有限元2桁架
桁架有限元分析ppt课件
以图26所示的空间 桁架节点 3 为例,说 明总刚矩阵及总刚方 程的建立。该桁架共 有9个单元,5个节点, 单元及节点编号如图 示。相交于节点3的杆 件有⑥⑦⑧⑨。
图3.26 单元及节点编号
➢ 变形协调条件为连于同一节点上的杆端位移相 等 ,即:
➢ 内外力平衡条件为汇交于同一节点的杆端内力 之和等于该节点上的外荷载,即:
➢ (10)按杆件内力调整杆件截面,并重新计算, 迭代次数宜不超过4~5次。
➢
Ec——K支cx承柱3的EH材c料3Ic弹y 性模量K;cy
3E c I cx H3
➢ Icy、Icx——分别为支承柱绕截面y、x轴的截面惯 性矩;
➢ H——支承悬臂柱长度。
(3)斜边界处理 ➢ 斜边界是指与整体坐标斜交的方向有约束的边界。 ➢ 建筑平面为圆形或多边形的网架会存在斜边界( 图3.27a)。 ➢ 矩形平面网架利用对称性时,对称面也存在斜边 界(图3.27b,c)。
基本未知量
节点平衡及变形协调条件
总刚度矩阵 总刚度方程
引入边界条件
节点位移值
单元内力与节点位移间关系
杆件内力
3.4.1网架计算基本假定
➢ 网架的节点为空间铰接节点,杆件只承受轴 力;
➢ 结构材料为完全弹性,在荷载作用下网架变 形很小,符合小变形理论。
奥运会场馆
鸟巢
3.4.2单元刚度矩阵
一等截面空间桁架杆件ij如图所示,设局部直角坐
图3.27 网架的斜边界约束
➢ 斜边界有两种处理方法,一种是根据边界点的 位移约束情况设置具有一定截面积的附加杆, 如节点沿边界法线方向位移为零,则该方向设 一刚度很大的附加杆,截面积A=106~108(图 3.27b);如该节点沿边界法线方向为弹性约束, 则调节附加杆的截面积,使之满足弹性约束条 件。这种处理方法有时会使刚度矩阵病态。
第9章 桁架和梁的有限元分析
第9章桁架和梁的有限元分析第1节基本知识一、桁架和梁的有限元分析概要1.桁架杆系的有限元分析概要桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。
桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。
由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。
2.梁的有限元分析概要梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。
梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。
根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。
二、桁架和梁的常用单元桁架和梁常用的单元类型和用途见表9-1。
通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。
第2节 桁架的有限元分析实例一、案例1——2D 桁架的有限元分析图9-1 人字形屋架的示意图 问题人字形屋架的几何尺寸如图9-1所示。
杆件截面尺寸为0.01m 2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。
条件人字形屋架两端固定,弹性模量为2.0×1011 N/m 2,泊松比为0.3。
解题过程制定分析方案。
材料弹性材料,结构静力分析,属2D 桁架的静力分析问题,选用Link1单元。
建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N 的力作用。
1.ANSYS 分析开始准备工作(1)清空数据库并开始一个新的分析 选取Utility>Menu>File>Clear & Start New ,弹出Clears database and Start New 对话框,单击OK 按钮,弹出Verify 对话框,单击OK 按钮完成清空数据库。
弹性力学与有限元分析第二章-平面桁架有限元分析及程序设计
x
由单元①的刚度方程:
Fj
①
k
① ji
i
①
k
① jj
j
①
k
① ji
2
k
① jj
1
由单元③的刚度方程:
Fj
③
k
③ ji
i
③
k
③ jj
j
③
k
③ ji
3
k
③ jj
1
§2.3 结点平衡与整体刚度矩阵的集成
代入结点1的平衡条件:
k
l
xi
)
(dx j
dxi
)
(
yj
l
yi )
(dy j
dyi )
(dx j dxi ) (dy j dyi )
cos sin
由于杆件的变形产生位移:
ui dxi vi dyi
u j dxj v j dy j
因此,杆件应变为:
dl l
l
(ui
uj)
l
(vi
vj)
杆件轴力为:
(2k1 k2 )v4 P
结构的整体刚度系数
v4
P 2k1
k2
12 3
l2 l1 l1
4 P
N1
N1y
cos
k1v4
cos
k1P
(2k1 k2 ) cos
N2
k2v4
k2P 2k1 k2
位移法求解超静定结构。
§2.1 平面桁架单元的离散
结构的离散化:尽量将结构离散成数量最少的等截面直 杆单元
kki③ ③jii
ki③j
k
③ jj
3 3 3 3
§2.3 结点平衡与整体刚度矩阵的集成
桁架结构的有限元法
桁架结构的有限元法杆单元单元坐标系下的单元平衡方程为 1111i i j j u U EA u U l -⎧⎫⎧⎫⎡⎤=⎨⎬⎨⎬⎢⎥-⎣⎦⎩⎭⎩⎭(1)或[]{}{}e e e K q P = (2)在桁架结构分析中,将整个桁架所在的坐标系叫做总体坐标系。
杆单元的平衡方程(2)是在单元坐标系中建立的,而在桁架结构分析时,需要建立总体坐标系下的单元平衡方程。
它可以由式(2)经坐标变换得到。
1. 节点位移变换图1.考虑图1所示的情况。
设杆单元的节点i 在单元坐标系下的位移为i u ,在总体坐标系下的位移为{,}T i i u v 。
由于杆的轴向位移i u 是总体位移{,}T i i u v 在杆轴向的分量,因此i u 可以用{,}T i i u v 表示为0[]cos sin [cos sin ]i i i i i T u u u v v θθθθ⎧⎫=+=⎨⎬⎩⎭(3)这里应注意,总体位移{,}T i i u v 与轴向位移i u 并不等效,因为总体位移还可能存在垂直于轴向的分量,只是这里不考虑而已。
于是,单元坐标系下的节点位移可写成[]cos sin 00{}[]{}00cos sin i i i e ej j T j u u v q T q u u v θθθθ⎧⎫⎪⎪⎧⎫⎡⎤⎪⎪===⎨⎬⎨⎬⎢⎥⎣⎦⎩⎭⎪⎪⎪⎪⎩⎭(4)式中,[]T 为坐标转换矩阵。
2. 节点力变换图2.与位移不同的是,杆的轴向力U 和总体系下的力{,}T U V 是等价的(如图2所示),因此有0cos []sin TU U U T U V θθ⎧⎫⎧⎫==⎨⎬⎨⎬⎩⎭⎩⎭ (5)故有cos 0sin 0{}[]{}0cos 0sin i i i e T e j j j U U V P T P U U V θθθθ⎧⎫⎡⎤⎪⎪⎢⎥⎧⎫⎪⎪⎢⎥===⎨⎬⎨⎬⎢⎥⎩⎭⎪⎪⎢⎥⎪⎪⎣⎦⎩⎭ (6)3. 总体坐标系下的单元平衡方程将式(4)代入式(2),可得[][]{}{}e e e K T q P =上式两端同左乘以[]T T ,并结合式(6)可得[][][][]{}{}e T e e e K T K T q P =(7)上式即为总体坐标系下的单元平衡方程。
实例1 四杆桁架结构有限元分析
(2)计算支反力: 将求得的节点位移代入整体刚度方程 得:
四杆桁架结构有限元分析(5)
ANSYS求解
基于图形界面(GUI)的交互式操作(step by step) 命令流方式
举例:四杆桁架结构有限元分析
各杆的弹性模量和横截面积相同:均为E = 29.5 ×104 N/mm2 ,A = 100mm2 ,试 求解该结构的节点位移、单元应力以及支反力。
四杆桁架结构有限元分析(1)
Step1.结构的离散化与编号
节点及坐标(对该结构进行自然离散)
节点
1 2 3 4
x
0 400 400 0
Step3.组装整体刚度方程
各个单元刚度矩阵/节点载荷按节点编号进行组装。
四杆桁架结构有限元分析(4)
Step4.处理边界条件求解
边界条件BC(u):
代入整体方程并化简得:
所有节点位移:
四杆桁架结构有限元分析(5)
Step5.计算其他力学分量
(1)计算单元应力:
杆单元的转换矩阵及节点位移(此处省 略了上角标)
yห้องสมุดไป่ตู้
0 0 300 300
单元编号及对应节点 单元 ① ② 节点 1 3 2 2 2
各单元的长度及轴线方向余弦
单元 ① ② ③ ④ l 400 300 500 400 nx 1 0 0.8 1 ny 0 -1 0.6 0
③
④
1
4
3
3
四杆桁架结构有限元分析(2)
Step2.单元描述
四杆桁架结构有限元分析(3)
空腹钢桁架有限元分析(全)
图1.2空腹钢桁架模型有限元模型图1.3a BEAM189模型剪力图图1.3b BEAM189模型弯矩图图1.4a BEAM189模型轴力图图1.4b BEAM189模型轴向位移图1.2.2采用BEAM4单元进行建模计算图1.5a BEAM4模型剪力图图1.5b BEAM4模型弯矩图图1.6a BEAM4模型轴力图图1.6b BEAM4模型轴向位移图表一:空腹钢桁架模型静力计算数据(单位:kN m)单元类型弯矩值剪力值轴力值x向位移BEAM18941.5741.40194000.58 BEAM442.4742.25195000.51从上图及表一可以看出,对该空腹钢桁架模型有限元模型进行静力分析有以下结论:图1.7a BEAM4/189模型振型图(一阶)图1.7b BEAM4/189模型振型图(二阶)图1.8a BEAM4/189模型振型图(三阶)图1.8b BEAM4/189模型振型图(四阶)以上两种模型约束了所有节点平面外的平动自由度,支撑处均为简支梁支撑形式。
由上述结果可以看出,采用三种不同单元的模型振型均相同。
Timoshenko梁的频率低于Eluer梁频率,且振型阶数越高,下降越明显。
附:模态分析命令流如下(BEAM4):/prep7*do,i,1,15图1.9精细化模型示意图结合上述模型,运用SOLID95单元单独建立了该节点的有限元模型如下图所示,在边界型心处施加位移荷载,并通过建立MPC刚性区域的方法,将节点位移传递到模型边界截面上,从而模拟节点的受力状态。
同时,施加Y轴正向的重力加速度,模拟节点的重力行为。
图1.10节点模型示意图节点处施加位移命令流如下,其中ux,uy,uz,rotx,roty,rotz后的数值为从整体结构静力计算中提取的节点处的位移:d,2,uz,0d,2,rotx,0d,2,roty,0d,2,rotz,-0.59848E-02d,3,ux,0.38562E-02d,3,uy,-0.12243E-01d,3,uz,0图1.11a BEAM189+SOLID95模型弯矩图图1.11b BEAM189模型弯矩图图1.12a BEAM189+SOLID95模型剪力图图1.12b BEAM189剪力模型图图1.13a BEAM189+SOLID95模型轴力图图1.13b BEAM189模型轴力图由上图可以看出,对拥有节点细部模型钢桁架进行静力计算后,得到的结果与使用纯梁单元的模型计算结果十分接近,这说明精细化模型较好的模拟了此梁的受力情况,现节点分图1.14节点细部Mises等效应力云图该图显示了整体模型中由SOLID95单元建立的节点,从Mises等效应力云图可以看出,节点大部分区域(蓝色)处应力为0.45MPa,越靠近拐点处应力越大,在节点处出现了应力集中的情况,最大应力达到490MPa。
桁架有限元理论
桁架有限元理论知识空间杆系有限元法是计算精度最高的一种方法,适用于各种类型、各种平面形状、不同边界条件的网架,静力荷载、地震作用、温度应力等工况均可计算。
空间钢架结构,有15个未知函数,6个应力分量,分别为xx σ、yy σ、zz σ、xy σ、yz σ、zx σ;6个应变分量,分别为xx ε、yy ε、zz ε、xy ε、yz ε、zx ε;3个位移分量u 、v 、w 。
这15个未知函数满足15个基本方程,分别为3个平衡微分方程、6个几何方程和6个物理方程,以及受力边界条件及位移边界条件[6]。
图1为桁架结构水平段一侧局部示意图。
其中,①为上弦材,②和④为纵梁,③为下弦材,⑤为斜材。
此结构为4个节点和5个单元的钢架结构。
对此桁架任意方向上的杆件离散化,选择单元⑤进行分析。
桁架问题一般需要两个坐标系进行描述,即整图2 自动扶梯桁架结构水平段一侧局部示意图结构分析中为方便杆端力和位移的叠加,应采用统一坐标系,即结构整体坐标xyz 。
这样需对局部坐标系下的单元刚度矩阵进行坐标转换。
体坐标系和局部坐标系,选择固定的整体坐标系XY :1)描述了每个节点的位置,使用角度标记θ记录每个(单元)的方向;2)施加约束及载荷;3)表示问题的解,即在整体方向上的每个节点的位移。
同时,还需要一个局部的单元坐标系来描述各个杆件(单元)的受力情况。
如图3所示为局部坐标系与整体坐标系之间的关系[7]。
图3 整体坐标系与局部坐标系关系图整体位移(在节点i 的U iX ,U iY 和在节点j 的U jX 和U jY )和局部位移(在节点i 的u ix ,u iy 和在节点j 的u jx 和u jy )之间的关系为:θθθθθθθθcos sin sin cos cos sin sin cos jy jx iY jy jx jX iy ix iY iy ix iX u u U u u U u u U u u U +=-=+=-= (1)将方程(1)转化为矩阵形式为:TU U = (2)其中:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=jy jx iy ix jY jX iY iX u u u u u T U U U U U ,cos sin 00sin cos 0000cos sin 00sin cos ,θθθθθθθθ U 和u 分别代表整体坐标系XY 和局部坐标系xy 下节点i 和节点j 的位移。
基于ANSYS的平面桁架有限元分析.
PREP7 !* ET,1,LINK180 !* R,1,10, ,0 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2.0e6 MPDATA,PRXY,1,,0.3 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 WPSTYLE,,,,,,,,0 WPSTYLE,,,,,,,,1 FLST,3,1,8 FITEM,3,0,0,0 N, ,P51X FLST,3,1,8 FITEM,3,30,0,0 N, ,P51X FLST,3,1,8 FITEM,3,0,30,0 N, ,P51X FLST,3,1,8 FITEM,3,30,30,0 N, ,P51X FLST,3,1,8 FITEM,3,60,30,0
5
数值解与解析解的比较与分析
求出了平面桁架的数值解与解析解,现将两 者的结果进行列表对比
数值解与解析解的比较与分析
表2 整体坐标系下各节点的位移(in)
节点 解析解
U1x 0 0
U1y 0 0
U2x -0.0029 -0.002925
U2y -0.0085 -0.0084404
U3x 0 0
U3y 0 0
基于AN限元分析
平面桁架是工程中常见的结构,本文基于ANSYS平台对平面桁架进行有 限元分析。 首先通过有限元法的理论知识求得平面桁架在一定工况下的理论值,然 后利用ANSYS进行分析得到数值解,最后通过比较理论解与数值解得出结论。 利用ANSYS对平面桁架进行有限元分析,可以提取其他分析结果,对深 入研究平面桁架问题提供了强有力手段,也对其他结构问题的有限元分析具 有指导性意义与价值。
数值解与解析解的比较与分析
表4 单元①的内力与正应力(lb)
有限单元法电子课件(桁架)-PPT精选文档
0 1 0 0 0 0 P 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 K 33 K 34 K 43 K 44 0 0 K 63 K 64
图3 单元形函数(线性)示意图
平面桁架(Trusses)有限元分析(2)
2、单元应变
u ( u u ) / l [] B {} d x i j e e, x
--- 几何矩阵 [] B [1 / l / l ] e 1 e
3、单元应力
EE [ B ] { d } [ C ] { d }其中E为弹性模量, [C]=E[B] --- 应力矩阵
单元的结点位移
x
i
j
ux ( ) [ N ] { d } e
图2 局部坐标系中的杆单元
N1 N2
u i [ N ] [ N , { d } i N j] e u j
x x N 1 , N i j le le
形函数 (shape function)
1 1
le
1 x 2
▲ 有限元法的要点
●
将连续体(结构)离散为若干子区域
子区域由结点连接为等效的组合体
●
杆系结构
每个单元内假设场变量为多项式(系数不同) 用分区域连续场函数近似全区域的连续场函数
无穷自由度问题转化为有限自由度问题
●
利用变分原理得到离散场变量的大代数方程组 将微分方程边值问题转化为代数方程来求解
连续体
绪 论
x x e e
4、单元刚度矩阵
le Fjle EAe Fl i e EAe
单元的结点力
{ F } [ k] { d } e
平面桁架有限元C#编程
1题目结构如图所示: 杆的弹性模量E 为200000Mpa ,横截面面积A 为3250mm 2。
图 1 桁架示意图2实验材料PC 机一台,Microsoft Visual Studio 软件,Ansys 软件。
3实验原理(1)桁架结构特点桁架结构中的桁架指的是桁架梁,是格一种梁式结构。
桁架结构常用于大跨度的厂房、展览馆、体育馆和桥梁等公共建筑中。
由于大多用于建筑的屋盖结构,桁架通常也被称作屋架。
结构上由光滑铰链连接,载荷只作用于节点处,只约束线位移,各杆只有轴向拉伸和压缩。
(2)平面桁架有限元分析1、单元分析局部坐标系中的干单元如图所示:图 2 局部坐标系中的杆单元以下公式描述了整体位移和局部位移之间的关系:U=Tu 其中U=[ U ix U iy U jx U jy ],T=[cos θ−sin θ00sin θcos θ0000cos θ−sin θ00sin θcos θ],u=[u ix u iy u jx u jy ]U 和u 分别代表整体坐标系和局部坐标系XY 系和局部坐标系xy 下节点i 和节点j 的位移。
T 是变形从局部坐标转换到整体坐标系下的变换阵,类似的局部力和整体力也有以下关系:F=Tf其中F=[ F ixF iy F jx F jy ] ,是整体坐标系下施加在节点i 和j 上的力的分量而且f=[ f ix f iy f jx f jy ],代表局部坐标系下施加在节点i和j上的分量。
在假设的二力杆条件下,杆只能沿着局部坐标系的x方向变形,内力也总是沿着局部坐标系x的方向,因此将y方向的位移设置为0,局部坐标系下内力和位移通过刚度矩阵有如下关系:[f ixf iyf jxf jy]=|k0−k00000−k0k00000|=[U ixU iyU jxU jy]这里k=k eq=AE/L,写成矩阵形式有:f=Ku将f和u替换成F和U有:T-1F=KT-1U将方程两边乘以T得到:F=TKT-1U其中T-1是变换矩阵T的逆矩阵,替换方程中的TKT-1和U矩阵的值,相乘后得到:[F ixF iy F jx F jy]= k[cos2θsinθcosθ−cos2θ−sinθcosθsinθcosθsin2θ−sinθcosθ−sin2θ−cos2θ−sinθcosθcos2θsinθcosθ−sinθcosθ−sin2θsinθcosθsin2θ][U ixU iyU jxU jy]上述方程代表了施加外力、单元刚度矩阵和任意单元节点的整体位移之间的关系。
平面桁架结构的有限元分析
平面桁架结构的有限元分析平面桁架结构是一种经常在建筑和工程领域中使用的结构形式。
它由直杆组成,连接在节点上,形成一个稳定的平面结构。
平面桁架结构的设计和分析需要使用有限元分析方法来确定结构的受力状态和稳定性。
本文将介绍平面桁架结构的有限元分析方法,包括模型建立、加载条件、应力和变形分析等。
首先,建立平面桁架结构的有限元模型。
模型应包括杆件和节点两个基本元素。
杆件是结构的主要受力元素,节点是杆件的连接点。
通过连接节点和杆件,可以构建起整个桁架结构。
在有限元模型中,每个节点被赋予一个坐标,每个杆件的长度和截面积也需要定义。
通过这些信息,可以建立结构的有限元模型。
加载条件是进行有限元分析的第二个关键步骤。
加载条件包括结构所承受的外部力和约束条件。
外部力是指作用于结构上的力,包括重力、风力、地震力等。
约束条件是指限制结构自由运动的条件,例如固定节点或滑动支座等。
在有限元分析中,将这些加载条件应用到有限元模型中,以模拟真实结构的受力情况。
然后进行应力和变形分析。
在有限元分析中,结构的应力分布和变形情况可以通过求解有限元方程来得到。
有限元方程是由结构的力平衡和材料的应力-应变关系所组成的方程组。
通过求解有限元方程,可以计算出结构中每个节点的应力和变形情况。
这些结果可以用来评估结构的安全性和稳定性。
在进行有限元分析时,需要注意一些细节。
首先,选择合适的材料模型和参数。
不同的材料具有不同的力学特性,例如弹性模量、屈服强度等。
选择适当的材料模型和参数,以获得准确的分析结果。
其次,进行网格划分和单元类型选择。
将结构划分为小单元,并选择适当的单元类型,以确保每个单元的形状和大小适合结构的几何形状。
最后,进行后处理和结果分析。
得到应力和变形结果后,可以进行结果的可视化和分析,以评估结构的性能。
总之,平面桁架结构的有限元分析是一种有效的工具,可以用于评估结构的受力状态和稳定性。
通过合适的模型建立、加载条件选择以及应力和变形分析等步骤,可以得到准确的分析结果,为结构的设计和优化提供有力支持。
自动扶梯桁架结构的有限元分析
断 应 力 为 14 ̄ a 00P. 安鲧 一
≈ 3. 82
从 材料 特 性 来 说 , 螺 栓 是 安全 的 。 该
本 工程 桁架所 用 材料 为 Q3B 2 5,各
参 数 如 下表 1 示 : 所
3 载 荷处 理 、
自动 扶 梯 桁 架 结 构 计 中 的乘 客 载
荷 以梯 级 水 平投 影 面 积 为 基 准 的载 荷 ,
国标 乘 客 载 荷 为 5 0N m 。扶 手 带 、梯 00/ 级 及 外 装 饰 等 重 量 则 根据 具 体 梯 种 进 行 计 算 并 转 化 成 线 载 荷 加 载 到桁 架 上 。具
图 5 总位 移分布 云图
度 不 得 超 过 两 支 点之 间 距 离 的 17 o /5。 对 于 此 扶 梯 , 允 许 挠 度 为 6 4 1 00 ./50= 1 2 4 < / 5 ,所 以挠 度 满 足 要 求 。 / 3 3 17 0
2 、桁 架 连 接 螺栓 强度 分 析
P = 0 0X2 . 9 = 4 9 5 () A 5 0 8 1 7 1 0 8 N
所 以乘 客载 荷 引起 的挠度 为:
1 0 8 4 95
24 . 5 、
6 ・ 4
实测挠度 为 6m m ,所 以计 算 与 实 测
值相 当吻合 ,验证 了该计算的可靠性。
根 据 E 15 1 08规 定 : 自动 扶 梯 , N 1— 2 0 以乘 客 重 量 为 基 础 计 算 或 测 得 的 最 大挠
平面桁架的有限元法
Kz=Table[0, {i, 2nj}, {j,2nj}]; “开总刚度矩阵, nj 总节点数” ;
For[e=1, e<=ne, e++, For[i=1, i<=2, i++,
ke T ke T rans“p生os成e[T单] ;刚,变坐标系” ;
For[ii=1, ii<=2, ii++, r =2(i-1)+ii; rr=2(jm[[e, i+1]]-1)+ii;
b
ui i vi
o
x
xi 0, xj b
ui 1 0 0 0a1
vi
u j
v j
0 1 0
0 b 0
1 0 1
0 0 b
aa32 a4
ui 1 0 0 0a1
vi
u j
v j
0 1 0
0 b 0
1 0 1
0 0 b
aa32 a4
{ e} [ Ab ]{a}
解线性代数方程组,得
代入 {a} [ Ab ]1{ e}
{ f } [Hs ]{a}
{ f得}21 [Hs ]24[ Ab ]414{ e}41
a1
u 1
v
0
x 0
0 1
0 x
aa32
a4
{f
}21
[N
f
]24{
}e 41
节点位移与单元内位移的关
系
{ f } [N f ]{ e}
{ e} [T ]{ e}
[T
]
t 0
0
t
[t]1 [t]T [T ]1 [T ]T
[T ]{Re} [k ]{ e}
有限元分析(桁架结构)
有限元上机分析报告~学院:机械工程专业及班级:机械设计及其自动化08级7班姓名:***学号:题目编号: 2》1.题目概况结构组成和基本数据结构:该结构为一个六根杆组成的桁架结构,其中四根杆组成了直径为800cm的正方形,其他两根杆的两节点为四边形的四个角。
材料:该六根杆截面面积均为100cm2,材料均为Q235,弹性模量为200GPa,对于直径或厚度大于100mm的截面其强度设计值为190Mpa。
载荷:结构的左上和左下角被铰接固定,限制了其在平面内x和y方向的位移,右上角受到大小为2000KN的集中载荷。
结构的整体状况如下图所示:分析任务】该分析的任务是对该结构的静强度进行校核分析以验算该结构否满足强度要求。
2.模型建立物理模型简化及其分析由于该结构为桁架结构,故认为每根杆件只会沿着轴线进行拉压,而不会发生弯曲和扭转等变形。
结构中每根杆为铰接连接,有集中载荷作用于最上方的杆和最右方杆的铰接点。
单元选择及其分析由于该结构的杆可以认为是只受拉压的杆件,故可以使用LINK180单元,该单元是有着广泛工程应用的杆单元,它可以用来模拟桁架、缆索、连杆、弹簧等等。
这种三维杆单元是杆轴方向的拉压单元,每个节点具有三个自由度:沿节点坐标系X、Y、Z方向的平动。
就像铰接结构一样,不承受弯矩。
输入的数据有:两个节点、横截面面积(AREA)、单位长度的质量(ADDMAS)及材料属性。
输出有:单元节点位移、节点的应力应变等等。
由此可见,LINK180单元适用于该结构的分析。
模型建立及网格划分((1)启动Ansys软件,选择Preferences→Structural,即将其他非结构菜单过滤掉。
(2)选择单元类型:选择Preprocessor→Element Type→Add/Edit/Delete→Add,在出现的对话框中选择Link→3d finit stn 180,即LINK180,点击“OK”(3)选择实常数:选择Preprocessor→Real Constants→Add/Edit/Delete→Add,在出现的对话框中的Cross-sectional area中输入100,点击“OK”。
有限元原理 结构矩阵分析(平面桁架 平面应力) 变分
设平面桁架单元在总体坐标系中刚度矩阵的一般形式为
由(2-1-8),当单元结点位移为{1 0 0 0 }T时,在单元各结点上施加的力刚好为单元刚度矩阵中的第一列:{k11k21k31k41}T。对[k]的其他各列也可做出类似的解释。即单元刚度矩阵的每一列相当于一组特定位移下的结点力,如表2-1所示。由图2-4可以获得更为直观的理解。
它们将作为程序的输入数据(几何参数)。
每个结点有两个自由度,对结点1、2、3分别为
若暂时不考虑支承约束条件,整个结构的结点自由度为
3、单元分析(建立结点力与结点位移之间的关系)
取一个一般性的单元,设它的两个结点在结构中的编号为i, j(单元内部的结点序号)。由材料力学可知,杆的轴向刚度为EA/L。其中L为杆的长度:
单元结点自由度{u}={uiviujvj}T
结点给单元的力{r}={piqipjqj}T
在图2-3中,x’轴与x轴的夹角为α
结点的位移分量的坐标变换为
单元的位移分量的坐标变换为
或缩写为
类似,{r’}与{r}之间的转换关系为
由于
是正交矩阵,因此
也是正交矩阵。所以有
将(2-1-4)、(2-1-5)代入(2-1-2)有
为了描述结构的平衡需要建立一个坐标系,称为总体坐标系,以区别于以后出现的“局部坐标系”。总体坐标系的选择原则上不受限制,但希望使用方便。本节所选的总体坐标系示于图2-2,坐标原点与结点1重合。以u, v分别表示沿x, y方向的位移分量,p, q分别表示力沿x, y轴的力分量(投影)。
在总体坐标系中各结点的坐标为:
对结点1:
对结点2:
对结点3;
可以合并成
式(2-1-14)的右边为外载荷和支反力。左边则为单元给结点的力,它们是未知的,但可以借助单元刚度矩阵以结点位移来表示。
4典型结构有限元分析(桁架与梁结构)
(2)根据各自的整体部件应用约束并施加负载;
(3)在整体方向上的每个节点的位移表示问题的解。同时在单元端部节点 建立一局部坐标系为x-y,来描述各个杆(单元)的二力杆行为。
Y
fyj
x fxj
y
uyj
FYj
uxj
UYj
fyi uyi
FYi
UYi uxi
fxi Uxi Fxi
Uxj Fxj
2022/3/22
根据杆的节点i和j的坐标和杆的长度的差分得出:
c os X
X j Xi Lm
CXm
cosY
Yj Yi Lm
CYm
(23)
cosZ
Z j Zi Lm
CZ m
式中,m代表第m个二力杆单元;i,j代表第m个二力杆单元的
两个端点即节点;Lm代表第m个二力杆单元的长度,由下式 给出:
2022/3/22
25/36
局部坐标系中的纯弯梁单元(续)
材料力学基础知识
弯矩
转角
剪力
弯曲公式: dv
dx
M
EI
d 2v dx2
Q
EI
d 3v dx3
应变和应力公式:
d 2v y dx2
E
Ey
d 2v dx2
坐标
挠度
26/36
局部坐标系中的纯弯梁单元
如图所示为一局部坐标系中的纯弯梁单元。 设有两个端节点,节点位移列阵和节点力列阵为
2022/3/22
[K ]e [T ][K ][T ]1
4. 空间桁架
(1)三维空间桁架
三维桁架通常称为空间桁架,是结构力学和有限元法 中的重要结构形式,也是工程上常见的结构类型之一。如何 快速准确的计算桁架结构各杆件的受力情况下的变形量,是 进行结构设计的基础。
有限元分析第二讲杆单元
0
0
0
0
01 1
0
0
L 2 2 0 0 1 1 1 0 1 0 0 0 1 1
0
0
1
1
0
0
0
0 0
0 1 1
u2 v2 u3 v3
1 1 1 1
EA1 1 1 1
2L 1 1 1 1
1
1 1
1
将单元1,2的刚度方程扩张到系统规模(6阶), 相加后引入节点平衡条件:
再引入边界约束和载荷:
2 ELA02
2 3 1
01u02FP1 10 F3
上述方程组中删除第1,3个方程,得到:
解得:
位移解:
u u
1 2
u 3
PL 3 EA
0
1
0
单元1应力:
2 ELA02
2 3 1
101u002FFP13
1 E 1 E L 1 E u 2L u 1 E L 3 P E L 0 A 3 P A
k EA L
§比照弹簧元的刚度方程,写出杆单元的刚度方程为:
ffij kk kk u uij E L A 1 1 1 1 u uij
(二)公式法导出杆单元特性
1、单元上假设近似位移场——位移模式
单元上位移假设为简单多项式函数: u(x)a0a1x
用插值法把多项式中的待定系数 a 0 , a 1 转化为节点位移
刚度方程中令:
u u
i j
1
0
则:
fi fj
kk1211
fi fj
kk1211
kk1222uuij
所以,单元刚度矩阵的第i(i=1,2)列元素表示当维持单元 的第i个自由度位移为1,其它自由度位移为0时,施加 在单元上的节点力分量。(也可以用此方法直接导出杆单 元的刚度矩阵元素,试练习)
2D四杆桁架结构的有限元分析实例学习资料
2D四杆桁架结构的有限元分析实例实例:2D四杆桁架结构的有限元分析学习有限元方法的一个最佳途径,就是在充分掌握基本概念的基础上亲自编写有限元分析程序,这就需要一个良好的编程环境或平台。
MATLAB软件就是这样一个平台,它以功能强大、编程逻辑直观、使用方便见长。
将提供有限元分析中主要单元完整的MATLAB程序,并给出详细的说明。
1D杆单元的有限元分析MATLAB程序(Bar1D2Node)最简单的线性杆单元的程序应该包括单元刚度矩阵、单元组装、单元应力等几个基本计算程序。
下面给出编写的线性杆单元的四个MATLAB函数。
Bar1D2Node _Stiffness(E,A,L)该函数计算单元的刚度矩阵,输入弹性模量E,横截面积A和长度L,输出单元刚度矩阵k(2×2)。
Bar1D2Node _Assembly(KK,k,i,j)该函数进行单元刚度矩阵的组装,输入单元刚度矩阵k,单元的节点编号i、j,输出整体刚度矩阵KK。
Bar1D2Node _Stress(k,u,A)该函数计算单元的应力,输入单元刚度矩阵k、单元的位移列阵u(2×1)以及横截面积A计算单元应力矢量,输出单元应力stress。
Bar1D2Node_Force(k,u)收集于网络,如有侵权请联系管理员删除该函数计算单元节点力矢量,输入单元刚度矩阵k和单元的位移列阵u(2×1),输出2×1的单元节点力矢量forces。
基于1D杆单元的有限元分析的基本公式,写出具体实现以上每个函数的MATLAB程序如下。
%%%%%%%%%%% Bar1D2Node %% begin %%%%%%%%%function k=Bar1D2Node_Stiffness(E, A, L)%该函数计算单元的刚度矩阵%输入弹性模量E,横截面积A和长度L%输出单元刚度矩阵k(2×2)%---------------------------------------k=[E*A/L -E*A/L; -E*A/L E*A/L];%%%%%%%%%%%%%%%%%%%%%%%%%%function z=Bar1D2Node_Assembly(KK,k,i,j)%该函数进行单元刚度矩阵的组装%输入单元刚度矩阵k,单元的节点编号i、j%输出整体刚度矩阵KK%-----------------------------------DOF(1)=i;DOF(2)=j;for n1=1:2for n2=1:2收集于网络,如有侵权请联系管理员删除KK(DOF(n1), DOF(n2))= KK(DOF(n1), DOF(n2))+k(n1, n2);endendz=KK;%------------------------------------------------------------function stress=Bar1D2Node_Stress(k, u, A)%该函数计算单元的应力%输入单元刚度矩阵k, 单元的位移列阵u(2×1)%输入横截面积A计算单元应力矢量%输出单元应力stress%-----------------------------------stress=k*u/A;%-----------------------------------------------------------%%%%%%%%%%%%%%%%%%%%%%%%%function forces=Bar1D2Node_Force(k, u)%该函数计算单元节点力矢量%输入单元刚度矩阵k和单元的位移列阵u(2×1)%输出2×1的单元节点力分量forces%-----------------------------------------forces=k*u;%%%%%%%%%%% Bar1D2Node %% end %%%%%%%%%收集于网络,如有侵权请联系管理员删除【四杆桁架结构的有限元分析—数学推导】如图所示的结构,各杆的弹性模量和横截面积都为E=29.54×10N/mm2,A=100mm 2,试求解该结构的节点位移、单元应力以及支反力。