -S n -1=na n -(n -1)a n -1-4(n -1),∴a n -a n -1=4,∴数列{a n }是以1为首项,4为公差的等差数列.∴a n =4n -3,S n =12n (a 1+a n )=2n 2-n . (2)T n =1a 1a 2+1a 2a 3+…+1a n a n +1=11×5+15×9+19×13+…+1(4n -3)(4n +1)=14⎣⎢⎡ ⎝⎛⎭⎫1-15+⎝⎛⎭⎫15-19+⎝⎛⎭⎫19-113+…+⎝⎛ 14n -3⎦⎥⎤ ⎭⎫-14n +1=14⎝⎛⎭⎫1-14n +1<14. 又T n 为单调递增的,故T n ≥T 1=15, ∴15≤T n <14. 10.[2016·徐州高二检测](本小题满分10分)。
数学必修解三角形数列不等式
一、解三角形一、知识点 1、正弦定理:2sin sin sin a b cR A B C=== (边角灵活转化) 2、余弦定理:2222cos a b c bc A =+-;2222cos b c a ca B =+-;2222cos c a b ab C =+-.(灵活变形) 3、大边对大角,小边对小角(灵活取舍单解、多解)4、内角和:在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 5、三角形五心内心:内切圆圆心,3内角平分线交点,内心到3边距离相等; 外心:外接圆圆心,3垂直平分线交点,外心到3顶点距离相等; 重心:3中线交点,每条中线被分成2:1,△ABC 的重心的坐标是123123(,)33x x x y y y G ++++; 垂心:3高交点,垂心及顶点四点中任一点是其余三点为顶点的三角形的垂心;旁心:1内角平分线与其他2角的外角平分线交点。
每个三角形都有3个旁心,旁心到三边等距。
【不做要求】 二、题型:(1)求未知边角:梳理已知条件,选择用什么定理;(2)判断三角形形状【思路一:等式化成角(正弦定理+内角和+诱导公式);思路二:等式化成边(两定理联合)】 (3)求三角形面积:111222a b c S ah bh ch ===;111sin sin sin 222S ab C bc A ca B ===;S 二、数列一、知识点: (一)、求通项公式n a 1、已知n s 求n a :⎩⎨⎧∈≥-==-),2()1(*11N n n S S n S a n n n 注意验证n=1。
2、已知递推公式求n a (已知首项1a )(1)c a a n n +=+1型【构造等差数列】 (2)c ka a n n +=+1型【构造等比数列*1-k c】 (3))(1n f a a n n +=+型【累加法】 (4))(1n f a a n n =+型【累乘法】 (二)、n a 、n S 的最大最小问题: [不等式法]n a 最大⎩⎨⎧≥≥⇔+-11n n n n a a a a ;n a 最小⎩⎨⎧≤≤⇔+-11n n n n a a a a ;n S 最大⎩⎨⎧≤≥⇔+001n n a a ;n S 最小⎩⎨⎧≥≤⇔+01n n a a ;[函数法]:数列是特殊的函数(特别注意定义域:*N n ∈)(三)、等差等比数列必备知识点:(四)、重点题型混合型【等差等比混合--分清主次】(五)数列求和【弄清共有多少项?整理完剩余什么项?】 1、公式法【借助常用结论、公式、构造等差等比】2)1(321+=++++n n n ;6)12)(1(3212222++=++++n n n n ;4)1(2)1(3212223333+=⎥⎦⎤⎢⎣⎡+=++++n n n n n 2、错位相减法【每项为等差等比项之积/2式同乘公比,再1式减2式】 3、裂项相消法【通项可拆成两项差】111)1(1+-=+n n n n ; ⎪⎭⎫ ⎝⎛+-=+k n n k t k n n t 11)(; n n n n -+=++111三、不等式㈠ 一元二次不等式1、解法:二次项系数化正→∆>0,解对应方程两根,大时取两边小时取中间;0≤∆时结合对应函数图像写出解集;2、注意事项:(1)解集是集合,要用描述法或区间表示。
不等式解三角形数列高考试题精选
不等式解三角形数列高考试题精选一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0 4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>05.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为.9.若a,b∈R,ab>0,则的最小值为.10.设x,y满足约束条件,则z=3x﹣2y的最小值为.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为.12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=.13.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos(2A﹣)的值.30.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.31.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.32.设数列{a n }满足a 1+3a 2+…+(2n ﹣1)a n =2n .(1)求{a n }的通项公式;(2)求数列{}的前n 项和.33.已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.34.已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3.(1)求数列{a n }通项公式;(2){b n } 为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列的前n 项和T n .35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.不等式解三角形数列高考试题精选参考答案与试题解析一.选择题(共6小题)1.设x、y、z为正数,且2x=3y=5z,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 【解答】解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴3y=,2x=,5z=.∵==,>=.∴>lg>>0.∴3y<2x<5z.另解:x、y、z为正数,令2x=3y=5z=k>1.lgk>0.则x=,y=,z=.∴==>1,可得2x>3y,==>1.可得5z>2x.综上可得:5z>2x>3y.解法三:对k取特殊值,也可以比较出大小关系.故选:D.2.若a>b>0,且ab=1,则下列不等式成立的是()A.a+<<log2(a+b))B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b))<a+<【解答】解:∵a>b>0,且ab=1,∴可取a=2,b=.则=4,==,log2(a+b)==∈(1,2),∴<log2(a+b)<a+.故选:B.3.已知x,y∈R,且x>y>0,则()A.﹣>0 B.sinx﹣siny>0 C.()x﹣()y<0 D.lnx+lny>0【解答】解:∵x,y∈R,且x>y>0,则,sinx与siny的大小关系不确定,<,即﹣<0,lnx+lny与0的大小关系不确定.故选:C.4.已知a,b>0且a≠1,b≠1,若log a b>1,则()A.(a﹣1)(b﹣1)<0 B.(a﹣1)(a﹣b)>0 C.(b﹣1)(b﹣a)<0 D.(b ﹣1)(b﹣a)>0【解答】解:若a>1,则由log a b>1得log a b>log a a,即b>a>1,此时b﹣a>0,b>1,即(b﹣1)(b﹣a)>0,若0<a<1,则由log a b>1得log a b>log a a,即b<a<1,此时b﹣a<0,b<1,即(b﹣1)(b﹣a)>0,综上(b﹣1)(b﹣a)>0,故选:D.5.若a>b>1,0<c<1,则()A.a c<b c B.ab c<ba cC.alog b c<blog a c D.log a c<log b c【解答】解:∵a>b>1,0<c<1,∴函数f(x)=x c在(0,+∞)上为增函数,故a c>b c,故A错误;函数f(x)=x c﹣1在(0,+∞)上为减函数,故a c﹣1<b c﹣1,故ba c<ab c,即ab c >ba c;故B错误;log a c<0,且log b c<0,log a b<1,即=<1,即log a c>log b c.故D错误;0<﹣log a c<﹣log b c,故﹣blog a c<﹣alog b c,即blog a c>alog b c,即alog b c<blog a c,故C正确;故选:C6.设f(x)=lnx,0<a<b,若p=f(),q=f(),r=(f(a)+f(b)),则下列关系式中正确的是()A.q=r<p B.p=r<q C.q=r>p D.p=r>q【解答】解:由题意可得若p=f()=ln()=lnab=(lna+lnb),q=f()=ln()≥ln()=p,r=(f(a)+f(b))=(lna+lnb),∴p=r<q,故选:B二.选择题(共1小题)7.2﹣3,,log25三个数中最大数的是log25.【解答】解:由于0<2﹣3<1,1<<2,log25>log24=2,则三个数中最大的数为log25.故答案为:log25.三.填空题(共9小题)8.若直线=1(a>0,b>0)过点(1,2),则2a+b的最小值为8.【解答】解:直线=1(a>0,b>0)过点(1,2),则+=1,由2a+b=(2a+b)×(+)=2+++2=4++≥4+2=4+4=8,当且仅当=,即a=,b=1时,取等号,∴2a+b的最小值为8,故答案为:8.9.若a,b∈R,ab>0,则的最小值为4.【解答】解:【解法一】a,b∈R,ab>0,∴≥==4ab+≥2=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.【解法二】a,b∈R,ab>0,∴=+++≥4=4,当且仅当,即,即a=,b=或a=﹣,b=﹣时取“=”;∴上式的最小值为4.故答案为:4.10.设x,y满足约束条件,则z=3x﹣2y的最小值为﹣5.【解答】解:由x,y满足约束条件作出可行域如图,由图可知,目标函数的最优解为A,联立,解得A(﹣1,1).∴z=3x﹣2y的最小值为﹣3×1﹣2×1=﹣5.故答案为:﹣5.11.已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).【解答】解:作出f(x)=x2﹣4x(x>0)的图象,如图所示,∵f(x)是定义在R上的奇函数,∴利用奇函数图象关于原点对称作出x<0的图象,不等式f(x)>x表示函数y=f(x)图象在y=x上方,∵f(x)图象与y=x图象交于P(5,5),Q(﹣5,﹣5),则由图象可得不等式f(x)>x的解集为(﹣5,0)∪(5,+∞).故答案为:(﹣5,0)∪(5,+∞)12.在数列{a n}中,a1=2,a n+1=2a n,S n为{a n}的前n项和,若S n=126,则n=6.=2a n,【解答】解:∵a n+1∴,∵a1=2,∴数列{a n}是a1=2为首项,以2为公比的等比数列,∴S n===2n+1﹣2=126,∴2n+1=128,∴n+1=7,∴n=6.故答案为:613.设数列{a n}的前n项和为S n,且a1=﹣1,a n+1=S n+1S n,则S n=﹣.【解答】解:∵a n=S n+1S n,+1﹣S n=S n+1S n,∴S n+1∴﹣=1,又∵a1=﹣1,即=﹣1,∴数列{}是以首项是﹣1、公差为﹣1的等差数列,∴=﹣n,∴S n=﹣,故答案为:﹣.14.△ABC的内角A,B,C的对边分别为a,b,c,若2bcosB=acosC+ccosA,则B=.【解答】解:∵2bcosB=acosC+ccosA,由正弦定理可得,2cosBsinB=sinAcosC+sinCcosA=sin(A+C)=sinB,∵sinB≠0,∴cosB=,∵0<B<π,∴B=,故答案为:15.△ABC的内角A,B,C的对边分别为a,b,c,已知C=60°,b=,c=3,则A=75°.【解答】解:根据正弦定理可得=,C=60°,b=,c=3,∴sinB==,∵b<c,∴B=45°,∴A=180°﹣B﹣C=180°﹣45°﹣60°=75°,故答案为:75°.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知△ABC的面积为3,b﹣c=2,cosA=﹣,则a的值为8.【解答】解:∵A∈(0,π),∴sinA==.==bc=,化为bc=24,∵S△ABC又b﹣c=2,解得b=6,c=4.由余弦定理可得:a2=b2+c2﹣2bccosA=36+16﹣48×=64.解得a=8.故答案为:8.四.解答题(共24小题)17.△ABC的内角A,B,C的对边分别为a,b,c,已知sin(A+C)=8sin2.(1)求cosB;(2)若a+c=6,△ABC的面积为2,求b.【解答】解:(1)sin(A+C)=8sin2,∴sinB=4(1﹣cosB),∵sin2B+cos2B=1,∴16(1﹣cosB)2+cos2B=1,∴(17cosB﹣15)(cosB﹣1)=0,∴cosB=;(2)由(1)可知sinB=,=ac•sinB=2,∵S△ABC∴ac=,∴b2=a2+c2﹣2accosB=a2+c2﹣2××=a2+c2﹣15=(a+c)2﹣2ac﹣15=36﹣17﹣15=4,∴b=2.18.△ABC的内角A,B,C的对边分别为a,b,c,已知△ABC的面积为.(1)求sinBsinC;(2)若6cosBcosC=1,a=3,求△ABC的周长.=acsinB=,【解答】解:(1)由三角形的面积公式可得S△ABC∴3csinBsinA=2a,由正弦定理可得3sinCsinBsinA=2sinA,∵sinA≠0,∴sinBsinC=;(2)∵6cosBcosC=1,∴cosBcosC=,∴cosBcosC﹣sinBsinC=﹣=﹣,∴cos(B+C)=﹣,∴cosA=,∵0<A<π,∴A=,∵===2R==2,∴sinBsinC=•===,∴bc=8,∵a2=b2+c2﹣2bccosA,∴b2+c2﹣bc=9,∴(b+c)2=9+3cb=9+24=33,∴b+c=∴周长a+b+c=3+.19.在△ABC中,∠A=60°,c=a.(1)求sinC的值;(2)若a=7,求△ABC的面积.【解答】解:(1)∠A=60°,c=a,由正弦定理可得sinC=sinA=×=,(2)a=7,则c=3,∴C<A,由(1)可得cosC=,∴sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,=acsinB=×7×3×=6.∴S△ABC20.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知b+c=2acosB.(1)证明:A=2B;(2)若cosB=,求cosC的值.【解答】(1)证明:∵b+c=2acosB,∴sinB+sinC=2sinAcosB,∵sinC=sin(A+B)=sinAcosB+cosAsinB,∴sinB=sinAcosB﹣cosAsinB=sin(A﹣B),由A,B∈(0,π),∴0<A﹣B<π,∴B=A﹣B,或B=π﹣(A﹣B),化为A=2B,或A=π(舍去).∴A=2B.(II)解:cosB=,∴sinB==.cosA=cos2B=2cos2B﹣1=,sinA==.∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=+×=.21.已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC.(Ⅰ)若a=b,求cosB;(Ⅱ)设B=90°,且a=,求△ABC的面积.【解答】解:(I)∵sin2B=2sinAsinC,由正弦定理可得:>0,代入可得(bk)2=2ak•ck,∴b2=2ac,∵a=b,∴a=2c,由余弦定理可得:cosB===.(II)由(I)可得:b2=2ac,∵B=90°,且a=,∴a2+c2=b2=2ac,解得a=c=.∴S==1.△ABC22.△ABC中,D是BC上的点,AD平分∠BAC,△ABD面积是△ADC面积的2倍.(1)求;(2)若AD=1,DC=,求BD和AC的长.【解答】解:(1)如图,过A作AE⊥BC于E,∵==2∴BD=2DC,∵AD平分∠BAC∴∠BAD=∠DAC在△ABD中,=,∴sin∠B=在△ADC中,=,∴sin∠C=;∴==.…6分(2)由(1)知,BD=2DC=2×=.过D作DM⊥AB于M,作DN⊥AC于N,∵AD平分∠BAC,∴DM=DN,∴==2,∴AB=2AC,令AC=x,则AB=2x,∵∠BAD=∠DAC,∴cos∠BAD=cos∠DAC,∴由余弦定理可得:=,∴x=1,∴AC=1,∴BD的长为,AC的长为1.23.设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角.(Ⅰ)证明:B﹣A=;(Ⅱ)求sinA+sinC的取值范围.【解答】解:(Ⅰ)由a=btanA和正弦定理可得==,∴sinB=cosA,即sinB=sin(+A)又B为钝角,∴+A∈(,π),∴B=+A,∴B﹣A=;(Ⅱ)由(Ⅰ)知C=π﹣(A+B)=π﹣(A++A)=﹣2A>0,∴A∈(0,),∴sinA+sinC=sinA+sin(﹣2A)=sinA+cos2A=sinA+1﹣2sin2A=﹣2(sinA﹣)2+,∵A∈(0,),∴0<sinA<,∴由二次函数可知<﹣2(sinA﹣)2+≤∴sinA+sinC的取值范围为(,]24.△ABC中,D是BC上的点,AD平分∠BAC,BD=2DC(Ⅰ)求.(Ⅱ)若∠BAC=60°,求∠B.【解答】解:(Ⅰ)如图,由正弦定理得:,∵AD平分∠BAC,BD=2DC,∴;(Ⅱ)∵∠C=180°﹣(∠BAC+∠B),∠BAC=60°,∴,由(Ⅰ)知2sin∠B=sin∠C,∴tan∠B=,即∠B=30°.25.设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.【解答】解:(Ⅰ)证明:∵a=btanA.∴=tanA,∵由正弦定理:,又tanA=,∴=,∵sinA≠0,∴sinB=cosA.得证.(Ⅱ)∵sinC=sin[π﹣(A+B)]=sin(A+B)=sinAcosB+cosAsinB,∴sinC﹣sinAcosB=cosAsinB=,由(1)sinB=cosA,∴sin2B=,∵0<B<π,∴sinB=,∵B为钝角,∴B=,又∵cosA=sinB=,∴A=,∴C=π﹣A﹣B=,综上,A=C=,B=.26.在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD 的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分27.已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p ∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.28.△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=,B=A+.(Ⅰ)求b的值;(Ⅱ)求△ABC的面积.【解答】解:(Ⅰ)∵cosA=,∴sinA==,∵B=A+.∴sinB=sin(A+)=cosA=,由正弦定理知=,∴b=•sinB=×=3.(Ⅱ)∵sinB=,B=A+>∴cosB=﹣=﹣,sinC=sin(π﹣A﹣B)=sin(A+B)=sinAcosB+cosAsinB=×(﹣)+×=,∴S=a•b•sinC=×3×3×=.29.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知a﹣c=b,sinB=sinC,(Ⅰ)求cosA的值;(Ⅱ)求cos (2A ﹣)的值.【解答】解:(Ⅰ)将sinB=sinC ,利用正弦定理化简得:b=c ,代入a ﹣c=b ,得:a ﹣c=c ,即a=2c ,∴cosA===;(Ⅱ)∵cosA=,A 为三角形内角, ∴sinA==,∴cos2A=2cos 2A ﹣1=﹣,sin2A=2sinAcosA=,则cos (2A ﹣)=cos2Acos+sin2Asin=﹣×+×=.30.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c ,已知bcosC +ccosB=2b ,则= 2 .【解答】解:将bcosC +ccosB=2b ,利用正弦定理化简得:sinBcosC +sinCcosB=2sinB , 即sin (B +C )=2sinB , ∵sin (B +C )=sinA , ∴sinA=2sinB ,利用正弦定理化简得:a=2b , 则=2. 故答案为:231.记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 【解答】解:(1)设等比数列{a n }首项为a 1,公比为q , 则a 3=S 3﹣S 2=﹣6﹣2=﹣8,则a 1==,a 2==,由a1+a2=2,+=2,整理得:q2+4q+4=0,解得:q=﹣2,则a1=﹣2,a n=(﹣2)(﹣2)n﹣1=(﹣2)n,∴{a n}的通项公式a n=(﹣2)n;(2)由(1)可知:S n===﹣(2+(﹣2)n+1),则S n+1=﹣(2+(﹣2)n+2),S n+2=﹣(2+(﹣2)n+3),由S n+1+S n+2=﹣(2+(﹣2)n+2)﹣(2+(﹣2)n+3)=﹣[4+(﹣2)×(﹣2)n+1+(﹣2)2×+(﹣2)n+1],=﹣[4+2(﹣2)n+1]=2×[﹣(2+(﹣2)n+1)],=2S n,即S n+1+S n+2=2S n,∴S n+1,S n,S n+2成等差数列.32.设数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.(1)求{a n}的通项公式;(2)求数列{}的前n项和.【解答】解:(1)数列{a n}满足a1+3a2+…+(2n﹣1)a n=2n.n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1).∴(2n﹣1)a n=2.∴a n=.当n=1时,a1=2,上式也成立.∴a n=.(2)==﹣.∴数列{}的前n项和=++…+=1﹣=.33.已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n.﹣1【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.34.已知{a n}是各项均为正数的等比数列,且a1+a2=6,a1a2=a3.(1)求数列{a n}通项公式;=b n b n+1,求数列(2){b n}为各项非零的等差数列,其前n项和为S n,已知S2n+1的前n项和T n.【解答】解:(1)记正项等比数列{a n}的公比为q,因为a1+a2=6,a1a2=a3,所以(1+q)a1=6,q=q2a1,解得:a1=q=2,所以a n=2n;(2)因为{b n}为各项非零的等差数列,所以S2n=(2n+1)b n+1,+1=b n b n+1,又因为S2n+1所以b n=2n+1,=,所以T n=3•+5•+…+(2n+1)•,T n=3•+5•+…+(2n﹣1)•+(2n+1)•,两式相减得:T n=3•+2(++…+)﹣(2n+1)•,即T n=3•+(+++…+)﹣(2n+1)•,即T n=3+1++++…+)﹣(2n+1)•=3+﹣(2n+1)•=5﹣.35.已知等差数列{a n}的前n项和为S n,等比数列{b n}的前n项和为T n,a1=﹣1,b1=1,a2+b2=2.(1)若a3+b3=5,求{b n}的通项公式;(2)若T3=21,求S3.【解答】解:(1)设等差数列{a n}的公差为d,等比数列{b n}的公比为q,a1=﹣1,b1=1,a2+b2=2,a3+b3=5,可得﹣1+d+q=2,﹣1+2d+q2=5,解得d=1,q=2或d=3,q=0(舍去),则{b n}的通项公式为b n=2n﹣1,n∈N*;(2)b1=1,T3=21,可得1+q+q2=21,解得q=4或﹣5,当q=4时,b2=4,a2=2﹣4=﹣2,d=﹣2﹣(﹣1)=﹣1,S3=﹣1﹣2﹣3=﹣6;当q=﹣5时,b2=﹣5,a2=2﹣(﹣5)=7,d=7﹣(﹣1)=8,S3=﹣1+7+15=21.36.已知{a n}为等差数列,前n项和为S n(n∈N*),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b n}的前n项和(n∈N*).【解答】(Ⅰ)解:设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以,.由b3=a4﹣2a1,可得3d﹣a1=8.由S11=11b4,可得a1+5d=16,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,{a n}的通项公式为a n=3n﹣2,{b n}的通项公式为.(Ⅱ)解:设数列{a2n b n}的前n项和为T n,由a2n=6n﹣2,有,,上述两式相减,得=.得.所以,数列{a2n b n}的前n项和为(3n﹣4)2n+2+16.37.已知{a n}为等差数列,前n项和为S n(n∈N+),{b n}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1,S11=11b4.(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)求数列{a2n b2n﹣1}的前n项和(n∈N+).【解答】解:(I)设等差数列{a n}的公差为d,等比数列{b n}的公比为q.由已知b2+b3=12,得b1(q+q2)=12,而b1=2,所以q+q2﹣6=0.又因为q>0,解得q=2.所以,b n=2n.由b3=a4﹣2a1,可得3d﹣a1=8①.由S11=11b4,可得a1+5d=16②,联立①②,解得a1=1,d=3,由此可得a n=3n﹣2.所以,数列{a n}的通项公式为a n=3n﹣2,数列{b n}的通项公式为b n=2n.(II)设数列{a2n b2n﹣1}的前n项和为T n,由a2n=6n﹣2,b2n﹣1=4n,有a2n b2n﹣1=(3n﹣1)4n,故T n=2×4+5×42+8×43+…+(3n﹣1)4n,4T n=2×42+5×43+8×44+…+(3n﹣1)4n+1,上述两式相减,得﹣3T n=2×4+3×42+3×43+…+3×4n﹣(3n﹣1)4n+1==﹣(3n﹣2)4n+1﹣8得T n=.所以,数列{a2n b2n﹣1}的前n项和为.38.已知{a n}是公差为3的等差数列,数列{b n}满足b1=1,b2=,a n b n+1+b n+1=nb n.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{b n}的前n项和.【解答】解:(Ⅰ)∵a n b n+1+b n+1=nb n.当n=1时,a1b2+b2=b1.∵b1=1,b2=,∴a1=2,又∵{a n}是公差为3的等差数列,∴a n=3n﹣1,(Ⅱ)由(I)知:(3n﹣1)b n+1+b n+1=nb n.即3b n+1=b n.即数列{b n}是以1为首项,以为公比的等比数列,∴{b n}的前n项和S n==(1﹣3﹣n)=﹣.39.设数列{a n}的前n项和为S n,已知S2=4,a n+1=2S n+1,n∈N*.(Ⅰ)求通项公式a n;(Ⅱ)求数列{|a n﹣n﹣2|}的前n项和.【解答】解:(Ⅰ)∵S2=4,a n+1=2S n+1,n∈N*.∴a1+a2=4,a2=2S1+1=2a1+1,解得a1=1,a2=3,=2S n+1,a n=2S n﹣1+1,当n≥2时,a n+1两式相减得a n﹣a n=2(S n﹣S n﹣1)=2a n,+1=3a n,当n=1时,a1=1,a2=3,即a n+1=3a n,满足a n+1∴=3,则数列{a n}是公比q=3的等比数列,则通项公式a n=3n﹣1.(Ⅱ)a n﹣n﹣2=3n﹣1﹣n﹣2,设b n=|a n﹣n﹣2|=|3n﹣1﹣n﹣2|,则b1=|30﹣1﹣2|=2,b2=|3﹣2﹣2|=1,当n≥3时,3n﹣1﹣n﹣2>0,则b n=|a n﹣n﹣2|=3n﹣1﹣n﹣2,此时数列{|a n﹣n﹣2|}的前n项和T n=3+﹣=,则T n==.40.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【解答】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.另解:由柯西不等式可得:(ac+bd)2≤(a2+b2)(c2+d2)=4×16=64,当且仅当时取等号.∴﹣8≤ac+bd≤8.。
高中数学必修5解三角形、数列、不等式测试题
高中数学必修5解三角形、数列、不等式测试题(考试时间120分钟,总分150分)一.选择题 (本大题共12小题 ,每小题5分,共60分,请把正确答案填在答题卡上)1.已知a ,b 为非零实数,且a <b ,则下列命题成立的是( )A .a 2<b 2B .a 2b <ab2C .2a-2b<0 D.1a >1b2.sin15°cos45°+cos15°sin45°等于( ) A .0B .21 C .23 D .13.ABC ∆中,若︒===60,2,1B c a ,则ABC ∆的面积为 ( )A .21B .23 C.1 D.34.在数列{}n a 中,1a =1,12n n a a +-=,则51a 的值为 ( ) A .99 B .49 C .102 D . 1015.已知0x >,函数4y x x=+的最小值是 ( ) A .5 B .4 C .8 D .6 6.在等比数列中,112a =,12q =,132n a =,则项数n 为 ( ) A. 3B. 4C. 5D. 67.不等式20(0)ax bx c a ++<≠的解集为R ,那么( )A. 0,0a <∆<B. 0,0a <∆≤C. 0,0a >∆≥D. 0,0a >∆>8.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为 ( )A . 5 B. 3 C. 7 D. -8 9.若)4πtan(α-=3,则tan α 等于( ) A .-2 B .21-C .21 D .210.在等差数列{a n }中,若a 3+a 9+a 15+a 21=8,则a 12等于( )A .1B .-1C .2D .-211.下列各式中,值为23的是( ) A .2sin15°-cos15° B .cos 215°-sin 215° C .2sin 215°-1D .sin 215°+cos 215°12.关于x 的方程2210ax x +-=至少有一个正的实根,则a 的取值范围是( )A .a ≥0B .-1≤a <0C .a >0或-1<a <0D .a ≥-1二.填空题(共4小题,每题5分,共20分,请把正确答案填在答题卡上) 13.在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =14. 不等式组260302x y x y y +-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为15.不等式21131x x ->+的解集是 . 16. 已知数列{}n a 满足23123222241n n n a a a a ++++=-,则{}n a 的通项公式 三.解答题(本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤,并把正确解答过程写在答题卡上)17. (10分)(1) 解不等式0542<++-x x ,(2)求函数的定义域:5y =18.(12分)等差数列{}n a 满足 212=a ,155=a ,求通项n a 及前n 项和的最大值.19.(12分)在△ABC 中,BC =a ,AC =b ,a ,b是方程220x -+=的两个根, 且2()1coc A B +=。
解三角形数列不等式
2016年高一下学期期中检测一、选择题。
(12×5分=50分)1.在△ABC 中,b = 8,c =38,S △ABC =316,则∠A 等于( )A. 30 ºB. 60ºC. 30º 或 150ºD. 60º 或120º2.如果1,,,,9a b c --成等比数列,那么( )A.3,9b ac ==B.3,9b ac =-=C.3,9b ac ==-D.3,9b ac =-=-3.已知x 、y 满足约束条件⎪⎩⎪⎨⎧-≥≤≤+11y x y y x ,Z=2x+y 的最大值是 ( )A .5B .23C .3D .54.在△ABC 中,若cos cos a b B A=,则该三角形一定是 ( ) A .等腰三角形但不是直角三角形 B .直角三角形但不是等腰三角形C .等腰直角三角形D .等腰三角形或直角三角形5. 公差不为0的等差数列{a n }中,a 2、a 3、a 6依次成等比数列,则公比等于( ) A. 21 B. 31 C.2 D.3 6.设a>0,b>0,若是3a 与3b的等比中项,则+的最小值为( ) (A)8 (B)4 (C)1 (D)7.在△ABC 中,三边a,b,c 成等差数列,B=30°,且△ABC 的面积为,则b 的值是( )(A)1+ (B)2+ (C)3+ (D)8.已知是等比数列,,则=( ) A.16() B.6() C.() D.() 9. 在△ABC 中,a ,b ,c 分别为A , B , C 的对边,如果c a b +=2, B =30°,△ABC 的面积为23,那么b 等于( ) {}n a 41252==a a ,13221++++n n a a a a a a n --41n --21332n --41332n --21A.231+B.31+C.232+ D.32+ 10.在等比数列{a n }中,a 1=1,q ∈R 且|q |≠1,若a m =a 1a 2a 3a 4a 5,则m 等于( )A.9B.10C.11D.1211.等差数列{a n }和{b n }的前n 项和分别为S n 与Tn ,对一切自然数n ,都有n n T S =132+n n ,则55b a 等于( ) A.32 B. 149 C. 3120 D. 1711 12. 一个直角三角形的周长为2p ,则其斜边长的最小值为( )A. 21+B. 21- C.D. 二、填空题。
高中数学数列、解三角形、不等式综合复习
本讲主要复习了必修(5)数列、解三角形、不等式等三部分知识要点和考点。
在利用这些知识点解决问题时注重函数的思想、数与形结合的思想、方程的数学思想、分类讨论的数学思想、等价转化的数学思想及配方法、特值法、分离参数法等数学思想方法的应用。
考点一:数列、不等式、解三角形等基础知识的考查例1、在下列命题中,把正确命题的序号填在题后的横线上。
(1)当三角形的各角的余切成等差数列时,各角所对边的平方成等差数列(2)已知不等式①②x2-6x+8<0 ③2x2-9x+m<0若同时满足①②的x值也满足③,则m9.(3)一个等差数列和一个等比数列,其首项是相等的正数,若其第(2n+1)项是相等的,则这两个数列的第(n+1)项也是相等的。
(4)方程有解时a的取值范围是在上述命题中正确命题的序号是。
分析:(1)设三个角A,B,C所对的边分别是a,b,c.由已知条件得:2cotB=cotA+cotC然后化为正、余弦。
通分再利用正、余弦定理可证:2b2=a2+c2.(2)可用特值法:先求不等式①②解集的交集。
再对m取特值验证。
也可利用二次函数的图像解决。
(3)利用等差、等比数列的通项公式表示这两个数列的第(n+1)项,然后比较大小。
或取特值验证。
(4)分离参数法:把a分离出来,用表示a,再用均值不等式求解。
解析:(1)由已知得:2cotB=cotA+cotC.利用正、余弦定理可证:2b2=a2+c2.故命题(1)是正确的。
(2)不等式①②的交集是(2,3),取m=0时,不等式化为:显然当2<x<3时,不等式成立。
故命题(2)错误另解:利用二次函数图像求解:设f(x)=2x2-9x+m,如图由已知得:(3)设数列分别是等差数列、等比数列。
首项分别是>0公差和公比分别是d、q,取n=2,q=2,由已知:即:,故==-=故,故命题(3)错误。
(4)由方程得:-(4+a)=.故此命题错误。
考点二:不等式与数列的综合应用的考查例2、已知数列{a}是首项a1>0,q>-1且q≠1的等比数列,设数列{b}的通项为b=a-ka(n∈N),数列{a}、{b}的前n项和分别为S,T.如果T>kS对一切自然数n都成立,求实数k的取值范围.分析:由探寻T和S的关系入手谋求解题思路。
解三角形数列不等式考点分析。..
解三角形数列不等式考点分析。
必修五所学三章都为高考考察重点,且是与高考数学联络严密的知识点,温习中应惹起大家注重,本文经过对考点停止剖析来指点温习。
一、解三角形考点剖析〔1〕判别三角形的外形;〔2〕正余弦定理的复杂运用;〔3〕测量效果。
这些标题难度 不大,题型是中档题与复杂题,主要考察考生运用正余弦定理及三角公式停止恒等变形的才干;化简、求值或判别三角形外形为主,也能够与其他知识相结合,重点与三角恒等或平面向量交汇。
例1、台风中心此A 地以每小时20千米的速度向正南方向移动,离台风中心30千米内 的地域为风险区,城市B 在A 的正西方40千米处,城市B 处于风险区内的时间为多长? 解:如图,设台风中心从A 地到C 地用时为t ,|AC|=20t ,在▲ABC 中,由余弦定理得:t t A AC AB AC AB BC 280024001600cos ||||2||||||22-+=-+=, 依题意,只需30||≤BC ,城市B 就处于风险区内,由此得: 121222122min max =--+=-t t 〔小时〕, 所以城市B 处于风险区内的时间为1小时。
点评:正确了解方位角,画出契合实践状况的图形,普通是以时间为变量表达出图形中的线段,然后应用正、余弦定理,结合详细效果情境列式处置,这是应用正、余弦定理处置实践效果的重要思绪之一。
例2、▲ABC 的内角A 、B 、C 所对的边区分为a ,b ,c ,它的外接圆半径为6,三边a ,b ,c ,角A 、C 和▲ABC 的面积S 满足以下条件:22)(a c b S --=和〔1〕求B sin 的值;〔2〕求▲ABC 的面积的最大值。
剖析:此题从所给条件▲ABC 的面积S 满足以下条件:22)(a c b S --=能获取的信息是应用面积公式B ac S sin 21=与的关系式树立起等量关系,结合余弦定理第一问可求得;由条件外接圆半径为6应联想正弦定理以及条件34sin sin =+C A 可得a +c =16为定值,应与基本不等式联络解第二问。
高中数学课堂情景引入经典案例情景设置数列解三角形不等式
太多的事物不仅与表示它的量的大小有关,而且也与方向有关.三角恒等变换左图为世界著名的艺术殿堂——法国卢浮宫,它的正门入口处有一个金字塔建筑,它的设计者就是著名的美籍华人建筑师贝聿铭.那么在测量这类建筑物的高度时(如右图),我们需要来解复合角∠DAC =α-β的正、余弦值,这就需要对两角差的正、余弦进行变换.事实上,变换是数学的重要工具,同时也是高中数学学习的主要对象之一.其中代数变换我们已经在初中学习过,而且在必修4的第一章也涉及同角三角函数的变换.与代数变换一样,三角变换也是一种只变其形,不改变其本质的一种变换.两角差的余弦公式我们知道cos45°=22,cos30°=32.请同学们思考这样一个问题:cos15°=cos(45°-30°)=cos45°-cos30°成立吗?答案当然是不成立,因为cos15°的值应该是一个正值,而cos45°-cos30°是一个负值,那么cos15°的值与cos45°和cos30°之间到底存在什么关系呢?两角和与差的正弦、余弦变脸是川剧艺术中塑造人物的一种特技,演员在熟练的动作之间,奇妙地变换着不同的脸谱,用以表现剧中人物的情绪、心理状态的突然变化,达到“相随心变”的艺术效果,那么在三角函数中,两角和与差的正弦余弦之间又有怎样的变换呢?两角和与差的正切坐在教室里,需要一个合适视角才能看清楚黑板;在足球比赛中,若你从所守球门附近带球过人沿直线推进,要想把球准确地踢进大门去,需要确定一个最佳位置,这些实际生活中的问题可不是仅仅一个角度就可以解决的,其中涉及到至少两个角度的因素,只有把问题分析全面,才能稳操胜券.怎样确定两角之间的关系呢?二倍角的正弦、余弦、正切公式在我们接触到的事物中,带有一般性的事物总是大开大合,纵横驰骋,往往包含一切,而特殊的事物则是小巧玲珑,温婉和融,往往显出简洁,奇峻之美.三角函数的和(差)角的正弦、余弦、正切公式中的角都是带有一般性的,一般性中又蕴含着特殊性,即两角相等的情形,那么这些二倍角又有什么简洁,奇峻之美呢?三角恒等变换变换是生活中的常态,换一个环境,换一种心情,换一个角度,或许就柳暗花明又一村了,我们经常看到的魔术更是如此.可见,变换已深入到我们生活中的每一个角落.在前面几节的学习中,我们已经领略了三角变换的风采,那么,对于前面学习的和角公式,通过对各公式做加减运算,又能得到什么样的变换呢?解三角形在本章“解三角形”的引言中,我们遇到这么一个问题,“遥不可及的月亮离地球究竟有多远呢?”在古代,天文学家没有先进的仪器就已经估算出了两者的距离,那么,他们是用什么神奇的方法探索到这个奥秘的呢?1992年9月21日,中国政府决定实施载人航天工程,并确定了三步走的发展战略。
必修五解三角形 不等式知识点
1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=-sincos ,cos sin ,tan cot 222222A B C A B C A B C+++===4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR C===A B . 5、正弦定理的变形公式:①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =;②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ;④sin sin sin sin sin sin a b c a b cC C++===A +B +A B .6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角. ②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解))7、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A 等,变形: 222cos 2b c a bc+-A =等,8、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。
②已知三边求角) 9、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---10、如何判断三角形的形状:判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;②若222a b c +>,则90C <;③若222a b c +<,则90C >. 11、三角形的四心:垂心——三角形的三边上的高相交于一点重心——三角形三条中线的相交于一点(重心到顶点距离与到对边距离之比为2:1) 外心——三角形三边垂直平分线相交于一点(外心到三顶点距离相等) 内心——三角形三内角的平分线相交于一点(内心到三边距离相等) 12 、三角函数中 诱导公式及辅助角公式(和差角、倍角等) 。
高中数学数列与不等式(解析版)
数列与不等式在新高考卷的考点中,数列主要以两小和一大为主的考查形式,在小题中主要以数列极限和等差等比数列为主,大题考察位置21题,题型可以是多条件选择的开放式的题型。
由于三角函数与数列属于解答题第二题或第五题的位置,三角函数考查的内容相对比较简单,这一部分属于必得分。
数列大题属于压轴题难度较高。
对于小题部分,一般分布为一题简单题一道中等难度题目。
对于不等式主要考察不等式性质和基本不等式和线性规划。
基本不等式考察往往都是已基本不等式作为切入点形式出现,题目难度中等。
专题针对高考中数列、不等式等高频知识点,预测并改编一些题型,通过本专题的学习,能够彻底掌握数列,不等式。
请学生务必注意题目答案后面的名师点睛部分,这是对于本类题目的一个总结。
【满分技巧】1、等差、等比数列如果记住基本的通项公式以及求和公式和性质,基本上所有的等差、等比数列问题都可以解决。
2、数列求通项主要方法有:公式法、利用前n项和求通项、累加、累乘、构造等方法;这里要注意各个方法中递推关系的模型结构特点。
3、数列求和问题主要包含裂项求和,分组求和,绝对值求和,错位相减求和,掌握固定的求和方式即可快速得到答案;这里要注意各个方法中数列通项的结构模型;本专题有相应的题目供参考。
4、对于基本不等式类的题目应注意等号成立地条件和基本不等式的模型结构,对“1”的活用。
【考查题型】选择题、填空、解答题【常考知识】数列的概念、等差等比数列的概念和公式和性质、数列求通项的方法、数列求和的方法、不等式的性质、基本不等式【限时检测】(建议用时:120分钟)1.(2020•上海卷)已知2230x yyx y+≥⎧⎪≥⎨⎪+-≤⎩,则2z y x=-的最大值为【答案】-12.(2020•上海卷)下列不等式恒成立的是()A 、222a b ab +≤B 、22-2a b ab +≥C 、2a b ab +≥-D 、2a b ab +≤【答案】B3.(2020•上海卷)已知{}n a 是公差不为零的等差数列,且1109a a a +=,则12910a a a a ++⋅⋅⋅=【答案】2784.(2020·上海大学附属中学高三三模)已知O 是正三角形ABC 内部的一点,230OA OB OC ++=,则OAC ∆的面积与OAB ∆的面积之比是A .32B .23C .2D .1【答案】B试题分析:如下图所示,D 、E 分别是BC 、AC 中点,由230OA OB OC ++=得()2OA OC OB OC +=-+即2OE OD =-,所以2OE OD =,设正三角形的边长为23a ,则OAC ∆底边AC 上的高为13AC h BE a ==,OAB ∆底边AB 上的高为1322AB h BE a ==,所以123221332322ACOACOABAB AC h S a a S AB h a a ∆∆⋅⨯===⋅⨯,故选B .考点:1.向量的几何运算;2.数乘向量的几何意义;3.三角形的面积. 5.(2020·上海高三二模)设12,z z 是复数,则下列命题中的假命题是() A .若120z z -=,则12z z = B .若12z z =,则12z z = C .若12=z z ,则1122z z z z ⋅=⋅D .若12=z z ,则2212z z =【答案】D试题分析:对(A ),若120z z -=,则12120,z z z z -==,所以为真;对(B )若12z z =,则1z 和2z 互为共轭复数,所以12z z =为真; 对(C )设111222,z a b z a i b i =+=+,若12=z z 22221122a b a b +=+,222211112222,z z a b z z a b ⋅=+⋅=+,所以1122z z z z ⋅=⋅为真;对(D )若121,z z i ==,则12=z z 为真,而22121,1z z ==-,所以2212z z =为假.故选D .考点:1.复数求模;2.命题的真假判断与应用.6.(2020·上海杨浦区·高三二模)设z 是复数,则“z 是虚数”是“3z 是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分也非必要条件【答案】B【分析】根据充分必要条件的定义及复数的概念进行判断.可取特例说明一个命题为假. 【详解】充分性:取132z =-+,故31z =是实数,故充分性不成立;必要性:假设z 是实数,则3z 也是实数,与3z 是虚数矛盾,∴z 是虚数,故必要性成立. 故选:B ..【点睛】本题考查充分必要条件的判断,考查复数的概念,属于基础题. 7.(2020·上海松江区·高三其他模拟)若复数z =52i-,则|z |=( ) A .1 B 5C .5D .5【答案】B【分析】利用复数的模的运算性质,化简为对复数2i -求模可得结果 【详解】|z |=5||2i -=5|2i|-5 故选:B.【点睛】此题考查的是求复数的模,属于基础题8.(2020·上海高三一模)设12,z z 为复数,则下列命题中一定成立的是( ) A .如果120z z ->,那么12z z >B .如果12=z z ,那么12=±z zC .如果121z z >,那么12z z > D .如果22120z z +=,那么12 0z z ==【答案】C【分析】根据复数定义,逐项判断,即可求得答案.【详解】对于A,取13z i =+,21z i =+时,120z z ->,即31i i +>+,但虚数不能比较大小, ,故A 错误; 对于B,由12=z z ,可得2222+=+a b c d ,不能得到12=±z z ,故B 错误;对于C ,因为121z z >,所以12z z >,故C 正确; 对于D ,取11z =,2z i =,满足22120z z +=,但是12 0z z ≠≠,故D 错误. 故选:C.【点睛】本题解题关键是掌握复数定义,在判断时可采用特殊值法检验,考查了分析能力,属于基础题. 9.(2020·上海高三二模)关于x 的实系数方程2450x x -+=和220x mx m ++=有四个不同的根,若这四个根在复平面上对应的点共圆,则m 的取值范围是( ) A .{}5 B .{}1- C .()0,1 D .(){}0,11-【答案】D【分析】根据条件分别设四个不同的解所对应的点为ABCD ,讨论根的判别式,根据圆的对称性得到相应判断.【详解】解:由已知x 2﹣4x +5=0的解为2i ±,设对应的两点分别为A ,B , 得A (2,1),B (2,﹣1),设x 2+2mx +m =0的解所对应的两点分别为C ,D ,记为C (x 1,y 1),D (x 2,y 2),(1)当△<0,即0<m <1时,220x mx m ++=的根为共轭复数,必有C 、D 关于x 轴对称,又因为A 、B 关于x 轴对称,且显然四点共圆;(2)当△>0,即m >1或m <0时,此时C (x 1,0),D (x 2,0),且122x x +=﹣m , 故此圆的圆心为(﹣m ,0),半径122x x r -====,又圆心O 1到A 的距离O 1A =,解得m =﹣1,综上:m ∈(0,1)∪{﹣1}. 故选:D.【点睛】本题考查方程根的个数与坐标系内点坐标的对应,考查一元二次方程根的判别式,属于难题. 10.(2020·上海徐汇区·高三一模)已知x ∈R ,条件p :2x x <,条件q :11x>,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】分别求两个命题下的集合,再根据集合关系判断选项. 【详解】201x x x <⇔<<,则{}01A x x =<<,1101x x>⇔<<,则{}01B x x =<<,因为A B =, 所以p 是q 的充分必要条件. 故选:C11.(2020·上海市建平中学高三月考)数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线22322():16C x y x y =+为四叶玫瑰线,下列结论正确的有( )(1)方程22322()16x y x y +=(0xy <),表示的曲线在第二和第四象限; (2)曲线C 上任一点到坐标原点O 的距离都不超过2; (3)曲线C 构成的四叶玫瑰线面积大于4π;(4)曲线C 上有5个整点(横、纵坐标均为整数的点); A .(1)(2) B .(1)(2)(3) C .(1)(2)(4) D .(1)(3)(4)【答案】A【分析】因为0xy <,所以x 与y 异号,仅限与第二和四象限,从而判断(1).利用基本不等式222x y xy +即可判断(2);将以O 为圆心、2为半径的圆的面积与曲线C 围成区域的面积进行比较即可判断(3);先确定曲线C 经过点,再将x <y <(1,1),(1,2)和(2,1)逐一代入曲线C 的方程进行检验即可判断(4);【详解】对于(1),因为0xy <,所以x 与y 异号,仅限与第二和四象限,即(1)正确.对于(2),因为222(0,0)x yxy x y +>>,所以222x y xy +,所以22222322222()()16164()4x y x y x y x y ++=⨯=+, 所以224x y +,即(2)正确;对于(3),以O 为圆点,2为半径的圆O 的面积为4π,显然曲线C 围成的区域的面积小于圆O 的面积,即(3)错误;对于(4),只需要考虑曲线在第一象限内经过的整点即可,把(1,1),(1,2)和(2,1)代入曲线C 的方程验证可知,等号不成立,所以曲线C 在第一象限内不经过任何整点,再结合曲线的对称性可知,曲线C 只经过整点(0,0),即(4)错误; 故选:A.【点睛】本题考查曲线的轨迹方程,涉及特殊点代入法、均值不等式、圆的面积等知识点,有一定的综合性,考查学生灵活运用知识和方法的能力,属于中档题.12.(2020·上海市七宝中学高三其他模拟)已知F 为抛物线24y x =的焦点,A 、B 、C 为抛物线上三点,当0FA FB FC ++=时,则存在横坐标2x >的点A 、B 、C 有( ) A .0个 B .2个 C .有限个,但多于2个 D .无限多个【答案】A【分析】首先判断出F 为ABC 的重心,根据重心坐标公式可得2312313,x x x y y y +=-+=-,结合基本不等式可得出()2221232y y y ≤+,结合抛物线的定义化简得出12x ≤,同理得出232,2x x ≤≤,进而得出结果.【详解】设()()()112233,,,,,A x y B x y C x y ,先证12x ≤,由0FA FB FC ++=知,F 为ABC 的重心, 又131132(1,0),1,033x x x y y yF ++++∴==,2312313,x x x y y y ∴+=-+=-, ()()222222323232322y y y y y y y y ∴+=++≤+,()2221232y y y ∴≤+, 2223122444y y y ⎛⎫∴≤+ ⎪⎝⎭,()1232x x x ∴≤+,()1123x x ∴≤-12x ∴≤, 同理232,2x x ≤≤, 故选:A.【点睛】本题主要考查了抛物线的简单性质,基本不等式的应用,解本题的关键是判断出F 点为三角形的重心,属于中档题.13.(2020·上海杨浦区·高三二模)不等式102x x -≤-的解集为( ) A .[1,2] B .[1,2)C .(,1][2,)-∞⋃+∞D .(,1)(2,)-∞⋃+∞【答案】B【分析】把分式不等式转化为整式不等式求解.注意分母不为0.【详解】原不等式可化为(1)(2)020x x x --≤⎧⎨-≠⎩,解得12x ≤<.故选:B .【点睛】本题考查解分式不等式,解题方法是转化为整式不等式求解,转化时要注意分式的分母不为0. 14.(2020·上海市南洋模范中学高三期中)下列不等式恒成立的是( ) A .222a b ab +≤ B .222a b ab +≥-C .a b +≥-D .a b +≤【答案】B【分析】根据基本不等式即可判断选项A 是否正确,对选项B 化简可得()20a b +≥,由此即可判断B 是否正确;对选项C 、D 通过举例即可判断是否正确.【详解】A.由基本不等式可知222a b ab +≥,故A 不正确;B. 2222220a b ab a b ab +≥-⇒++≥,即()20a b +≥恒成立,故B 正确; C.当1,0a b =-=时,不等式不成立,故C 不正确;D.当3,1a b ==时,不等式不成立,故D 不正确. 故选:B.【点睛】本题主要考查了基本不等式的应用以及不等式大小的比较,属于基础题.15.(2020·上海崇明区·高三一模)设{}n a 为等比数列,则“对于任意的*2,m m m N a a +∈>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】对于任意的*2,m m m N a a +∈> ,即()210m a q >﹣.可得:2010m a q ⎧⎨-⎩>>,2010m a q ⎧⎨-⎩<<,任意的*m N ∈,解出即可判断出结论.【详解】解:对于任意的*2,m m m N a a +∈>,即()210m a q >﹣. ∴2010m a q ⎧⎨-⎩>>,2010m a q ⎧⎨-⎩<<,任意的*m N ∈, ∴01m a q ⎧⎨⎩>>,或001m a q ⎧⎨⎩<<<. ∴“{}n a 为递增数列”,反之也成立.∴“对于任意的*2,m m m N a a +∈>”是“{}n a 为递增数列”的充要条件.故选:C.【点睛】本题考查等比数列的单调性,充分必要条件,是基础题.16.(2020·上海高三其他模拟)已知数列{}n a 的前n 项和为n S ,则“()1n n a a n *+<∈N ”是“()11n n S S n n n *+<∈+N ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【分析】先证明充分性,由条件1n n a a +<,可得121n n a a a na +++⋅⋅⋅+<,通过变形得到11n n S S n n +<+,再由条件11n n S S n n +<+,列举特殊数列,说明是否成立. 【详解】充分性:若1n n a a +<,则有121n n a a a na +++⋅⋅⋅+<,即()1n n n S n S S +<-,得()11n n n S nS ++<,于是有()11n n S S n n n *+<∈+N 成立,故充分性成立. 必要性:若()11n n S S n n n *+<∈+N 成立,取数列{}n a 为0,1,1,1,⋅⋅⋅,但推不出()1n n a a n *+<∈N ,故必要性不成立. 故选:A【点睛】本题考查判断充分不必要条件,数列的递推公式和前n 项和公式的综合应用,重点考查转化与化归的思想,逻辑推理能力,属于中档题型.17.(2020·上海交大附中高三其他模拟)已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且20,2,n n n n a S a a n >=+∈*N ,1121(2)(2)n n n n n n b a a +++=++,对任意的*,n n N k T ∈>恒成立,则k 的最小值是( ) A .13B .12C .16D .1【答案】A【分析】由22n n n S a a =+可得21112n n n S a a ---=+,两式相减整理后可知11n n a a --=,则{}n a 首项为1,公差为1的等差数列,从而可得n a n =,进而可以确定111221n n n b n n +=-+++,则可求出121111 (3213)n n n T b b b n +=+++=-<++,进而可求出k 的最小值. 【详解】解:因为22n n n S a a =+,所以当2,n n N *≥∈时,21112n n n S a a ---=+,两式相减得22112n n n n n a a a a a --=+-- ,整理得,()()1101n n n n a a a a --+--=,由0n a > 知, 10n n a a -+≠,从而110n n a a ---=,即当2,n n N *≥∈时,11n n a a --=,当1n =时,21112a a a =+,解得11a =或0(舍),则{}n a 首项为1,公差为1的等差数列,则()111n a n n =+-⨯=.所以112111(2)(21)221n n n n n n b n n n n +++==-++++++,则1211111111111 (366112213213)n n n n n T b b b n n n ++=+++=-+-++-=-<+++++,所以13k ≥.则k 的最小值是13. 故选:A【点睛】本题考查了由递推数列求数列通项公式,考查了等差数列的定义,考查了裂项相消法求数列的和.一般如果已知了,n n S a 的关系式,一般地代入11,1,2,n n n S n a S S n n N*-=⎧=⎨-≥∈⎩ 进行整理运算.求数列的和常见的方法有,公式法、分组求和法、错位相减法、裂项相消法等.18.(2020·上海大学附属中学高三三模)已知0a b >>,若12lim 25n n n nn a b a b ++→∞-=-,则( )A .25a =-B .5a =-C .25b =-D .5b =-【答案】D【分析】由0a b >>,可得01ab<<,将原式变形,利用数列极限的性质求解即可 【详解】因为0a b >>,且12lim 25n n n nn a b a b ++→∞-=-,所以01ab<<, 可得12limn n n nn a b a b ++→∞-=-2220lim 25011nn n a a b b b b a b →∞⎛⎫⋅- ⎪-⎝⎭===-⎛⎫- ⎪⎝⎭, 5b ∴=-,故选:D.【点睛】本题主要考查数列极限的性质与应用,属于基础题.19.(2020·上海市七宝中学高三其他模拟)如图,已知函数()y f x =与y x =的图象有唯一交点()1,1,无穷数列{}()*n a n N∈满足点()1,n n n P a a +()*n N ∈均落在()y f x =的图象上,已知()13,0P ,()20,2P ,有下列两个命题:(1)lim 1n n a →∞=;(2){}21n a -单调递减,{}2n a 单调递增;以下选项正确的是( )A .(1)是真命题,(2)是假命题B .两个都是真命题C .(1)是假命题,(2)是真命题D .两个都是假命题【答案】B【分析】根据函数()y f x =的图象和()11f =可得出n a 的取值范围,再根据函数()y f x =的单调性判断{}21n a -和{}2n a 的单调性,结合数列各项的取值范围和单调性可得数列的极限值.【详解】()1n n a f a +=,当01n a <<时,由图象可知,112n a +<<;当13n a <<时,101n a +<<.13a =,20a =,32a =,401a ∴<<,512a <<,601a <<,712a <<,,因为函数()y f x =在区间()0,3上单调递减,因为5302a a <<=,()()53f a f a ∴>,即64a a >,()()64f a f a <,即75a a <,()()75f a f a >,即86a a >,,以此类推,可得1357a a a a >>>>,数列{}21n a -单调递减,2468a a a a <<<<,数列{}2n a 单调递增,命题(2)正确;当2n ≥时,2112n a -<≤,201n a <<,且数列{}21n a -单调递减,{}2n a 单调递增,所以,lim 1n n a →∞=,命题(1)正确. 故选:B.【点睛】本题考查数列单调性的判断以及数列极限的求解,考查推理能力,属于难题. 二、填空题20.(2019·上海高考真题)在椭圆22142x y +=上任意一点P ,Q 与P 关于x 轴对称,若有121F P F P ⋅≤,则1F P 与2F Q 的夹角范围为____________【答案】1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【分析】通过坐标表示和121F P F P ⋅≤得到[]21,2y ∈;利用向量数量积运算得到所求向量夹角的余弦值为:222238cos 322y y y θ-==-+++;利用2y 的范围得到cos θ的范围,从而得到角的范围.【详解】由题意:()1F,)2F设(),P x y ,(),Q x y -,因为121F P F P ⋅≤,则2221x y -+≤ 与22142x y +=结合 224221y y ⇒--+≤,又y ⎡∈⎣ []21,2y ⇒∈(22221212cos F P F Q F P F Qθ⋅===⋅与22142x y +=结合,消去x ,可得:2222381cos 31,223y y y θ-⎡⎤==-+∈--⎢⎥++⎣⎦所以1arccos ,3θππ⎡⎤∈-⎢⎥⎣⎦本题正确结果:1arccos ,3ππ⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量坐标运算、向量夹角公式应用,关键在于能够通过坐标运算得到变量的取值范围,将问题转化为函数值域的求解.21.(2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】-3【分析】据题意可设E (0,a ),F (0,b ),从而得出|a ﹣b|=2,即a=b +2,或b=a +2,并可求得2AE BF ab ⋅=-+,将a=b +2带入上式即可求出AE BF ⋅的最小值,同理将b=a +2带入,也可求出AE BF ⋅的最小值. 【详解】根据题意,设E (0,a ),F (0,b );∴2EF a b =-=; ∴a=b+2,或b=a +2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b +2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a +2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.【点睛】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.22.(2020·上海高三三模)设点O 为ABC 的外心,且3A π=,若(),R AO AB AC αβαβ=+∈,则αβ+的最大值为_________. 【答案】23【分析】利用平面向量线性运算整理可得()1OA OB OC αβαβ+-=+,由此得到1αβ+<;由3A π=可求得cos BOC ∠,设外接圆半径为R ,将所得式子平方后整理可得()213αβαβ+=+,利用基本不等式构造不等关系,即可求得所求最大值. 【详解】()()AO AB AC OB OA OC OA αβαβ=+=-+-()1OA OB OC αβαβ∴+-=+ 10αβ∴+-<,即1αβ+<,1cos 2A =1cos cos 22BOC A ∴∠==-, 设ABC 外接圆半径为R ,则()22222222222212cos R R R R BOC R R R αβαβαβαβαβ+-=++∠=+-,整理可得:()()22321313124αβαβαβαβ+⎛⎫+=+≤+⨯=++ ⎪⎝⎭, 解得:23αβ+≤或2αβ+≥(舍),当且仅当13时,等号成立, αβ∴+的最大值为23.故答案为:23.【点睛】本题考查利用基本不等式求解最值的问题,关键是能够利用平面向量线性运算和平方运算将已知等式化为与外接圆半径有关的形式,进而消去外接圆半径得到变量之间的关系.23.(2020·上海高三一模)已知非零向量a 、b 、c 两两不平行,且()a b c //+,()//b a c +,设c xa yb =+,,x y ∈R ,则2x y +=______.【答案】- 3【分析】先根据向量共线把c 用a 和b 表示出来,再结合平面向量基本定理即可求解. 【详解】解:因为非零向量a 、b 、c 两两不平行,且()//a b c +,()//b a c +,(),0a m b c m ∴=+≠, 1c a b m∴=- (),0b n a c n ∴=+≠ 1c b a n∴=-1111m n ⎧=-⎪⎪∴⎨⎪-=⎪⎩,解得11m n =-⎧⎨=-⎩c xa yb =+1x y ∴==- 23x y ∴+=-故答案为:3-.【点睛】本题考查平面向量基本定理以及向量共线的合理运用.解题时要认真审题, 属于基础题.24.(2020·上海高三一模)已知向量1,22AB ⎛= ⎝⎭,31,22AC ⎛⎫= ⎪ ⎪⎝⎭,则BAC ∠=________. 【答案】6π【分析】利用平面向量数量积的坐标运算计算出AB 、AC 的夹角的余弦值,进而可求得BAC ∠的大小.【详解】由平面向量的数量积的坐标运算可得3442AB AC ⋅=+=,1AB AC ==, 3cos 2AB AC BAC AB AC⋅∴∠==⋅, 0BAC π≤∠≤,6BAC π∴∠=.故答案为:6π 【点评】本题考查了向量坐标的数量积运算,根据向量的坐标求向量长度的方法,向量夹角的余弦公式,考查了计算能力,属于基础题.25.(2020·上海崇明区·高三二模)在ABC 中,()()3cos ,cos ,cos ,sin AB x x AC x x ==,则ABC面积的最大值是____________ 【答案】34【分析】计算113sin 22624ABC S x π⎛⎫=--≤ ⎪⎝⎭△,得到答案.【详解】()22211sin ,1cos,2ABCS AB AC AB AC AB ACAB AC=⋅=⋅-△()22212AB AC AB AC=⋅-⋅=2113sin cos sin 22624x x x x π⎛⎫=-=--≤ ⎪⎝⎭, 当sin 216x π⎛⎫-=- ⎪⎝⎭时等号成立.此时262x ππ-=-,即6x π=-时,满足题意.故答案为:34.【点睛】本题考查了三角形面积的最值,向量运算,意在考查学生的计算能力和综合应用能力.26.(2020·上海高三其他模拟)已知ABC 的面积为1,点P 满足324AB BC CA AP ++=,则PBC 的面积等于__________. 【答案】12【分析】取BC 的中点D ,根据向量共线定理可得,,A P D 共线,从而得到1122PBC ABC S S ∆∆==. 【详解】取BC 的中点D ,1()2AD AC AB ∴=+. 432()()AP AB BC CA AB BC CA AB BC AB AC AB =++=+++++=+,1()4AP AC AB ∴=+∴12AP AD =,即,,A P D 共线.1122PBC ABC S S ∆∆==.故答案为:12.【点睛】本题主要考查向量共线定理,中点公式的向量式的应用以及三角形面积的计算,属于基础题.27.(2020·上海大学附属中学高三三模)设11(,)x y 、22(,)x y 、33(,)x y 是平面曲线2226x y x y +=-上任意三点,则12A x y =-212332x y x y x y +-的最小值为________ 【答案】-40【分析】依题意看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,根据点所在曲线及向量数量积的几何意义计算可得;【详解】解:因为2226x y x y +=-,所以()()221310x y -++=,该曲线表示以()1,3-为圆心,10为半径的圆.12212332A x y x y x y x y =-+-,可以看做向量()22,a x y =与()33,b y x =-的数量积,()22,a x y =与()11,c y x =-的数量积之和,因为点22(,)x y 在2226x y x y +=-上,点()33,y x -在2226x y y x +=+,点()11,y x -在2226x y y x +=--上,结合向量的几何意义,可知最小值为()()210102101040-+-=-,即()()()()2,64,22,62,440--+-=-故答案为:40-【点睛】本题考查向量数量积的几何意义的应用,属于中档题.28.(2020·上海浦东新区·华师大二附中高三月考)若复数z 满足i 1i z ⋅=-+,则复数z 的虚部为________ 【答案】1【分析】求解z 再得出虚部即可. 【详解】因为i 1i z ⋅=-+,故1111i iz i i i i i-+-==+=+=+,故虚部为1. 故答案为:1【点睛】本题主要考查了复数的运算与虚部的概念,属于基础题. 29.(2020·上海高三一模)复数52i -的共轭复数是___________. 【答案】2i -+【分析】由复数代数形式的除法运算化简复数52i -,求出z 即可. 【详解】解:55(2)5(2)22(2)(2)5i i i i i i ----===----+--, ∴复数52i -的共轭复数是2i -+ 故答案为2i -+【点睛】本题考查了复数代数形式的除法运算,是基础题.30.(2020·上海大学附属中学高三三模)已知复数22(13)(3)(12)i i z i +-=-,则||z =______【答案】【分析】根据复数乘法与除法运算法则化简,再根据共轭复数概念以及模的定义求解.【详解】22(13)(3)(13)(68)26(12)34i i i i z i i i +-++===-----|||26|z i ∴=-+==故答案为:【点睛】本题考查复数乘法与除法运算、共轭复数概念以及模的定义关系,考查基本分析求解能力,属基础题.31.(2020·上海高三其他模拟)若复数z 满足i 12i01z+=,其中i 是虚数单位,则z 的虚部为________【答案】1-【分析】根据行列式得到(12)0iz i -+=,化简得到复数的虚部.【详解】i 12i 01z +=即12(12)0,2iiz i z i i+-+===-,z 的虚部为1- 故答案为1-【点睛】本题考查了行列式的计算,复数的虚部,意在考查学生的计算能力.32.(2020·上海市建平中学高三月考)设复数z 满足||1z =,使得关于x 的方程2220zx zx ++=有实根,则这样的复数z 的和为________ 【答案】32-【分析】设z a bi =+,(,a b ∈R 且221a b +=),将原方程变为()()222220ax ax bx bx i +++-=,则2220ax ax ++=①且220bx bx -=②;再对b 分类讨论可得;【详解】解:设z a bi =+,(,a b ∈R 且221a b +=)则原方程2220zx zx ++=变为()()222220ax ax bx bx i +++-= 所以2220ax ax ++=,①且220bx bx -=,②;(1)若0b =,则21a =解得1a =±,当1a =时①无实数解,舍去; 从而1a =-,此时1x =-1z =-满足条件;(2)若0b ≠,由②知,0x =或2x =,显然0x =不满足,故2x =,代入①得14a =-,b =所以144z =-±综上满足条件的所以复数的和为113144442⎛⎛-+-++--=- ⎝⎭⎝⎭故答案为:32-【点睛】本题考查复数的运算,复数相等的充要条件的应用,属于中档题.33.(2020·上海高三其他模拟)从{1,2,3,4,5}中随机选取一个数a ,从{1,2,3}中随机选取一个数b ,使得关于x 的方程2220x ax b ++=有两个虚根,则不同的选取方法有________种 【答案】3【分析】关于x 的方程x 2+2ax +b 2=0有两个虚根,即△<0,即a <b .用列举法求得结果即可. 【详解】∵关于x 的方程x 2+2ax +b 2=0有两个虚根,∴△=4a 2﹣4b 2<0,∴a <b . 所有的(a ,b )中满足a <b 的(a ,b )共有(1,2)、(1,3)、(2,3),共计3个, 故答案为3.【点睛】本题考查列举法表示满足条件的事件,考查了实系数方程虚根的问题,属于中档题.34.(2020·上海市七宝中学高三其他模拟)已知复数13z i =-+(i 是虚数单位)是实系数一元二次方程20ax bx c ++=的一个虚根,则::a b c =________.【答案】1:2:10【分析】利用求根公式可知,一个根为13i -+,另一个根为13i --,利用韦达定理即可求出a 、b 、c 的关系,从而可得 ::a b c【详解】利用求根公式可知,一个根为13i -+,另一个根为13i --,由韦达定理可得()()()13131313b i i a c i i a ⎧-++--=-⎪⎪⎨⎪-+--=⎪⎩ ,整理得:210bac a⎧=⎪⎪⎨⎪=⎪⎩所以2b a =,10c a =,所以:::2:101:2:10a b c a a a == 故答案为:1:2:10【点睛】本题主要考查了实系数一元二次方程的虚根成对的原理,互为共轭复数,考查了韦达定理,属于基础题.35.(2020·上海高三其他模拟)设复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,则pq =________【答案】20-【分析】由题意复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,利用一元二次方程根与系数的关系求出p q 、的值,可得答案.【详解】解:由复数2i +是实系数一元二次方程20x px q ++=的一个虚数根,故2-i 是实系数一元二次方程20x px q ++=的一个虚数根,故2+2i i p +-=-,(2+)(2)i i q -=, 故4p =-,5q =,故20pq =-, 故答案为:20-.【点睛】本题主要考查实系数的一元二次方程虚根成对定理,一元二次方程根与系数的关系,属于基础题型.36.(2020·上海徐汇区·高三一模)已知函数()f x ax b =+(其中,a b ∈R )满足:对任意[]0,1x ∈,有()1f x ≤,则()()2121a b ++的最小值为_________.【答案】9-【分析】根据题意()0f b =,()1f a b =+,可得()0b f =,()()10a f f =-,且()101f -≤≤,()111f -≤≤,所以将()()2121a b ++用()0f 和()1f 表示,即可求最值. 【详解】因为()f x ax b =+,对任意[]0,1x ∈,有()1f x ≤, 所以()0f b =,()1f a b =+,即()0b f =,()()10a f f =-,所以()()()()()()()21214214100211a b ab a b f f f f ++=+++=-⨯++⎡⎤⎣⎦()()()()()()2224040111211f f f f f f =-+-+++()()()()()22212011120f f f f f =--++≥--⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦,当()11f =-,()01f =时()()2120f f -⎡⎤⎣⎦最大为9, 此时()()2120f f --⎡⎤⎣⎦最小为9-, 所以()()2121a b ++的最小值为9-, 故答案为:9-【点睛】关键点点睛:本题的关键点是根据[]0,1x ∈,有()1f x ≤,可知()101f -≤≤,()111f -≤≤,由()0f b =,()1f a b =+可得()0b f =,()()10a f f =-,所以()()2121a b ++可以用()0f 和()1f 表示,再配方,根据平方数的性质求最值. 37.(2020·上海高三其他模拟)设全集U =R ,若A ={x |21x x->1},则∁U A =_____. 【答案】{x |0≤x ≤1}【分析】先解得不等式,再根据补集的定义求解即可 【详解】全集U =R ,若A ={x |21x x->1}, 所以211x x ->,整理得10x x->,解得x >1或x <0, 所以∁U A ={x |0≤x ≤1} 故答案为:{x |0≤x ≤1}【点睛】本题考查解分式不等式,考查补集的定义38.(2020·上海市建平中学高三月考)在平面直角坐标系xOy 中,点集{(,)|(|||2|4)(|2|||4)0}K x y x y x y =+-+-≤所对应的平面区域的面积为________【答案】323【分析】利用不等式对应区域的对称性求出在第一象限的面积,乘以4得答案.【详解】解:(||2||4)(2||||4)0x y x y +-+-对应的区域关于原点对称,x 轴对称,y 轴对称,∴只要作出在第一象限的区域即可.当0x ,0y 时,不等式等价为(24)(24)0x y x y +-+-,即240240x y x y +-⎧⎨+-⎩或240240x y x y +-⎧⎨+-⎩,在第一象限内对应的图象为, 则(2,0)A ,(4,0)B ,由240240x y x y +-=⎧⎨+-=⎩,解得4343x y ⎧=⎪⎪⎨⎪=⎪⎩,即44(,)33C ,则三角形ABC 的面积1442233S =⨯⨯=,则在第一象限的面积48233S =⨯=,则点集K 对应的区域总面积832433S =⨯=.故答案为:323.【点睛】本题考查简单的线性规划,主要考查区域面积的计算,利用二元一次不等式组表示平面区域的对称性是解决本题的关键,属于中档题.39.(2020·上海高三其他模拟)已知()22log 2log a b ab +=4a b +的最小值是______.【答案】9【分析】根据对数相等得到111b a +=,利用基本不等式求解()114a b b a ⎛⎫++ ⎪⎝⎭的最小值得到所求结果. 【详解】因为22222log log log ab abab ==,所以()22l og og l a b ab +=,所以a b ab +=,所以111a b+=, ()1144414a ba b a b a b b a ⎛⎫∴+=++=+++ ⎪⎝⎭,由题意知0ab >,则0a b >,40b a >,则441459a b a b b a +=+++≥=,当且仅当4a b b a =,即2a b =时取等号,故答案为:9.【点睛】本题考查基本不等式求解和的最小值问题,关键是能够利用对数相等得到111b a+=的关系,从而构造出符合基本不等式的形式,属于中档题.40.(2020·上海高三二模)已知0,0x y >>,且21x y +=,则11x y+的最小值为________.【答案】3+【分析】先把11x y+转化为11112(2)()3y x x y x y x y x y +=++=++,然后利用基本不等式可求出最小值 【详解】解:∵21x y +=,0,0x y >>,∴11112(2)()33y x x y x y x y x y +=++=++≥+(当且仅当2y xx y=,即x =时,取“=”). 又∵21x y +=,∴11x y ⎧=⎪⎨=-⎪⎩∴当1x =,12y =-时,11x y +有最小值,为3+.故答案为:3+【点睛】此题考查利用基本不等式求最值,利用1的代换,属于基础题.41.(2020·上海高三月考)已知实数x 、y 满足条件01x y y x y -≥⎧⎪≥⎨⎪+≤⎩.则目标函数2z x y =+的最大值为______. 【答案】2【分析】作出约束条件所表示的可行域,当目标函数所表示的直线过点(1,0)A 时,目标函数取得最大值. 【详解】作出约束条件所表示的可行域,易得点(1,0)A ,当直线2y x z =-+过点A 时,直线在y 轴上的截距达到最大,∴max 2z =,故答案为:2【点睛】本题考查线性规划问题,考查数形结合思想,考查运算求解能力,求解时注意利用直线截距的几何意义进行求解.42.(2020·上海高三其他模拟)若()211,1nn N n x *⎛⎫-∈> ⎪⎝⎭的展开式中的系数为n a ,则23111lim n n a a a →∞⎛⎫+++⎪⎝⎭=____________. 【答案】2试题分析:由二项式定理知4x -的系数是2(1)2n n n n a C -==,12112()(1)1n a n n n n ==---,所以 231111lim()lim[2(1)]2n n n a a a n→∞→∞+++=-=.考点:二项式定理,裂项相消求和,数列极限.43.(2020·上海高三其他模拟)设正数数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项之积为n T ,且1n n S T +=,则lim n n S →∞=______. 【答案】1【分析】令1n =可得11112a S T ===,利用n T 的定义,1(2)n n n T S n T -=≥,可得n T 的递推关系,从而得1n T ⎧⎫⎨⎬⎩⎭是等差数列,求出n T 后可得n S ,从而可得lim n n S →∞.【详解】111T a S ==,∴121a =,112a =,即1112S T ==,1(2)n n n T S n T -=≥,∴11n n n T T T -+=,∴1111n n T T --=,即{}n T 是以2为首项,1为公差的等差数列, 故1211n n n T =+-=+,11n T n =+,1n n S n =+,112S =也符合此式,所以1n n S n =+, 所以lim limlim lim +1111111n n n n n n n S n n n →∞→∞→∞→∞-⎛⎫==-= ⎪++⎝⎭=,故答案为:1.【点睛】本题考查求数列的通项公式,解题中注意数列的和、数列的积与项的关系,进行相应的转化. 如对积n T 有1(2)nn n T S n T -=≥,对和n S 有1(2)n n n a S S n -=-≥,另外这种关系中常常不包括1n =的情形,需讨论以确定是否一致,属于较难题.三、解答题44.(2020·上海徐汇区·高三一模)设()x μ表示不小于x 的最小整数,例如(0.3)1,( 2.5)2μμ=-=-. (1)解方程(1)3x μ-=;(2)设()(())f x x x μμ=⋅,*n N ∈,试分别求出()f x 在区间(]0,1、(]1,2以及(]2,3上的值域;若()f x 在区间(0,]n 上的值域为n M ,求集合n M 中的元素的个数; (3)设实数0a >,()()2x g x x a xμ=+⋅-,2sin 2()57x h x x x π+=-+,若对于任意12,(2,4]x x ∈都有12()()g x h x >,求实数a 的取值范围.【答案】(1)34x <≤;(2)当(]0,1x ∈时,值域为{}1;当(]1,2x ∈时,值域为{}3,4;当(]2,3x ∈时,值域为{}7,8,9;(1)2n n +个;(3)(3,)+∞. 【分析】(1)根据()x μ的定义,列式解不等式;(2)根据定义分别列举()f x 在区间(]0,1、(]1,2以及(]2,3上的值域,和(1,]x n n ∈-时函数的值域,最后利用等差数列求和;(3)分别求两个函数的值域,并转化为()()max g x f x >,利用参变分离求实数a 的取值范围. 【详解】【解】(1)由题意得:213x <-≤,解得:34x <≤. (2)当(]0,1x ∈时,(]()1,()0,1x x x x μμ=⋅=∈,于是(())1x x μμ⋅=,值域为{}1当(]1,2x ∈时,(]()2,()22,4x x x x μμ=⋅=∈,于是(())3x x μμ⋅=或4,值域为{}3,4 当(]2,3x ∈时,(]()3,()36,9x x x x μμ=⋅=∈,于是(())7x x μμ⋅=或8或9,值域为{}7,8,9设*n N ∈,当(1,]x n n ∈-时,()x n μ=,所以()x x nx μ⋅=的取值范围为22(,]n n n -,-所以()f x 在(1,]x n n ∈-上的函数值的个数为n ,-由于区间22(,]n n n -与22((1)(1),(1)]n n n +-++的交集为空集, 故n M 中的元素个数为(1)1232n n n +++++=.- (3)由于2140573x x <≤-+,1sin 23x π≤+≤,因此()4h x ≤,当52x =时取等号,即即(2,4]x ∈时,()h x 的最大值为4,由题意得(2,4]x ∈时,()4g x >恒成立,当(2,3]x ∈时,223x a x >-恒成立,因为2max (2)33x x -=,所以3a >当(3,4]x ∈时,2324x a x >-恒成立,因为239244x x -<,所以94a ≥综合得,实数a 的取值范围是(3,)+∞.【点睛】关键点点睛:1.首先理解()x μ的定义,2.第三问,若对于任意12,(2,4]x x ∈都有12()()g x h x >,转化为()()max g x f x >,再利用参变分离求a 的取值范围.45.(2020·上海市建平中学高三月考)已知数列{}n a 满足:10a =,221n n a a =+,2121n n a a n +=++,*n ∈N .(1)求4a 、5a 、6a 、7a 的值; (2)设212n n na b -=,212333nn n S b b b =++⋅⋅⋅+,试求2020S ;(3)比较2017a 、2018a 、2019a 、2020a 的大小关系. 【答案】(1)3、5、5、8;(2)202120204037398S ⋅+=;(3)2017201820202019a a a a ==<. 【分析】。
高二数学教学工作总结5篇
高二数学教学工作总结5篇1.高二数学教学工作总结本学期高二数学学习了必修5和选修1-1(文)、两个模块,包括“数列”、“解三角形”、“不等式”、“常用逻辑用语”、“圆锥曲线与方程”、“导数及其应用(文)”等内容。
内容多,任务重,时间紧。
如何提高课堂学习的效率,就成为我们高二数学教学教研的工作重点。
针对文理分科后的具体情况,我们主要抓了以下几个方面的工作:一、准确把握学情状况,切实做到因材施教1.激发学生学习兴趣,帮助他们树立信心,针对学生基础普遍较差,接受比较慢的实际情况,我们采取了低起点、小步子的教学策略,狠抓双基落实,理论联系实际,关注数学情境的建立,突出数学的应用价值,通过社会实践、社会调查、研究,培养学生的学习兴趣及应用所学知识解决实际问题的能力。
如在学校简单逻辑部分时,我们每天给学生出一道趣味逻辑推理题,学生普遍产生了学习逻辑的浓厚兴趣,收到了较好的教学效果。
在教学过程中,我们根据新课标的要求准确把握教学的难度,凡是新教材已删除的内容一般不再补充。
通过让学生亲手制做教具,利用计算机软件画函数图像等形式,激发他们学习数学的兴趣。
利用各章设计的“信息技术应用”专题,鼓励学生运用计算机、计算器等进行探索和发现,强化了信息技术的教学,让学生正确认识了数学和计算机技术的关系,把复杂的问题简单化,增强了他们的自信心。
2.落实培优补差措施,切实抓好分类推进实践告诉我们,培优一定要立足学生实际,不能搞拔苗助长。
为了保护优等生的学习热情,我们在日常教学过程中结合教学进度,适当为学有余力的部分学生布置一些稍微难一点的题目。
通过网络,把选作题目发到学生的个人邮箱,或者直接复制到学生的U盘。
引导优等生克服浮漂、急功近利、眼高手低等不良倾向,扎扎实实的夯实基础,努力培养综合、灵活运用所学知识解决实际问题的能力。
在加强个别指导的同时,帮助他们选择必要的课外学习读物,开阔了他们的知识视野,培养了他们的自学能力。
针对学习困难生的特点,我们首先帮助他们树立学好数学的信心,如课堂提问时故意提一些比较简单的问题,当他们回答正确时及时给与表扬。
高教版中职数学基础模块上册电子教案
高教版中职数学基础模块上册电子教案第一章:函数的概念与性质1.1 函数的定义理解函数的概念掌握函数的表示方法能够列出常见的一次函数、二次函数和反比例函数。
1.2 函数的性质理解函数的单调性、奇偶性、周期性能够判断简单函数的单调性、奇偶性、周期性第二章:三角函数2.1 三角函数的定义理解锐角三角函数的概念掌握正弦、余弦、正切、余切、半角公式2.2 三角函数的性质理解三角函数的单调性、奇偶性、周期性能够判断简单三角函数的单调性、奇偶性、周期性第三章:解三角形3.1 正弦定理和余弦定理理解正弦定理和余弦定理的公式能够运用正弦定理和余弦定理解决实际问题3.2 解三角形的应用能够运用正弦定理和余弦定理解决解三角形的问题能够运用解三角形解决实际问题第四章:数列4.1 数列的概念理解数列的定义掌握数列的通项公式、求和公式4.2 等差数列和等比数列理解等差数列和等比数列的概念掌握等差数列和等比数列的性质、求和公式第五章:不等式与不等式组5.1 不等式的概念理解不等式的定义掌握不等式的性质5.2 不等式组的解法掌握解一元一次不等式、一元二次不等式的方法能够解不等式组并求出解集第六章:平面解析几何6.1 平面直角坐标系理解平面直角坐标系的定义和组成掌握坐标轴上的点的坐标表示6.2 直线方程理解直线的点斜式和两点式方程掌握直线的一般式方程和标准式方程第七章:多项式与方程7.1 多项式的概念理解多项式的定义掌握多项式的运算规则7.2 一元二次方程理解一元二次方程的定义掌握一元二次方程的解法(因式分解、配方法、求根公式)第八章:概率与统计8.1 概率的基本概念理解随机事件、必然事件、不可能事件的概念掌握概率的计算方法(古典概型、条件概率、独立事件)8.2 统计的基本概念理解平均数、中位数、众数的概念掌握数据的收集、整理、描述(图表法、数值法)第九章:函数图像的绘制9.1 函数图像的基本概念理解函数图像的定义和作用掌握函数图像的绘制方法(描点法、直线法)9.2 常见函数图像的特点掌握一次函数、二次函数、反比例函数、三角函数图像的特点和性质第十章:数学应用10.1 数学在实际生活中的应用理解数学在实际生活中的重要性掌握运用数学知识解决实际问题的方法10.2 数学在其他领域的应用理解数学在其他领域(如科学、技术、经济)的重要性掌握运用数学知识解决其他领域问题的方法第十一章:排列组合与初等数论11.1 排列组合的概念理解排列与组合的概念掌握排列与组合的计算方法(排列数公式、组合数公式)11.2 初等数论的基本概念理解自然数、整数、有理数、无理数的概念掌握素数、合数、最大公约数、最小公倍数的概念及计算方法第十二章:复数12.1 复数的概念理解复数的基本概念和复数代数表示法掌握复数的运算规则(加法、减法、乘法、除法)12.2 复数的应用理解复数在实际问题中的应用掌握运用复数解决实际问题的方法第十三章:导数与微分13.1 导数的概念理解导数的定义和几何意义掌握基本函数的导数公式13.2 微分的概念理解微分的定义和应用掌握微分的计算方法第十四章:积分与微分方程14.1 积分concepts理解积分的方法(牛顿-莱布尼茨公式、换元积分、分部积分)掌握基本积分表和积分的应用14.2 微分方程的概念理解微分方程的定义和分类掌握一阶微分方程的解法(可分离变量法、齐次方程法、线性方程法)第十五章:数学建模与数学软件15.1 数学建模的概念理解数学建模的基本过程和方法掌握数学建模在实际问题中的应用15.2 数学软件的概念与应用了解常见的数学软件(如MATLAB、Mathematica、Excel)掌握数学软件的基本操作和应用技巧重点和难点解析本教案涵盖了中职数学基础模块上册的主要内容,包括函数与性质、三角函数、解三角形、数列、不等式与不等式组、平面解析几何、多项式与方程、概率与统计、函数图像的绘制、数学应用、排列组合与初等数论、复数、导数与微分、积分与微分方程以及数学建模与数学软件。
解三角形、数列、不等式
问2 写出余弦定理及其变式, 余弦定理能解决哪类三角形问题?
问3 怎样推导正弦定理和余弦定理?
1
例1 在ΔABC中,若sin2A= sin2B+ sin2C+ sinB⋅sinC,则角A等于 π 2π 3π 5π A. B. C. D. 3 3 4 6
例2 在ΔABC 中, 若 a cos A = b cos B , 则ΔABC 的形状是 A. 直角三角形 B. 等腰三角形 C. 等腰直角三角形 D. 等腰三角形或直角三角形
2
3 例6 已知锐角三角形 ABC 中,sin(A+B)= , 5 (1)求证:tanA = 2tanB; (2)设AB=3, 求AB边上的高.
1 sin(A-B)= , 5
例7 在ΔABC 中,∠A 的平分线 AD 与边 BC 相交于点 D, 求证:
BD AB = . DC AC
例8 连接直角三角形的直角顶点与斜边的两个三等分点, 所得到的两条线段的长分别为 sinα π 和 cosα (0 < α < ) , 求斜边的长. 2
D.
3 2 5
6. 在ΔABC 中, 若 b = a sinC, c = a cosB, 则 ΔABC 是 B. 等腰三角形 A. 直角三角形 C. 等腰三角形或直角三角形 D. 等腰直角三角形 7.
在∆ABC 中, A=60°, a=1, 求此三角形的最大周长.
8.
在ΔABC 中, a, b, c 分别是角 A, B, C 的对边, 已知 a + c = 10 , C = 2A , cosA =
检测题答案或提示....................................................................................................................39
解三角形不等式PPT教学课件
例7.若lgx+lgy=1,5 2 的最小值是___2___. xy
进阶练习:
一、选择题:
1、已知 a b ,在以下4个不等式中:
1
(1) a
1 b
(2)a 2
b 2(3)lg( a 2
1 ) lg( b2
1 )(4) 2a
2b
正确的个数有( D )
A. 4个 B. 3个 C. 2个 D.1个
A. a 4 B. a 4 C. a 12
D. a 12
变形:若关于 x 的不等式 2x2 8x 4 a 0在(1, 4) 上恒成立, 则实数 a 的取值范围是
9.一变压器的铁芯截面为正十字型,为保证所需的磁通量,要求十字应
具有 4 5cm2 的面积,问应如何设计十字型宽 x 及长 y ,才能使其
外接圆的周长最短,这样可使绕在铁芯上的铜线最节省.
D
C
A xB
某工厂家具车间造A、B型两类桌子,每张桌子需木工 和漆工两道工序完成。已知木工做一张A、B型桌子分 别需要1小时和2小时,漆工油漆一张A、B型桌子分别 需要 3小时和 1小时,又知木工、漆工每天工作分别不 得超过8小时和9小时,而工厂生产一张A、B型桌子分 别可获利润2千元和3千元。试问工厂每天应生产A、B 型桌子各多少张,才能获得最大利润?
答案:20 -1
例 2、.已知函数 f(x)=log 1 (x2-ax+3a)在
2
[2,+∞)上是减函数,则实数 a 的范围是
A.(-∞,4]
B.(-4,4]
C.(0,12)
解析:
D.(0,4]
∵f(x)=log 1 (x2-ax+3a)在[2,+∞)上是减函数,
高一数学下学期知识点总结
高一数学下学期知识点总结一、三角函数1、任意角和弧度制角可以分为正角、负角和零角。
弧度制是另一种度量角的方式,弧长等于半径的弧所对的圆心角为 1 弧度。
我们要掌握角度与弧度的换算公式,例如 180°=π 弧度。
2、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r,则正弦函数sinα = y / r,余弦函数cosα = x / r,正切函数tanα = y / x (x ≠ 0)。
要牢记三角函数在各个象限的符号规律。
3、同角三角函数的基本关系平方关系:sin²α +cos²α = 1;商数关系:tanα =sinα /cosα。
利用这些关系可以进行三角函数的化简和求值。
4、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如,sin(π +α) =sinα,cos(π α) =cosα 等。
5、三角函数的图象和性质正弦函数 y = sin x 的图象是一条波浪线,其定义域为 R,值域为-1, 1,周期为2π,对称轴为 x =kπ +π/2 (k∈Z),对称中心为(kπ, 0)(k∈Z)。
余弦函数 y = cos x 的图象与正弦函数类似,只是相位不同。
正切函数 y = tan x 的定义域为{x |x ≠ kπ +π/2, k∈Z},值域为 R,周期为π,其图象是不连续的,在每个区间(kπ π/2, kπ +π/2) (k∈Z)上单调递增。
二、平面向量1、平面向量的实际背景及基本概念向量既有大小又有方向,与起点的位置无关。
零向量的长度为 0,方向任意。
单位向量是长度为 1 的向量。
平行向量(共线向量)方向相同或相反。
2、平面向量的线性运算向量的加法满足三角形法则和平行四边形法则。
向量的减法可以转化为加法。
数乘向量λa ,当λ > 0 时,λa 与 a 同向;当λ < 0 时,λa与 a 反向;当λ = 0 时,λa = 0 。
高中数学新课标教材解读
高二下学期
欢迎加入学大教育数学 学科群,群号是: 231422002
谢谢大家!
4.运算求解能力
运算求解这一能力贯穿于高中数学的始终,必修三
中算法这一内容只是其中的一部分,高考中主要的考 查 运算的准确与熟练程度、 运算的合理与简捷性、 分析条件、探究方向、选择公式、设计程序等。
5.数据处理能力
数据处理主要体现在必修三中“统计”和选修2-3
中“统计案例”两章中,它包括数据的收集与整理 、
必修五:不等式问题
在知识上删去了解绝对值不等式和解分式不等式的
要求;删去了不等式的证明;只要求会解一元二次
不等式,不要求会解多元不等式。不要求用基本不
等式作推理证明。
强调基本不等式在解决简单的最大(小)问题中的
作用。
关于圆锥曲线问题
在圆锥曲线中要注意对三种曲线要求的差别.
文科:掌握椭圆的定义、标准方程及简单几何性质。 了解抛物线、双曲线的定义、几何图形和标 准方程,知道它们的简单几何性质. 理科:掌握椭圆、抛物线的定义、标准方程、几何
图形及简单性质.
了解双曲线的定义、几何图形和标准方程, 知道双曲线的有关性质.
圆锥曲线的第二定义、焦半径公式、准线方程
(椭圆和双曲线)等内容应当舍弃,双曲线出解
答题的可能性不大.
关于统计问题
教材中对“统计”这一内容的安排,采取了螺旋式
上升的方法,在必修三和选修2-3中都有介绍。统
计包括数据的收集(抽样方法)与整理 (抽样方
选修系列1(文科必选模块)
选修1-1:
常用逻辑用语、圆锥曲线与方程、导数及其应用;
选修1-2:
高考数学知识点总结(15篇)
总结是事后对某⼀时期、某⼀项⽬或某些⼯作进⾏回顾和分析,从⽽做出带有规律性的结论,它可以使我们更有效率,不如⽴即⾏动起来写⼀份总结吧。
总结怎么写才能发挥它的作⽤呢?下⾯是店铺为⼤家整理的⾼考数学知识点总结,欢迎阅读,希望⼤家能够喜欢。
⾼考数学知识点总结1 掌握每⼀个公式定理 做课本的例题,课本的例题的思路⽐较简单,其知识点也是单⼀不会交叉的,如果课本上的例题你拿出来都会做了,说明你已经具备了⼀定的理解⼒。
做课后练习题,前⾯的题是和课本例题⼀个级别的,如果课本上所有的题都会做了,那么基础夯实可以告⼀段落。
进⾏专题训练提⾼数学成绩 1、做⾼中数学题的时候千万不能怕难题!有很多⼈数学分数提不动,很⼤⼀部分原因是他们的畏惧⼼理。
有的⼈看到圆锥曲线和导数,看到稍微长⼀点的复杂⼀点的叙述,甚⾄看到21、22就已经开始退却了。
这部分的分数,如果你不去努⼒,永远都不会挣到的,所以第⼀个建议,就是⼤胆的去做。
前⾯亏⽋数学这门学科太多,就算让它打肿了⼜怎样,后⾯⼀点⼀点的强⼤起来,总有那么⼀天你去打它的脸。
2、错题本怎么⽤。
和记笔记⼀样,整理错题不是誊写不是照抄,⽽是摘抄。
你只顾着去采撷问题,就失去了理解和挑选题⽬的过程,笔记同理,如果⽼师说什么记什么,那只能说明你这节课根本没听,真正有效率的⼈,是会把知识简化,把书本读薄的。
先学学你能思考到答案的哪⼀步,学着去偷分。
当然,因⼈⽽异,如果你觉得还有哪些题需要整理也可以记下来。
3、如何学好⾼中数学 1)先看笔记后做作业。
有的⾼中学⽣感到。
⽼师讲过的,⾃⼰已经听得明明⽩⽩了。
但是,为什么⾃⼰⼀做题就困难重重了呢?其原因在于,学⽣对教师所讲的内容的理解,还没能达到教师所要求的层次。
因此,每天在做作业之前,⼀定要把课本的有关内容和当天的课堂笔记先看⼀看。
能否坚持如此,常常是好学⽣与差学⽣的最⼤区别。
尤其练习题不太配套时,作业中往往没有⽼师刚刚讲过的题⽬类型,因此不能对⽐消化。
高考数学难点突破(三角形中的三角函数式-不等式的证明策略-解不等式-不等式的综合应用)
解:(1)在 Rt△PAB 中,∠APB=60° PA=1,∴AB= 3 (千米)
在 Rt△PAC 中,∠APC=30°,∴AC= 3 (千米) 3
在△ACB 中,∠CAB=30°+60°=90°
BC AC 2 AB 2 ( 3 )2 ( 3)2 30
3
3
30 1 2 30(千米 /时) 36
cos
1 cos2 3 sin 2
4
4
cos cos2
3 4
,
依题设条件有
cos cos2
3
2, cos B
4
cos B
1 , cos 2 cos2
3
2
2.
4
整理得 4 2 cos2α+2cosα-3 2 =0(M)
(2cosα- 2 )(2 2 cosα+3)=0,∵2 2 cosα+3≠0,
弦成正比,角和这一点到光源的距离
r
的平方成反比,即
I=k·
sin r2
,
其中 k 是一个和灯光强度有关的常数,那么怎样选择电灯悬挂的高度 h,
才能使桌子边缘处最亮?
6.(★★★★)在△ABC 中,a、b、c 分别为角 A、B、C 的对边,4sin 2 B C cos2 A 7 .
2
2
(1)求角 A 的度数;
故 f(x)的值域为(-∞,- 1 )∪[2,+∞ ) . 2
●锦囊妙计
本难点所涉及的问题以及解决的方法主要有:
(1)运用方程观点结合恒等变形方法巧解三角形;
(2)熟练地进行边角和已知关系式的等价转化;
(3)能熟练运用三角形基础知识,正、余弦定理及面积公式与三角函数公式配合,通过
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修5解三角形数列不等式【选择题】1.设,,a b c R ∈,且a b >,则 ( )A .ac bc >B .11a b<C .33a b >D .22a b >⒉ 设n S 为等差数列{}n a 的前n 项和,834S a =,72a =-,则5a =( )A .6-B .4-C .2-D .2 3.在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状为( )A .钝角三角形B .直角三角形C .锐角三角形D .不能确定 ⒋ 若点(,)x y 位于曲线y x = 与2y =所围成的封闭区域, 则2x y -的最小值为( )A .-2B .-6C .0D .25.在等比数列{}n a 中,若2nn a =,则7a 与9a 的等比中项为( )A .8aB .8a -C .8a ±D .前3个选项都不对6.关于x 的不等式2260x ax a --<(0a >)的解集为12(,)x x ,且2110x x -=,则a =( )A .2B .5C .52D .32⒎ 已知正项等比数列{}n a 满足2014201320122a a a =+14a =,则116()m n+的最小值为( )A .23B .2C .4D .6 8.△ABC 的内角,,A B C 的所对的边,,a b c 成等比数列,且公比为q ,则sinCsin q A+的取值范围为()A .()0,+∞B .(1,2C .()1,+∞D .)1A .2015-B .2014-C .2014D .2015【填空题】11.若数列}{n a 中,762++-=n n a n ,则其前n项和n S 取最大值时,=n __________.12.在ABC ∆中,060,B AC ∠== ,则3AB BC +的最大值为 . 13.已知关于x 的不等式()()2440ax a x --->的解集为A ,且A 中共含有n 个整数,则当n 最小时实数a 的值为 .14.在ABC ∆中,内角,,A B C 的对边分别是,,a b c ,若1sin cos ,24sin CB A==,且ABC S ∆=,则______.b =15.对于正项数列{}n a ,定义122n nnH a a na =++⋅⋅⋅+为{}n a 的“光阴”值,现知某数列的“光阴”值为n nH =,则数列{}n a 的通项公式为n a =__________。
【解答题】16.已知等比数列{}n a 中,1a a =,2a b =,3a c =,,,a b c 分别为△ABC 的三个内角A ,B ,C 的对边,且3cos 4B =. (1)求数列{}n a 的公比q ; (2)设集合{}22A x N x x =∈<,且1a A ∈,求数列{}n a 的通项公式.解:(1)依题意知2b ac =, ……………………………………………………1分由余弦定理得222113cos ()2224a cb ac B ac c a +-==⋅+-= ………………………3分 而2c q a =,则22q =或212q =; …………………………………………………5分 又∵在△ABC中,,,0a b c >,∴q =2q = …………………6分(2)∵22x x <,∴4240x x -<,即()2240x x ⋅-<,∴22x -<<且0x ≠,………8分又x N ∈,∴{}1A =,∴11a =, ………………………………………………10分 从而∴1n n a -=或1n n a -=。
………………………………………………12分 17.在△ABC 中,,,a b c 分别为内角A ,B ,C 的对边,且2sin (2)sin (2)sin a A b c B c b C =+⋅++⋅。
(1)求A 的大小;(2)若sin sin 1B C +=,试判断△ABC 的形状.解:(1)由已知,根据正弦定理得22(2)(2)a b c b c b c =+⋅++ ……………2分即222a b c bc =++ …………① ∴2221cos 22b c a A bc +-==-,……………4分 又0A π<<, ∴23A π= ………………………………………………6分(2)由①得222sin sin sin sin sin A B C B C =++⋅………………………………………8分又sin sin 1B C +=,故1sin sin 2B C == ……………………………………10分又090,090B C <<<<,∴B C = ………………………………………11分故△ABC 是等腰的钝角三角形。
………………………………………12分18.已知21()1f x x a x a ⎛⎫=-++ ⎪⎝⎭。
(1)当12a =时,解不等式()0f x ≤;(2)若0a >,解关于x 的不等式()0f x ≤。
解: (1)当12a =时,有不等式25()102f x x x =-+≤, ………………2分∴()1202x x ⎛⎫--≤ ⎪⎝⎭,∴不等式的解集为122x x ⎧⎫≤≤⎨⎬⎩⎭……………4分(2)∵不等式()1()0f x x x a a ⎛⎫=--≤ ⎪⎝⎭当1a a >时,有01a <<,∴不等式的解集为1x a x a ⎧⎫≤≤⎨⎬⎩⎭; ……………7分 当1a a<时,有1a >,∴不等式的解集为1xx a a ⎧⎫≤≤⎨⎬⎩⎭; ……………10分 当1a a =时,有1a =,∴不等式的解集为{}1. ……………………………12分19.已知数列{}n a 满足:12n n a a a n a +++=-,其中*n N ∈。
(1)求证:数列{}1n a -是等比数列;(2)令(2)(1)n n b n a =--,求数列{}n b 的最大项。
证:(Ⅰ)当1n =时,111a a =-,∴112a =, ……………………………1分 又12111n n a a a n a +++++=+- ……………………………2分∴111n n n a a a ++=-+,即121n n a a +=+,∴111(1)2n n a a +-=- ……………4分 又1112a -=-,∴数列{}1n a -是首项为12-,公比为12的等比数列;………6分(2)由(1)知,11111()()()222n nn a --=-⨯=-∴2(2)(1)2n n n n b n a -=-⋅-=, ∴1111223222n n n n n n n nb b ++++----=-= ………8分当3n <时,10n n b b +->,即123b b b << …………………………………9分 当3n =时,43b b = ……………………………10分 当3n >时,10n n b b +-<,即456b b b >>> ……………………………11分∴数列{}n b 的最大项为4318b b == ……………………………13分20.某通讯公司需要在三角形地带OAC 区域内建造甲、乙两种通信信号加强中转站,甲中转站建在区域BOC内,乙中转站建在区域AOB 内.分界线OB 固定,且(1OB =百米,边界线AC 始终过点B ,边界线OA 、OC 满足∠AOC =75°,∠AOB =30°,∠BOC =45°,设(36)OA x x =≤≤百米,OC y =百米。
(1)试将y 表示成x 的函数,并求出函数y 的解析式;(2)当x 取何值时?整个中转站的占地面积OAC S ∆最小,并求出其面积的最小值。
解: (1)结合图形可知,BOC AOB AOC S S S ∆∆∆+=.于是,((1111sin301sin 45sin 75222x y xy ︒+︒=︒, 解得)36y x =≤≤. ……………………………6分 21.(本小题满分13分)已知数列{}n a 满足:2*1113,332,(1)n n a a a n n n N n n +==+++-∈+。
(1)求数列{}n a 的通项公式;(2)证明:1211112n a a a +++<。
解:(1)因为2111332()1n n a a n n n n +-=++--+, …………………2分 所以11121111111()3(332)()1n n n n k kk k k a a aa k k kk ---+====+-=+++--+∑∑∑ …………………5分 31(1)1133(1)(21)32(1)(1)62n n n n n n n n n n-=+⨯--+⨯+---=++………………………………………8分(2)因为4222222221111()1(1)(1)(1)211n n n n a n n n n n n n n n n n n ====-+++-++-+-+++, ………………………………………10分所以22111111111()[1]2112(1)12nn k k ka k k k k n n ===-=-<-+++++∑∑ ……………13分参考答案一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.二、填空题:本大题共5小题,每小题5分,共25分. 把答案填在答题卡的相应位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程. 解答写在答题卡上的指定区域内. ⒗ (本小题满分12分)解:(1)依题意知2b ac =, ……………………………………………………1分由余弦定理得222113cos ()2224a cb ac B ac c a +-==⋅+-= ………………………3分 而2c q a =,则22q =或212q =; …………………………………………………5分又∵在△ABC 中,,,0a b c >, ∴q =2q = …………………6分(2)∵22x x <,∴4240x x -<,即()2240x x ⋅-<,∴22x -<<且0x ≠,………8分又x N ∈,∴{}1A =,∴11a =, ………………………………………………10分从而∴1n n a -=或12n n a -=。