九年级数学证明圆的切线的常用方法

合集下载

九年级数学圆的切线

九年级数学圆的切线
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
问:直线AB与圆有没有明确的公共点
C
O
A
辅助线:连接OB
只需再证:AB ⊥ OB
例2.如图A是⊙O外的一点,AO的延长线交
⊙O于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°,
求证:直线AB是⊙O的切线 B
根据作图直线l是切线满足两个条件 1.经过半径的外端
O
D
l
几何语言
OD是⊙O的半径
OD⊥l于D
2.与半径垂直
切线的判定定理
经过半径的外端并且垂直于这条半径的直 线是圆的切线
l是⊙O的切线
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r
求证:直线l是⊙O的切线
问:圆与直线l有没有明确共同点
O.
辅助线: OA ⊥l
只需证OA是⊙O的半径
A
l
例1、已知⊙O圆心O到直线l的距离d等于⊙O的半径r 求证:直线l是⊙O的切线
证明:过点O作OA ⊥l,A为垂足。
O.
OA=d=r
点A在⊙O上
A
l
OA是⊙O的半径 l是⊙O的切线
定理:当圆心到直线的距离等于圆的半径时,该直 线是这个圆的切线。
一 判断题
于C直线AB经过⊙O上一点B,且AB=BC,∠C=30°, 求证:直线AB是⊙O的切线
B
证明:连接OBCO NhomakorabeaA
∠C=30° ° AB=BC
∠BOA=60 ∠A= ∠C=30 °
∠OBA=90 ° OB是半径
直线AB是⊙O的切线
练习二
1如图,AB是⊙O的直径,AT=AB,∠ABT=45º。

切线的证明技巧

切线的证明技巧

知识点
二.切线的证明方法: 1.作垂直,证半径
条件:圆与直线的公共点没有标明字母 方法:① 则过圆心作直线的垂线段为辅助线
② 再证垂线段的长等于半径的长
知识点
二.切线的证明方法: 2.连半径,证垂直 条件:圆与直线的公共点标明字母 方法:① 则连这个点和圆心得到辅助半径
② 再证所作半径与这条直线垂直
变式练习
例:如图,在△ABC中,以AB为直径的⊙O交AC于 点M,弦MN∥BC交AB于点E,且ME=1,AM=2, AE= .3 求证:BC是⊙O的切线;
证明:∵在△AME中,AM=2,ME=1,AE= 3,
∴AM=ME2+AE2, AM ME2 AE2
∴△AME是直角三角形,∴∠AEM=90°, 又∵MN∥BC, ∴∠ABC=90°, ∴AB⊥BC, 而AB为直径, ∴BC是⊙O的切线;
典例精讲
类型二:无切点,作垂直,证半径
例:如图,点O在∠APB的平分线上,⊙O与PA相切于点C. 求证:直线PB也与⊙O相切;
证明:过点O作OD⊥PB于点D,连接OC, ∵PA切⊙O于点C, ∴OC⊥PA, 又∵点O在∠APB的角平分线上, ∴OC=OD,即OD的长等于⊙O的半径, ∴PB与⊙O相切;
典例精讲
类型一: 有切点,连半径,证垂直
如图,⊙O是△ABC的外接圆,BC为⊙O直径, 作∠CAD=∠B,且点D在BC的延长线上.求证: 直线AD是⊙O的切线.
典例精讲
类型一: 有切点,连半径,证垂直
证明:连结OA,如图, ∵BC为⊙O直径,∴∠BAC=90°, ∴∠B+∠ACB=90°, 而OC=OA,∴∠ACB=∠OAC, ∴∠B+∠OAC=90°, ∵∠CAD=∠B, ∴∠CAD+∠OAC=90°,即∠OAD=90°, ∴OA⊥AD, ∴直线AD是⊙O的切线.

最新人教版九年级全一册数学第二十四章圆 第8课时 切线的判定

最新人教版九年级全一册数学第二十四章圆 第8课时 切线的判定

返回
数学
∵AD=m,∴DE=m ,∴AE= 3m,
2
2
∴OF=AE= 3 m,∴圆心 O 到 CD 的距离为 3m.
2
2
返回
数学
(2)∵OF= 3m,AB 为☉O 的直径,且 AB=10,
2
∴当 OF=5 时,CD 与☉O 相切于点 F,
即 3 m=5,解得 m= 10 3,
2
3
∴当 m=10 3时,CD 与☉O 相切.
返回
数学
6.【例 4】如图,OA 为☉O 的半径,OA=1,OB=2,AB= 3.求 证:AB 是☉O 的切线. 证明:∵OA=1,OB=2,AB= 3, ∴OA2+AB2=OB2,∴OA⊥AB, 又点 A 在☉O 上,∴AB 是☉O 的切线.
小结:利用勾股定理的逆定理证垂直.
返回
数学
12.如图,点 D 在☉O 上,点 C 是☉O 的直径 AB 延长线上的一点, 连接 AD,BD,CD,且有 AD=CD=3 3,BD=3,BO=BC.求证:CD 是☉O 的切线.
返回
数学
(1)解:∵∠DBA=50°,∴∠DOA=2∠DBA=100°.
(2)证明:如图,连接OE. AO=DO
在△EAO 与△EDO 中, EA=ED,
EO=EO
∴△EAO≌△EDO(SSS),
∴∠EDO=∠EAO,
∵∠BAC=90°,∴∠EDO=90°,
又点D在☉O上,∴ED是☉O的切线.
返回
返回
数学
证明:连接 OD,∵AB 是☉O 的直径,∴AD⊥BD, ∵AD=CD=3 3,BD=3,∴AB=6,∴OB=OD=3, ∵BO=BC,∴OC=6,∴OD2+CD2=OC2, ∴∠ODC=90°.∵点 D 在☉O 上,∴CD 是☉O 的切线.

人教版九年级数学上册 24.2.2 圆的切线的性质及判定综合运用培优 (无答案)

人教版九年级数学上册  24.2.2  圆的切线的性质及判定综合运用培优  (无答案)

A Ol圆的切线的性质及判定综合运用知识点:切线的性质定理:圆的切线垂直于经过切点的 . 几何符号语言表达:∵ l 是⊙O 的 ,OA 是 , ∴ l ⊥OA切线的判定:经过半径的 并且 的直线是圆的切线。

几何符号语言表达: ∵ OA 是 ,OA ⊥l 于A , ∴ l 是⊙O 的 。

归纳:证明切线添加辅助线的方法:1)直线与圆的公共点已知时,连半径,证 (应用判定方法3)2)直线与圆公共点不确定时,过圆心作直线的垂线段,再证明 (方法2)一、典型例题例1.如图,AB 是⊙O 的直径,ED 切⊙O 于点C ,AD 交⊙O 于点F ,∠AC 平分∠BAD ,连接BF . (1)求证:AD ⊥ED ;(2)若CD=4,AF=2,求⊙O 的半径.利用判定定理时,要注意直线须具备以下两个条件,缺一不可:(1)直线经过半径的 ;(2)直线与这半径 。

▲判断一条直线是圆的切线的方法:1.利用切线的定义:与圆有 公共点的直线是圆的切线。

2.利用d 与r 的关系作判断:圆心到直线的距离等于 (即d r)的直线是圆的切线。

3.利用切线的判定定理:经过半径的 并且 这条半径的直线是圆的切线。

例2.如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.例3.如图,在△ABC中,AB=AC=10,BC=12,试求△ABC的内切圆的半径.例4.如图,已知抛物线y=mx2+2mx+c(m≠0),与y轴交于点C(0,﹣4),与x轴交于点A(﹣4,0)和点B.(1)求该抛物线的解析式;(2)若P是线段OC上的动点,过点P作PE∥OA,交AC于点E,连接AP,当△AEP的面积最大时,求此时点P的坐标;(3)点D为该抛物线的顶点,⊙Q为△ABD的外接圆,求证⊙Q与直线y=2相切.二、综合训练1.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE=2,DE=8,则AB 的长为( )A .2B .4C .6D .82.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )A .25cmB .45cmC .25cm 或45cm D. 23cm 或43cm3.已知⊙O 的面积为2π,则其内接正三角形的面积为( )A .33B .36C .323D .6234.如图,在平面直角坐标系中,⊙O 的半径为1,则直线2-=x y 与⊙O 的位置关系是( )A .相离B .相切C .相交D .以上三种情况都有可能5.若⊙O 的半径等于5cm ,P 是直线l 上的一点,OP=5cm ,则直线l 与圆的位置关系是( )A .相离B .相切C .相交D .相切或相交6.已知⊙O 的面积为9πcm 2,若点O 到直线l 的距离为πcm ,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定7.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=70°,AO ∥DC ,则∠B 的度数为( )A .40°B .45°C .50°D .55°8.如图所示,P是⊙O外一点,PA,PB分别和⊙O切于A,B两点,C是上任意一点,过C作⊙O的切线分别交PA,PB于D,E.若△PDE的周长为12,则PA的长为()A.12 B.6 C.8 D.49.⊙O的半径为2,弦BC=2,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为.,10.如下左图,AB是⊙O的直径,OA=1,AC是⊙O的弦,过点C的切线交AB的延长线于点D,若BD=21则∠ACD= °.11.如上右图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.12.如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;13.如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;14. 如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过,垂足为D.C作CD PA(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.三、课外作业: 1.如图,BD 为圆O 的直径,直线ED 为圆O 的切线,A 、C 两点在圆上,AC 平分∠BAD 且交BD 于F 点.若∠ADE=190,则∠AFB 的度数为( )A.97°B.104°C.116°D.142°第1题图 第2题图2.如图,在平面直角坐标系中,正方形ABCD 的顶点A 、C 分别在y 轴、x 轴上,以AB 为弦的⊙M 与x 轴相切.若点A 的坐标为(0,8),则圆心M 的坐标为( )A.(-4,5)B.(-5,4)C.(5,-4)D.(4,-5)3.如图,正三角形的内切圆半径为1,那么这个正三角形的边长为( )A.2B.3C.3D.32第3题图4.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C ,连接BC.若∠A=400,则∠C= .5.如图,∠ABC=900,O 为射线BC 上一点,以点O 为圆心,OB 21长为半径作⊙O ,当射线BA 绕点B 按顺时针方向旋转 时与⊙O 相切.第4题图 第5题图6.已知AB 是⊙O 的直径,AP 是⊙O 的切线,A 是切点,BP 与⊙O 交于点C.(1)如图①,若2AB =,30P ∠=︒,求AP 的长(结果保留根号);(2)如图②,若D 为AP 的中点,求证直线CD 是⊙O 的切线.7.如图,已知直线ABC 与⊙O 相交于B,C 两点,E 是的中点,D 是⊙O 上一点,若∠EDA=∠AMD . 求证:AD 是⊙O 的切线.。

专题 证明圆的切线的常用方法(六大题型)(解析版)

专题 证明圆的切线的常用方法(六大题型)(解析版)

(苏科版)九年级上册数学《第2章对称图形---圆》专题证明圆的切线的常用的方法★★★方法指引:证明一条直线是圆的切线的方法及辅助线作法:1、有交点:连半径、证垂直:当直线和圆有一个公共点时,把圆心和这个公共点连接起来,然后证明直线垂直于这条半径,简称:“有交点,连半径,证垂直”.2、无交点:作垂直、证半径:当直线和圆的公共点没有明确时,可以过圆心作直线的垂线,再证圆心到直线的距离等于半径,简称:“无交点,作垂直,证半径”.类型一:有公共点:连半径,证垂直●●【典例一】(2022•雁塔区校级模拟)如图,AB 是⊙O 的直径,点D 在直径AB 上(D 与A ,B 不重合),CD ⊥AB ,且CD =AB ,连接CB ,与⊙O 交于点F ,在CD 上取一点E ,使得EF =EC .求证:EF 是⊙O 的切线;【分析】连接OF ,根据垂直定义可得∠CDB =90°,从而可得∠B +∠C =90°,然后利用等腰三角形的性质可得∠B =∠OFB ,∠C =∠EFC ,从而可得∠OFB +∠EFC =90°,最后利用平角定义可得∠OFE =90°,即可解答;【解答】证明:连接OF ,∵CD ⊥AB ,∴∠CDB =90°,∴∠B +∠C =90°,∵OB =OF ,EF =EC ,∴∠B =∠OFB ,∠C =∠EFC,∴∠OFB+∠EFC=90°,∴∠OFE=180°﹣(∠OFB+∠EFC)=90°,∵OF是⊙O的半径,∴EF是⊙O的切线:【点评】本题考查了切线的判定与性质,勾股定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.【变式1-1】(2022•澄城县三模)如图,AB是△ABC外接圆⊙O的直径,过⊙O外一点D作BC的平行线分别交AC,AB于点G,E,交⊙O于点F,连接DB,CF,∠BAC=∠D.求证:BD是⊙O的切线;【分析】证明∠ABD=90°,根据切线的判定可得BD与⊙O相切;【解答】证明:∵AB是⊙O的直径,∴∠ACB=90°,∵DG∥BC,∴∠AGE=∠ACB=90°,∴∠A+∠AEG=90°,又∵∠A=∠D,∠AEG=∠DEB,∴∠D+∠DEB=90°,∴∠DBE=90°,∴AB⊥BD,∵AB为直径,∴BD与⊙O相切;【点评】此题考查了切线的判定,垂径定理,解答本题需要我们熟练掌握切线的判定.【变式1-2】如图,AB是⊙O的直径,点C是圆上一点,CD⊥AB于点D,点E是圆外一点,CA平分∠ECD.求证:CE是⊙O的切线.【分析】利用切线的判定定理证明∠OCE=90°即可得出结论.【解答】证明:∵CA平分∠ECD,∴∠ECA=∠DCA.∵CD⊥AB,∴∠CAD+∠DCA=90°,∴∠ECA+∠CAD=90°.∵OA=OC,∴∠CAD=∠ACO,∴∠ECA+∠ACO=90°,即∠OCE=90°,∴OC⊥EC,∵OC是⊙O的半径,∴CE是⊙O的切线.【点评】本题主要考查了圆的切线的判定,熟练应用圆的切线的判定定理是解题的关键.【变式1-3】(2022秋•阳谷县校级期末)如图,△ABC内接于半圆,AB是直径,过A作直线MN,∠MAC=∠ABC,D是弧AC的中点,连接BD交AC于G,过D作DE⊥AB于E,交AC于F.(1)求证:MN是半圆的切线.(2)求证:FD=FG.【分析】(1)欲证明MN是半圆的切线,只需证得∠MAB=90°,即MA⊥AB即可;(2)根据圆周角定理推论得到∠ACB=90°,由DE⊥AB得到∠DEB=90°,则∠1+∠5=90°,∠3+∠4=90°,又D是弧AC的中点,即弧CD=弧DA,得到∠3=∠5,于是∠1=∠4,利用对顶角相等易得∠1=∠2,则有FD=FG.【解答】证明:(1)如图,∵AB是直径,∴∠ACB=90°,∴∠CAB+∠ABC=90°.又∵∠MAC=∠ABC,∴∠MAC+∠CAB=90°,即∠MAB=90°,∴MA⊥AB.∴MN是半圆的切线.(2)∵AB为直径,∴∠ACB=90°,而DE⊥AB,∴∠DEB=90°,∴∠1+∠5=90°,∠3+∠4=90°,∵D是弧AC的中点,即弧CD=弧DA,∴∠3=∠5,∴∠1=∠4,而∠2=∠4,∴∠1=∠2,∴FD=FG.【点评】本题考查了切线的判定:经过半径的外端点,并且与半径垂直的直线是圆的切线.也考查了圆周角定理及其推论、三角形外角的性质以及等腰三角形的判定.【变式1-4】如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接OC,PB,已知PB=6,DB=8,∠EDB=∠EPB.(1)求证:PB是⊙O的切线;(2)求⊙O的半径.(3)连接BE,求BE的长.【分析】(1)由已知角相等及直角三角形的性质得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB =6,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,即为圆的半径.(3)延长PB、DE相交于点F,证明△PED≌△PEF(ASA),由全等三角形的性质得出PD=PF=10,DE =EF,求出DF的长,则可得出答案.【解答】(1)证明:∵DE⊥PE,∴∠DEO=90°,∵∠EDB=∠EPB,∠BOE=∠EDB+∠DEO,∠BOE=∠EPB+∠OBP,∴∠OBP=∠DEO=90°,∴OB⊥PB,∴PB为⊙O的切线;(2)解:在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD=10,∵PD与PB都为⊙O的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4;在Rt△CDO中,设OC=r,则有OD=8﹣r,根据勾股定理得:(8﹣r)2=r2+42,解得:r=3,则圆的半径为3.(3)延长PB、DE相交于点F,∵PD与PB都为⊙O的切线,∴OP平分∠CPB,∴∠DPE=∠FPE,∵PE⊥DF,∴∠PED=∠PEF=90°,又∵PE=PE,∴△PED ≌△PEF (ASA ),∴PD =PF =10,DE =EF ,∴BF =PF ﹣PB =10﹣6=4,在Rt △DBF 中,DF==∴BE =12DF =【点评】本题考查了切线的判定和性质,勾股定理,平行线的性质,全等三角形的判定和性质,熟练掌握性质定理是解题的关键.●●【典例二】 如图,△ABC 是直角三角形,点O 是线段AC 上的一点,以点O 为圆心,OA 为半径作圆.O 交线段AB 于点D ,作线段BD 的垂直平分线EF ,EF 交线段BC 于点.(1)若∠B =30°,求∠COD 的度数;(2)证明:ED 是⊙O 的切线.【分析】(1)根据三角形的内角和定理得到∠A =60°,根据等腰三角形的性质得到∠ODA =∠A =60°,于是得到∠COD =∠ODA +∠A =120°;(2)根据线段垂直平分线的性质得到∠EDB =∠B =30°,求得ED ⊥DO ,根据切线的判定定理即可得到结论.【解答】(1)解:∵∠C =90°,∠B =30°,∴∠A =60°,∵OD =OA,∴∠COD=∠ODA+∠A=120°;(2)证明:∵EF垂直平分BD,∴∠EDB=∠B=30°,∴∠EDO=180°﹣∠EDB﹣∠ODA=180°﹣30°﹣60°=90°,∴ED⊥DO,∵OD是⊙O的半径,∴ED是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,线段垂直平分线的性质,熟练掌握切线的判定定理是解题的关键.【变式2-1】如图,AB为⊙O的直径,点C,D在⊙O上,AC=CD=DB,DE⊥AC.求证:DE是⊙O的切线.【分析】连接OD,根据已知条件得到∠BOD=13×180°=60°,求得∠EAD=∠DAB=12∠BOD=30°,根据等腰三角形的性质得到∠ADO=∠DAB=30°,求得∠EDA=60°,根据切线的判定定理即可得到结论.【解答】证明:连接OD,∵AC=CD=DB,∴∠BOD=13×180°=60°,∵CD=DB,∴∠EAD=∠DAB=12∠BOD=30°,∵OA=OD,∴∠ADO=∠DAB=30°,∵DE⊥AC,∴∠E=90°,∴∠EDA=60°,∴∠EDO=∠EDA+∠ADO=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定,等腰三角形的性质,正确的作出辅助线是解题的关键.【变式2-2】如图,AC是⊙O的直径,B在⊙O上,BD平分∠ABC交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.求证:DE是⊙O的切线.【分析】连接OD,根据圆周角定理的推论得到∠ABC=90°,根据角平分线的性质求出∠DBE=45°,根据圆周角定理得到∠DOC,根据平行线的性质求出∠ODE=90°,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AC是⊙O的直径,∴∠ABC=90°,∵BD平分∠ABC,∴∠DBE=45°,∴∠DOC=2∠DBE=90°,∵DE∥AC,∴∠ODE=∠DOC=90°,∴DE是⊙O的切线;【点评】本题考查的是切线的判定定理、圆周角定理以及正方形的判定和性质,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.【变式2-3】(2023•鼓楼区校级模拟)如图,在⊙O中,AB为⊙O的直径,AC为弦,OC=4,∠OAC=60°.(1)求∠AOC的度数;(2)在图(1)中,P为直径BA的延长线上一点,且S△PAC=PC为⊙O的切线;【分析】(1)根据等腰三角形中有一角为60度时是等边三角形得到△ACO是等边三角形,则∠AOC=60°;(2)由等边三角形的性质以及勾股定理得出CD的长,再利用三角形外角的性质以及等腰三角形的性质得出∠PCA=30°,进而得出答案;【解答】(1)解:在△OAC中,∵OA=OC=4,∠OAC=60°,∴△OAC是等边三角形,∴∠AOC=60°;(2)证明:过点C作CD⊥AO于点D,∵△AOC是等边三角形,CD⊥AO,∴AD=DO=12OA=2,∠ACO=60°,∴CD∵S △PAC =∴12PA •CD =∴PA =4,∴PA =AC ,∴∠P =∠PCA =12∠OAC =30°,∴∠PCO =∠PCA +∠ACO =30°+60°=90°,∴OC ⊥PC ,∵OC 是⊙O 的半径,∴PC 为⊙O 的切线.【点评】本题考查了等边三角形的判定和性质,切线的判定,熟练掌握相关的性质和判定是解决问题的关键.【变式2-4】(2023•门头沟区二模)如图,AB 是⊙O 直径,弦CD ⊥AB 于E ,点F 在CD 上,且AF =DF ,连接AD ,BC .(1)求证:∠FAD =∠B(2)延长FA 到P ,使FP =FC ,作直线CP .如果AF ∥BC .求证:直线CP 为⊙O 的切线.【分析】(1)根据垂径定理、圆周角定理可得∠ACD =∠ACD =∠B ,根据等腰三角形的性质可得∠FAD=∠FDA,进而可得∠FAD=∠B;(2)根据平行线的性质以及三角形内角和定理可得∠FAB=∠FAD=∠FDA=30°,进而得到∠CFP=60°,再利用等边三角形的性质可得∠PCO=60°+30°=90°,由切线的判定方法可得结论.【解答】证明:(1)如图,连接AC,∵AB是⊙O直径,弦CD⊥AB,∴AC=AD,∴∠ACD=∠ACD=∠B,∵AF=FD,∴∠FAD=∠FDA,∴∠FAD=∠B;(2)如图,连接OC,∵AF∥BC,∴∠FAB=∠B,∴∠FAB=∠FAD=∠FDA,∵∠AED=90°,∴∠FAB=∠FAD=∠FDA=30°,∴∠CFP=60°,∵FP=FC,∴△CFP是等边三角形,∴∠PCF=60°,∵OB=OC,∴∠B=∠OCB=30°,∴∠OCD=30°,∴∠PCO=60°+30°=90°,即OC⊥PC,∵OC是半径,∴PC是⊙O的切线.【点评】本题考查切线的判定,圆周角定理、平行线的性质以及三角形内角和定理,掌握切线的判定方法,圆周角定理是正确解答的前提.●●【典例三】如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,过点C 作CE ⊥AD 交AD 的延长线于点E ,延长EC ,AB 交于点F ,∠ECD =∠BCF .求证:CE 为⊙O 的切线;【分析】连接OC ,BD ,可推出EF ∥BD ,进而可证CD =BC ,进而得出CE 为⊙O 的切线;【解答】证明:如图1,连接OC ,BD ,∵AB 是⊙O 的直径,∴∠ADB =90°,∵CE ⊥AE,∴∠E=∠ADB,∴EF∥BD,∴∠ECD=∠CDB,∠BCF=∠CBD,∵∠ECD=∠BCF,∴∠CDB=∠CBD,∴CD=BC,∴半径OC⊥EF,∴CE为⊙O的切线;【点评】本题考查了圆周角定理及其推论,圆的切线判定,解决问题的关键是作合适的辅助线.【变式3-1】(2022秋•阿瓦提县校级期末)已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.【分析】连接OD,根据OA=OB,CD=BD,得出OD∥AC,∠ODE=∠CED,再根据DE⊥AC,即可证出OD⊥DE,从而得出答案.【解答】证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.【点评】本题考查了切线的判定与性质,解决本题的关键是掌握圆周角定理的推论、线段垂直平分线的性质以及等边三角形的判定,是一道常考题型.【变式3-2】已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【分析】(1)连接CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连接OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连接CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连接OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.【变式3-3】如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以AE为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)已知∠B=30°,CD=4,求线段AB的长.【分析】(1)连接OD,根据角平分线的定义得到∠BAD=∠CAD,而∠OAD=∠ODA,则∠ODA=∠CAD,于是判断OD∥AC,由于∠C=90°,所以∠ODB=90°,然后根据切线的判定定理即可得到结论;(2)由∠B=30°得到∠BAC=60°,则∠CAD=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得到AC=Rt△ABC中,根据含30度的直角三角形三边的关系可得到AB=【解答】(1)证明:连接OD,如图,∵∠BAC的平分线交BC于点D,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∵∠C=90°,∴∠ODB=90°,∴OD⊥BC,∴BC是⊙O的切线;(2)解:∵∠B=30°,∴∠BAC=60°,∴∠CAD=30°,在Rt△ADC中,DC=4,∴AC==在Rt△ABC中,∠B=30°,∴AB=2AC=【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了含30度的直角三角形三边的关系.【变式3-4】如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=1cm,求BD的长.【分析】(1)连接OA,根据角之间的互余关系可得∠OAE=∠DEA=90°,故AE⊥OA,即AE是⊙O的切线;(2)根据圆周角定理,可得在Rt△AED中,∠AED=90°,∠EAD=30°,有AD=2DE;在Rt△ABD中,∠BAD=90°,∠ABD=30°,有BD=2AD=4DE,即可得出答案.【解答】(1)证明:连接OA,∵DA平分∠BDE,∴∠BDA=∠EDA.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EDA,∴OA∥CE.∵AE⊥CE,∴AE⊥OA.∴AE是⊙O的切线.(2)解:∵BD是直径,∴∠BCD=∠BAD=90°.∵∠DBC=30°,∠BDC=60°,∴∠BDE=120°.∵DA平分∠BDE,∴∠BDA=∠EDA=60°.∴∠ABD=∠EAD=30°.∵在Rt△AED中,∠AED=90°,∠EAD=30°,∴AD=2DE.∵在Rt△ABD中,∠BAD=90°,∠ABD=30°,∴BD=2AD=4DE.∵DE的长是1cm,∴BD的长是4cm.【点评】此题主要考查了切线的判定,角平分线的性质,含30°的直角三角形的性质,勾股定理,矩形的判定和性质,构造出直角三角形是解本题的关键,是一道中等难度的中考常考题.●●【典例四】(2022•城关区一模)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为6,PB=4,PC=8.求证:PC是⊙O的切线;【分析】可以证明OC2+PC2=OP2得△OCP是直角三角形,即OC⊥PC,PC是⊙O的切线;【解答】解:如图,连接OC、BC,∵⊙O的半径为6,PB=4,PC=8.∴OC=OB=6,OP=OB+BP=6+4=10,∴OC2+PC2=62+82=100,OP2=102=100,∴OC2+PC2=OP2,∴△OCP是直角三角形,∴OC⊥PC,∴PC是⊙O的切线;【点评】本题考查圆的切线的判定和勾股定理逆定理,利用勾股定理的逆定理证明垂直是解决问题的关键.【变式4-1】如图,AD, BD是⊙O的弦,AD⊥BD,且BD=2AD=8 ,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先由勾股定理的逆定理证明垂直,再由切线的判断进行解答即可.【解答】证明:连接AB,∵AD⊥BD,且BD=2AD=8 ,∴AB为直径,AB2 =82+42 =80,∵CD=2,AD=4 ,∴AC2 =22 +42=20,∵CD=2,BD=8,∴BC=102=100,∴AC2+AB2=CB2,∴∠BAC=90° ,∴AC是⊙O的切线【点评】本题考查切线的判定,圆周角定理的推论,勾股定理的逆定理,解题关键是作出辅助线构造直角三角形.【变式4-2】如图,AD,BD是⊙O的弦,AD⊥BD,且BD=2AD=8,点C是BD的延长线上的一点,CD=2,求证:AC是⊙O的切线.【分析】先根据圆周角定理得到AB为⊙O的直径,再利用勾股定理计算出AB、AC,接着利用勾股定理的逆定理证明△ABC为直角三角形,∠BAC=90°,所以AC⊥AB,然后根据切线的判定定理得到结论.【解答】证明:∵AD⊥BD,∴∠ADB=90°,∴AB为⊙O的直径,∵BD =2AD =8,∴AD =4,在Rt △ADB 中,AB 2=AD 2+BD 2=42+82=80,在Rt △ADC 中,AC 2=AD 2+CD 2=42+22=20,∵BC 2=(2+8)2=10,∴AC 2+AB 2=BC 2,∴△ABC 为直角三角形,∠BAC =90°,∴AC ⊥AB ,∵AB 为直径,∴AC 是⊙O 的切线.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、勾股定理和勾股定理的逆定理.●●【典例五】(2022•鄞州区校级开学)如图,AB 为⊙O 的直径,点C 和点D 是⊙O 上的两点,连接BC ,DC ,BC =CD ,CE ⊥DA 交DA 的延长线于点E .求证:CE 是⊙O 的切线;【分析】连接OD ,OC ,证得△COD ≌△COB ,可得∠OCD =∠BCO ,从而得到∠ADC =∠DCO ,进而得到DA ∥CO ,利用切线的判定定理即可求证;【解答】证明:连接OD ,OC,如图,在△COD和△COB中,OD=OBOC=OC,CD=CB∴△COD≌△COB(SSS),∴∠OCD=∠BCO,∵CO=BO,∴∠B=∠BCO,∵∠B=∠ADC,∴∠ADC=∠DCO.∴DA∥CO,∴∠E+∠ECO=180°.∵CE⊥EA,∴∠E=90°.∴∠ECO=90°,∴EC⊥CO,∵CO是⊙O的半径,∴EC是⊙O的切线;【点评】本题主要考查了切线的判定,圆周角定理等知识,熟练掌握切线的判定,相似三角形的判定和性质,圆周角定理等知识是解题的关键.【变式5-1】如图,已知AB是⊙O的直径,BC⊥AB,连接OC,弦AD∥OC,直线CD交BA的延长线于点E.求证:CD是⊙O的切线;【分析】连接OD,利用SAS得到三角形COD与三角形COB全等,利用全等三角形的对应角相等得到∠ODC 为直角,即可得证;【解答】证明:如图,连接OD.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB,在△COD和△COB中,OC=OC∠COD=∠COB,OD=OB∴△COD≌△COB(SAS),∴∠CDO=∠CBO=90°,∵OD是⊙O的半径,∴CD是⊙O的切线;【点评】此题考查了切线的判定和性质,以及全等三角形的判定与性质,熟练掌握各自的性质是解本题的关键.【变式5-2】(2022秋•新抚区期末)如图,AB为⊙O的直径,四边形OBCD是矩形,连接AD,延长AD 交⊙O于E,连接CE.求证:CE为⊙O的切线.【分析】连接OC、BE,根据矩形性质和圆半径相等,推出∠CDE=∠AEO,进而得到OP=CP,然后根据OB∥CD,可以推出∠COE=∠BOC,最后通过证明△BOC≌△EOC即可求解.【解答】证明:如图:连接OC、BE,OE,CD交于点P,∵四边形OBCD是矩形,∴OB∥CD,∠OBC=90°,OB=CD,∵OB∥CD,∴∠A=∠CDE,∵在⊙O中,OA=OB=OE,∴OE=CD,∵OA=OE,∴∠A=∠AEO,∴∠CDE=∠AEO,∴DP=PE,∵OE=CD,∴OP=CP,∴∠COE=∠DCO,∵OB∥CD,∴∠DCO=∠BOC,∴∠COE=∠BOC,在△BOC和△EOC中,OB=OECO=CO,∠BOC=∠COE∴△BOC≌△EOC(SAS),∴∠CEO=∠OBC=90°,∴CE⊥OE,又∵OE为⊙O的半径,∴CE为⊙O的切线.【点评】本题考查圆周角定理,全等三角形的判定和性质,矩形的性质等众多知识点,熟悉掌握以上知识点是解题关键.【变式5-3】(2022•建邺区二模)如图,四边形ABCD是菱形,以AB为直径作⊙O,交CB于点F,点E在CD上,且CE=CF,连接AE.(1)求证:AE是⊙O的切线;(2)连接AC交⊙O于点P,若AP BF=1,求⊙O的半径.【分析】(1)连接AF,根据菱形的性质得到∠ACF=∠ACE,根据全等三角形的性质得到∠AFC=∠AEC,推出OA⊥AE,根据切线的判定定理即可得到结论;(2)连接BP,根据圆周角定理得到∠APB=90°,求得AC=2AP=【解答】(1)证明:连接AF,∵四边形ABCD为菱形,∴∠ACF=∠ACE,在△ACF与△ACE中,CF=CE∠ACF=∠ACEAC=AC,∴△ACF≌△ACE(SAS),∴∠AFC=∠AEC,∵AB是⊙O的直径,∴∠AFB=∠AFC=90°,∴∠AEC=90°,∵AB∥DC,∴∠BAE+∠AEC=90°,∴∠BAE=90°,∴OA⊥AE,∵OA是⊙O的半径,∴AE是⊙O的切线;(2)解:连接BP,∵AB是⊙O的直径,∴∠APB=90°,∵AB=CB,AP=∴AC=2AP=设⊙O的半径为R,∵AC2﹣CF2=AF2,AB2﹣BF2=AF2,∴2−(2R−1)2=(2R)2−12,∴R=32(负值舍去),∴⊙O的半径为3 2.【点评】本题考查了切线的判定和性质,圆周角定理,菱形的性质,三角形全等的性质和判定,勾股定理等知识,解答本题的关键是根据勾股定理列方程解决问题.类型二:无公共点:作垂直,证半径●●【典例六】如图,△ABC为等腰三角形,O是底边BC的中点,腰AB与⊙O相切于点D.求证:AC是⊙O的切线.【分析】过点O作OE⊥AC于点E,连接OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论.【解答】证明:过点O作OE⊥AC于点E,连接OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵圆心到直线的距离等于半径,∴AC是⊙O的切线.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.【变式6-1】如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.求证:CD与⊙O相切.【分析】利用正方形的性质得出AC平分角∠BCD,再利用角平分线的性质得出OM=ON,即可得出答案.【解答】证明:如图所示,连接OM,过点O作ON⊥CD于点N,∵⊙O与BC相切于点M,∴OM⊥BC,又∵ON⊥CD,O为正方形ABCD对角线AC上一点,∴OM=ON,∴ON为⊙O的半径,∴CD与⊙O相切.【点评】此题主要考查了正方形的性质以及角平分线的性质,得出OM=ON是解题关键.【变式6-2】如图,OC平分∠AOB,D是OC上任意一点,⊙D和OA相切于点E,连接CE.(1)求证:OB与⊙D相切;(2)若OE=4,⊙D的半径为3,求CE的长.【分析】(1)过点D作DF⊥OB于点F,先由切线的性质得DE⊥OA,则由角平分线的性质得DF=DE,即可证得结论;(2)过E作EG⊥OD于G,先由勾股定理求出OD=5,再由面积法求出EG=125,然后由勾股定理求出DG=95,最后由勾股定理求出CE即可.【解答】(1)证明:连接DE,过点D作DF⊥OB于点F,如图所示:∵⊙D与OA相切于点E,∴DE⊥OA,∵OC平分∠AOB,∴DF=DE,又∵DF⊥OB,∴OB与⊙D相切;(2)解:过E作EG⊥OD于G,如图所示:由(1)得:DE⊥OA,∴∠OED=90°,∵OE=4,DE=3,∴OD=5,∵EG⊥OD,∴12OD×EG=12OE×DE,∴EG=OE×DEOD=4×35=125,∴DG===9 5,∴CG=CD+DG=3+95=245,∴CE=【点评】此题考查了切线的判定与性质、勾股定理以及角平分线的性质等知识,解题的关键是准确作出辅助线.【变式6-3】如图,AB是⊙O的直径,AM,BN分别切⊙O于点A,B,CD交AM,BN于点D,C,DO平分∠ADC.(1)求证:CD是⊙O的切线;(2)若AD=4,BC=9,求⊙O的半径R.【分析】(1)过O点作OE⊥CD于点E,通过角平分线的性质得出OE=OA即可证得结论.(2)过点D作DF⊥BC于点F,根据切线的性质可得出DC的长度,继而在Rt△DFC中利用勾股定理可得出DF的长,继而可得出半径.【解答】(1)证明:过O点作OE⊥CD于点E,∵AM切⊙O于点A,∴OA⊥AD,又∵DO平分∠ADC,∴OE=OA,∵OA为⊙O的半径,∴OE是⊙O的半径,且OE⊥DC,∴CD是⊙O的切线.(2)解:过点D作DF⊥BC于点F,∵AM,BN分别切⊙O于点A,B,∴AB⊥AD,AB⊥BC,∴四边形ABFD是矩形,∴AD=BF,AB=DF,又∵AD=4,BC=9,∴FC=9﹣4=5,∵AM,BN,DC分别切⊙O于点A,B,E,∴DA=DE,CB=CE,∴DC=AD+BC=4+9=13,在Rt△DFC中,DC2=DF2+FC2,∴DF=12,∴AB=12,∴⊙O的半径R是6.【点评】此题考查了切线的性质、角平分线的性质及勾股定理的知识,证明第一问关键是掌握切线的判定定理,解答第二问关键是熟练切线的性质.【变式6-4】(2022秋•清原县期末)如图,在△ABC中,∠ACB=90°,点D是AB边的中点,点O在AC边上,⊙O 经过点C 且与AB 边相切于点E ,∠FAC =12∠BDC .(1)求证:AF 是⊙O 的切线;(2)若BC =6,AB =10,求⊙O 的半径长.【分析】(1)作OH ⊥FA ,垂足为点H ,连接OE ,证明AC 是∠FAB 的平分线,进而根据OH =OE ,OE ⊥AB ,可得AF 是⊙O 的切线;(2)勾股定理得出AC ,设⊙O 的半径为r ,则OC =OE =r ,进而根据切线的性质,在Rt △OEA 中,勾股定理即可求解.【解答】(1)证明:如图,作OH ⊥FA ,垂足为点H ,连接OE ,∵∠ACB =90°,D 是AB 的中点,∴CD =AD =12AB ,∴∠CAD =∠ACD ,∵∠BDC =∠CAD +∠ACD =2∠CAD ,又∵∠FAC =12∠BDC ,∴∠FAC =∠CAD ,即AC 是∠FAB 的平分线,∵点O 在AC 上,⊙O 与AB 相切于点E ,∴OE ⊥AB ,且OE 是⊙O 的半径,∴OH =OE ,OH 是⊙O 的半径,∴AF 是⊙O 的切线;(2)解:如图,在△ABC中,∠ACB=90°,BC=6,AB=10,∴AC==8,∵BE,BC是⊙O的切线,∴BC=BE=6,∴AE=10﹣6=4设⊙O的半径为r,则OC=OE=r,在Rt△OEA中,由勾股定理得:OE2+AE2=OA2,∴16+r2=(8﹣r)2,∴r=3.∴⊙O的半径长为3.【点评】本题考查了切线的性质与判定,勾股定理,熟练掌握切线的性质与判定是解题的关键.1.如图,已知AB是⊙O的直径,AB=BE,点P在BA的延长线上,连接AE交⊙O于点D,过点D作PC⊥BE垂足为点C.求证:PC与⊙O相切;【分析】连接OD,根据等腰三角形的性质得到∠BAE=∠BEA,∠BAE=∠ODA,等量代换得到∠ODA=∠BEA,证明OD∥BE,根据平行线的性质得到PC⊥OD,根据切线的判定定理证明结论;【解答】证明:连接OD,∵AB=BE,∴∠BAE=∠BEA,∵OA=OD,∴∠BAE=∠ODA,∴∠ODA=∠BEA,∴OD∥BE,∵PC⊥BE,∴PC⊥OD,∵OD是⊙O的半径,∴PC与⊙O相切;【点评】本题考查的是切线的判定、解直角三角形,掌握经过半径的外端且垂直于这条半径的直线是圆的切线是解题的关键.2.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,点D是BC的中点,DE∥BC交AC的延长线于点E.(1)求证:直线DE与⊙O相切;(2)若⊙O的直径是10,∠A=45°,求CE的长.【分析】(1)连接OD,如图,先利用垂径定理得到OD⊥BC,再根据平行线的性质得到OD⊥DE,然后根据切线的判定方法得到结论;(2)先根据圆周角定理得到∠B=90°,则∠ACB=45°,再根据平行线的性质得到∠E=45°,则可判断△ODE 为等腰直角三角形,于是可求出OE,然后计算OE﹣OC即可.【解答】(1)证明:连接OD,如图,∵点D是BC的中点,∴OD⊥BC,∵DE∥BC,∴OD⊥DE,∴直线DE与⊙O相切;(2)解:∵AC是⊙O的直径,∴∠B=90°,∵∠A=45°,∴∠ACB=45°,∵BC∥DE,∴∠E=45°,而∠ODE=90°,∴△ODE为等腰直角三角形,∴OE==∴CE=OE﹣OC=5.【点评】本题考查了切线的性质与判定:圆的切线垂直于经过切点的半径.也考查了垂径定理、圆周角定理和等腰直角三角形的性质.3.(2023•东城区校级模拟)如图,⊙O的半径OC与弦AB垂直于点D,连接BC,OB.(1)求证:2∠ABC+∠OBA=90°;(2)分别延长BO、CO交⊙O于点E、F,连接AF,交BE于G,过点A作AM⊥BC,交BC延长线于点M,若G是AF的中点,求证:AM是⊙O的切线.【分析】(1)先根据垂径定理得到AC=BC,再根据圆周角定理得到∠BOC=2∠ABC,然后利用互余关系得∠BOD+∠OBD=90°,从而得到结论;(2)如图,连接OA,根据垂径定理得到BE⊥AF,再根据圆周角定理得到∠CAF=90°,则可判断BE ∥AC,所以∠ABE=∠BAC,接着证明∠BAO=∠CBA得到OA∥BC,根据平行线的性质得到AM⊥OA,然后根据切线的判断方法得到结论.【解答】证明:(1)∵OD⊥AB,∴AC=BC,∠ODB=90°,∴∠BOC=2∠ABC,∵∠BOD+∠OBD=90°,∴2∠ABC+∠OBA=90°;(2)如图,连接OA,∵G是AF的中点,∴BE⊥AF,∵CF为直径,∴∠CAF=90°,∴CA⊥AF,∴BE∥AC,∴∠ABE=∠BAC,∴AC=BC,∴∠CAB=∠CBA,∵OA=OB,∴∠BAO=∠ABO,∴∠BAO=∠CBA,∴OA∥BC,∵AM⊥BC,∴AM⊥OA,而OA为⊙O的半径,∴AM是⊙O的切线.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了圆周角定理、垂径定理.4.(2022•思明区校级二模)如图,四边形ABCD是⊙O的内接四边形,AC是⊙O直径,BE∥AD交DC 延长线于点E,若BC平分∠ACE.(1)求证:BE是⊙O的切线;(2)若BE=3,CD=2,求⊙O的半径.【分析】(1)连接OB,由条件可以证明OB∥DE,从而证明OB⊥BE;(2)由垂径定理求出AD长,从而由勾股定理可求AC长.【解答】(1)证明:连接OB,∵″OB=OC,∴∠OBC=∠OCB,∵∠BCE=∠OCB,∴∠OBC=∠BCE,∴OB∥DE,∵AC是⊙O直径,∴AD⊥DE,∵BE∥AD,∴BE⊥DE,∴OB⊥BE,∵OB是⊙O半径,∴BE是⊙O切线;(2)解:延长BO交AD于F,∵∠D=∠DEB=∠EBF=90°,∴四边形BEDF是矩形,∴BF⊥AD,DF=BE=3,∴AD=2DF=6,∵AC2=AD2+CD2,∴AC2=62+22=40,∴AC=∴⊙O【点评】本题考查切线的判定,矩形的判定和性质,垂径定理,勾股定理,用到的知识点较多,关键是熟练掌握知识点,并能灵活应用.5.(2023•封开县一模)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)求证:EF是⊙O的切线;(2)当AB=5,BC=6时,求DE的长.【分析】(1)连接OD,由AC=AB,根据等边对等角得到一对角相等,再由OD=OB,根据等边对等角得到又一对角相等,等量代换可得一对同位角相等,根据同位角相等两直线平行可得OD与AC平行,又EF垂直于AC,根据垂直于两平行线中的一条,与另一条也垂直,得到EF与OD也垂直,可得EF为圆O的切线;(2)连接AD,由AB为圆的直径,根据直径所对的圆周角为直角可得∠ADB=90°,即AD与BC垂直,又AC=AB,根据三线合一得到D为BC中点,由BC求出CD的长,再由AC的长,利用勾股定理求出AD的长,三角形ACD的面积有两种求法,AC乘以DE除以2,或CD乘以AD除以2,列出两个关系式,两关系式相等可求出DE的长.【解答】(1)证明:连接OD,∵AB=AC,∴∠C=∠OBD,∵OD=OB,∴∠1=∠OBD,∴∠1=∠C,∴OD∥AC,∵EF⊥AC,∴EF⊥OD,∴EF是⊙O的切线;(2)连接AD,∵AB为⊙O的直径,∴∠ADB=90°,又∵AB=AC,且BC=6,∴CD=BD=12BC=3,在Rt△ACD中,AC=AB=5,CD=3,根据勾股定理得:AD=4,又S△ACD =12AC•ED=12AD•CD,即12×5×ED=12×4×3,∴ED=12 5.【点评】此题考查了等腰三角形的性质,圆周角定理,平行线的性质,勾股定理,三角形面积的求法,以及切线的判定,其中证明切线的方法为:有点连接圆心与此点,证垂直;无点过圆心作垂线,证明垂线段长等于圆的半径.本题利用的是第一种方法.6.(2023•宁德模拟)如图,OM 为⊙O 的半径,且OM =3,点G 为OM 的中点,过点G 作AB ⊥OM 交⊙O 于点A ,B ,点D 在优弧AB 上运动,将AB 沿AD 方向平移得到DC ;连接BD ,BC .(1)求∠ADB 的度数;(2)如图2,当点D 在MO 延长线上时,求证:BC 是⊙O 的切线.【分析】(1)连接AO ,BO ,先根据特殊角的正弦值可得∠OAG =30°,再根据等腰三角形的性质可得∠OAG =∠OBG =30°,从而可得∠AOB =120°,然后根据圆周角定理即可得;(2)连接AO ,BO ,CO ,先证出四边形ABCD 是平行四边形,再根据等边三角形的判定与性质可得AB =AD ,根据菱形的判定可得四边形ABCD 是菱形,根据菱形的性质可得CB =CD ,然后根据SSS 定理证出△COB ≌△COD ,根据全等三角形的性质可得∠OBC =∠ODC =90°,最后根据圆的切线的判定即可得证.【解答】(1)解:如图1,连接AO ,BO .∵点G 为OM 的中点,且OM =3,∴OG =12OM =32,OA =OB =OM =3,∵AB ⊥OM ,在Rt △AOG 中,OG =12OA .∴∠OAG =30°,又∵OA =OB ,∴∠OAG=∠OBG=30°,∴∠AOB=120°,∴∠ADB=12∠AOB=60°.(2)证明:如图2,连接AO,BO,CO,由平移得:AB=DC,AB∥DC,∴四边形ABCD是平行四边形,∵OM⊥AB,点D在MO延长线上,∴DM⊥CD,∵OA=OB,AB⊥OM,∴AG=BG,∴DM垂直平分AB,∴AD=BD,∵∠ADB=60°,∴△ABD为等边三角形,∴AB=AD,∴平行四边形ABCD是菱形,∴CB=CD,在△COB和△COD中,CB=CDOB=ODOC=OC,∴△COB≌△COD(SSS),∴∠OBC=∠ODC=90°,又∵OB是⊙O的半径,。

切 线+++第1课时 圆的切线的判定与性质++课件++2024—2025学年华东师大版数学九年级下册

切 线+++第1课时 圆的切线的判定与性质++课件++2024—2025学年华东师大版数学九年级下册

证明:连接DE,过点D作DF⊥OB于点F. ∵OA切⊙D于点E,∴DE⊥OA. 又∵DF⊥OB,D是∠AOB平分线上一点, ∴DE=DF,∴OB与⊙D相切.
知识点2:切线的性质
3.(长春中考)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35
°,则∠ACB的度数为
(C )
A.35°
B.45°
(2)解:在Rt△EOF中,设半径为r,即OE=OB=r,则OF=r+1, 4 OE r
∵sin∠AFE=5=OF=r+1, ∴r=4,∴AB=2r=8, 在Rt△ABC中, sin∠ABC=AACB=sin∠AFE=45,AB=8, ∴AC=45×8=352,∴BC= AB2-AC2=254.
的延长线于点 D.若⊙O 的半径为 1,则 BD 的长为
(D )
A.1
B.2
C. 2
D. 3
8.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过点 C 的切线互相垂 直,垂足为 D. (1)求证:AC 平分∠DAB;
3 (2)若 AD=8,tan∠CAB=4,求边 AC 及 AB 的长.
如图,△ABC中,AB=AC,以AB为直径作⊙O,与BC交于点D,过D作 AC的垂线,垂足为点E. (1)求证:点D是BC的中点; (2)求证:DE是⊙O切线. 【思路分析】(1)根据“三线合一”证明; (2∵AB是直径,∴AD⊥BC, 又∵AB=AC,∴BD=CD, ∴点D是BC的中点. (2)连接OD,∵AO=BO, BD=CD, ∴OD∥AC,又∵DE⊥AC, ∴DE⊥OD,∴DE是⊙O的切线. 【名师支招】切线的判定方法2,3的选择标准是看直线与圆的公共点是 否已知,若已知公共点,则连圆心与公共点,证垂直;若公共点未知, 则过圆心作垂线,证d=r.

九年级数学圆的切线的知识点

九年级数学圆的切线的知识点

九年级数学圆的切线的知识点数学中的圆是一个常见的几何图形,它有许多有趣的性质,其中之一就是切线。

切线是一个与圆相切于一点且与圆没有其它的交点的直线。

在这篇文章中,我们将探讨九年级数学课程中关于圆的切线的知识点。

1. 切线定义及性质切线是一个特殊的直线,它与圆只有一个交点,且与圆在该点的切线相切。

切线的性质有以下几点:(1) 切线与半径垂直:切线与从切点到圆心的半径垂直相交。

(2) 弦切角相等:切线和过切点的弦所夹的角相等。

(3) 切线长度相等:从圆外的任意一点引切线,得到的切线长度都相等。

2. 切线的判定方法在几何中,判断一条直线是否为圆的切线,有以下两种判定方法:(1) 切线判定法一:若直线与圆只有一个交点,并且该交点到圆心的距离等于圆的半径,则该直线是圆的切线。

(2) 切线判定法二:若直线与圆相交,且与圆的切点处平分被切角,那么该直线也是圆的切线。

3. 切线的性质在解题中的应用切线的性质经常在解题过程中被使用,下面介绍几个常见的应用情况:(1) 切线的长度:我们可以利用切线的性质来求解切线的长度。

根据切线与半径垂直的性质,我们可以使用勾股定理或者勾股定理的变形来求解切线的长度。

(2) 弦的长度:通过切线和弦的切角相等的性质,我们可以利用已知的切线长度和弦的长度来计算未知的切线或者弦的长度。

(3) 切线的方程:切线与圆的关系可以通过方程来表示。

我们可以利用切线判定法一中的条件,得到切线方程的一般形式。

4. 实际生活中的切线应用切线在实际生活中有许多应用,下面介绍几个例子:(1) 轮胎的设计:车辆的轮胎通常是圆形的,轮胎的切线对于保证行驶的稳定性非常重要。

(2) 光学反射:光线在两种介质之间传播时,若入射角等于反射角,则光线与界面的交点所在的直线即为切线。

(3) 经济决策:在经济学中,曲线图表上的切线可以表示某一点的边际效应,帮助决策者做出合理的判断。

总结起来,九年级数学课程中关于圆的切线的知识点包括切线的定义及性质,切线的判定方法,切线性质的应用,以及实际生活中的切线应用。

2022年中考数学大题圆证明切线的两种常用方法及专项练习题汇总

2022年中考数学大题圆证明切线的两种常用方法及专项练习题汇总

2022中考数学圆综合大题证明切线的两种常用方法类型1直线与圆有交点方法归纳:直线过圆上某一点,证明直线是圆的切线时,只需“连半径,证垂直,得切线”.“证垂直”时通常利用圆中的关系得到90°的角,如直径所对的圆周角等于90°等.【例1】如图,AB=AC,AB是⊙O的直径,⊙O交BC于D,DM⊥AC于M.求证:DM与⊙O相切.1.(朝阳中考)如图,AB是⊙O的弦,OA⊥OD,AB,OD交于点C,且CD=BD.(1)判断BD与⊙O的位置关系,并证明你的结论;(2)当OA=3,OC=1时,求线段BD的长.2.(德州中考)如图,已知⊙O的半径为1,DE是⊙O的直径,过D作⊙O的切线,C是AD的中点,AE交⊙O于B点,四边形BCOE是平行四边形.(1)求AD的长;(2)BC是⊙O的切线吗?若是,给出证明,若不是,说明理由.3.(毕节中考)如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.类型2不确定直线与圆是否有公共点方法归纳:直线与圆没有已知的公共点时,通常“作垂直,证半径,得切线”.证明垂线段的长等于半径常用的方法是利用三角形全等或者利用角平分线上的点到角的两边的距离相等.【例2】如图,AB=AC,D为BC中点,⊙D与AB切于E点.求证:AC与⊙D相切.4.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC 相切于点M,与AB,AD分别相交于点E,F.求证:CD与⊙O相切.5.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,E为AB上的一点,DE=DC,以D为圆心,DB长为半径作⊙D,AB=5,EB=3.(1)求证:AC是⊙D的切线;(2)求线段AC的长.参考答案【例1】 证明:法一:连接OD.∵AB =AC ,∴∠B =∠C.∵OB =OD ,∴∠BDO =∠B.∴∠BDO =∠C.∴OD ∥AC.∵DM ⊥AC ,∴DM ⊥OD.∴DM 与⊙O 相切.法二:连接OD ,AD. ∵AB 是⊙O 的直径,∴AD ⊥BC.∵AB =AC ,∴∠BAD =∠CAD.∵DM ⊥AC ,∴∠CAD +∠ADM =90°.∵OA =OD ,∴∠BAD =∠ODA.∴∠ODA +∠ADM =90°.即OD ⊥DM ,∴DM 是⊙O 的切线.1.(1)连接OB ,∵OA =OB ,∴∠OAC =∠OBC.∵OA ⊥OD ,∴∠AOC =90°.∴∠OAC +∠OCA =90°.∵DC =DB ,∴∠DCB =∠DBC.∵∠DCB =∠ACO ,∴∠ACO =∠DBC.∴∠DBC +∠OBC =90°.∴∠OBD =90°.∵点B 是半径OB 的外端,∴BD 与⊙O 相切.(2)设BD =x ,则CD =x ,OD =x +1,OB =OA =3,由勾股定理得:32+x 2=(x +1)2.解得x =4.∴BD =4.2.(1)连接BD ,则∠DBE =90°.∵四边形BCOE 是平行四边形,∴BC ∥OE ,BC =OE =1.在Rt △ABD 中,C 为AD 的中点,∴BC =12AD =1.∴AD =2.(2)BC 是⊙O 的切线,理由如下:连接OB ,由(1)得BC ∥OD ,且BC =OD.∴四边形BCDO 是平行四边形.又∵AD 是⊙O 的切线,∴OD ⊥AD.∴四边形BCDO 是矩形.∴OB ⊥BC ,∴BC 是⊙O 的切线.3.(1)连接OA ,OD ,∵D 为BE 的下半圆弧的中点,∴∠FOD=90°.∵AC=FC,∴∠CAF=∠AFC.∵∠AFC=∠OFD,∴∠CAF=∠OFD.∵OA=OD,∴∠ODF=∠OAF.∵∠FOD=90°.∴∠OFD+∠ODF=90°.∴∠OAF+∠CAF=90°,即∠OAC=90°.∴AC与⊙O相切.(2)∵半径R=5,EF=3,∴OF=OE-EF=5-3=2.在Rt△ODF中,DF=52+22=29.【例2】法一:连接DE,作DF⊥AC,垂足为F.∵AB是⊙D的切线,∴DE⊥AB.∵DF⊥AC,∴∠DEB=∠DFC=90°.∵AB=AC,∴∠B=∠C.∵BD=CD,∴△BDE≌△CDF.∴DF=DE.∴F在⊙D上.∴AC是⊙D的切线.法二:连接DE,AD,作DF⊥AC,F是垂足.∵AB与⊙D相切,∴DE⊥AB.∵AB=AC,BD=CD,∴∠DAB=∠DAC.∵DE⊥AB,DF⊥AC,∴DE=DF.∴F在⊙D上,∴AC与⊙D相切.4.证明:连接OM,过点O作ON⊥CD,垂足为N,∵⊙O与BC相切于M,∴OM⊥BC.∵正方形ABCD中,AC平分∠BCD,又∵ON⊥CD,OM⊥BC,∴OM=ON.∴N在⊙O上.∴CD与⊙O相切.5.(1)证明:过点D作DF⊥AC于F.∵∠ABC=90°,∴AB⊥BC.∵AD平分∠BAC,DF⊥AC,∴BD=DF.∴点F在⊙D上.∴AC是⊙D的切线.(2)在Rt△BDE和Rt△FDC中,∵BD=DF,DE=DC,∴Rt△BDE≌Rt△FDC(HL),∴EB=FC.∵AB=AF,∴AB+EB=AF+FC,即AB+EB=AC,∴AC=5+3=8.2022年中考数学复习专题---圆中阴影面积计算班级:___________姓名:___________学号:___________1.如图,直线y kx b=+经过点M(1,√3)和点N(1−,3√3),A、B是此直线与坐标轴的交点.以AB为直径作⊙C,求此圆与y轴围成的阴影部分面积.2.如图,AAAA是⊙OO的直径,CC,DD是圆上两点,且有BD�=CCDD�,连结AADD,AACC,作DDDD⊥AACC的延长线于点DD.(1)求证:DDDD是⊙OO的切线;(2)若AADD=2√3,∠AADDDD=60∘,求阴影部分的面积.(结果保留ππ)3.如图,AAAA是圆OO的直径,AACC⊥AAAA,DD为圆OO上的一点,AACC=DDCC,延长CCDD交AAAA的延长线于点DD.(1)求证:CCDD为圆OO的切线.(2)若OOFF⊥AADD,OOFF=1,30∠=o,求圆中阴影部分的面积.(结果保留ππ)OAF4.如图,⊙OO是等边ΔAAAACC的外接圆,连接AAOO并延长至点PP,且AAAA=AAPP.(1)求证:PPAA是⊙OO的切线;(2)若AAAA=2√3,求图中阴影部分的面积.(结果保留ππ和根号)5.如图,OO为等边△AAAACC的外接圆,DD为直径CCDD延长线上的一点,连接AADD,AADD=AACC.(1)求证:AADD是⊙O的切线;(2)若CCDD=6,求阴影部分的面积.6.如图,AC为圆O的直径,弦AD的延长线与过点C的切线交于点B,E为BC中点,AC= 4√3,BC=4.(1)求证:DE为圆O的切线;(2)求阴影部分面积.7.已知AB是⊙O的直径,点C是圆O上一点,点P为⊙O外一点,且OP∥BC,∠P=∠BAC.(1)求证:P A为⊙O的切线;(2)如果OP=AB=6,求图中阴影部分面积.8.如图,AAAA为⊙OO的直径,弦CCDD⊥AAAA,垂足为DD,CCDD=4√5,连接OOCC,OODD=2DDAA,FF为圆上一点,过点FF作圆的切线交AAAA的延长线于点GG,连接AAFF,AAFF=AAGG.(1)求⊙OO的半径;(2)求证:AAFF=FFGG;(3)求阴影部分的面积.9.如图,△ABC中,∠C=90º,∠ABC=2∠A,点O在AC上,OA=OB,以O为圆心,OC为半径作圆.(1)求证:AB是⊙O的切线;(2)若BC=3,求图中阴影部分的面积.10.如图,在△ABC中,∠CC=60∘,⊙OO是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙OO的切线;(2)若AB=2√3,求图中阴影部分的面积.(结果保留ππ和根号)11.如图,AB为圆O的直径,射线AD交圆O于点F,点C为劣弧BF的中点,过点C作CE⊥AD,垂足为E,连接AC(1)求证:CE是圆O的切线(2)若∠BAC=30°,AB=4,求阴影部分的面积12.如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD于G,OG:OC=3:5,AB=8.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=15º,将弧CE沿弦CE翻折,交CD于点F,求图中阴影部分的面积.13.如图,已知⊙O是△ABC的外接圆,AC是直径,∠A=30°,BC=4,点D是AB的中点,连接DO并延长交⊙O于点P.(1)求劣弧PC的长(结果保留π);(2)过点P作PF⊥AC于点F,求阴影部分的面积(结果保留π).14.如图,四边形ABCD内接于圆O,对角线AC是圆O的直径,DB平分∠ADC,AC长10cm.(1)求点O到AB的距离;(2)求阴影部分的面积.15.如图,在矩形ABCD中,AB=8cm,BC=4cm,以点A为圆心,AD为半径作圆与BA 的延长线交于点E,连接CE,求阴影部分的面积.16.如图,∠APB的平分线过点O,以O点为圆心的圆与PA相切于点C,DE为⊙O的直径.(1)求证:PB是⊙O的切线;(2)若∠CPO=50°,∠E=25°,求∠POD;(3)若⊙O的半径为2,CE=2√3,求阴影部分的面积.17.如图,点P在圆O外,PA与圆O相切于A点,OP与圆周相交于C点,点B与点A 关于直线PO对称,已知OA=4,∠POA=60°求:(1)弦AB的长;(2)阴影部分的面积(结果保留π).18.如图,⊙O是Rt△ABC的外接圆,直径AB=4,直线EF经过点C,AD⊥EF于点D,∠ACD=∠B.(1)求证:EF是⊙O的切线;(2)若AD=1,求BC的长;(3)在(2)的条件下,求图中阴影部分的面积.。

初中九年级上册数学课件 圆 切线的性质

初中九年级上册数学课件 圆 切线的性质
( 1) 求∠AEC的度数;
(2)求证:四边形OBEC是菱形.
D
C
E
l
A
O
B
6、如图,⊙O的弦AD∥BC,过点D的切线交BC 的延长线于点E,AC∥DE交BD于点H,DO 及延长线分别交AC、BC于点 G、F.
(1) 求证:DF垂直平分AC; (2)求证:FC=CE; (3)若弦AD=5㎝,AC=8㎝,求⊙O的半径.
OM﹤OA,这说明圆心O到直线 a的距离小于半径OA,于是直

a
线a就要与圆相交,而这与直线
O
a是圆O的切线相矛盾。
因此,OA与直线a垂直。
MA
a
性质3:圆的切线垂直于过切点的半径。
符号语言 ∵ 直线a是圆O的切线,切点为A
∴ OA ⊥ a
练习1
AC是直径,AB和CD
是切线,判断AB和CD
的位置关系
3、AB是⊙O的直径,AE平分∠BAC交⊙O于点E, 过点E作⊙O的切线交AC于点D,试判断△AED的 形状,并说明理由.
4、已知的半径为R,AB是⊙O的直径,D是 AB延长线上一点,DC是⊙O的切线,C是切 点,连结AC,若∠CAB=30o, 求BD的长.
A
O
B D
C
5、如图,⊙O的直径AB =4,C为圆周上一点, AC =2,过点C作⊙O的切线 l,过点B作l的 垂线BD,垂足为D,BD与⊙O 交于点E.
圆的切线的性质
知识回顾 证明一条直线是圆的切线有哪些方法?
1、直线与圆交点的个数:只有一个交点。 2、圆心到直线的距离与半径的大小关系,即d=r。 3、经过半径外端且垂直于这条半径的直线是圆的切线。
解题方法:有交点,连半径,证垂直。
无交点,作垂直,证半径。

初中数学切线的性质和判定

初中数学切线的性质和判定

图29-3
线的性质和判定
解 析 (1)由切线的性质,即可得OA⊥PA,OB⊥PB,又由圆周角 定理,求得∠AOB的度数,继而求得∠APB的大小; (2)由切线长定理,可求得∠APO的度数,继而求得∠AOP的度数,易得 PO是AB的垂直平分线,然后利用三角函数的性质,求得AD与OD的长.
┃ 切线的性质和判定
切线的性质和判定
中考预测
如图 29-6,△ABC 内接于⊙O,∠B=60°,
CD 是⊙O 的直径,点 P 是 CD 延长线上的一点,
且 AP=AC.
(1)求证:PA 是⊙O 的切线;
(2)若 PD= 3,求⊙O 的直径.
图29-6
切线的性质和判定

(1)证明:连接 OA, ∵∠B=60°,
∴∠AOC=2∠B=120°.
切线的性质和判定
[方法点析] 解三角形内切圆问题,主要是切线长定理的运 用.解决此类问题,常转化到直角三角形中,利用勾股定理或 直角三角形的性质及三角函数等解决.
┃ 切线的性质和判定
回归教材
切线问题中必需的半径
教材母题
如图 29-5,设 AB 是⊙O 的直径,如 果圆上点 D 恰使∠ADC=∠B,那么直线 CD 与⊙O 相切吗?若相切,请给出证明.
∴S△AOB=12×AB×OD=12×10 3×5=25 3(cm2).
切线的性质和判定
[方法点析] (1)利用过圆外一点作圆的两条切线,这两条切 线的长相等,是解题的基本方法.(2)利用方程思想求切线长常 与勾股定理,切线长定理,圆的半径相等紧密相连.
切线的性质和判定
探究四 三角形的内切圆
命题角度: 1. 三角形的内切圆的定义; 2. 求三角形的内切圆的半径.

人教版九年级初中数学上册第二十四章圆切线的性质定理

人教版九年级初中数学上册第二十四章圆切线的性质定理

判定定理的表述
圆切线的判定定理:过圆外一点有且只有一条直线与圆切于一点。
证明方法:利用反证法,假设过圆外一点有两条直线与圆切于一点,则这两条直线重合,这 与已知条件矛盾,因此假设不成立,故原命题成立。
应用:在解题过程中,可以利用圆切线的判定定理来判断某一直线是否为圆的切线。
注意事项:在应用圆切线的判定定理时,需要注意前提条件是“过圆外一点”,否则结论可 能不成立。
性质定理的证明
定义:圆切线的定义是过半径的外端且垂直于这条半径的直线 性质定理:从圆外一点引圆的两条切线,它们的切线长相等 证明方法:利用相似三角形的性质进行证明 定理的应用:在解题中,可以利用这个定理来证明一些与圆有关的题目
求解与圆切线相关的问题
圆切线的定义和性质 圆切线的判定方法 圆切线的应用举例 圆切线与其他几何图形的联系
判定定理的应用
判定圆内接四边形的对角是否互补 判定一个四边形是否为圆外切四边形 判定一个四边形是否为圆内接四边形 判定一个四边形是否为圆外切四边形
性质定理的表述
圆切线的定义:过半径的外端,并且垂直于这条半径的直线是圆的切线。 性质定理:从圆外一点引圆的两条切线,它们的切线长相等。 性质定理的证明:利用勾股定理和切线的定义进行证明。 性质定理的应用:在解题中利用此定理进行证明和计算。
注意事项:注意题 目中的隐含条件, 避免出现错误
拓展:通过练习和 巩固,提高解题能 力和思维水平
与圆切线相关的其他知识点
圆切线的定义和性质
圆切线的判定定理
圆切线的应用
圆切线与其他几何图形的联系
拓展知识的应用领域
几何学:圆切线在几 何学中有着广泛的应 用,如圆内接四边形、 圆与圆的位置关系等
物理学:圆切线在 物理学中也有着重 要的应用,如圆周 运动、弹性力学等

专题08 切线的判定与性质(解析版) -2021-2022学年九年级数学之专攻圆各种类型题

专题08  切线的判定与性质(解析版) -2021-2022学年九年级数学之专攻圆各种类型题

专题08 切线的判定与性质概念规律重在理解1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.OA为⊙O的半径,BC ⊥OA于A。

则BC为⊙O的切线。

注意:在此定理中,“经过半径的外端”和“垂直于这条半径”,两个条件缺一不可,否则就不是圆的切线。

2.判断一条直线是一个圆的切线有三个方法:(1)定义法:直线和圆只有一个公共点时,我们说这条直线是圆的切线;(2)数量关系法:圆心到这条直线的距离等于半径(即d=r)时,直线与圆相切;(3)判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.3.证切线时辅助线的添加方法(1) 有交点,连半径,证垂直;(2) 无交点,作垂直,证半径.4.有切线时常用辅助线添加方法见切点,连半径,得垂直.5.切线的其他重要结论(1)经过圆心且垂直于切线的直线必经过切点;(2)经过切点且垂直于切线的直线必经过圆心.6.切线的性质定理:圆的切线垂直于经过切点的半径.直线l是⊙O 的切线,A是切点,直线l ⊥OA.说明:利用切线的性质解题时,常需连接辅助线,一般连接圆心与切点,构造直角三角形,再利用直角三角形的相关性质解题.典例解析掌握方法【例题1】(2021吉林长春)如图,AB是⊙O的直径,BC是⊙O的切线,若∠BAC=35°,则∠ACB的大小为()A.35°B.45°C.55°D.65°【答案】C【解析】先根据切线的性质得到∠ABC=90°,然后利用互余计算出∠ACB的度数.∵BC是⊙O的切线,AB是⊙O的直径,∴AB⊥BC,∴∠ABC=90°,∴∠ACB=90°﹣∠BAC=90°﹣35°=55°.【例题2】(2021广西玉林)如图,⊙O与等边△ABC的边AC,AB分别交于点D,E,AE是直径,过点D作DF⊥BC于点F.(1)求证:DF是⊙O的切线;(2)连接EF,当EF是⊙O的切线时,求⊙O的半径r与等边△ABC的边长a之间的数量关系.【答案】见解析。

5种做切线的方法

5种做切线的方法

5种做切线的方法数学,俺是专业的;提分,咱是内行的;我是李文龙,我爱数学,数学使我快乐摘要圆的切线----是初高中都比较常见的研究对象,今天我们要研究的是如何利用尺规作图画出过定点作定圆的切线点在圆上如图,P在圆O上,过P作圆O的切线方法1:如下图,连接OP,过点P作圆OP的垂线,证明略方法2:如下图①在圆O上任取一点异于P的点A;②以A为圆心,AP为半径做圆(红色),交圆O于B③以P为圆心,PB为半径作圆(蓝色),交圆A于C④连接PC,即为圆O的切线证明:辅助线如下图,由同圆的半径相等可知,OP=OB,PB=PC,AP=AB=AC,设∠BPA=∠PBA=x,∠OPB=y则∠CPA=x,∠BAQ=2x,由于四边形ABDP是圆O的内接四边形则∠D=∠BAQ=2x因此∠BOP=4x易证OA垂直平分BP则∠AOP=2x∵∠AOP+∠BPO=90°即2x+y=90°因此∠OPC=90°点评:方法1简单粗暴,不过作垂线也需要一定的步骤,不能直接做,总计需要四步方法2证明虽然费力一些,但作图只需要三步,是最简的作图方式,当然证明的过程还可以更简单,读者们不妨试试点在圆外如图,P在圆O外,过P作圆O的切线方法1:如下图①连接OP②取OP中点A③以A为圆心,AO为半径作圆,交圆O于B和C④连接PB和PC,即为所求切线证明:如下图,连接OB,在圆A中,OP是直径,则∠PBO=90°,因此PB是圆O切线,同理可证PC也是切线方法2:如下图①连接PO并延长,交圆O于另一点B②以O为圆心,OP为半径作圆(蓝色),交直线OP与点C③以C为圆心,AB为半径作圆(红色),交蓝色的圆O于D和E④连接PD和PE,即为所求切线证明:如下图,连接CD,并过O作OF⊥PD,设绿圆半径为R,则红圆半径为2R,即CD=2R而在蓝圆中,∠PDC=90°,PC=2PO,因此由相似可知CD=2OF 这样OF=R,所以OF是绿圆的半径,又OF⊥PD,那么PD就是绿圆的切线,同理PE也是切线而在刚才的图形中,还有另一个有意思的结论,如下图,假如我们设红圆和绿圆的交点为E,再连接PE交绿圆于G,那么G一定是PE 的中点,这一知识点在2016年北京市东城区初三一模压轴题中要求画过,被新定义为“相邻线”,感兴趣读者的可以去看看。

人教版九年级数学上册《圆》阶段方法专训 证明圆的切线的七种常用方法

人教版九年级数学上册《圆》阶段方法专训  证明圆的切线的七种常用方法

阶段方法专训 (2)求线段 AC 的长. 解:在 Rt△BED 和 Rt△FCD 中, DE=DC, DB=DF, ∴Rt△BED≌Rt△FCD(HL).∴BE=CF=2. ∵∠B=90°,BD 是半径,∴AB 是⊙D 的切线. 又∵AF 切⊙D 于 F,∴AF=AB=5. ∴AC=AF+CF=5+2=7.
阶段方法专训 证明:连接 OC. ∵⊙O 的直径 AB=12,∴OB=OC=6. ∵PB=4,∴PO=10. 在△POC 中,PC2+CO2=82+62=100,PO2=102=100, ∴PC2+OC2=PO2. ∴∠OCP=90°,即 OC⊥PC. 又∵OC 是半径,∴PC 是⊙O 的切线.
阶段方法专训 2.(2018·青海)如图,△ABC 内接于⊙O,∠B=60°,CD 是⊙O
阶段方法专训 7.如图,四边形 ABCD 中,∠A=∠ABC=90°,AD+BC=CD,
以 AB 为直径作⊙O.求证:⊙O 与边 CD 相切.
阶段方法专训 证明:如图,连接 DO 并延长,交 CB 的延长线于点 E. 易证△AOD≌△BOE(ASA), ∴AD=BE,∠E=∠ADO. ∵AD+BC=CD,∴CD=CE. ∴∠E=∠CDE=∠ADO. 作 OF⊥CD 于点 F,∴易得 OF=OA. ∴⊙O 与边 CD 相切.
阶段方法专训 4.如图,已知四边形 OABC 的三个顶点 A,B,C 在以 O 为圆
心的半圆上,过点 C 作 CD⊥AB,分别交 AB,AO 的延长线 于点 D,E,AE 交半圆 O 于点 F,连接 CF,且∠E=30°, 点 B 是A︵C的中点. (1)判断直线 DE 与半圆 O 的位置关系,并说明理由;
人教版 九年级上
第二十四章 圆
阶段方法专训 证明圆的切线的七种常用方法

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

人教版数学九年级上册24.2.2切线的判定与性质课件(共24张PPT)

知识回顾
直线与圆相切的判定: 1.利用定义判定:直线和圆只有一
个公共点时,直线与圆相切. 2.利用直线与圆心距离判定:当圆
心与直线的距离等于该圆的半径时,直 线与圆相切.
O
l
O d=r
l
新知探究
知识点1 切线的判定
思考:如图,在⊙O中,经过半径OA 的外端点 A 作直线 l⊥OA. (1)圆心O到直线 l 的距离是多少?
l
∴OA⊥l
ห้องสมุดไป่ตู้ 反证法证明切线的性质
如图,直线CD与⊙O相切,求证:⊙O的半径OA
与直线CD垂直.
证明:(1)假设AB与CD不垂直,过
B
点O作一条直线垂直于CD,垂足为M;
(2)则OM<OA,即圆心到直线CD的
O
距离小于⊙O的半径,因此,CD与⊙O
相交.这与已知条件“直线与⊙O相切”相 C 矛盾;
A MD
证明:连接OA,OD,作OE⊥AC 于E . ∵ ⊙O与AB相切于E, ∴OD⊥AB.
又∵△ABC为等腰三角形,
O是底边BC的中点,
B
A D
1
O
E C
∴AO平分∠BAC,
∴OD=OE ,即OE是⊙O半径.
∴AC是⊙O的切线. 方法总结:无交点,作垂直,证半径.
随堂练习
1.如图,已知⊙O的直径AB与弦AC的夹角为31°,
d l
A
3.判定定理:经过半径的外端并且垂直于
O
这条半径的直线是圆的切线.
l
A
已 知 : 直 线 AB 经 过 ⊙ O 上 的 点 C , 并 且 OA=OB ,
CA=CB.求证:直线AB是⊙O的切线.
证明:连接OC.

初中数学人教九年级上册第二十四章圆与圆有关的位置关系(切线复习课)PPT

初中数学人教九年级上册第二十四章圆与圆有关的位置关系(切线复习课)PPT
知识 重现
一.切线的定义:直线与圆有唯一公共点时称直线 和圆相切,这条直线叫圆的切线,这个公共点叫
切点。 二.切线的判断方法: 1.定义法:与圆有唯一公共点的直线是圆的切线 2.距离法:如果圆心到直线的距离等于半径,那 么这条直线是圆的切线 3.判定定理法:经过半径的外端并且垂直于这条 半径的直线是圆的切线 三.切线的证明规律: 1.有公共点时:连半径证垂直 2.无公共点时:作垂直证半径
例2;如图,圆O是△ABC的内切圆,分别切AB,BC,CA于点
D,E,F.设圆O的半径为r,BC=a,CA=b,AB=c,
求证: S△ABC1r(abc) 2
思考:当∠C=90 °时,r与a, b, c又有 怎样的关系式?
r ab ,rabc
abc
2
练一练
1.如图,点O是△ABC的内切圆的圆心,⊙O分别切AB、AC于点D、F,点
作业:导学案45页,46页
谢谢指导
四.切线的性质
o
1.圆心到切线的距离等于半径
2.切线的性质定理:圆的切线垂直于过切点的C半径. A
D
(应用技巧:遇到切线:找切点连半径得垂直。)
3.切线长定理
A
.H
O
1
2P
B
从圆外一点可以引圆的两条切线,它们的切线 长相等,这一点和圆心的连线平分两条切线的夹角。 几何书写:
∵PA,P B是切线,A,B是切点 ∴OA ⊥ PA,OB ⊥ PB,PA=PB, ∠1= ∠2
P是优弧上一动点(点D、F除外),若∠BAC=80°,则∠DPF=_ _
A
50°
2、如图,AD、AE、CB均为⊙O的切
DO F
P
B
C
线,D、E、F分别为切点,AD=8,

人教版数学九年级上册判定圆切线的二、五法则

人教版数学九年级上册判定圆切线的二、五法则

人教版数学九年级上册判定圆切线的二、五法则判定圆的切线是初中数学的一个重要内容。

同学们在学习时一定要扎实掌握切线的判定。

下面就和同学们谈谈判定圆切线的二、五法则,请同学们学习时加以借鉴。

一方法篇判定切线的两种方法1、定义法:过圆心作直线的垂线,设圆的半径为r,垂线段的长为d,当d=r时,直线就是圆的切线。

特点:垂足需要说明是在已知的圆上的,方法是证明垂线段等于已知的一条半径。

2、判定定理法:经过半径的外端并且垂直于半径的直线是圆的切线。

特点:半径与直线都有了,关键是证明它们的位置关系是垂直。

二、步骤篇在具体判定切线时,同学们要注意如下五条基本原则:1、关注一个等腰三角形---------两腰是半径的等腰三角形。

这个三角形在圆中是经常出现的,一定要引起同学们的高度关注,它主要是提供等角。

2、构造一个圆周角-----遇直径,构造直径上的圆周角,它主要是提供一个直角。

3、连接一条半径-----直线经过的圆上点与圆心的连线。

它主要是提供要垂直的半径。

4、作出一条垂线段------过圆心向所要证是切线的直线作垂线。

它主要是提供一条“准半径”。

5、活用一条原理-------等量代换。

只要同学们能熟记上面的二法五步的基本要求,判定切线就会顺利闯关的。

三应用篇1、等腰三角形+半径,利用三角形的全等证直角判定切线例1如图1,AB是⊙O的直径,BC⊥AB于点B,OC∥AD,求证:CD为⊙O的切线。

分析:点D已经是圆上的点,所以只需连接OD,设法证明DO⊥CD即可。

证明:连接OD,因为OC∥AD,所以∠DAO=∠COB,∠ODA=∠COD.因为OA=OD,所以∠DAO=∠ODA,所以∠COB=∠COD.在三角形COD和三角形COB中,⎪⎩⎪⎨⎧=∠=∠=CO CO COB COD OB OD ,所以△COD ≌△COB ,∠CBO=∠CDO.因为BC ⊥AB 于点B,所以∠CBO=90°,所以∠CDO=90°,所以DO ⊥CD ,所以CD 是为⊙O 的切线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.如图,在Rt△ABC中,∠C=90°,D为BC的中点.以 AC为直径的⊙O交AB于点E.
求证:DE是⊙O的切线.
证明:如图,连接 OE,CE,∵AC 是⊙O 的直径, ∴∠AEC=90°,∴∠BEC=180°-∠AEC=90°. 在 Rt△ BEC 中,点 D 是斜边 BC 的中点, ∴BD=CD=DE=12BC,∴∠DEC=∠DCE.又∵OE=OC, ∴∠OEC=∠OCE,∴∠DEC+∠OEC=∠DCE+∠OCE= ∠DCO=90°,即∠DEO=90°,∴DE⊥OE.又∵OE 是半径, ∴DE 是⊙O 的切线.
7.已知:如图所示,同心圆O,大圆的弦AB=CD,且AB 是小圆的切线,切点为E.求证:CD是小圆的切线.
证明:如图所示,连接 OE,OA,OC,过点 O 作 OF⊥CD 于 F. ∴CF=12CD.∵AB 与小圆切于点 E,O 为圆心,∴OE⊥AB. ∴AE=12AB.又∵AB=CD,∴AE=CF. 在 Rt△ AEO 和 Rt△ CFO 中,AE=CF,AO=CO, ∴Rt△ AEO≌Rt△ CFO,∴OE=OF.∴CD 是小圆的切线.
(2)过点 D 作 DF⊥AB 于点 F,若 BE=3 3,DF=3, 求图中阴影部分的面积. 解:∵∠ABC 的平分线交⊙O 于点 D,DE⊥BE, DF⊥AB,∴DE=DF=3. ∵BE=3 3,∴BD= 32+(3 3)2=6, ∴DE=12BD,∴∠DBE=∠DBA=30°,
∴∠DOF=60°,∴∠ODF=30°,∴OD=2OF.
6 . 如 图 , 梯 形 ABCD 中 , AD∥BC , AE⊥BC 于 E , ∠ADC的平分线交AE于点O,以点O为圆心,OA为半 径的圆经过点B.
求证:CD与⊙O相切.
证明:如图,过点O作OH⊥CD于H, ∵AE⊥BC,∴∠AEB=90°. ∵AD∥BC,∴∠DAO=∠AEB=90°,即OA⊥DA. ∵DO平分∠ADC,OH⊥DC,OA⊥DA, ∴OH=OA.又∵OH⊥DC, ∴DC是⊙O的切线,即CD与⊙O相切.
4.【2018·泰州】如图,AB为⊙O的直径,C为⊙O上一点, ∠ABC的平分线交⊙O于点D,DE⊥BC于点E.
(1)试判断DE与⊙O的位置关系,并说明理由;
解:DE与⊙O相切.理由:如图,连接DO, ∵DO=BO,∴∠ODB=∠OBD. ∵∠ABC的平分线交⊙O于点D,∴∠EBD=∠DBO, ∴∠EBD=∠BDO,∴DO∥BE. ∵DE⊥BC,∴∠DEB=90°, ∴∠EDO=90°,即OD⊥DE. 又∵OD是半径,∴DE与⊙O相切.
(2)若∠A=60°,AB=4,求PC的长. 解:∵AB=4,∴OB=2. ∵∠A=60°,∠POB=∠A, ∴∠POB=60°. 在 Rt△ POB 中, ∠OPB=90°-∠POB=30°,∴PO=2OB=4, ∴PB= OP2-BO2= 42-22=2 3. ∵PB,PC 切⊙O 于 B,C,∴PC=PB=2 3.
第二十四章 圆
证明圆的切线的常用方法
1.如图,⊙O的直径AB=12,点P是AB延长线上一点, 且PB=4,点C是⊙O上一点,PC=8. 求证:PC是⊙O的切线.
证明:如图,连接OC,∵⊙O的直径AB=12, ∴OB=OC=6.∵PB=4,∴PO=10. 在△POC中,PC2+CO2=82+62=100, PO2=102=100,∴PC2+OC2=PO2, ∴∠OCP=90°, 即OC⊥PC.又∵OC是半径,∴PC是⊙O的切线.
2 . 如 图 , 以 AB 为 直 径 的 ⊙ O 经 过 点 P , C , 且 ∠ ACP = 60°,D是AB延长线上一点,PA=PD.试判断PD与⊙O 的位置关系,并说明理由.
解:PD与⊙O相切,理由如下:如图,连接PO, ︵︵
∵AP=AP,∴∠AOP=2∠ACP=120°. ∵OA=OP,∴∠OAP=∠OPA=30°. ∵PA=PD,∴∠OAP=∠D=30°, ∴∠OPD=180°-∠OAP-∠OPA-∠D=90°, 即OP⊥PD.又∵OP是半径,∴PD与⊙O相切.
又∵DF2+OF2=OD2,∴OF= 3,则 OD=2 3.
故-3
2
3 .
5.已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的 点,AC∥OP.
(1)求证:PC是⊙O的切线;
证明:如图,连接OC,∵PB是⊙O的切线, ∴∠OBP=90°. ∵OA=OC,∴∠OAC=∠OCA. ∵AC∥OP,∴∠OAC=∠POB,∠POC=∠OCA. ∴∠POB = ∠ POC.∵OC = OB , OP = OP , ∴△POC≌△POB.∴∠OBP=∠OCP=90°, 即OC⊥PC.又∵OC是半径,∴PC是⊙O的切线.
相关文档
最新文档