人教版2019-2020年度八年级10月月考数学试题(I)卷
八年级数学10月月考试卷 试题
〔2021—2021学年度第一学期〕本卷贰O贰贰年贰月捌日编写;出题人:令狐学复;欧阳化语;令狐理总。
初二数学10月月考试题〔时间是90分钟,满分是120分〕选择题答题栏题号 1 2 3 4 5 6 7 8 9 10 11答案一、选择题〔每一小题3分,一共33分〕。
1. 如图,在①AB=AC,②AD=AE,③∠B=∠C,④BD=CE四个条件中,能根据“SSS〞证明△ABD与△ACE全等的条件顺序是〔〕A. ①②③B. ②③④C. ①②④D.①③④〔第1题图〕〔第2题图〕〔第3题图〕2. 如图,AC、BD交于点O,BO=DO,AO=CO,那么以下判断中正确的选项是〔〕A. 只能证明△AOB≌△CODB. 只能证明△AOD≌△COBC. 只能证明△ABD≌△CBDD. 能证明四对三角形全等3. 如图,AB=CD,AE⊥BD于点E,CF⊥BD于点F,AE=CF,那么图中的全等三角形有〔〕A. 1对B. 2对C. 3对D. 4对4. 在以下条件中,不能断定直角三角形全等的是〔〕A. 两条直角边分别对应相等B. 斜边和一个锐角分别对应相等C. 两个锐角分别对应相等D. 斜边和一条直角边分别对应相等5. 以下图形中,是轴对称图形.....的是 〔 〕6. 等腰三角形的两边长分别为5、6,那么此三角形的周长为〔 〕A. 16B. 17C. 16或17D. 无法确定7. 以下说法正确的选项是〔 〕 A. 等腰三角形的底角一定是锐角B. 等腰三角形的底角可以是直角,但不能是钝角C. 等腰三角形一内角平分线与此角所对边上的高一定重合D. 等腰三角形的一个内角等于40,那么其余的两个内角一定都等于708. 三角形中到三边间隔 相等的点是〔 〕A. 三条边的垂直平分线的交点B. 三条高的交点C. 三条中线的交点D. 三条角平分线的交点 9. 如图,直线123,,l l l 表示三条互相穿插的公路,现要修建一个货物中转站,要求它到三条公路的间隔 都相等,那么可供选择的地址有〔 〕A. 一处B. 两处C. 三处D. 四处10. 如图,∠C =90°,AD 平分∠BAC 交BC 于D ,假设BC =5cm ,BD =3cm ,那么点D 到AB 的间隔 为〔 〕A. 5cmB. 3cmC. 2cmD. 不能确定 11.不能确定两个三角形全等的条件是〔 〕 A .三边对应相等B .两边及其夹角相等C .两角和任一边对应相等D .两边和其中一边的对角 二、填空题〔每空3分,一共33分〕12. 如以下图所示,AC ,BD 交于点O ,OA =OB ,OC =OD ,那么图中全等三角形有_______对。
人教版2019-2020学年八年级上学期10月月考数学试题A卷
人教版2019-2020学年八年级上学期10月月考数学试题A卷姓名:________ 班级:________ 成绩:________一、单选题1 . 下列关于x方程中有两个不相等的实数根的是()A.B.C.D.2 . 有理数,,满足,且,则的值为()A.2B.1C.0D.-13 . 下列判定正确的是()A.是最简二次根式B.方程不是一元二次方程C.已知甲、乙两组数据的平均数分别是,,方差分别是,,则甲组数据的波动较小D.若与都有意义,则的值为54 . 在下列二次根式中,是最简二次根式的是()A.B.D.C.二、填空题5 . a+的有理化因式是__________________。
6 . 计算:=_____.7 . 已知在△ABC中,AB=3,AC=5,第三边BC的长为一元二次方程x2-6x+8=0的一个根,则该三角形为__________三角形.8 . 化简二次根式的结果是_______.9 . 已知直角三角形的两边x,y的长满足|x-4|+=0,则第三边的长为____.10 . , 则xy=______ .11 . 把方程3x2+x=5x﹣2整理成一元二次方程的一般形式为_____.12 . 如果方程有两个不等实数根,则实数的取值范围是________.13 . 化简:________,________.14 . 比较大小:_____(填入“>”或“<”号).15 . 一元二次方程ax2﹣px+1=q(a≠0)的根的判别式是_____.16 . 方程的根为_______________________.17 . 计算:×=____________.18 . 观察下列运算过程:请运用上面的运算方法计算:______.三、解答题19 . 解不等式:≥.20 . 计算:(1)+(π-3)0+|2-3|;(2)×2-÷.21 . 定义一种新运算“*”满足下列条件:①对于任意的实数a,b,a*b总有意义;②对于任意的实数a,均有a*a=0;③对于任意的实数a,b,c,均有a*(b*c)=a*b+c.(1)填空:1*(1*1)=,2*(2*2)=,3*0=;(2)猜想a*0=,并说明理由;(3)a*b=(用含a、b的式子直接表示).22 . 计算:(1)2x2﹣4x+1=0(配方法)(2)﹣3x=1﹣x2(3)2(x+2)2=x(x+2)(4)(x+1)(x﹣1)+2(x+3)=8.23 . 已知关于的一元二次方程,若方程的一个根为2,求的值和方程的另一个根.24 . 解下列方程:(Ⅰ);(Ⅱ).25 . 计算:(1);(2)参考答案一、单选题1、2、3、4、二、填空题1、2、3、4、5、6、7、8、9、10、11、12、13、14、三、解答题1、2、3、4、5、6、7、。
四川省德阳市中江县2024-2025学年八年级上学期10月月考数学试题[含答案]
A.4
3
S V ABP ,其中正确的个数是(
2
B.3
C.2
第 II 卷
)
D.1
非选择题(102 分)
二、填空题(本大题共 7 个小题,每小题 4 分,本大题满分 28 分)
13.如图,在 V ABC 中, D 是 BC 边上一点, E 是边上一点.在 △ACE 中, Ð CAE 的对
边是
.
14.正十边形的每个外角等于
从点 B 出发,在直线 BC 上以 2cm/ s 的速度移动,过点 E 作 BC 的垂线交直线 CD 于点 F ,当
点 E 运动
s 时, CF
= AB .
19.如图,在 V ABC 中, ÐA = 20°, ÐEBC , ÐDCB 为 V ABC 的外角, ÐEBC 与 ÐDCB 的平分
线交于点 A1 , ÐEBA1 与 ÐDCA1 的平分线交于点 A2 , ¼,ÐEBAn -1 与 ÐDCAn -1 的平分线相交于点
的内角和为(
A. 1800°
)
B. 1440°
C. 1080°
试卷第 2 页,共 7 页
D. 720°
8.如图,在 V ABC 中,点 E 是 BC 的中点, AB = 7 , AC = 10 , △ACE 的周长是 25,则 V ABE
的周长是( )
A.18
B.22
C.28
D.32
9.如图,在 8 ´ 8 的正方形网格中, V ABC 的顶点和线段 EF 的端点都在小正方形的顶点上,
.
15.如图,四边形 ABCD 中,点 M、N 分别在 AB、BC 上,将 V BMN 沿 MN 翻折得 V FMN ,
若 MF∥AD,FN∥DC ,则 ÐB =
上海市徐汇区西南模范中学2019-2020学年八年级10月月考数学试题(解析版)
【19题答案】
【答案】A
【分析】将方程解的条件化为函数的取值,从而求出m的取值范围.
【详解】∵方程x2+(m+2)x+m+5=0的一个根大于1,另一个根小于1,
令f(x)=x2+(m+2)x+m+5,
则f(1)=1+m+2+m+5<0,
解得,m<-4.
故选A.
【点睛】本题考查了函数与方程之间的互相转化,属于基础题.
4.当 _____时,函数 是正比例函数,且 的值随 的值增大而减小.
【4题答案】
【答案】0
【分析】根据正比例函数的意义,可得答案.
【详解】∵函数 是正比例函数,
∴ ,
解得, , ,
∵y的值随x的值增大而减小,
∴m-2<0,即m<2
∴m=0,
故答案为0.
【点睛】本题考查了正比例函数的定义,形如y=kx,(k是不等于0的常数)是正比例函数.
【答案】C
【分析】先提取公因式4后,观察方程4(x2+2x- ),可以令x2+2x- =0,用配方法解得两根x1、x2,则 =4(x2+2x- )=(x-x1)(x-x2).
【详解】 =4(x2+2x- )
令x2+2x- =0,则x2+2x=
∴x2+2x+1= +1,即(x+1)2=
解得, , ,
∴ =4
【点睛】本题考查了一元二次方程的解的定义:就是能够使方程左右两边相等的未知数的值,此题应特别注意一元二次方程的二次项系数不得为零.
10.关于 的代数式 是一个完全平方式,则 _____.
人教版2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷解析版
2019-2020学年黑龙江省哈尔滨市香坊区风华中学八年级(上)月考数学试卷(10月份)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列图案中是轴对称图形的是()A.中国移动B.中国联通C.中国网通D.中国电信2.(3分)下列计算正确的是()A.b3•b3=2b3B.(ab2)3=ab6C.(a5)2=a10D.y3+y3=y63.(3分)点M(﹣5,3)关于x轴的对称点的坐标是()A.(﹣5,﹣3)B.(5,﹣3)C.(5,3)D.(﹣5,3)4.(3分)如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.3个B.4个C.5个D.6个5.(3分)如图,△ABC中,BE是角平分线,DE∥BC交AB于D,交AC于E,若DE=7,AD=5,则AB等于()A.10B.12C.14D.166.(3分)下列运算正确的是()A.3x3•5x2=15x6B.4y•(﹣2xy2)=﹣8xy3C.(﹣3x)2•4x3=﹣12x5D.(﹣2a)3•(﹣3a)2=﹣54a57.(3分)如图,直线l表示马家沟河,点P表示工业大学教学楼,点Q表示实验车间,欲在马家沟河l上修建一个排水泵站(记为点M),现从P,Q两处向马家沟排水,有如下四种修建水泵站供水管道的方案,则修建的管道最短的方案是()A.B.C.D.8.(3分)与三角形三个顶点距离相等的点,是这个三角形的()A.三条中线的交点B.三条角平分线的交点C.三条高的交点D.三边的垂直平分线的交点9.(3分)计算(﹣3x)•(2x2﹣5x﹣1)的结果是()A.﹣6x2﹣15x2﹣3x B.﹣6x3+15x2+3xC.﹣6x3+15x2D.﹣6x3+15x2﹣110.(3分)下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A'B'C'成轴对称,则△ABC一定与△A'B'C'全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.5二、填空题:11.(3分)若点p(a,3)与Q(﹣2,b)关于y轴对称,则a+b=.12.(3分)(x﹣8y)(x﹣y)=.13.(3分)若a n=2,则a3n的值是.14.(3分)如图,若∠A=15°,AB=BC=CD=DE=EF,则∠DEF等于.15.(3分)45×(0.25)5=.16.(3分)如图,等腰△ABC中,AB=AC=12,∠A=30°,则△ABC的面积等于.17.(3分)如图,点P关于OA、OB的对称点是H、G,直线HG交OA、OB于点C、D,若∠HOG =80°,则∠CPD=°.18.(3分)如图,AB=AC,BD=CD,AD=AE,∠BAD=26°,则∠EDC=度.19.(3分)△ABC中,AB=AC,DE是AB的垂直平分线,交AB于D,交直线AC于点E,且与直线AC的夹角为50°,则∠ABC=°.20.(3分)如图,△ABC中,AB=AC,点E在AB的延长线上,点D在边AC上,且EB=CD=4,线段DE交边BC于点F,过点F作FG⊥DE交线段CE于点G,CE⊥AC,△GEF的面积为5,则EG的长.三、解答题(21--22每题7分,23--24每题8分,25--27每题10分)21.先化简,再求值:(x2)3﹣x•x2﹣x2﹣x(x5﹣x2+2x﹣1),其中x=2.22.(1)请画出△ABC关于y轴对称的△A'B'C'(其中A',B',C'分别是A,B,C的对应点,不写画法);(2)直接写出B′,C′的坐标;(3)直接写出△A′B′C′的面积是.23.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A 的度数.24.如图,AD与BC相交于点F,FA=FC,∠A=∠C,点E在BD的垂直平分线上.(1)如图1,求证:∠FBE=∠FDE;(2)如图2,连接CE分别交BD、AD于点H、G,当∠FBD=∠DBE=∠ABF,CD=DE时,直接写出所有与△ABF 全等的三角形.25.如图,△ABD 、△AEC 都是等边三角形,直线CD 与直线BE 交于点F .(1)求证:CD =BE ;(2)求∠CFE 的度数.26.如图,在△ABC 中,∠ACB =2∠ABC ,AD 为∠BAC 的角平分线,E 为线段AC 上一点,过点E 作AD 的垂线交AD 于H ,交直线AB 于F .(1)如图1,当E 点与C 点重合时,求证:BF =DE ;(2)如图2,连接BE 交AD 于点N ,M 是BF 的中点,连接DM ,若MD ⊥BF 于M ,AB =18,S △ABD :S △ACD =3:2,求DE 的长.27.如图,△ABC 为等边三角形,D 、E 分别是AB 、BC 上的点,且AD =BE ,AE 与CD 相交于点F ,(1)如图1,求∠CFE的度数;(2)如图2,过点C作CH⊥AE于点H,求证:2FH+DF=AE;(3)在(2)的条件下,如图3,过点H作HP⊥FC于P,在AE的延长线上取一点M,连接BM,且∠M=30°,若PC=3,MH=5,AF:HE=5:1,求DF的长.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.解:A、不是轴对称图形,故不合题意;B、是轴对称图形,故符合题意;C、不是轴对称图形,故不合题意;D、不是轴对称图形,故不合题意;故选:B.2.解:A、b3•b3=b6,故此选项错误;B、(ab2)3=a3b6,故此选项错误;C、(a5)2=a10,正确;D、y3+y3=2y3,故此选项错误;故选:C.3.解:根据两点关于x轴对称,横坐标不变,纵坐标互为相反数,∴点M(﹣5,3)关于x轴的对称点的坐标是(﹣5,﹣3),故选:A.4.解:∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°﹣∠DBC﹣∠C=180°﹣36°﹣72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°﹣36°)÷2=72°,∴∠ADE=∠BED﹣∠A=72°﹣36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有5个.故选:C.5.解:∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∵DE∥BC,∴∠DEB=∠CBE,∴∠ABE=∠DEB,∴BD=DE=7,∵AB=AD+BD,∴AB=5+7=12.故选:B.6.解:A.3x3•5x2=15x5,此选项错误;B.4y•(﹣2xy2)=﹣8xy3,此选项正确;C.(﹣3x)2•4x3=36x5,此选项错误;D.(﹣2a)3•(﹣3a)2=﹣72a5,此选项错误;故选:B.7.解:作P点关于直线l的对称点P',连接P'Q后与直线l相交于点M,即M即为所求;故选:B.8.解:如图:∵OA=OB,∴O在线段AB的垂直平分线上,∵OB=OC,∴O在线段BC的垂直平分线上,∵OA=OC,∴O在线段AC的垂直平分线上,又三个交点相交于一点,∴与三角形三个顶点距离相等的点,是这个三角形的三边的垂直平分线的交点.故选:D.9.解:(﹣3x)•(2x2﹣5x﹣1)=﹣3x•2x2+3x•5x+3x=﹣6x3+15x2+3x.故选:B.10.解:①等腰三角形底边的中点到两腰的距离相等;正确;②等腰三角形的底边上的高、底边上的中线、顶角的平分线互相重合;不正确;③若△ABC与△A'B'C'成轴对称,则△ABC一定与△A'B'C'全等;正确;④有一个角是60度的等腰三角形是等边三角形;不正确;⑤等腰三角形的对称轴是顶角的平分线所在的直线,不正确.正确命题为:①③,2个;故选:A.二、填空题:11.解:∵点p(a,3)与Q(﹣2,b)关于y轴对称,∴a=2,b=3,∴a+b=2+3=5.故答案为:5.12.解:原式=x2﹣xy﹣8xy+8y2=x2﹣9xy+8y2,故答案为:x2﹣9xy+8y2.13.解:∵a n=2,∴a3n=(a n)3=23=8.故答案为:8.14.解:∵AB=BC=CD=DE=EF,∠A=15°,∴∠BCA=∠A=15°,∴∠CBD=∠BDC=∠BCA+∠A=15°+15°=30°,∴∠BCD=180°﹣(∠CBD+∠BDC)=180°﹣60°=120°,∴∠ECD=∠CED=180°﹣∠BCD﹣∠BCA=180°﹣120°﹣15°=45°,∴∠CDE=180°﹣(∠ECD+∠CED)=180°﹣90°=90°,∴∠EDF=∠EFD=180°﹣∠CDE﹣∠BDC=180°﹣90°﹣30°=60°,∴∠DEF=180°﹣(∠EDF+∠EFD)=180°﹣120°=60°.故答案为:60°.15.解:45×(0.25)5=(4×0.25)5=1,故答案为:116.解:作BD⊥AC.∵∠A=30°,AB=3,∴在Rt△ABD中,BD=AB=×12=6,∴S=×12×6=36,△ABC故答案为:36.17.解:连接OP.∵P关于OA、OB的对称点是H、G,∴OA垂直平分PH于R,OB垂直平分PG于T,∴CP=CH,DG=DP,∴∠PCD=2∠CHP,∠PDC=2∠DGP,∵∠PRC=∠PTD=90°,∴在四边形OTPR中,∴∠RPT+∠AOB=180°,∵∠POC=∠COH,∠POD=∠DOG,∠HOG=80°,∴∠AOB=40°∴∠RPT=180°﹣40°=140°∴∠CHP+∠PGD=40°,∴∠PCD+∠PDC=80°∴∠CPD=180°﹣80°=100°.故答案为100.18.解:∵AB=AC,BD=CD,∴AD平分∠BAC,AD⊥BC,∴∠CAD=∠BAD=26°,∠ADC=90°.∵AD=AE,∴∠ADE=∠AED=77°,∴∠CDE=∠ADC﹣∠ADE=13°.∴故答案为:13.19.解:①如图1,∵AB的垂直平分线DE,∴BE=AE,∠EDB=90°,∴∠A=∠ABE,∵∠BED=50°,∴∠ABE=40°,∴∠A=40°,∵AB=AC,∴∠ABC=∠C=×(180°﹣∠A)=×(180°﹣40°)=70°;②如图2,∵AB的垂直平分线DE,∴BE=AE,∠EDB=90°,∴∠EAB=∠ABE,∵∠BED=50°,∴∠ABE=40°,∴∠EAB=40°,∴∠A=180°﹣40°=140°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=×(180°﹣140°)=20°;故答案为:70°或2020.解:过D作DH∥AB交BC于H,则∠DHC=∠ABC,∠EBF=∠DHF,∵AB=AC,∴∠ABC=∠ACB,∴∠DHC=∠ACB,∴DH=CD,∵BE=CD,∴DH=BE,在△BEF与△HDF中,∴△BEF≌△HDF,(AAS),∴EF=DF,设EF=x,FG=a,则DE=2x,∵△GEF的面积为5,∴=5,∴xa=10,∵FG⊥DE,CE⊥AC,∴∠DCE=∠EFG=90°,∵∠FEG=∠CED,∴△EFG∽△ECD,∴=,∴=,∴EG===5,故答案为:5.三、解答题(21--22每题7分,23--24每题8分,25--27每题10分)21.解:原式=x6﹣x3﹣x2﹣x6+x3﹣2x2+x=﹣3x2+x,把x=2代入得:原式=﹣3×4+2=﹣10.22.解:(1)△A'B'C'如图所示;(2)B′(﹣1,2),C′(﹣5,1).=12﹣×2×3﹣×2×2﹣×1×4=5.(3)S△A′B′C′故答案为5.23.解:∵DE=EB∴设∠BDE=∠ABD=x,∴∠AED=∠BDE+∠ABD=2x,∵AD=DE,∴∠AED=∠A=2x,∴∠BDC=∠A+∠ABD=3x,∵BD=BC,∴∠C=∠BDC=3x,∵AB=AC,∴∠ABC=∠C=3x,在△ABC中,3x+3x+2x=180°,解得x=22.5°,∴∠A=2x=22.5°×2=45°.24.(1)证明:在△BAF和△DCF中∴△BAF≌△DCF(ASA)∴BF=DF∴∠FBD=∠FDB又∵E在BD的垂直平分线上∴EB=ED∴∠EBD=∠EDB∴∠FBE=∠FDE(2)答案:△HBE、△DFC、△DCH、△GED理由如下:由(1)∠FBD=∠FDB,∠EBD=∠EDB∵∠FBD=∠DBE∴∠FDB=∠FDB∵BD=BD∴△BGD≌△BED(ASA)∴BF=EB,DE=DF∵CD=DE∴BF=FD=DE=EB=BA=CD设∠ABF=x,则由已知,∠FBD=∠FDB=∠EBD=∠EDB=x ∵AB=BF∴∠A=∠AFB=2x在△ABD中,x+2x+2x=180°∴x=36°∴∠FBD=∠FDB=∠EBD=∠EDB=36°∠AFB=∠CFD=∠A=72°∴∠CDB=72°∵ED=CD,∠EBD=36°∴∠DCE=∠CED=36°∵∠DBE=36°∴∠BHE=72°∴△ABF≌△HBE,同理,△ABF≌△HCD,△ABF≌△GED∴与△ABF全等的三角形有△HBE、△DFC、△DCH、△GED25.解:(1)∵△ABD、△AEC都是等边三角形,∴AD=AB,AC=AE,∠DAB=∠DBA=∠ADB=60°,∠CAE=60°,∵∠DAB=∠DAC+∠CAB,∠CAE=∠BAE+∠CAB,∴∠DAC=∠BAE,在△DAC和△BAE中,∴△DAC≌△BAE,∴CD=BE.(2)∵△DAC≌△BAE,∴∠ADC=∠ABE,∴∠CFE=∠BDF+∠DBF=∠BDF+∠DBA+∠ABF=∠BDF+∠DBA+∠ADC=∠BDA+∠DBA=60°+60°=120°.26.证明:(1)连接DF,设AD与EF交于点K,∵AD是∠BAC的平分线,∴∠BAD=∠CAD,∵EF⊥AD,∴∠AKF=∠AKE=90°,∴∠AFK=∠AEK,∴AF=AE,则在△AFD 和△AED 中:,∴△AFD ≌△AED (SAS ),∴DF =DE ,∠AFD =∠AED ,又∵∠ACB =2∠ABC ,∴∠FBD =∠FDB ,∴BF =DF ,∴DE =BF ; (2)过A 作AP ⊥BC 于点P ,过D 作DQ ⊥AC 于点Q .连接DF , ∵S △ABD :S △ACD =3:2,即,∴,∵DC =4,∴BD =6∵AD 是∠BAC 的平分线,DM ⊥AB ,DQ ⊥AC ,∴DM =DQ ,∴,∴,由(1)可得:AQ =AM ,DC =BM ,∴AB =AC +DC ,∴,∴AC =8,AB =12,设PC =x ,则BP =10﹣x ,又勾股定理得:AB 2﹣BP 2=AC 2﹣PC 2=AP 2, 即122﹣(10﹣x )2=82﹣x 2,解得:x =1,∴DP =3,又AD 2﹣DP 2=AC 2﹣PC 2=AP 2,∴AD2=72,AD=,∵EF⊥AD,∴∠AKF=∠AKE=90°.∵DA平分∠BAC,∴∠FAD=∠EAD,∴∠AFE=∠AEF∴AF=AE在△AFD和△AED中:,∴△AFD≌△AED(SAS),∴∠AFD=∠AED,DF=DE,又∵DB=DF,∴DB=DE=6,∴∠BFD=∠DEC=∠DBF,∴180°﹣∠C﹣∠DEC=180°﹣∠C﹣∠DBF,∴∠EDC=∠BAC=2∠DAE,又∵∠EDC=2∠NED,∴∠DAE=∠NED,∵∠ADE=∠EDN,∴△DAE∽△DEN,∴,∴DE2=DN•DA,即62=DN•,∴DN=.27.解:(1)如图1中,∵△ABC是等边三角形,∴AC=AB,∠B=∠CAD=60°,∵BE=AD,∴△ABE≌△CAD(SAS),∴∠ACD=∠BAE,∵∠BAE+∠CAF=60°,∴∠CFE=∠ACD+∠CAF=∠BAE+∠CAF=60°.(2)如图2中,∵△ABE≌△CAD,∴AE=CD,在Rt△CFH中,∵∠CHF=90°,∠CFH=60°,∴∠FCH=30°,∴CF=2FH,∴2FH+DF=CF+DF=CD,∴2FH+DF=AE.(3)如图3中,延长CD到N,使得∠N=30°.设HE=a,DF=x,EM=b,则AF=5a.∵AB=AC,∠M=∠N,∠BAM=∠ACN,∴△ABM≌△CAN(AAS),∴AM=CN,∵AE=CD,∴EM=DN=b,∵FN=2AF,∴b+x=10a①,∵MH=5,∴a+b=5 ②,在Rt△CPH中,∵PC=3,∠PCH=30°,∴PH=,PF=1,HF=2,∵AE=CD,∴a+2+5a=x+4 ③由①②③可得x=,∴DF=.。
2019-2020学年江苏省常州市八年级(上)月考数学试卷(10月份) 解析版
2019-2020学年江苏省常州市天宁区同济中学八年级(上)月考数学试卷(10月份)一.选择题(本大题共8小题,共24分)1.(3分)下列图案属于轴对称图案的是()A.B.C.D.2.(3分)如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD3.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点4.(3分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°5.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD6.(3分)如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE 7.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE8.(3分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF二、填空题(本大题共10小题,共20分,每题2分)9.(2分)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.10.(2分)△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为,△ABC的面积为.11.(2分)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).12.(2分)如图,已知AD是BC的垂直平分线,垂足为D,△ABC的周长为32,△ACD 的周长为24,那么AD的长为.13.(2分)如图,△ABC中,△ACD与△BDE、△ADE都全等,则∠B=°.14.(2分)如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是.15.(2分)如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=.16.(2分)如图,在△ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC =3cm,BC=4cm,AB=5cm,那么△EBD的周长为.17.(2分)在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则AD+AE=cm.18.(2分)如图,△ADC中.∠C=90°,AC=10cm,BC=5cm.AD⊥AC,AB=PQ,P、Q两点分别在AC、AD上运动,当AQ=时,△ABC才能和△APQ全等.三、解笞题(本大题选6小题,共56分)19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.(8分)在4×4的方格中有五个同样大小的正方形如图摆放,请你在图1﹣图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.21.(6分)如图,已知AB=CD,∠ABC=∠DCB,求证:∠DBC=∠ACB.22.(7分)如图,点P是∠AOB的平分线上的一点,作PD⊥OA,PE⊥OB,垂足分别为D,E,连接DE,交OC于点F,求证:F是DE的中点.23.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF ⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.25.(12分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).2019-2020学年江苏省常州市天宁区同济中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(本大题共8小题,共24分)1.(3分)下列图案属于轴对称图案的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)如图,△AOC≌△BOD,点A与点B是对应点,那么下列结论中错误的是()A.∠A=∠B B.AO=BO C.AB=CD D.AC=BD【分析】根据全等三角形的对应边、对应角相等,可得出正确的结论,可得出答案.【解答】解:∵△AOC≌△BOD,∴∠A=∠B,AO=BO,AC=BD,∴A、B、D均正确,而AB、CD不是不是对应边,且CO≠AO,∴AB≠CD,故选:C.3.(3分)到三角形三条边的距离都相等的点是这个三角形的()A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三条边的垂直平分线的交点【分析】因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.【解答】解:∵角的平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:C.4.(3分)如图,若△ABC≌△DEF,∠A=45°,∠F=35°,则∠E等于()A.35°B.45°C.60°D.100°【分析】要求∠E的大小,先要求出△DFE中∠D的大小,根据全等三角形的性质可知∠D=∠A=45°,然后利用三角形的内角和可得答案.【解答】解:∵△ABC≌△DEF,∠A=45°,∠F=35°∴∠D=∠A=45°∴∠E=180°﹣∠D﹣∠F=100°.故选D.5.(3分)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.6.(3分)如图,Rt△ABC中,AB⊥AC,AD⊥BC,BE平分∠ABC,交AD于E,EF∥AC,下列结论一定成立的是()A.AB=BF B.AE=ED C.AD=DC D.∠ABE=∠DFE 【分析】从已知条件思考,利用角平分线的性质,结合平行线的性质,可得很多结论,然后与选项进行逐个比对,答案可得.【解答】解:∵∠BAD+∠ABD=90°,∠ABD+∠C=90°∴∠BAD=∠C(同角的余角相等)又∵EF∥AC∴∠BFE=∠C∴∠BAD=∠BFE又∵BE平分∠ABC∴∠ABE=∠FBE∴∠BEF=∠AEB,在△ABE与△FBE中,∵∴△ABE≌△FBE(AAS)∴AB=BF.故选:A.7.(3分)如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【解答】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,所以,结论正确的是D选项.故选:D.8.(3分)附图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD与下列哪一个三角形全等?()A.△ACF B.△ADE C.△ABC D.△BCF【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)结合图形进行判断即可.【解答】解:根据图象可知△ACD和△ADE全等,理由是:∵根据图形可知AD=AD,AE=AC,DE=DC,∴△ACD≌△AED,即△ACD和△ADE全等,故选:B.二、填空题(本大题共10小题,共20分,每题2分)9.(2分)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=11.【分析】根据已知条件分清对应边,结合全的三角形的性质可得出答案.【解答】解:∵这两个三角形全等,两个三角形中都有2∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5∴x+y=11.故答案为:11.10.(2分)△ABC和△DEF关于直线l对称,若△ABC的周长为12cm,△DEF的面积为8cm2,则△DEF的周长为12cm,△ABC的面积为8cm2.【分析】利用关于直线对称图形的性质得出△ABC和△DEF的周长以及面积相等,进而得出答案.【解答】解:∵△ABC和△DEF关于直线l对称,△ABC的周长为12cm,△DEF的面积为8cm2,∴△DEF的周长为12cm,△ABC的面积为8cm2,故答案为:12cm,8cm2.11.(2分)如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD(只添一个条件即可).【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.12.(2分)如图,已知AD是BC的垂直平分线,垂足为D,△ABC的周长为32,△ACD 的周长为24,那么AD的长为8.【分析】结合三角形的周长公式和线段垂直平分线的性质即可得到答案.【解答】解:∵AD是BC的垂直平分线,∴BD=DC,AB=AC,∵△ABC的周长为32,∴AB+AC+BC=32,即AB+BD+CD+AC=32,∴AC+DC=16,∵△ACD的周长为24,∴AC+DC+AD=24,∴AD=8,故答案为8.13.(2分)如图,△ABC中,△ACD与△BDE、△ADE都全等,则∠B=30°.【分析】根据全等三角形的性质得到∠AED=∠BED=90°,∠DAE=∠B,∠C=∠AED =90°,∠DAE=∠DAC,根据三角形内角和定理列式计算,得到答案.【解答】解:∵△BDE≌△ADE,∴∠AED=∠BED=90°,∠DAE=∠B,∵△ACD≌△AED,∴∠C=∠AED=90°,∠DAE=∠DAC,∴∠CAD=∠DAE=∠B=30°,故答案为:30.14.(2分)如图,已知Rt△ABC≌Rt△DEC,连结AD,若∠1=20°,则∠B的度数是65°.【分析】根据Rt△ABC≌Rt△DEC得出AC=CD,然后判断出△ACD是等腰直角三角形,根据等腰直角三角形的性质可得∠CAD=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DEC,然后根据全等三角形的性质可得∠B=∠DEC.【解答】解:∵Rt△ABC≌Rt△DEC,∴AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,∴∠DEC=∠1+∠CAD=20°+45°=65°,由Rt△ABC≌Rt△DEC的性质得∠B=∠DEC=65°.故答案为:65°.15.(2分)如图,等边△ABC中,AD是中线,AD=AE,则∠EDC=15°.【分析】由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.【解答】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED==75°,∴∠EDC=∠ADC﹣∠ADE=90°﹣75°=15°.故答案为:15°.16.(2分)如图,在△ABC中,∠ACB=90°,AE平分∠BAC,DE⊥AB于D,如果AC =3cm,BC=4cm,AB=5cm,那么△EBD的周长为6cm.【分析】首先根据角平分线的性质可得CE=DE,再利用HL定理证明Rt△ADE≌Rt△ACE,进而可得AD长,从而可得DB长,然后再计算出DE+EB长即可得到△EBD的周长.【解答】解:∵AE平分∠BAC,DE⊥AB于D,∠ACB=90°,∴CE=DE,在Rt△ADE和Rt△ACE中,,∴Rt△ADE≌Rt△ACE(HL),∴AC=AD=3cm,∵AB=5cm,∴DB=2cm,∵BC=4cm,∴DE+EB=4cm,∴△EBD的周长为6cm,故答案为:6cm.17.(2分)在△ABC中,BC=12cm,AB的垂直平分线与AC的垂直平分线分别交BC于点D、E,且DE=4cm,则AD+AE=8或16cm.【分析】作出图形,根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,AE=CE,然后分两种情况讨论求解.【解答】解:∵AB、AC的垂直平分线分别交BC于点D、E,∴AD=BD,AE=CE,∴AD+AE=BD+CE,∵BC=12cm,DE=4cm,∴如图1,AD+AE=BD+CE=BC﹣DE=12﹣4=8cm,如图2,AD+AE=BD+CE=BC+DE=12+4=16cm,综上所述,AD+AE=8cm或16cm.故答案为:8或16.18.(2分)如图,△ADC中.∠C=90°,AC=10cm,BC=5cm.AD⊥AC,AB=PQ,P、Q两点分别在AC、AD上运动,当AQ=5cm或10cm时,△ABC才能和△APQ全等.【分析】分两种情况讨论,由全等三角形的判定可求解.【解答】解:∵AD⊥AC,∴∠C=∠P AQ=90°,当BC=AQ=5cm时,且AB=PQ,∴Rt△ABC≌Rt△PQA(HL),当AQ=AC=10cm时,且AB=PQ,∴Rt△ABC≌Rt△QP A(HL),故答案为5cm或10cm.三、解笞题(本大题选6小题,共56分)19.(7分)如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.【分析】(1)作出∠AOB的平分线,(2)作出CD的中垂线,(3)找到交点P即为所求.【解答】解:作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.20.(8分)在4×4的方格中有五个同样大小的正方形如图摆放,请你在图1﹣图4中的空白处添加一个正方形方格,使它与其余五个正方形组成的新图形是一个轴对称图形.【分析】根据轴对称图形的性质找出格点即可.【解答】解:如图所示..21.(6分)如图,已知AB=CD,∠ABC=∠DCB,求证:∠DBC=∠ACB.【分析】由“SAS”可证△ABC≌△DCB,可得∠DBC=∠ACB.【解答】证明:在△ABC和△DCB中,,∴△ABC≌△DCB(SAS),∴∠DBC=∠ACB.22.(7分)如图,点P是∠AOB的平分线上的一点,作PD⊥OA,PE⊥OB,垂足分别为D,E,连接DE,交OC于点F,求证:F是DE的中点.【分析】由“AAS”可证△DOP≌△EOP,可得OD=OE,DP=PE,由线段垂直平分线的性质可得OP是DE的垂直平分线,可得结论.【解答】证明:∵OP平分∠AOB,∴∠AOC=∠BOC,在△DOP和△EOP中,,∴△DOP≌△EOP(AAS),∴OD=OE,DP=PE,∴OP是DE的垂直平分线,∴点F是DE的中点.23.(8分)如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF ⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.(1)求证:AE=CD;(2)若AC=12cm,求BD的长.【分析】(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=BC=AC,且AC=12,即可求出BD的长.【解答】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:∵△CDB≌△AEC,∴BD=CE,∵AE是BC边上的中线,∴BD=EC=BC=AC,且AC=12cm.∴BD=6cm.24.(8分)如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.【分析】根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S列方程计算即可得解.△ACD【解答】解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF,∴S△ABC=(AB+AC)×DE,即×(16+12)×DE=28,解得DE=2(cm).25.(12分)CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC=∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE=CF;EF=|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件∠α+∠BCA=180°,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).【分析】由题意推出∠CBE=∠ACF,再由AAS定理证△BCE≌△CAF,继而得答案.【解答】解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.。
山东日照港中学2024年八年级上学期10月月考数学试卷
2024-2025学年度上学期八年级单元检测数学试题第I 卷一、单项选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 我国建造的港珠澳大桥全长55公里,集桥、岛、隧于一体,是世界最长的跨海大桥.如图,这是港珠澳大桥中的斜拉索桥,那么你能推断出斜拉索大桥中运用的数学原理是( )A. 三角形不稳定性B. 三角形的稳定性C. 四边形的不稳定性D. 四边形的稳定性2. 如图,用三角板作ABC 的边AB 上的高线,下列三角板的摆放位置正确的是( )A B.C. D.3. 已知三条线段的长分别是3,7,m ,若它们能构成三角形,则整数m 的最大值是( )A. 11B. 10C. 9D. 74. 如图,在ABC 和ABD △中,已知AC AD =,则添加以下条件,仍不能判定ABC ABD △≌△的是( )的.A. BC BD =B. ABC ABD ∠=∠C. 90C D ∠=∠=°D. CAB DAB ∠=∠5. 如图,点F ,A ,D ,C 在同一直线上,EF BC ∥,且EF BC =,DE AB ∥.已知3,11,AD CF ==则AC 的长为()A. 5B. 6C. 7D. 6.56. 在下列条件中:①A B C ∠+∠=∠,②::1:2:3A B C ∠∠∠=,③90AB ∠=°−∠,④12A B C ∠=∠=∠,⑤23A B C ∠=∠=∠中,能确定ABC 是直角三角形的条件有( ) A. 2个 B. 3个 C. 4个 D. 5个7. 如图,小林从P 点向西直走 12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了96米回到点P . 则α=( )A. 30°B. 45°C. 60°D. 90°8. 窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.如图是从某窗棂样式结构图案上摘取的部分.已知//385BC DE ∠°,,则1234∠∠∠∠+++的度数是( )A. 320°B. 265°C. 245°D. 225°9. 如图,在ABC 中,延长CA 至点F ,使得AF CA =,延长AB 至点D ,使得2BD AB =,延长BC 至点E ,使得3CE CB =,连接EF 、FD 、DE ,若36DEF S =△,则ABC S ( )A. 1B. 2C. 3D. 410. 如图,在ABC ,AB AC =,D 为BC 上的一点,28BAD ∠=°,在AD 的右侧作ADE ,使得AE AD =,DAE BAC ∠=∠,连接CE 、DE ,DE 交AC 于点O ,若CE AB ∥,则DOC ∠的度数为( )A. 124°B. 102°C. 92°D. 88°二、填空题 (本题共5小题,每小题3分,共15分. )11. 如图所示,要使一个六边形木架在同一平面内不变形,至少还要再钉上_____根木条.12. 如图,正八边形和正五边形按如图方式拼接在一起,则CAB ∠=______°.13. 如图,在ABC 中,AD 是高线,AE BF 、是角平分线,它们相交于点5070O BAC C EAD ∠=°∠=°∠,,,度数为_________.为14. 如图,在 3×3的方格图中,每个小方格的边长都为1,则1∠与2∠的关系是__________________.15. 如图,在平面直角坐标系中,将直角三角形的直角顶点放在点()3,3P 处,两直角边分别与坐标轴交于点A 和点B ,则OA OB +的值为___________.三、解答题:(本题共 8 小题,解答应写出文字说明、证明过程或演算步骤. 共75分) 16. 如图,经测量,B 处在A 处的南偏西57°的方向,C 处在A 处的南偏东15°方向,C 处在B 处的北偏东82°方向,求C ∠的度数.17. 如图,F 、C 是AD 上两点,且AF CD =,点E 、F 、G 在同一直线上,且BC GF ,BC EF =.求证:ABC DEF ≌△△18. 如图,在ABC 和DCB △中,AC 与BD 相交于点O ,AB DC =,AC BD =.求证:ABO DCO △≌△.19. 已知一个多边形的内角和与外角和相加等于2160°.(1)求这个多边形的边数及对角线的条数.(2)这个多边形剪去一个角后,所形成的新多边形有几条边?内角和是多少?20. 在ABC 中, A B C ∠∠∠,,的对边分别为a , b , c .(1)化简代数式:a b c b a c +−+−−=; (2)若AB AC AC =,边上的中线BD 把ABC 的周长分为15和6两部分,求底边BC 的长. 21. 如图,在ABC 中.(1)如果7cm AB =,5cm AC =,BC 是能被3整除的偶数,求这个三角形的周长.(2)如果BP 、CP 分别是∠和ACB ∠的角平分线.①当50A ∠=°时,求BPC ∠的度数.②当A n ∠=°时,求BPC ∠的度数.22. 如图1,一张三角形ABC 纸片,点D 、E 分别是ABC 边上两点.研究(1):如果沿直线DE 折叠,使A 点落在CE 上,则BDA ′∠与A ∠的数量关系是 ;研究(2):如果折成图2的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系还成立吗?若成立,请说明理由; 若不成立,直接写出他们的关系.研究(3):如果折成图3的形状,猜想BDA ′∠、CEA ′∠和A ∠的数量关系是 .23. 如图,在ABC 和CDE 中,AC BC =,CD CE =,ACB DCE ∠=∠,连接AD ,BE 交于点M .(1)如图1,当点B ,C ,D 在同一条直线上时,可以得到图中一对全等三角形,即_____≌_____; (2)当点D 不直线BC 上时,如图2位置,且ACB DCE α∠=∠=.①求证:AD BE =;②求EMD ∠的大小(用含α的代数式表示).的在。
2020年秋季八年级上学期数学第一次月考试题含答案(人教版)
2020年秋季第一次月考八年级上学期数学试题含答案(人教版)一、精心选一选(每小题3分,共30分)1.的算术平方根是( )A .4 B. 2 C.-2 D. ±22.下面四个图形中,∠1与∠2是对顶角的是( )3.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)4.下列调查,适合用全面调查的事件是( )A.了解一批炮弹的杀伤半径B.了解枣阳电视台《聚焦》栏目的收视率C.了解汉江中鱼的种类D.了解某班学生对“枣阳一城两花”的知晓率5.一个长方形在直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)6.下列四组值中不是二元一次方程12=-y x 的解的是( ) A.⎪⎩⎪⎨⎧-==21,0y x B.⎩⎨⎧==1,1y x C.⎩⎨⎧==0,1y x D.⎩⎨⎧-=-=1,1y x 7.如图,直线AB,CD 相交于点O ,OA 平分∠EOC.若∠EOC ︰∠EOD=2︰3,则∠BOD 的度数为( )A.36°B.40°C.35°D.45°8.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示为( )A.(1,2)B.(1,3)C.(2,1)D.(3,2)9.下列说法正确的是( )A.22是分数 B.圆周率π是无理数 C.38是无理数 D.无限小数都是无理数10. 已知点P (a ,1-a )在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )二.细心填一填(每题3分,共30分)21,358;x y x y -=⎧⎨-=⎩①②11.把命题“同角的补角相等”改写成“如果……,那么……”的形式是 。
名校调研系列卷八年级上第一次月考数学试题
))))ABDCFEFABD C9.如图,在△ABC 中,BC 边所在直线上的高是线段 .(第9题) (第10题) (第11题)10.如图,若AB = AC ,AE = AD ,BD = CE ,∠CAE = 20°,则∠BAD = °. 11.如图,把△ABC 沿虚线剪一刀,若∠A = 43°,则∠1+∠2 = °.12.如图,△ABC ≌ △ADE ,若∠DAE = 80°,∠C = 30°,∠DAC = 35°,AC 、DE 交于点F ,则∠CFE = °.(第12题) (第13题)13.如图,AE = CF , AD = BC ,E 、F 为BD 上的两点,且BF = DE ,若∠AED = 60°,∠ADB = 30°,则∠BCF = °.14.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题. 如果从某个多边形的一个顶点出发的对角线共有3条,那么该多边形的内角和是 .15.一个多边形的每一个内角都是108°,求这个多边形的边数.21AAB C D E GE D AB CA BCDEPNM B A CBECA16.如图,C 为BE 上一点,点A 、D 分别在BE 两侧,AC = CD ,AB = CE ,请你添加一个条件,使△ABC ≌ △CED ,你添加的条件是 ,并写出证明过程. (第16题)17.如图,M 、N 在直线AB 上,AC = MP ,AM = BN ,BC = PN ,求证:AC ∥MP .(第17题)18.如图,在Rt △ABC 中,∠ACB = 90°,∠A = 30°,点D 在AB 边上,将△CBD 沿CD 折叠,使点B 恰好落在AC 边上的点E 处,求∠CDE 的度数.(第18题)ABC D19.如图,在△ABC 中,AD 是BC 边上的中线,△ADC 的周长比△ABD 的周长多5cm ,AB 与AC 的和为13cm ,求AC 的长. (第19题)20.如图,△ABC 的面积是56cm 2,D 是AB 的中点,O 是CD 的中点,求图中阴影部分的面积.(第20题)得 分 评卷人四、解答题(每小题7分,共28分) OCADBDA OCECADBE21.如图,线段AB、CD相交于点O,E是△OCB内任一点,连接AE、DE,求∠A+∠B +∠C +∠D+∠AED的度数.(第21题)22.如图,在△ABC与△ABD中,AC = BD,且CE = DE,AE = BE,AD与BC交于点E.(1)求证:△ACE≌△BDE;(2)若AC = 3,BC = 5,求△ACE的周长.(第22题)ACA BDCFE 2123.如图,已知六边形ABCDEF 的每个内角都相等,连接AD .(1)若∠1 = 48°,求∠2的度数; (2)求证:AB ∥DE . (第23题)24.如图,在△ABC 中,∠C >∠B ,AD ⊥BC 于点D ,AE 平分∠BAC . (1)若∠B = 50°,∠C = 72°,求∠EAD 的度数;(2)若∠B 、∠C 的度数未知,求证:∠EAD = (∠C -∠B ).(第24题)12MN12MN 21MN21ABODCABODBDACO25.如图①,AB = CD ,AD = BC ,O 为AC 中点,过O 点的直线分别与AD 、BC 相交于点M 、N .(1)∠1与∠2有什么关系?请说明理由;(2)若将过O 点的直线旋转至图②、图③的情况下,其他条件不变,那么(1)中的∠1与∠2的关系还成立吗?请说明理由.图① 图② 图③(第25题)ADN CBMEF GABCD EF MN26.如图,四边形ABCD 中,BE 、DF 分别平分四边形的外角∠MBC 和∠NDC ,若∠BAD= α,∠BCD = β.(1)如图①,若α+β = 150°,求∠MBC +∠NDC 的度数;(2)如图①,若BE 与DF 相交于点G ,∠BGD = 30°,请写出α、β所满足的等量关系式; (3)如图②,若α = β,判断BE 、DF 的位置关系,并说明理由.图① 图②(第26题)1、最困难的事就是认识自己。
人教版八年级(上)月考数学试卷(10月份)共3份
2020—2021学年太原市志达中学校八年级第一学期10月月调研 数学试卷(含答案)说明:本试卷为闭卷笔答,考试时不允许携带科学计算器,时间60分钟,满分100分一、选择题(本大题共10个小题,每小题3分,共30分)1.3的相反数是( ) A .3 B .3- C .33 D .33- 2.下列实数中的无理数是( )A .12B .4C .12-D .38-3.下列四组线段中,可以构成直角三角形的是( )A .4,5,6B .0.3,0.4,0.5C .1,2,3D .2,3,44.下列二次根式中是最简二次根式的是( )A .6B .16C .40D .175.下列算式中,正确的是( )A .255=±B .93±=C .()222-=-D .31-6.要使1x -有意义,则x 的取值范围是( )A .1x ≥B .01x <<C .1x ≤D .1x > 7.已知212m =+,估计m 的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间 8.如图,由两个直角三角形和三个大正方形组成的图形,其中阴影部分面积是( )A .5B .25C .144D .1699.如图,在行距、列距都是1的的44⨯方格网中,将任意连接两个格点的线段称作“格点线”,则“格点线”的长度不可能等于( )A .13B .5C .9D .1110.如图,在矩形ABCD 中,5CD =,8BC =,点E 若为BC 的中点,点F 为CD 上任意一点,AEF ∆周长的最小值为( )A .12B .1241+C .1341+D .13二、填空题(本大题含8个小题,每小题3分,共24分)把结果直接填在横线上.11.27的立方根是_______.12.计算:(23)(23)+-=_______.13.如图是某沿江地区交通平面图,为了加快经济发展,该地区拟修建一条连接M ,O ,Q 三个城市的沿江高速公路,已知该沿江高速公路的建设成本是5000万元/km ,该沿江高速公路的造价预计是______万元.1431+______54(填“>”,“<”,“=”) 15.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若8ab =,小正方形的面积为9,则大正方形的边长为______.16.如图,数轴上点A 所表示的实数是_______.17.如图,四边形ABCD 中,2AB BC ==,1CD =,3DA =,AC 为一条对角线,若90ABC ∠=︒,则四边形ABCD 的面积为_______.18.如图,长方形ABCD 中,90A ABC C D ∠=∠=∠=∠=︒,6AB CD ==,10AD BC ==,点E 为射线AD 上的一个动点,ABE ∆与FBE ∆关于直线BE 对称,当点E ,F ,C 三点共线时,AE 的长为_______.三、解答题(共46分,解答时写出必要的文字说明,证明过程或演算步骤)19.(12045(28182+ (3)(223 (41(21227)3(5)(35)(52)20.如图,一木杆原来垂直于地面,在离地某处断裂,木杆顶部落在离木杆底部5米处,已知木杆原长为25米,求木杆断裂处离地面多少米?21.如图,在ABC ∆中,D 是BC 上一点,若10AB =,6BD =,8AD =,17AC =.(1)求DC 的长.(2)求ABC ∆的面积.22.阅读与计算:请阅读以下材料,并完成相应的任务.古希腊的几何学家海伦在他的《度量》一书中给出了利用三角形的三边求三角形面积的“海伦公式”:如果一个三角形的三边长分别为a 、b 、c ,设2a b c p ++=,则三角形的面积()()()S p p a p b p c =---. 我国南宋著名的数学家秦九韶,曾提出利用三角形的三边求面积的“秦九韶公式”(三斜求积术):如果一个三角形的三边长分别为a 、b 、c ,则三角形的面积222222142a b c S a b ⎡⎤⎛⎫+-=-⎢⎥ ⎪⎢⎥⎝⎭⎣⎦. (1)若一个三角形的三边长分别是5,6,7,则这个三角形的面积等于______. (2)若一个三角形的三边长分别是5,6,7选择一种适当的方法求这个三角形的面积.23.数学活动课上,老师提出了这样的问题:没有直角尺,要过AB 上的一点C ,作出AB 的垂线. 乐学组想到了办法一:如图1,可利用一把有刻度的直尺在AB 上量出4CD cm =,然后分别以C ,D 为圆心,以3cm 与5cm 为半径画圆弧,两弧相交于点E ,作射线CE ,则DCE ∠必为90︒.图1勤学组想到了办法二:如图2,以C 为圆心,任意长为半径作弧,交直线AB 于点F ,G 分别以F ,G 为圆心,大于12FG 长为半径作弧,两弧相交于点H ;作射线CH ,则FCH ∠必为90︒. 图2善思组想到了办法三:如图3,以C 为圆心,任意长为半径作弧,交直线AB 于点M ;分别以M ,C 为圆心,MC 长为半径作弧,两弧相交于点N :射线MN ,以N 为圆心,MN 长为半径作弧,交射线MN 于点P ;作射线CP ,则MCP ∠必为90︒.图3任务: (1)填空:“办法一”依据的一个数学定理是_________________________;(2)根据“办法二”的操作过程,亮亮完成了证明过程:如图4,连接HF ,HG ,在HFG ∆中,由作图可知HF HG =,CF CG =,HC FG ∴⊥(依据1):90FCH ∴∠=︒.依据1指的是:______________________; 图4 (3)请你根据“办法三”的操作过程,补充完成证明过程:如图5,连接CN ,由作图可知NM NC MC ==,图5(4)已知,如图6,点Q ,R 是直线l 上两点,且4QR =①尺规作图:求作RQS ∆,使得点S 在l 的上方,且90RQS ∠=︒,QR QS =;②若RSW ∆是以RS 为一边的等边三角形,请直接写出线段QW 的长度(不需要作图).图62020—2021学年志达八年级第一学期10月月调研数学试卷一、选择题1-5:BABAD 6-10:ACBDC二、填空题11.312.1 13.900000 14.> 15.5 1651 17.22+18.2或18三、解答题19.【答案】(1)5-(2)5(3)743-(4)1(55120.【答案】12米【解析】解:设木杆断裂处离地面x 米由题意得:2225(25)x x +=-解得12x =.答:木杆断裂处离地面12米21.【答案】(1)15(2)84【解析】解:2222226810BD AD AB +=+==,ABD ∴∆是直角三角形,AD BC ∴⊥,在Rt ACD ∆中,15CD ===,111()21884222ABC S BC AD BC CD AD ∆∴=⋅=⋅⋅=⨯⨯= 因此ABC ∆的面积为8422.【答案】(1)66(2)2【解析】解:(1)567922a b c p ++++===S ===答:这个三角形的面积等于(2)S ====23.【答案】(1)勾股定理逆定理(2)等腰三角形三线合一(3)见解析(4)见解析【解析】(3)如下所示:NM NC =NMC NCM ∴∠=∠又NP NC =NPC NCP ∴∠=∠又180NMC NCM NPC NCP ∠+∠+∠+∠=︒90NCM NCP ∴∠+∠=︒又180NMC NCM NPC NCP ∠+∠+∠+∠=︒90NCM NCP ∴∠+∠=︒90MCP ∴∠=︒(4)①如图所示,RQS ∆即为所求②2622QW =或26224QS QR ==42RS ∴=易得2PS PR PQ ===易得22PR SP ==122326PW ==12622QW ∴=同理,易得22622QW ∴=图22020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷(解析版)一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.79.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为.12.(3分)三角形的外角和等于度.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为s.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是°.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.2020-2021学年山西省朔州市部分重点中学八年级(上)第一次大联考数学试卷参考答案与试题解析一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.(3分)下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.2.(3分)赵师傅在做完门框后,为防止变形,按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是()A.两点之间线段最短B.三角形两边之和大于第三边C.垂线段最短D.三角形的稳定性【分析】利用三角形的稳定性进行解答即可.【解答】解:按图中所示的方法在门上钉了两根斜拉的木条(图中的AB,CD两根木条),其中运用的几何原理是三角形的稳定性,故选:D.3.(3分)如图,六角螺母的橫截面是正六边形,则∠1的度数为()A.60°B.120°C.45°D.75°【分析】根据多边形的外角和等于360°解答即可.【解答】解:∵这个正六边形的外角和等于360°,∴∠1=360°÷6=60°.故选:A.4.(3分)如图,用三角板作△ABC的边AB上的高线,下列三角板的摆放位置正确的是()A.B.C.D.【分析】根据高线的定义即可得出结论.【解答】解:A,C,D都不是△ABC的边AB上的高,故选:B.5.(3分)将一副三角板按图中的方式叠放,则∠1的度数为()A.105°B.100°C.95°D.110°【分析】先求出∠2=45°、∠3=30°,再根据三角形的内角和列式计算即可得解.【解答】解:由图可知,∠2=90°﹣45°=45°,∴∠1=180﹣45°﹣30°=105°.故选:A.6.(3分)如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=36°,那么∠B的度数为()A.144°B.54°C.44°D.36°【分析】利用平行线的性质求出∠A,再利用三角形内角和定理求出∠B即可.【解答】解:∵AB∥CD,∴∠A=∠ACD=36°,∵∠ACB=90°,∴∠B=90°﹣36°=54°,故选:B.7.(3分)下面是投影屏上出示的解答题,需要回答横线上符号代表的内容.如图,直线EF∥直线GH,在Rt△ABC中,∠C=90°,顶点A在GH上,顶点B在EF上,且BA平分∠DBE,若∠CAD=26°,求∠BAD的度数.解:∵∠C=90°,∠CAD=26°,∴∠ADC=.∵直线EF∥直线GH,∴=∠ADC=64°.∵BA平分∠DBE,∴∠ABE==32°.∵直线EF∥直线GH,∴∠BAD==32°.下列选项错误的是()A.代表64°B.代表∠DBEC.在代表∠DBE D.代表∠CBE【分析】利用三角形内角和定理可得∠ADC的度数,再利用平行线的性质及角平分线的定义可得答案.【解答】解:∵∠C=90°,∠CAD=26°,∴∠ADC=64°.∵直线EF∥直线GH,∴∠DBE=∠ADC=64°.∵BA平分∠DBE,∴∠ABE=∠DBE=32°.∵直线EF∥直线GH,∴∠BAD=∠ABE=32°.故选:D.8.(3分)如图,△ABC≌△DEF,B、E、C、F四个点在同一直线上,若BC=8,EC=5,则CF的长是()A.2B.3C.5D.7【分析】利用全等三角形的性质可得BC=EF=8,再利用线段的和差关系计算即可.【解答】解:∵△ABC≌△DEF,∴BC=EF=8,∴EC=5,∴CF=8﹣5=3,故选:B.9.(3分)在△ABC中,有下列条件:①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C.其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个【分析】根据三角形内角和定理来判断.【解答】解:①由∠A+∠B=∠C,∠A+∠B+∠C=180°得到:2∠C=180°,则∠C=90°,所以△ABC是直角三角形;②设∠A=x,∠B=2x,∠C=3x,∠A+∠B+∠C=180°得到:6x=180°,则x=30°,∠C=3x=90°,所以△ABC是直角三角形;③由∠A=2∠B=3∠C,∠A+∠B+∠C=180°得到:∠A+∠A+∠A=180°,则∠A=()°,所以△ABC不是直角三角形;④∠A=∠B=∠C,∠A+∠B+∠C=180°得到:∠A+∠A+2∠A=180°,则∠A=45°,∠C=90°,所以△ABC是直角三角形;综上所述,能确定△ABC是直角三角形的条件有3个.故选:C.10.(3分)如图,△ABC中,∠ABC=100°,且∠AEF=∠AFE,∠CFD=∠CDF,则∠EFD的度数为()A.80°B.60°C.40°D.20°【分析】求出∠AFE+∠CFD即可解决问题.【解答】解:∵∠B=100°,∴∠A+∠C=80°,∵∠AFE=∠AEF,∠CFD=∠CDF,∠A+2∠AFE=180°,∠C+2∠CFD=180°,∴2∠AFE+2∠CFD=280°,∴∠AFE+∠CFD=140°,∴∠EFD=180°﹣140°=40°,故选:C.二.填空题(本大题共5个小题.每小题3分,共15分)11.(3分)在△ABC中,若∠C=90°,∠B=35°,则∠A的度数为55°.【分析】根据直角三角形的性质解答即可.【解答】解:∵在Rt△ABC中,∠C=90°,∠B=35°,∴∠A=90°﹣35°=55°,故答案是:55°.12.(3分)三角形的外角和等于360度.【分析】根据任何多边形的外角和是360度即可求解.【解答】解:三角形的外角和等于360°.故答案是:360.13.(3分)如图,CD是△ABC的中线,若AB=8,则AD的长为4.【分析】利用三角形的中线定义解答即可.【解答】解:∵CD是△ABC的中线,∴AD=AB,∵AB=8,∴AD=4,故答案为:4.14.(3分)如图,△ACB≌△DCE,且∠BCE=60°,则∠ACD的度数为60°.【分析】利用全等三角形的性质结合等式的性质可推出∠ACD=∠BCE,进而可得答案.【解答】解:∵△ACB≌△DCE,∴∠ACB=∠DCE,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∵∠BCE=60°,∴∠ACD=60°.故答案为:60°.15.(3分)一机器人以2m/s的速度在平地上按如下要求行走,则该机器人从开始到停止所需时间为16 s.【分析】该机器人所经过的路径是一个正多边形,利用360°除以45°,即可求得正多边形的边数,即可求得周长,利用周长除以速度即可求得所需时间.【解答】解:360°÷45°=8,则所走的路程是:4×8=32(m),则所用时间是:32÷2=16(s).故答案是:16.三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(10分)(1)如图1,△ABC的外角∠CAD为116°,∠C=80°,求∠B的余角的度数.(2)求图2中x的值.【分析】(1)根据三角形的外角性质求出∠B,根据余角的概念计算,得到答案;(2)根据五边形的内角和等于540°列方程即可得到结论.【解答】解:(1)∠B=∠CAD﹣∠C=36°,∴∠B的余角=90°﹣36°=54°;(2)∵80°+x°+x°+x°+x°=540°,∴x=115.17.(6分)如图,△ABC≌△DBC,∠A=40°,∠ACD=88°,求∠ABC的度数.【分析】利用全等三角形的性质可得∠ACB=∠DCB,进而可得度数,然后再利用三角形内角和求∠ABC 的度数即可.【解答】解:∵△ABC≌△DBC,∴∠ACB=∠DCB,∵∠ACD=88°,∴∠ACB=44°,∵∠A=40°,∴∠ABC=180°﹣40°﹣44°=96°.18.(7分)如图.在△ABC中,AD平分∠BAC,F是AD的反向延长线上一点,EF⊥BC于点E.若∠1=40°,∠C=70°,求∠F的度数.【分析】利用角平分线的定义可得∠BAC的度数,然后再计算出∠FDE的度数,再利用直角三角形两锐角互余可得答案.【解答】解:∵AD平分∠BAC,∴∠BAC=2∠1=2×40°=80°,∵∠C=70°,∴∠B=30°,∴∠ADC=∠1+∠B=70°,∵EF⊥BC于点E,∴∠FED=90°,∴∠F=180°﹣70°﹣90°=20°.19.(9分)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.20.(8分)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD =360°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=540°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是180n°.【分析】(1)过点E作EF∥AB,再根据两直线平行,同旁内角互补即可得到三个角的和等于180°的2倍;(2)分别过E、F分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(3)分别过E、F、G分别作AB的平行线,根据两直线平行,同旁内角互补即可得到四个角的和等于180°的三倍;(4)根据前三问个的剪法,剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.【解答】解:(1)过E作EF∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EF∥AB,∴CD∥EF(平行于同一条直线的两条直线互相平行).∵EF∥AB,∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EF,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.21.(10分)已知a.b,c是△ABC的三边长,a=4,b=6,设三角形的周长是x.尝试:分别写出c及x的取值范围.发现:当c为奇数时,求x的最大值和最小值.联想:若x是小于18的偶数,判断△ABC的形状.【分析】尝试:利用三角形三边关系进而得出c的取值范围,进而得出答案;发现:根据奇数的定义和x的取值范围,可求解;联想:根据偶数的定义,以及x的取值范围即可求c的值,利用等腰三角形的判定方法得出即可.【解答】解:尝试:因为a=4,b=6,所以2<c<10.故周长x的范围为12<x<20.发现:∵a=4,b=6,c为奇数,∴x为奇数,∵12<x<20,∴x最大为19,最小为13.联想:∵周长为小于18的偶数,∴x=16或x=14.当x为16时,c=6;当x为14时,c=4.当c=6时,b=c,△ABC为等腰三角形;当c=4时,a=c,△ABC为等腰三角形.综上所述,△ABC是等腰三角形.22.(12分)如图,AE,DE,BF,CF分别是四边形ABCD(四边不相等)的内角平分线,AE,BF交于点G,DE,CF交于点H.(1)探索∠FGE与∠FHE有怎样的数量关系,并说明理由;(2)∠FGE与∠FHE有没有可能相等?若能相等,则四边形ABCD的边有何特殊要求?若不能相等,请说明理由.【分析】(1)根据角平分线的定义得到∠GAB=∠DAB,∠GBA=∠CBA,求得∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),两式相加即可得到结论;(2)当∠FGE=∠FHE时,求得∠DAB+∠CBA=∠ADC+∠BCD,根据四边形的内角和即可得到结论.【解答】解:(1)∠FGE+∠FHE=180°,理由:∵AE平分∠BAD,BF平分∠ABC,∴∠GAB=∠DAB,∠GBA=∠CBA,∴∠FGE=∠AGB=180°﹣∠GAB﹣∠GBA=180°﹣(∠DAB+∠CBA),同理,∠FHE=180°﹣(∠ADC+∠BCD),∴∠FGE+∠FHE=360°﹣(∠DAB+∠CBA+∠ADC+∠BCD)=180°;(2)∠FGE与∠FHE相等,此时,AD∥BC,∵∠FGE=180°﹣(∠DAB+∠CBA),∠FHE=180°﹣(∠ADC+∠BCD),当∠FGE=∠FHE时,180°﹣(∠DAB+∠CBA)=180°﹣(∠ADC+∠BCD),即∠DAB+∠CBA=∠ADC+∠BCD,∵四边形的内角和=360°,∴∠DAB+∠CBA=∠ADC+∠BCD=180°,∴AD∥BC.23.(13分)如图,在四边形ABCD中,BE和DF分别平分四边形的外角∠MBC和∠NDC,BE与DF相交于点G,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=168°,求∠MBC+∠NDC的度数.(2)如图1,若∠BGD=35°,试猜想α、β所满足的数量关系式,并说明理由.(3)如图2,若α=β,判断BE、DF的位置关系,并说明理由.【分析】(1)利用角平分线的定义和四边形的内角和以及α+β=168°推导即可;(2)利用角平分线的定义和四边形的内角和以及三角形的内角和转化即可;(3)利用角平分线的定义和四边形的内角和以及三角形的外角的性质计算即可.【解答】解:(1)在四边形ABCD中,∠BAD+∠ABC+∠BCD+∠ADC=360°,∴∠ABC+∠ADC=360°﹣(α+β),∵∠MBC+∠ABC=180°,∠NDC+∠ADC=180°,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC)=360°﹣[360°﹣(α+β)]=α+β,∵α+β=168°,∴∠MBC+∠NDC=168°;(2)β﹣α=70°.理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=35°,∴∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+35°=180°,∴β﹣α=70°;(3)平行.理由:如图2,延长BC交DF于H,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBE=∠MBC,∠CDH=∠NDC,∴∠CBE+∠CDH=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),∵∠BCD=∠CDH+∠DHB,∴∠CDH=∠BCD﹣∠DHB=β﹣∠DHB,∴∠CBE+β﹣∠DHB=(α+β),∵α=β,∴∠CBE+β﹣∠DHB=(β+β)=β,∴∠CBE=∠DHB,∴BE∥DF.2020-2021学年山东省济南实验中学八年级(上)月考数学试卷(10月份)(解析版)一.选择题(本大题共12小题,共48分)1.(3分)9的平方根是()A.3B.±3C.﹣3D.±2.(3分)在3.14159,,0,π,这4个数中,无理数的个数有()A.1 个B.2 个C.3 个D.4 个3.(3分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列运算中正确的是()A.+=B.×=C.÷=3D.(﹣)2=﹣35.(3分)下列二次根式中,不能与合并的是()A.B.C.D.6.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c27.(3分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处8.(3分)通常来讲,电视机的大小是以屏幕的对角线长度来测量的(1英寸≈2.5厘米)现有一台电视机的屏幕长约80厘米,宽约60厘米,则该电视机的大小是()A.25英寸B.29英寸C.34英寸D.40英寸9.(3分)若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣810.(3分)如图,以Rt△ABC的三边为直角边分别向外作等腰直角三角形.若AB=,则图中阴影部分的面积为()A.B.C.D.511.(3分)如图,小明(视为小黑点)站在一个高为10米的高台A上,利用旗杆OM顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B.那么小明在荡绳索的过程中离地面的最低点的高度MN是()A.2米B.2.2米C.2.5米D.2.7米12.(3分)如图,在平面直角坐标系中,将边长为1的正方形OABC绕点O顺时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2019次得到正方形OA2019B2019C2019,那么点A2019的坐标是()A.(,﹣)B.(1,0)C.(﹣,﹣)D.(0,﹣1)二、填空题(本大题共6小题,共24分)13.(3分)4是的算术平方根.14.(3分)与﹣最接近的整数是.15.(3分)中国象棋是中华民族的文化瑰宝,因趣味性强,深受大众喜爱.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(0,﹣2),“马”位于点(4,﹣2),则“炮”位于点.16.(3分)已知a、b满足,则点(a、b)关于y轴对称的点的坐标为.17.(3分)有一长、宽、高分别是5cm,4cm,3cm的长方体木块,一只蚂蚁要从长方体的一个顶点A处沿长方体的表面爬到长方体上和A相对的顶点B处,则需要爬行的最短路径长为.18.(3分)按如图所示的程序计算,若开始输入的n值为,则最后输出的结果是.三、解答题(共78分)19.(16分)计算:(1);(2);(3);(4).20.(8分)化简:(1);(2).21.(6分)先化简,再求值:(a+b)(a﹣b)+b(a+2b)﹣(a﹣b)2,其中a=1+,b=1﹣.22.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点A为端点画出AB=,AC=,AD=的线段;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2,,;(3)如图3,点P,M,N是小正方形的顶点,直接写出∠PNM的度数.23.(6分)如图,A(﹣1,0),C(1,4),点B在x轴上,且AB=3.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A、B、P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标;若不存在,请说明理由.24.(6分)如图,小旭放风筝时,风筝线断了,风筝挂在了树上.他想知道风筝距地面的高度.于是他先拉住风筝线垂直到地面上,发现风筝线多出1米,然后把风筝线沿直线向后拉开5米,发现风筝线末端刚好接触地面(如图为示意图).请你帮小旭求出风筝距离地面的高度AB.25.(8分)定义:如图①,点M、N把线段AB分割成AM、MN和BN,若以AM、MN、BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点.(1)已知点M、N是线段AB的勾股分割点,若AM=2,MN=3,求BN的长;(2)如图②,在等腰直角△ABC中,AC=BC,∠ACB=90°,点M、N为边AB上两点,满足∠MCN =45°,求证:点M、N是线段AB的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把△CBN绕点C逆时针旋转90°试一试.请根据陈老师的提示完成第(2)小题的证明过程;(3)在(2)的问题中,若∠ACM=15°,AM=1,CM=+1.求BM的长.(提示:在直角三角形中,30°角所对的直角边等于斜边的一半.)26.(10分)(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A 作AD⊥CD,过点B作BE⊥CD,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线PQ与x轴交于点Q(1,0),与y轴交于点P(0,3),以线段PQ为一边作等腰直角三角形PQR,请直接写出点R的坐标.2020-2021学年山东省济南实验中学八年级(上)月考数学试卷(10月份)参考答案与试题解析一.选择题(本大题共12小题,共48分)1.(3分)9的平方根是()A.3B.±3C.﹣3D.±【分析】根据平方根的含义和求法,可得9的平方根是:±=±3,据此解答即可.【解答】解:9的平方根是:±=±3.故选:B.2.(3分)在3.14159,,0,π,这4个数中,无理数的个数有()A.1 个B.2 个C.3 个D.4 个【分析】根据同类项、整式、多项式的定义,结合选项进行判定.【解答】解:3.14159,,0是有理数,π是无理数,故无理数的个数有1个.故选:A.3.(3分)在平面直角坐标系中,点A(﹣2,4)位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.【解答】解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.4.(3分)下列运算中正确的是()A.+=B.×=C.÷=3D.(﹣)2=﹣3【分析】根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式==,所以B选项正确;C、原式==,所以C选项错误;D、原式=3,所以D选项错误.故选:B.5.(3分)下列二次根式中,不能与合并的是()A.B.C.D.【分析】根据二次根式的乘除法,可化简二次根式,根据最简二次根式的被开方数相同,可得答案.【解答】解:A、,故A能与合并;B、,故B能与合并;C、,故C不能与合并;D、,故D能与合并;故选:C.6.(3分)已知△ABC的三边分别为a、b、c,下列条件中,不能判定△ABC为直角三角形的是()A.∠A=∠B+∠C B.a:b:c=1:1:C.∠A:∠B:∠C=3:4:5D.b2=a2+c2【分析】根据三角形内角和定理可分析出A、C的正误;根据勾股定理逆定理可分析出B、D的正误.【解答】解:A、∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC为直角三角形,故此选项不合题意;B、∵()2=12+12,∴能构成直角三角形,故此选项不合题意;C、设∠A=3x°,∠B=4x°,∠C=5x°,3x+4x+5x=180,解得:x=15,则5x°=75°,∴△ABC不是直角三角形,故此选项符合题意;D、∵b2=a2+c2,∴能构成直角三角形,故此选项不符合题意.故选:C.7.(3分)如图,小明家相对于学校的位置下列描述最准确的是()A.距离学校1200米处B.北偏东65°方向上的1200米处C.南偏西65°方向上的1200米处D.南偏西25°方向上的1200米处【分析】根据以正西,正南方向为基准,结合图形得出南偏西的角度和距离来描述物体所处的方向进行描述即可.【解答】解:由图形知,小明家在学校的南偏西65°方向上的1200米处,故选:C.8.(3分)通常来讲,电视机的大小是以屏幕的对角线长度来测量的(1英寸≈2.5厘米)现有一台电视机的屏幕长约80厘米,宽约60厘米,则该电视机的大小是()A.25英寸B.29英寸C.34英寸D.40英寸【分析】根据勾股定理求出电视机对角线的长即可.【解答】解:∵一台电视机的屏幕长约80厘米,宽约60厘米,∴对角线的长==100.∵1英寸≈2.5厘米,∴=40(英寸).故选:D.9.(3分)若点A(m+2,3)与点B(﹣4,n+5)关于x轴对称,则m+n的值()A.3B.﹣14C.7D.﹣8【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得m、n的值,再计算m+n即可.【解答】解:由题意,得m+2=﹣4,n+5=﹣3,解得m=﹣6,n=﹣8.m+n=﹣14.。
云南省曲靖市麒麟区第四中学2024--2025学年八年级上学期10月第一次月考数学试卷(含答案)
云南省曲靖市麒麟区第四中学2024-2025学年八年级上学期10月第一次月考数学试卷八年级 数学(人教版) 试卷范围:八上11.1~12.2(全卷三个大题,共27个小题,共8页;满分100分,考试用时120分钟)注意事项:1.本卷为试题卷.答题前请在答题卡指定位置填写学校、班级、姓名等信息。
答案书写在答题卡相应位置上,答在试题卷或草稿纸上的答案无效。
2.考试结束后,请将试题卷和答题卡一并交回。
一、选择题(本大题共15小题,每个小题只有一个正确选项,每小题2分,共30分)1.下列长度的三条线段能组成三角形的是( )A.3,8,4B.5,10,6C.4,4,8D.3,7,112.下列各组图形中,两个图形属于全等图形的是( )A. B. C. D.3.直角三角形的一个锐角是,则它的另一个锐角是( )A. B. C. D.或4.下列说法正确的是( )A.三角形的外角和为 B.面积相等的两个三角形全等C.周长相等的两个三角形全等D.两条边及其一角相等的两个三角形全等5.如图,为了使自行车稳定停放,停放时常常放下它的脚架,这里所运用的几何原理是( )A.两点之间,线段最短B.三角形具有稳定性C.两点确定一条直线D.垂线段最短6.已知图中的两个三角形全等,则等于()60︒30︒60︒120︒30︒60︒360︒1∠A. B. C. D.7.如图,在中,,,则( )A. B. C. D.8.如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是( )A.SASB.ASAC.AASD.SSS9.如图,的边上的高是( )A.线段B.线段C.线段D.线段10.如图,如果,那么下列结论不正确的是( )A. B. C. D.11.小刚要将一块如图所示的三角形纸板分成面积相同的两部分,则图中他所作的线段应该是的()50︒58︒60︒72︒ABC △55B ︒∠=40C ︒∠=DAC ∠=75︒85︒95︒100︒ABC △BC AF BD BF BEABC FED △≌△BD EC =//AB EF //AC FD BD DF=AD ABC△A.高线B.中线C.角平分线D.以上都不是12.如图,已知,下列所给条件不能证明的是( )A. B. C. D.13.多边形的每个内角均为,则这个多边形是( )A.四边形B.五边形C.六边形D.八边形14.下列尺规作图的语句正确的是( )A.残长射线到点B.延长线段至点,使得C.作直线D.以为圆心,任意长为半径画弧15.如图,是的角平分线,,交于点,,交于点,若,则的度数为( )A. B. C. D.二、填空题(本大题共4小题,每小题2分,共8分)16.一个七边形的内角和度数为________.17.已知的三条边长均为整数,其中两边长分别是2和5,第三边长为奇数,则此三角形的周长为________.18.如图,,,若,则的度数为________.ABC DCB ∠=∠ABC DCB △≌△A D ∠=∠AB DC =AC DB =ACB DBC∠=∠120︒AB C AB C AC BC =3cmAB =O AD ABC △//DE AC AB E //DF AB AC F 150︒∠=2∠40︒45︒50︒60︒ABC △AB AC =BD CD =70B ︒∠=DAC ∠19.如图,先将两个全等的直角三角形、重叠在一起,再将三角形沿方向平移,、相交于点.若,,则阴影部分的面积为________.三、解答题(本大题共8小题,共62分)20.(6分)一个多边形的内角和是外角和的3倍,求这个多边形的边数.21.(6分)如图,,,求证:.22.(7分)如图,在与中,点、、、在一条直线上,,,.(1)求证::(2)若,,求线段的长.23.(7分)为了测量一栋6层楼的高度,在旗杆与楼之间选定一点,测得旗杆顶的视线与地面的夹角,测得楼顶的视线与地面的夹角,测各点到楼底的距离与旗仠的高度都等于12米,测得旗杆与楼之间的距离米.求这栋6层楼的高度.ABC DEF DEF CA 2cm AB EF G 8cm BC =3cm GE =2cm 90B D ︒∠=∠=AB AD =ABC ADC △≌△ABC △DEF △B E C F //AC DF AC DF =A D ∠=∠ABC DEF △≌△7BF =3CE =BE CD P C PC 33DPC ︒∠=A PA 57APB ︒∠=P PB CD 30BD =24.(8分)如图,是的高,、是的角平分线,且.(1)求的度数;(2)若,求的度数.25.(8分)如图,在中,,点是的中点,点在上.(1)找出图中所有全等的三角形:(2)任选一组你写出的全等三角形进行证明.26.(8分)如图,点是的平分线与的平分线的交点.(1)若,,则________;(2)探究与的数量关系,并说明理由.27.(12分)如图,与相交于点,,,,点从点出发,沿方向以的速度运动,点同时从点出发,沿方向以的速度运动,当点到达点时,、两点同时停止运动,设点的运动时间为.AD ABC △AE BF ABC △30CBF ︒∠=BAD ∠70AFB ︒∠=DAE ∠ABC △AB AC =D BC E AD D CBE ∠CAB ∠60BAC ︒∠=40D ︒∠=DBE ∠=︒C ∠D ∠AE BD C AC EC =BC DC =8cm AB =P A A B A →→2cm /s Q D D E →1cm /s P A P Q P s t(1)当点在运动时,________;(用含的代数式表示)(2)求证:;(3)当,,三点共线时,求的值.P A B →BP =t AB ED =P Q C t2点·教学评——质量跟踪练习题(一)八年级 数学(人教版) 参考答案一、选择题(本大题共15小题,每小题2分,共30分)题号123456789101112131415答案BDAABACBADBCCDC二、填空题(本大题共4小题,每小题2分,共8分)16.17.1218.19.13三、解答题(本大题共8小题,共62分)20.(6分)解:设这个多边形的边数为,则,解得:,这个多边形的边数是8....................................................................................................6分21.(6分)证明:,和都是直角三角形,在和中,,.........................................................................................6分22.(7分)(1)证明:,在和中,,;...........................................................................................4分(2),,,,,,...................................................................................................................7分23.(7分)解:由题意可得:,,,900︒20︒n (2)1803603n ︒︒-+=⨯8n =∴90B D ︒∠=∠= ABC ∴△ADC △Rt ABC ∴△Rt ADC △AB ADAC AC =⎧⎨=⎩Rt Rt (HL)ABC ADC ∴△≌△//AC DF ACB F∴∠=∠ABC △DEF △A DAC DF ACB F ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ABC DEF ∴△≌△ABC DEF △≌△BC EF ∴=BE CE CF CE ∴+=+BE CF ∴=7BF = 3CE =2BE CF ∴==90CDP PBA ︒∠=∠⇒57APB ︒∠= 33PAB ︒∴∠=,米,米,米,在和中,,,米,这栋6层楼高18米.........................................................................................................7分24.(8分)解:(1)平分,,,是的高,,,...........................................................................................4分(2),,,,平分,,..............................................................8分25.(8分)解:(1),,;....3分(2),点是的中点,,在和中,,,,33PAB CPD ︒∴∠=∠=30BD = 12PB =18DP BD PB ∴=-=BAP △DPC △CDP PBA PAB CPD CD PB ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)BAP DPC ∴△≌△18AB DP ∴==∴BF ABC ∠30CBF ︒∠=260ABC CBF ︒∴∠=∠=AD ABC △90ADB ︒∴∠=906030BAD ︒︒︒∴∠=-=AFB FBC C ∠=∠+∠ 70AFB ︒∠=703040C ︒︒︒∴∠=-=18080BAC ABC C ︒︒∴∠=-∠-∠=AE BAC ∠40BAE ︒∴∠=403010DAE BAE BAD ︒︒︒∴∠=∠-∠=-=ABE ACE △≌△BDE CDE △≌△ABD ACD △≌△AB AC = D BC BD CD ∴=ABD △ACD △AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩(SSS)ABD ACD ∴△≌△BDE CDE ∴∠=∠在和中,,,,在和中,,.................................................................................................8分(答案不唯一,推理正确即可得分)26.(8分)解:(1)70;..................................................................................................3分(2),理由如下:,平分,平分,,,,,,......................................................................................................................8分27.(12分)解:(1);........................................................................................3分(2)在和中,,,;.....................................................................................................................7分(2)根据题意得:,,则,,,在和中,BDE △CDE △BD CD BDE CDE DE DE =⎧⎪∠=∠⎨⎪=⎩(SAS)BDE CDE ∴△≌△BE CE ∴=ABE △ACE △AB AC AE AE BE CE =⎧⎪=⎨⎪=⎩(SSS)ABE ACE ∴△≌△2C D ∠=∠CBE CAB C ∠=∠+∠ AD CAB ∠BD CBE ∠12CBD CBF ∴∠=∠12CAD CAB ∠=∠12CBD CAD C ∴∠=∠+∠CBD D CAD C ∠+∠=∠+∠ 12CAD C D CAD C ∴∠+∠+∠=∠+∠2C D ∴∠=∠82t -ABC △EDC △AC EC ACB ECD BC DC =⎧⎪∠=∠⎨⎪=⎩(SAS)ABC EDC ∴△≌△AB ED ∴=DQ t =2AP t =8EQ t =-ABC EDC △≌△A E ∴∠=∠8cmDE AB ==ACP △ECQ △,,,当时,,解得:,当时,,,解得:,综上所述,当、、三点共线时,的值为或.......................................12分A E AC ECACP ECQ ∠=∠⎧⎪=⎨⎪∠=∠⎩(ASA)ACP ECQ ∴△≌△AP EQ ∴=∴04t ……28t t =-83t =48t <…162AP t =-1628t t ∴-=-8t =∴P C Q t 8s 8s 3。
01【人教版】八年级上册第一次月考数学试卷(含答案)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )....三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.为圆心,以大于DE,则∠ 八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系( )A.平行B.垂直C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是( )A.两边一角分别相等B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是( )A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为( )A.5B.10C.15D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90° .【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.中,,∵,,故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,A AS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P 到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.P和P都是所求的点.1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力. 22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠D AE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:为圆心,以大于DE ,∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,,则∠ 中,,中,,【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.。
2024-2025学年初中八年级上学期第一次月考数学试题及答案(人教版)
2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或43. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )A. 50oB. 80oC. 50o 或80oD. 不能确定 4. 若三角形的两条边的长度是4cm 和9cm ,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm5. 一个多边形的内角和是900°,则这个多边形的边数为 ( )A. 6B. 7C. 8D. 96. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6 7. 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )的A. 4B. 5C. 6D. 710. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分BAC ∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.15. Rt ABC 中,∠C=90°,∠B=2∠A ,BC=3cm , AB=____cm .16. 如图,Rt ABC ∆中,∠B =90 ,AB =3cm ,AC =5cm ,将ΔΔΔΔΔΔΔΔ折叠,使点C 与点A 重合,折痕为DE ,则CE =____cm .17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度.三.解答题(本大题满分62分)19 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数..21. 如图,点D E ,分别AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.在的24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .26. 如图,∠ABC =90°,D 、E 分别在BC 、AC 上,AD ⊥DE ,且AD =DE ,点F 是AE 中点,FD 与AB 相交于点M .(1)求证:∠FMC =∠FCM ;(2)AD 与MC 垂直吗?并说明理由.的2024-2025八年级上册第一次月考模拟试卷一、填空题(本题满分30分,每小题3分)1. 在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形的概念,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A 、不是轴对称图形,不符合题意;B 、是轴对称图形,符合题意;C 、不是轴对称图形,不符合题意;D 、不是轴对称图形,不符合题意.故选:B .【点睛】本题考查了轴对称图形识别,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合. 2. 若一个等腰三角形的两边长分别为2,4,则第三边的长为( )A. 2B. 3C. 4D. 2或4【答案】C【解析】【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【详解】①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边4;②4是底边时,三角形的三边分别为2、2、4, 224+= ,∴不能组成三角形,综上所述,第三边为4.故选C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.3. 已知一个等腰三角形有一个角为50o ,则顶角是 ( )为.A50o B. 80o C. 50o或80o D. 不能确定【答案】C【解析】【分析】已知中没有明确该角为顶角还是底角,所以应分两种情况进行分析.【详解】分两种情况:若该角为底角,则顶角为180°−2×50°=80°;若该角为顶角,则顶角为50°.∴顶角是50°或80°.故选C.【点睛】此题考查等腰三角形的性质,解题关键在于分情况讨论.4. 若三角形的两条边的长度是4cm和9cm,则第三条边的长度可能是( )A. 4 cmB. 5 cmC. 9cmD. 13cm【答案】C【解析】【分析】根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边,进行解答即可.【详解】由题可得:9﹣4<第三边<9+4,所以5<第三边<13,即第三边在5 cm~13 cm之间(不包括5 cm 和13 cm),结合选项可知:9 cm符合题意.故选C.角形的两边的差一定小于第三边.5. 一个多边形的内角和是900°,则这个多边形的边数为()A. 6B. 7C. 8D. 9【答案】B【解析】【分析】本题根据多边形的内角和定理和多边形的内角和等于900°,列出方程,解出即可.【详解】解:设这个多边形的边数为n,则有(n-2)180°=900°,解得:n=7,∴这个多边形的边数为7.故选B.【点睛】本题考查了多边形内角和,熟练掌握内角和公式是解题的关键.6. 下列长度的各种线段,可以组成三角形的是( )A. 1,2,3B. 1,3,5C. 3,3,6D. 4,5,6【答案】D【解析】【分析】根据三角形的三边关系逐一判断即可得答案.【详解】A .∵1+2=3,故不能组成三角形,不符合题意,B .∵1+3<5,故不能组成三角形,不符合题意,C .∵3+3=6,故不能组成三角形,不符合题意,D .∵4+5>6;5-4<6,故能组成三角形,符合题意,.故选:D .【点睛】本题考查三角形的三边关系,任意三角形的两边之和大于第三边,两边之差小于第三边,熟练掌握三角形的三边关系是解题关键.7 如图,AB 与CD 相交于点E ,EA EC =,DE BE =,若使AED CEB ≌,则( )A. 应补充条件A C ∠=∠B. 应补充条件B D ∠=∠C. 不用补充D. 以上说法都不正确【答案】C【解析】 【分析】本题要判定AED CEB ≌,已知EA EC =,DE BE =,具备了两组边对应相等,由于对顶角相等可得AED CEB ∠=∠,可根据SAS 能判定AED CEB ≌.【详解】解:在AED 与CEB 中,EA EC AED CEB DE BE = ∠=∠ =,(SAS)AED CEB ∴ ≌,∴不用补充条件即可证明AED CEB ≌,.故选:C .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8. 已知△ABC 和△DEF ,下列条件中,不能保证△ABC ≌△DEF 的是( )A. AB =DE ,AC =DF ,BC =EFB. ∠A =∠D , ∠B =∠E ,AC =DFC. AB =DE ,AC =DF ,∠A =∠DD. AB =DE ,BC =EF , ∠C =∠F【答案】D【解析】【分析】三角形全等的判定定理中,常见的不能判定三角形全等的条件为SSA ,AAA ,通过对条件的对比很容易得出结论.【详解】A 选项对应判定定理中的SSS ,故正确;B 选项对应判定定理中的AAS ,故正确;C 选项对应判定定理中的ASA ,故正确;D 选项则为SSA ,两边加对角是不能判定三角形全等的,故错误.故选D .【点睛】本题考查三角形全等判定定理,能熟记并掌握判定定理是解题关键.9. 如图,点P 为∠AOB 内一点,分别作出点P 关于OA 、OB 的对称点1P 、2P ,连接1P 2P 交OA 于M ,交OB 于N ,若12PP =6,则△PMN 的周长为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】根据题意易得1PM PM =,2P N PN =,然后根据三角形的周长及线段的数量关系可求解. 【详解】解:由轴对称的性质可得:OA 垂直平分1PP ,OB 垂直平分2P P ,∴1PM PM =,2P N PN =, ∵1212PMN C PM PN MN PM P N MN PP =++=++=△,12PP =6,∴6PMN C = ;故选C .【点睛】本题主要考查轴对称的性质及线段垂直平分线的性质定理,熟练掌握轴对称的性质及线段垂直平分线的性质定理是解题的关键.10. 如图,直线AB CD ∥,70A ∠=°,40C ∠=°,则E ∠的度数为( )A. 30°B. 40°C. 50°D. 60°【答案】A【解析】 【分析】此题考查了平行线的性质,三角形外角的性质,首先根据AB CD ∥得到170A ∠=∠=°,然后利用三角形外角的性质求解即可.解题的关键是熟练掌握三角形外角的性质:三角形的外角等于与它不相邻的两个内角的和.【详解】如图所示,∵AB CD ∥,70A ∠=°,∴170A ∠=∠=°,∵40C ∠=°∴1704030E C ∠=∠−∠=°−°=°.故选A .11. 如图,在ABC 中,AD BC ⊥于点D ,48C ∠=°.则DAC ∠的度数为( )A. 52°B. 42°C. 32°D. 28°【答案】B【解析】 【分析】根据垂直的定义,直角三角形的两个锐角互余,即可求解.【详解】解:∵AD BC ⊥,48C ∠=°,∴90ADC ∠=°,∵48C ∠=°,∴904842DAC ∠=°−°=°,故选:B .【点睛】本题考查了垂直的定义,直角三角形的两个锐角互余,求得90ADC ∠=°是解题的关键. 12. 如图,在ΔΔΔΔΔΔΔΔ中,AD 平分∠交BC 于点D ,30B ∠= ,70ADC ∠=,则C ∠的度数是( )A. 50B. 60C. 70D. 80【答案】C【解析】 【分析】由30B ∠= ,70ADC ∠= ,利用外角的性质求出BAD ∠,再利用AD 平分BAC ∠,求出BAC ∠,再利用三角形的内角和,即可求出C ∠的度数.【详解】∵30B ∠= ,70ADC ∠=, ∴703040BAD ADC B ∠=∠−∠=−= ,∵AD 平分BAC ∠,∴280BAC BAD ∠=∠= ,∴180180308070C B BAC ∠=−∠−∠=−−= .故选C .【点睛】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,熟练掌握相关性质和定理是解题关键.二. 填空题(本题满分24分,每小题3分)13. BD 是ABC 的中线,53AB BC ABD ==,, 和BCD △的周长的差是____.【答案】2【解析】【分析】由中线定义,得AD CD =,根据周长定义,进行线段的和差计算求解.【详解】∵BD 是ABC 的中线,∴AD CD =,∴ABD △和BCD △的周长的差()()AB BD AD BC BD CD AB BC =++−++=−,∵53AB BC ==,, ∴ABD △和BCD △的周长的差532=−=.故答案为:2.【点睛】本题考查中线的定义;由中线得到线段相等是解题的关键.14. 若一个多边形从一个顶点可以引8条对角线,则这个多边形的内角和是______.【答案】1620°【解析】【分析】设多边形边数为n ,根据n 边形从一个顶点出发可引出(n−3)条对角线可得n−3=8,计算出n 的值,再根据多边形内角和(n−2)•180 (n ≥3)且n 为整数)可得答案.【详解】解:设多边形边数为n ,由题意得:n−3=8,n=11,内角和:180°×(11−2)=1620°.故答案为1620°.【点睛】本题主要考查了多边形的对角线,以及多边形内角和,关键是掌握n边形从一个顶点出发可引出(n−3)条对角线,多边形内角和公式(n−2)•180 (n≥3)且n为整数).中,∠C=90°,∠B=2∠A,BC=3cm,AB=____cm.15. Rt ABC【答案】6【解析】【详解】试题分析:根据直角三角形的性质即可解答.解:如图:∵Rt△ABC中,∠C=90°,∠B=2∠A∴∠A+∠B=90°∴∠A=30°,∠B=60°∴=,∵BC=3cm,∴AB=2×3=6cm.故答案为6.考点:直角三角形的性质.∆中,∠B=90 ,AB=3cm,AC=5cm,将ΔΔΔΔΔΔΔΔ折叠,使点C与点A重合,折痕为DE,16. 如图,Rt ABC则CE=____cm.【答案】258【解析】 【分析】在Rt △ABC 中,由勾股定理可得BC4= cm ,设AE =x cm ,由折叠的性质可得CE =x cm ,BE = (4)x −cm ,从而由勾股定理可得:2223(4)x x =+−,即可求解.【详解】解:∵在Rt △ABC 中,∠B =90°,AB =3cm ,AC =5cm ,∴由勾股定理可得:BC4=cm ,设AE =x cm ,则由折叠的性质可得:CE =x cm ,BE =BC -CE =(4)x −cm ,∴在Rt △ABE 中,由勾股定理可得:2223(4)x x =+−,解得:258x =(cm ). 即CE 的长为258cm . 故答案是:258. 【点睛】本题考查了折叠性质以及勾股定理的应用,熟练掌握勾股定理的内容是解题的关键. 17. 若一个n 边形的内角都相等,且内角的度数与和它相邻的外角的度数比为3:1,那么,这个多边形的边数为________.【答案】8##八【解析】【分析】本题考查的是多边形的内角和,以及多边形的外角和,解答本题的关键是熟练掌握任意多边形的外角和是360°,与边数无关. 先根据内角的度数与和它相邻的外角的度数比为3:1,求得每一个外角的度数,再根据任意多边形的外角和是360°,即可求得结果.【详解】解:设每一个外角的度数为x ,则每一个内角的度数3x ,则3180x x +=°,解得45x =°,∴每一个外角的度数为45°,∴这个多边形的边数为360458°÷°=,故答案为:8.18. 如下图,在ABC 中,AB AC =,BE CD =,BD CF =,若50B ∠=°,则EDF ∠的度数是____度. 的【答案】50【解析】【分析】本题考查了等腰三角形的性质,全等三角形的判定和性质,三角形内角和定理,由等腰三角形的性质可得B C ∠=∠,进而可证明()SAS BDE CFD ≌,得到BED CDF ∠=∠,即可得130BDE CDF BDE BED ∠+∠=∠+∠=°,最后根据平角的定义即可求解,掌握等腰三角形的性质及全等三角形的判定和性质是解题的关键.【详解】解:∵AB AC =,∴B C ∠=∠,又∵BE CD =,BD CF =,∴()SAS BDE CFD ≌,∴BED CDF ∠=∠,∵50B ∠=°,∴18050130BDE BED ∠+∠=°−°=°,∴130BDE CDF ∠+∠=°,∴()18018013050EDF BDE CDF ∠=°−∠+∠=°−°=°, 故答案为:50.三.解答题(本大题满分62分)19. 如图,DF ⊥AC 于F ,BE ⊥AC 于E ,AB =CD ,DF =BE .;求证:AF =CE .【答案】证明见解析.【解析】【分析】由HL 证明Rt △ABE ≌Rt △CDF ,得出对应边相等AE =CF ,由AE ﹣EF =CF =EF ,即可得出结论.详解】∵DF ⊥AC ,BE ⊥AC ,∴∠CFD =∠AEB =90°,在Rt △ABE 和Rt △CDF 中,{AB CD BE DF==, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴AE ﹣EF =CF =EF ,∴AF =CE .【点睛】本题考查了全等三角形的判定与性质.掌握全等三角形的判定方法是解题的关键.20. 如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD .求△ABC 各角的度数.【答案】∠A=36°,∠ABC=∠C=72°【解析】【分析】设∠A=x ,根据等腰三角形的性质和三角形的外角性质、三角形的内角和定理即可求得各个角的度数.【详解】解:设∠A=x ,∵AD=BD ,∴∠ABD=∠A=x ,∴∠BDC=∠ABD+∠A=2x ,∵BD=BC ,∴∠C=∠BDC=2x ,∵AB=AC ,∴∠ABC=∠C=2x ,∴在△ABC 中,x+2x+2x=180°,∴x=36°,2x=72°,【即∠A=36°,∠ABC=∠C=72°.【点睛】本题考查了等腰三角形的性质、三角形的外角性质、三角形内角和定理,熟练掌握等腰三角形的性质和外角性质是解答的关键.21. 如图,点D E ,分别在AB AC ,上,CD 交BE 于点O ,且AD AE =,AB AC =.求证:(1)B C ∠=∠;(2)OB OC =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】本题考查三角形全等的判定与性质,熟记三角形全等的判定定理:SSS SAS ASA AAS 、、、是解决问题的关键.(1(2)根据三角形全等的判定定理找条件证明即可得证.【小问1详解】证明:在ABE 和ACD 中,AD AE A A AB AC = ∠=∠ =()SAS ABE ACD ∴≌ ,∴B C ∠=∠;【小问2详解】证明: AD AE =,AB AC =,BD CE ∴=,由(1)知,B C ∠=∠,在BOD 和COE 中,BOD COE B C DB EC ∠=∠ ∠=∠ =()AAS ≌BOD COE ∴△△,∴OB OC =.22. 如图,两人从路段ΔΔΔΔ上一点C 同时出发,以相同的速度分别沿两条直线行走,并同时到达D E ,两地.且DA AB ⊥,EB AB ⊥.若线段DA EB =相等,则点C 是路段ΔΔΔΔ的中点吗?为什么?【答案】点C 是路段ΔΔΔΔ的中点,理由见解析.【解析】【分析】本题考查了全等三角形的判定和性质,利用HL 证明Rt Rt ACD BCE ≌得到AC BC =即可求解,掌握全等三角形的判定和性质是解题的关键.【详解】解:点C 是路段ΔΔΔΔ的中点,理由如下:∵两人从点C 同时出发,以相同的速度同时到达D E ,两地,∴CD CE =,∵DA AB ⊥,EB AB ⊥,∴90A B ∠=∠=°,又∵DA EB =,∴()Rt Rt HL ACD BCE ≌, ∴AC BC =,∴点C 是路段ΔΔΔΔ的中点.23. 在ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,交AB 于点E .(1)求证:ABD △是等腰三角形;(2)①若40A ∠=°,求DBC ∠的度数为 ;②若6AE =,CBD △的周长为20,求ABC 的周长.【答案】(1)见解析 (2)①;②32【解析】【分析】(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)①由在ABC 中,AB AC =,40A ∠=°,利用等腰三角形的性质,即可求得ABC ∠的度数,利用等边对等角求得DBA ∠的度数,则可求得DBC ∠的度数;②将ABC 的周长转化为AB AC BC ++的长即可求得.【小问1详解】解:∵AB 的垂直平分线MN 交AC 于点D ,∴DB DA =,∴ABD △是等腰三角形;【小问2详解】解:①在ABC 中,∵AB AC =,40A ∠=°, ∴180180407022AABC C −∠°−∠=∠=°==°°, 由(1)得DA DB =,40DBA A ∠=∠=︒,∴704030DBC ABC DBA ∠=∠−∠=°−°=°;故答案为:30°;②∵AB 的垂直平分线MN 交AC 于点D ,6AE =,∴212AB AE ==,∵CBD △的周长为20,∴20BD CD BC AD CD BC AC BC ++=++=+=,∴ABC 的周长122032AB AC BC =++=+=. 【点睛】此题考查了线段的垂直平分线的性质及等腰三角形的判定与性质,解题的关键是熟练掌握以上知识的应用.24. 如图,在ABC 中,AB AC =,P 是边BC 的中点,PD AB PE AC ⊥⊥,,垂足分别为D ,E .求证:PD PE =.【答案】见解析【解析】【分析】利用AAS 证明PBD PCE ≌即可.本题考查了三角形全等的判定和性质,熟练掌握三角形全等的判定是解题的关键.【详解】证明:∵PD AB PE AC ⊥⊥,,∴90PDB PEC ∠=∠=°,∵AB AC =,∴B C ∠=∠,∵P 是边BC 的中点,∴PB PC =,∵PDB PEC B C PB PC ∠=∠ ∠=∠ =,∴PBD PCE ≌,∴PD PE =.25. 如图,∠B =∠C =90°,M 是BC 上一点,且DM 平分∠ADC ,AM 平分∠DAB ,求证:AD =CD +AB .【答案】证明见解析【解析】【分析】过M作ME⊥AD于E,根据垂直定义和角平分线性质得出∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=ME,根据全等三角形性质,推导得△MCD≌△MED,根据全等得出CD=DE,同理得AE=AB,即可得出答案.【详解】如图,过M作ME⊥AD于E,∵∠B=∠C=90°,DM平分∠ADC,AM平分∠DAB,∴∠C=∠DEM=90°,∠B=∠AEM=90°,∠CDM=∠EDM,CM=EM,∠EAM=∠BAM,BM=EM,∴CDM EDMC DEMCM EM∠=∠∠=∠=,∴△MCD≌△MED(AAS),∴CD=DE,∵BAM EAMB AEMBM EM∠=∠∠=∠=∴△ABM≌△AEM(AAS),∴AE=AB,∴AD=AE+DE=CD+AB.【点睛】本题考查了角平分线、全等三角形的知识;解题的关键是熟练掌握角平分线、全等三角形的性质,从而完成求解.26. 如图,∠ABC=90°,D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.【答案】(1)见解析;(2)AD ⊥MC ,理由见解析【解析】【分析】(1)由已知可以证得△DFC ≌△AFM ,从而得到CF =MF ,最后得到∠FMC =∠FCM ; (2)由(1)可以证得DE ∥CM ,再根据AD ⊥DE 可得AD ⊥MC .【详解】解:(1)证明:∵△ADE 是等腰直角三角形,F 是AE 中点,∴DF ⊥AE ,DF =AF =EF ,又∵∠ABC =90°,∠DCF ,∠AMF 都与∠MAC 互余,∴∠DCF =∠AMF ,在△DFC 和△AFM 中,DCF AMF CFD MFA DF AF∠=∠ ∠=∠ = , ∴△DFC ≌△AFM (AAS ),∴CF =MF ,∴∠FMC =∠FCM ;(2)AD ⊥MC ,理由:由(1)知,∠MFC =90°,FD =FA =FE ,FM =FC ,∴∠FDE =∠FMC =45°,∴DE ∥CM ,∴AD ⊥MC .【点睛】本题考查全等三角形的综合运用,熟练掌握三角形全等的判定和性质、等腰三角形的性质、同角余角相等的性质、平行线的判定与性质、垂直的判定并灵活运用是解题关键.。
精品解析:广东省惠城区惠州一中2019-2020学年八年级上学期第一次月考数学试题(原卷版)
惠州一中2019-2020年度第一学期八年级10月月考数学试题一、选择题(每小题3分,共30分)1.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B. C. D.2.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形3.等腰三角形的一边长等于4,一边长等于9,则它的周长是()A. 17B. 22C. 17或22D. 134.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是【】A. 15°B. 25°C. 30°D. 10°5.如图,点A、D、C、E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=12,AC=8,则CD的长为()A. 5.5B. 4C. 4.5D. 36.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A. 120°B. 60°C. 140°D. 无法确定7.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A. 20°B. 35°C. 40°D. 45°8.如图,BD是△ABC的边AC上的中线,点E是BD的中点,若阴影部分的面积是1,那么△ABC的面积为()A. 16cm2B. 8cm2C. 4cm2D. 2cm29.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A. 180°B. 360°C. 540°D. 720°10.如图,△ABC中,∠ACB=90°,AC=8cm,BC=15cm,点M从A点出发沿A→C→B路径向终点运动,终点为B点,点N从B点出发沿B→C→A路径向终点运动,终点为A点,点M和N分别以2cm/s和3cm/s 的运动速度同时开始运动,两点都要到达相应的终点时才能停止运动,分别过M和N作ME⊥l于E,NF⊥l 于F.设运动时间为t秒,要使以点M,E,C为顶点的三角形与以点N,F,C为顶点的三角形全等,则t 的值为()A. 4.6或7B. 7或8C. 4.6或8D. 4.6或7或8二、填空题(每小题4分,共24分)11.如图,若检验工人量得一个零件的90A ∠=︒,32B =︒∠,21C =︒∠,则BDC ∠=_____度.12.已知一个凸多边形的内角和是它的外角和的3倍,那么这个凸多边形的边数等于_________.13.如图,AD ,BE 分别是△ABC 中BC ,AC 边上的高,BC =6cm ,AC =5cm ,若AD =4cm ,则BE 的长为______cm .14.如图,AB =AC ,AD =AE ,∠BAC =DAE ,∠1=24°,∠2=30°,∠3=_______°.15.如图,BP 是△ABC 中∠ABC 平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.16.已知AB =AC ,AD 为∠BAC 的角平分线,D 、E 、F …为∠BAC 的角平分线上的若干点.如图1,连接BD 、CD ,图中有1对全等三角形;如图2,连接BD 、CD 、BE 、CE ,图中有3对全等三角形;如图3,连接BD 、CD、BE、CE、BF、CF,图中有6对全等三角形;依此规律,第n个图形中有_____对全等三角形.三、解答题(共46分)17.尺规作图:已知∠ABC,求作∠DEF,使∠DEF=∠ABC(不写作法,保留作图痕迹);18.如图,A处在B处北偏西45°方向,C处在B处北偏东15°方向,C处在A处南偏东80°方向,求∠C的度数.19.如图,AB∥CD,AE⊥BD,CF⊥AD,垂足分别是E、F,且BF=DE,求证:AE=CF20.如图,点D在AB上,点E在AC上,BE、CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.21.已知,如图△ABC 与△ADE 中,D BC 上,∠1=∠2=∠3,DE =BC ,求证:AE =AC .22.如图①,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,E 、F 分别是BC 、CD 上的点,且∠EAF =60°,探究图中线段BE 、EF 、FD 之间的等量关系.(1)小王同学探究此问题的方法是,延长FD 到点G ,使DG =BE ,连结AG ,先证明△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是__________________.(2)如图②,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是BC 、CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由; (3)实际应用:如图③,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏西30°的A 处,舰艇乙再指挥中心南偏东70°的B 处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向行驶60海里/小时的速度前进,舰艇乙沿北偏东50°的方向行驶60海里/小时的速度前进,1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E 、F 处,且舰艇之间的夹角(∠EOF )为70°,试求此时两舰艇之间的距离.。
山东省济南市2023-2024学年八年级上学期10月月考数学试题
山东省济南市2023-2024学年八年级上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.5米B.63.下列各组数中,互为相反数的是(A.-2与12-B.-4.如图,有一个面积为1的正方形,经过一次正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次了如图所示的形状,若继续次后形成的图形中所有的正方形的面积和是(A.2024B.20235.下列各式中,正确的是(A.164=±B.6.如图,矩形ABCD的边点为圆心,对角线AC长为半径画弧,交数轴于点A .2πB .3π8.实数a b ,在数轴上的位置如图所示,化简A .2a b -B .a 9.按如图所示的程序计算,若开始输入的A .2B .310.如图,圆柱的高为8cm ,底面半径为吃食,要爬行的最短路程是(15.若21(2)x y z -+-+三、解答题17.求下列各式中的x 的值:(1)16x 2=81(2)(x+1)3=﹣27.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高.(1)求风筝的垂直高度(2)如果小明想风筝沿23.计算:(1)如图1,当点D 在边BC 上时,①请写出BD 和CE 之间的数量关系____________,位置关系_____________;②线段CE ,CD ,BC 之间的数量关系是______________________________;(2)如图2,当点D 在边BC 的延长线上且其他条件不变时,(1)中CE ,CD ,BC 之间存在的数量关系是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,当点D 在边CB 的延长线上且其他条件不变时,若6BC =,1CE =,求线段DE 的长.。
浙江省杭州市2019-2020学年八年级上(10月)月考数学试题(含答案)
浙江省杭州市2019-2020学年八年级上月考试题数学一、选择题:本题有10 小题,每小题3分,共30 分.在每小题给出的四个选项中,只有一项是符合要求的.1. 下列语句是命题的是(▲)A.作直线A B 的垂线B.在线段A B 上取点CC.同旁内角互补D.垂线段最短吗?2. 如图四个图形中,线段B E 是△ABC 的高线的是(▲)B C A B A EA.B.C.D.3. 具备下列条件的两个三角形中,一定全等的是(▲) A.有两边一角对应相等B.有两角一边分别相等C.三条边对应相等D.三个角对应相等4. 已知等腰三角形的两条边长分别是7和3,则第三条边长是(▲)A.8 B.7 C.4 D.35. 如图,等腰△ABC 的周长为21,底边B C=5,AB 的垂直平分线D E 交A B 于点D,交A C于点E,则△BEC 的周长为(▲)A.13 B.14 C.15 D.166. 一艘轮船由海平面上A地出发向南偏西40°的方向行驶40 海里到达B地,再由B地向北偏西20°的方向行驶40 海里到达C地,则A、C 两地相距(▲)A.30 海里B.40 海里C.50 海里D.60 海里第5题图第6题图第7题图第8题图第 10 题图7. 如图,N ,C ,A 三点在同一直线上,在△ ABC 中,∠A :∠ABC :∠ACB =3:5:10,又 △ MNC ≌△ABC ,则∠BCM :∠BCN 等于(▲)A .1:2B .1:3C .2:3D .1:4 8. 如图,AB ∥CD ,AC ∥DB ,AD 与 B C 交于点 O ,AE ⊥BC 于点 E ,DF ⊥BC 于点 F ,那么 图中全等的三角形有(▲)对 A .5 B .6 C .7 D .8 9. 一个等腰三角形的底边长为 5,一腰上中线把其周长分成的两部分的差为 3,则这个等腰 三角形的腰长为(▲) A .2 B .8 C .2 或 8 D .10 10. 如图,在△ABC 中,AB =20cm ,AC =12cm ,点 P 从点 B 出发以每秒 3cm 的速度向点 A 运动,点 Q 从点 A 同时 出发以每秒 2cm 的速度向点 C 运动,其中一个动点到达 端点时,另一个动点也随之停止运动,当△APQ 是以 PQ 为底的等腰三角形时,运动的时间是(▲) A .2.5 秒 B .3 秒 C .3.5 秒 D .4 秒二、填空题:本题有 6 个小题,每小题 4 分,共 24 分. 11. 写出一个原命题是真命题,逆命题是假命题的命题: ▲ . 12. 在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则 ∠1= ▲ °. 13. 如图,CE 平分∠ACB ,且 C E ⊥DB ,∠DAB =∠DBA ,又知 A C =18,△CDB 的周长为 28, 则 B D 的长为 ▲ . 14. 如图,在△ABC 中,AB =AC ,∠BAD =28°,AD =AE ,则∠EDC = ▲ . 15. 已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形, 这样的三角形一共能作出 ▲ 个. 16. 如图,C 为线段 A E 上一动点(不与 A 、E 重合),在 A E 同侧分别作等边△ABC 和等边△ CDE ,AD 与 B E 交于点 O ,AD 与 B C 交于点 P ,BE 与 C D 交于点 Q ,连接 P Q ,以下五 个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°,其中正确的结论 是 ▲ (把你认为正确的结论的序号都填上).第 12 题图 第 13 题图 第 14 题图 第 16 题图三、解答题:本题有 7 小题,共 66 分.解答应写出文字说明,证明过程或推演步骤. 17.(本题满分 6 分) 指出下列命题的条件和结论,并改写成“如果……,那么……”的形式. (1)两直线平行,内错角相等;(2)三角形内角和等于 180°.18.(本题满分 8 分)一个零件的形状如图,按规定∠A = 90°,∠B 、∠C 分别是 32°和 21°.某检验工人量得∠BDC = 148°,就断定这个零件不合格,试用三角形的有关知识说明零件不合格的理由.19.(本题满分 8 分)第 18 题图如图,点 C ,F ,E ,B 在一条直线上, CFDBEA , C E BF ,DFAE .(1)求证:DF ∥AE ; (2)写出 C D 与 A B 之间的关系,并证明你的结论.第 19 题图20.(本题满分 10 分)如图,CD ∥AB ,∠ABC ,∠BCD 的角平分线交 A D 于 E 点,且 E 在 A D 上,CE 交 B A 的 延长线于 F 点. (1)试问 B E 与 C F 互相垂直吗?若垂直,请说明理由; (2)若 C D =3,AB =4,求 B C 的长.第 20 题图21.(本题满分10 分)已知命题:“P 是等边△ABC 内的一点,若P到三边的距离相等,则P A=PB=PC.” (1)写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.(2)进一步证明:点P 到等边△ABC 各边的距离之和为定值.22.(本题满分12 分)如图,在R t△ABC 中,∠C90 ,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,试画出所有不同的等腰三角形并说明画图方法.AC B第22 题图23.(本题满分12 分)如图(1),等边△ABC 中,D 是A B 边上的动点,以C D 为一边,向上作等边△EDC,连接AE.(1)△DBC 和△EAC 会全等吗?请说说你的理由;(2)试说明A E∥BC 的理由;(3)如图(2),将(1)动点D 运动到边BA 的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.第23 题图参考答案及评分建议一、选择题:本题有 10 小题,每小题 3 分,共 30 分.二、填空题:本题有 6 个小题,每小题 4 分,共 24 分. 11.不唯一,略 12.120° 13.8 14.14° 15.7 16.①②③⑤三、解答题:本题有 7 小题,共 66 分.解答应写出文字说明,证明过程或推演步骤.17.(1)如果两条直线平行,那么内错角相等(2)如果三个角是一个三角形的内角,那么这三个内角和等于 180°18.连接 A D 并延长至 E若是合格零件,则∠BDC=∠CDE+∠BDE =∠C+∠CAD+∠BAD+∠B=∠C+∠CAB+∠D =21°+90°+32°=143°而检验工人现测得∠BDC=148°,故两件不合格A 第 18 题图19. (1)证明: ∵CFD BEA ,点 C 、F 、E 、B 在一直线上∴∠DFE =∠AEF ∴DF ∥AE (2)CD 与 A B 之间的关系是:CD=AB ,且 C D ∥AB 证明:∵CE=BF ,∴CF=BE第 19 题图题号 1 2 3 4 5 6 7 8 9 10 答案CDCBABDCBD⎨ ⎩ ⎨ ⎩在 ΔCDF 和 ΔBAE 中CF BECFDBEADFAE∴ΔCDF≌ΔBAE ∴CD=BA ,∠C=∠B ∴CD ∥BA20.(1)垂直. 理由:∵CD ∥AB ,∴∠ABC+∠BCD=180°,∵∠ABC ,∠BCD 的角平分线交于 E 点, ∴∠ABE=∠EBC ,∠DCE=∠ECB ,∴∠EBC+∠ECB= 1 ∠ABC+ 1 ∠BCD= 1(∠ABC+∠BCD )=90°,2 2 2∴∠CEB =90°,∴BE 与 C F 互相垂直.(2)∵∠CEB=90°, ∴∠FEB=90°, 在△FBE 和△CBE 中,∠CBE= ∠FBE ∵ BE BE,∠BEC = ∠BEF第 20 题图∴△FBE ≌△CBE (ASA ),∴BF=BC ,EF=EC , ∵CD ∥AB ,∴∠DCE=∠AFE , ∵∠FEA=∠CED ,∴△DCE≌△AFE,∴DC=AF,∵CD=3,AB=4,BF=AF+AB∴BF=BC=7.21.(1)逆命题:P 是等边三角形A BC 内的一点,若P A=PB=PC,则P到三边的距离相等.该逆命题成立.证明:∵PA=PB,∴P 在A B 的垂直平分线上,∵AC=BC,∴C 在A B 的垂直平分线上,∴CP 是A B 的垂直平分线,∴CP 平分∠ACB,同理,BP 平分∠ABC,AP 平分∠BAC,∴P 是△ABC 三个角的角平分线的交点,∴PD=PE=PF.(2)第21 题图∵AB=BC=AC 且S△ABC=S△ABP +S△PBC +S△APC,∴由面积法可得P点到各边的距离之和=任意边上的高线长,即为定值.22.图示及画法如下:①以B为圆心,BC 长为半径画弧,交A B 于点I,△BCD 就是等腰三角形;②以C为圆心,BC 长为半径画弧,交A B 于点D,△BCD 就是等腰三角形;③以A为圆心,AC 长为半径画弧,交A B 于点E,△ACE 就是等腰三角形;④以C为圆心,BC 长为半径画弧,交A C 于点F,△BCF 就是等腰三角形;⑤作A C 的垂直平分线交A B 于点H,△ACH 就是等腰三角形;⑥作A B 的垂直平分线交A C 于G,则△AGB 是等腰三角形;⎨ ⎩ ⑦作 B C 的垂直平分线交 A B 于 I ,则△BCI 是等腰三角形.图 1图 2 图 3 图 4 图 5 图 6 图 723.(1)△DBC 和△EAC 会全等证明:∵∠ACB=60°,∠DCE=60°,∴∠BCD=60°﹣∠ACD ,∠ACE=60°﹣∠ACD ∴∠BCD=∠ACE在△DBC 和△EAC 中,BC AC∵ ∠BCD=∠ACE ECDC∴△DBC ≌△EAC (SAS ), (2)∵△DBC ≌△EAC , ∴∠EAC=∠B=60° 又∠ACB=60°, ∴∠EAC=∠ACB ,∴AE ∥BC(3)结论:AE ∥BC 理由:∵△ABC 、△EDC 为等边三角形∴BC=AC ,DC=CE ,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD ,即∠BCD=∠ACE 在△DBC 和△EAC 中,⎨ ⎩B CA C∵∠BCD ∠ACEC D E C∴△DBC ≌△EAC (SAS ),∴∠EAC=∠B=60° 又∵∠ACB=60° ∴∠EAC=∠ACB ∴AE ∥BC . 第 23 题图。
人教版2019-2020学年湖北省武汉市武昌区南湖中学八年级(上)月考数学试卷(10月份)解析版
2019-2020学年湖北省武汉市武昌区南湖中学八年级(上)月考数学试卷(10月份)一、选择题(每小题3分,共30分)1.(3分)下列图形具有稳定性的是()A.三角形B.四边形C.五边形D.六边形2.(3分)下列长度的三条线段能组成三角形的是()A.1,2,3B.4,5,10C.8,15,20D.5,8,153.(3分)如图,把一副含30°角和45°角的直角三角板拼在一起,那么图中∠ADE是()A.100°B.120°C.135°D.150°4.(3分)已知等腰三角形的两边长分别是5和11,则这个等腰三角形的周长为()A.21B.16C.27D.21或275.(3分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等6.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块7.(3分)如图,a、b、c分别表示△ABC的三边长,则下面与△ABC一定全等的三角形是()A.B.C.D.8.(3分)如图,∠AOB是一钢架,∠AOB=15°,为使钢架更加牢固,需在其内部添加一些钢管EF、FG、GH…添的钢管长度都与OE相等,则最多能添加这样的钢管()根.A.2B.4C.5D.无数9.(3分)如图,在△ABC中,∠A=60°,BD、CD分别平分∠ABC、∠ACB,M、N、Q分别在射线DB、DC、BC上,BE、CE分别平分∠MBC、∠BCN,BF、CF分别平分∠EBC、∠ECQ,则∠F=()A.30°B.35°C.15°D.25°10.(3分)如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC、AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D.若AC=9,AB=15,且S=54,则△ABD的面积是()△ABCA.B.C.45D.35二.填空题(每小题3分,共18分)11.(3分)一个n边形的内角和是其外角和的2倍,则n=.12.(3分)已知AD是△ABC的一条中线,AB=9,AC=7,则AD的取值范围是.13.(3分)如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)14.(3分)如图,AD是△ABC的高,∠BAD=40°,∠CAD=65°.若AB=5,BD=3,则BC 的长为.15.(3分)如图,已知点A(﹣4,4),一个以A为顶点的45°角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E、F,连接EF.当△AEF是直角三角形时,点E的坐标是三.解答题(8小题,共72分)16.(8分)一个正多边形每个内角比外角多90°,求这个正多边形所有对角线的条数.17.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.18.(8分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.19.(8分)如图所示,AB∥CD,AB=CD,点B、E、F、D在一条直线上,∠A=∠C.求证:AE=CF.20.(8分)如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:(1)CF=EB.(2)AB=AF+2EB.21.(10分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:AM平分∠EMF.22.(10分)C点的坐标为(4,4),A为y轴负半轴上一动点,连CA,CB⊥CA交x轴于B.(1)求OB﹣OA的值;(2)E在x轴正半轴上,D在y轴负半轴上,∠DCE=45°,转动∠DCE,求线段BE、DE和AD之间的数量关系.23.(12分)在平面直角坐标系中,已知A(0,a)、B(b,0),且a、b满足:a2+b2﹣4a+4b+8=0,点D为x正半轴上一动点(1)求A、B两点的坐标;(2)如图,∠ADO的平分线交y轴于点C,点F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且∠AFH=45°,判断线段AH、FD、AD三者的数量关系,并予以证明;(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数参考答案与试题解析一、选择题(每小题3分,共30分)1.解:具有稳定性的图形是三角形.故选:A.2.解:由1、2、3,可得1+2=3,故不能组成三角形;由4、5、10,可得4+5<10,故不能组成三角形;由8、15、20,可得8+15<20,故能组成三角形;由5、8、13,可得5+8=13,故不能组成三角形;故选:C.3.解:∠ADE=45°+90°=135°,故选:C.4.解:当等腰三角形的腰为5时,三边为5,5,11,5+5=10<11,三边关系不成立,当等腰三角形的腰为11时,三边为5,11,11,三边关系成立,周长为5+11+11=27.故选:C.5.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.6.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.7.解:A、与三角形ABC有两边相等,而夹角不一定相等,二者不一定全等;B、选项B与三角形ABC有两边及其夹边相等,二者全等;C、与三角形ABC有两边相等,但角不是夹角,二者不全等;D、与三角形ABC有两角相等,但边不对应相等,二者不全等.故选:B.8.解:如图所示,∠AOB=15°,∵OE=FE,∴∠GEF=∠EGF=15°×2=30°,∵EF=GF,所以∠EGF=30°∴∠GFH=15°+30°=45°∵GH=GF∴∠GHF=45°,∠HGQ=45°+15°=60°∵GH=HQ,∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QM,∴∠QMH=75°,∠HQM=180﹣75°﹣75°=30°,故∠OQM=60°+30°=90°,不能再添加了.故选:C.9.解:∵BD、CD分别平分∠ABC、∠ACB,∠A=60°,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=×(180°﹣60°)=60°,∴∠MBC+∠NCB=360°﹣60°=300°,∵BE、CE分别平分∠MBC、∠BCN,∴∠5+∠6=∠MBC,∠1=∠NCB,∴∠5+∠6+∠1=(∠NCB+∠NCB)=150°,∴∠E=180°﹣(∠5+∠6+∠1)=180°﹣150°=30°,∵BF、CF分别平分∠EBC、∠ECQ,∴∠5=∠6,∠2=∠3+∠4,∵∠3+∠4=∠5+∠F,∠2+∠3+∠4=∠5+∠6+∠E,即∠2=∠5+∠F,2∠2=2∠5+∠E,∴2∠F=∠E,∴∠F=∠E=×30°=15°.故选:C.10.解:在Rt△ACB中,BC===12,作DH⊥AB于H,如图,设DH=x,则BD=9﹣x,由作法得AD为∠BAC的平分线,∴CD=DH=x,在Rt△ADC与Rt△ADH中,,∴△ADC≌△ADH,(HL),∴AH=AC=9,∴BH=15﹣9=6,在Rt△BDH中,62+x2=(12﹣x)2,解得x=,∴△ABD的面积=AB•DH=×15=.故选:B.二.填空题(每小题3分,共18分)11.解:由题意得:180(n﹣2)=360×2,解得:n=6,故答案为:6;12.解:延长AD至E,使DE=AD,连接CE.∵BD=CD,∠ADB=∠EDC,AD=DE,∴△ABD≌△ECD,(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<16,∴1<AD<8.故答案为:1<AD<8.13.解:在△OPC与△OPD中,∵,∴△OPC≌△OPD(SSS),∴OP是∠AOB的平分线.故答案为:SSS.14.解:在DC上截取DE=BD=3,连接AE,∴AE=AB=5,∴∠EAD=∠BAD=40°,∵∠CAD=65°,∴∠CAE=25°,∵AD⊥BC,∴∠ADC=90°,∴∠C=25°,∴∠CAE=∠C,∴CE=AE=5,∴BC=BD+DE+CE=5+6=11,故答案为:11.15.解:①如图所示:当∠AFE=90°,∴∠AFD+∠OFE=90°,∵∠OEF+∠OFE=90°,∴∠AFD=∠OEF∵∠AFE=90°,∠EAF=45°,∴∠AEF=45°=∠EAF,∴AF=EF,在△ADF和△FOE中,,∴△ADF≌△FOE(AAS),∴FO=AD=4,OE=DF=OD+FO=8,∴E(8,0)②当∠AEF=90°时,同①的方法得,OF=8,OE=4,∴E(4,0),综上所述,满足条件的点E坐标为(8,0)或(4,0)三.解答题(8小题,共72分)16.解:设此正多边形为正n边形.由题意得:﹣=90,n=8,∴此正多边形所有的对角线条数为:==20.答:这个正多边形的所有对角线有20条.17.证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.18.证明:∵AB=AC,∴∠B=∠C,又∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵点D为BC中点,∴DB=DC,∴在△DBE和△DCF中,∴△DBE≌DCF(AAS),∴DE=DF.19.证明:∵AB∥CD,∴∠B=∠D(两直线平行,内错角相等);∴在△ABE和△CDF中,,∴△ABE≌△CDF(ASA),∴AE=CF(全等三角形的对应边相等).20.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴DE=DC,在Rt△CDF和Rt△EDB中,,∴Rt△CDF≌Rt△EDB(HL).∴CF=EB;(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴CD=DE.在Rt△ADC与Rt△ADE中,,∴Rt△ADC≌Rt△ADE(HL),∴AC=AE,∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.21.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,∵,∴△ABF≌△AEC(SAS),∴EC=BF;(2)根据(1),△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,所以EC⊥BF.(3)作AP⊥CE于P,AQ⊥BF于Q.如图:∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.22.解:(1)如图1,过C作CQ⊥y轴于Q,过C作CP⊥OB于P,∵C(4,4),∴CQ=CP=OQ=OP=4,∵AC⊥BC,∴∠ACB=∠ACP+∠BCP=∠BCP+∠PBC=90°,∴∠ACP=∠PBC,∵OA∥PC,∴∠CAQ=∠ACP=∠PBC,∵∠CPB=∠CQA=90°,∴△CQA≌△CPB(AAS),∴PB=AQ,∴OB﹣OA=OP+PB﹣OA=OP+AQ﹣OA=OP+OQ=8;(2)分两种情况:①当D在OA的延长线上时,DE=AD+BE,理由是:如图2,过C作CM⊥CD,交x轴于M,∵AC⊥BC,∴∠ACD=∠BCM,由(1)知:△CQA≌△CPB,∴AC=BC,∠CAQ=∠PBC,∴∠DAC=∠MBC,∴△CAD≌△CBM(ASA),∴BM=AD,CD=CM,∵∠ACB=90°,∠DCE=45°,∴∠ACD+∠BCE=45°=∠BCM+∠BCE=∠ECM,∵CE=CE,∴△DCE≌△MCE(SAS),∴DE=EM,∴EM=BE+BM=BE+AD=DE,即DE=AD+BE.②当D在边OA上时,DE=BE﹣AD,理由是:如图3,过C作CM⊥CD,交x轴于M,同理得△CAD≌△CBM(ASA),∴BM=AD,CD=CM,同理得:△DCE≌△MCE(SAS),∴DE=EM,∴EM=BE﹣BM=BE﹣AD=DE,即DE=BE﹣AD.23.解:(1)∵a2+b2﹣4a+4b+8=0,∴(a﹣2)2+(b+2)2=0,∵(a﹣2)2≥0,(b+2)2≥0,∴a﹣2=0,b+2=0,∴a=2,b=﹣2,∴A(0,2),B(﹣2,0).(2)结论:AH+FD=AD理由:在AD上取K使AH=AK.设∠HFO=α,∴∠OAF=45﹣α,∵HF∥CD,∴∠CDO=∠ADC=α,∴∠FAD=45﹣α,∴△AHF≌△AKF,∴∠AFK=45°,∴∠KFD=90﹣α,∠FKD=90﹣α,∴FD=DK,∴AH+FD=AD.(3)如图2中:①当D1在△ABO内部时,可以证明当BD1=OD1时,AO=AD1,此时∠D1BO =∠D1OB=15°,∠AOD1=∠AD1O=75°,∴∠D1AO=30°.②当D3在BD1的延长线上时,可得∠OAD3=60°,③当D2在AB上方时,同法可得∠OAD2=60°,∠OAD4=150°∴∠DAO=60°或30°或150°.故答案为60°或30°或150°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版2019-2020年度八年级10月月考数学试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 如图,AD平分∠BAC,DE⊥AB于点E,S△ACD=3,DE=2,则AC长是()
A.3B.4C.5D.6
2 . 如图,AE∥BF,∠1=110°,∠2=130°,那么∠3的度数是()
A.40°B.50°C.60°D.70°
3 . 如图,,,则下列结论不一定成立的是()
A.⊥B.C.D.
4 . 已知等腰三角形的两边长分别为 6 和 1,则这个等腰三角形的周长为()
A.13B.8C.10D.8 或 13
5 . 如图,△ABC是等边三角形,D是AC的中点,点E在BC的延长线上,点F在AB上,.若AB=5,则BE+BF的长度为()
A.7.5B.8C.8.5D.9
6 . 下列图形中,不是中心对称图形的是()
A.B.C.D.
7 . 如图,和中,,要判定还需要补充的条件不能是()
A.B.C.D.
8 . 9的算术平方根是()
A.3B.C.D.81
9 . 下列长度的三条线段能组成三角形的是()
A.3, 4, 6B.6, 9,17C.5, 12, 18D.2, 2, 4
10 . 如图,在ABC 与AEF 中,AB=AE,BC=EF,∠ABC=∠AEF,∠EAB=40°,AB 交 EF 于点 D,下列结论正确的个数是
①∠C=40°;②AF=AC;③∠EBC=110°;④AD=AC;⑤∠EFB=40°
A.1B.2C.3D.4
二、填空题
11 . 如图,已知在四边形中,,平分,,,,则四
边形的面积是_____.
12 . 在函数y=中,x的取值范围是.
13 . 如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4).
(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标A1 .
(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2,并写出点A2的坐标A2 .
(3)△ABC是否为直角三角形?答(填是或者不是).
(4)利用格点图,画出BC边上的高AD,并求出AD的长,AD=.
14 . 如图所示:直线AB与CD相交于O,已知∠1=30°,OE是∠BOC的平分线,则∠2=_____°,
∠3=_____°.
15 . 如图,在正方形中,为对角线,为上一点,连接,,的延长线交于
点,,则的度数为________.
16 . 化简:(b<a<0)得.
17 . 如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是_____.
18 . 如图,正方形ABCD的边长是4cm,点G在边AB上,以BG为边向外作正方形GBFE,连接AE、AC、CE,则
△AEC的面积是cm2.
三、解答题
19 . 已知在平行四边形中,过点作于点,且.连接交于点,作
于点.
(1)如图1,若,,求的长;
(2)如图2,作于点,连接,求证:.
20 . 计算:.
21 . 观察下列单项式:–x,3x2,–5x3,7x4,…–37x19,39x20,…写出第n个单项式,为了解这个问题,特提供下面的解题思路.
(1)这组单项式的系数依次为多少,绝对值规律是什么?
(2)这组单项式的次数的规律是什么?
(3)根据上面的归纳,你可以猜想出第n个单项式是什么?
(4)请你根据猜想,写出第2016个,第2017个单项式.
22 . (1)如图1,已知AB∥CD,求证:∠EGF=∠AEG+∠CFG
(2)如图2,已知AB∥CD,∠AEF与∠CFE的平分线交于点
A.猜想∠G的度数。
证明你的猜想
(3)如图3,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度
数.
23 . 已知如图1,在中,是的角平分线,是边上的高,.
(1)求的度数.
(2)如图2,若点为延长线上一点,过点作于点,求的度
数.
24 . 如图,边长为1的正方形组成的网格中,的顶点均在格点上,点、的坐标分是,.
(1)的面积为______;
(2)点在轴上,当的值最小时,在图中画出点,并求出的最小值.
25 . 如图,在中,是高,,.请在图中作出的角平分线,交
于点,并求的度数.
26 . 已知2a﹣1是9的平方根,3a+b﹣1的算术平方根是4
(1)求a与b;
(2)当ab>0时,求2a﹣b2的立方根.
参考答案一、单选题
1、
2、
3、
4、
5、
6、
7、
8、
9、
10、
二、填空题
1、
2、
3、
4、
5、
6、
7、
8、
三、解答题1、
2、
3、
4、
5、
6、
7、
8、。