两条直线的交点与距离公式
第二节直线的交点坐标与距离公式
第二节直线的交点坐标与距离公式直线的交点坐标与距离公式是平面解析几何中非常基础的内容。
它们可以帮助我们确定两条直线的交点坐标以及一个点到直线的距离,是解决许多几何问题的重要工具。
在本篇文章中,我将详细介绍直线的交点坐标与距离公式。
一、直线的交点坐标公式假设有两条直线L1和L2,分别表示为:L1:y=m1x+c1L2:y=m2x+c2其中m1、m2分别是L1和L2的斜率,c1、c2分别是L1和L2的截距。
我们可以通过解以上两个方程组来求解直线L1和L2的交点的坐标(x0,y0)。
解法一:代入法将L1的方程代入L2的方程中,得到:y=m2x+c2m1x+c1=m2x+c2整理得到:x=(c1-c2)/(m2-m1)将x的值带入L1或L2的方程中,即可得到y的值。
根据这个方法,我们可以求得两条直线的交点坐标。
解法二:消元法将L1和L2的方程相减,可以消去y,得到:m1x+c1-(m2x+c2)=0整理得到:(m1-m2)x+(c1-c2)=0解方程可以得知:x=(c2-c1)/(m1-m2)将x的值带入L1或L2的方程中,即可得到y的值。
通过以上两种解法,我们可以求得直线L1和L2的交点的坐标(x0,y0)。
二、点到直线的距离公式同时,我们也可以通过公式求解一个点P(x1,y1)到直线L1: y = mx+ c的距离。
有一种基本的方法是绘制垂线。
首先,我们可以找到点P到直线L1的垂线的方程,将其表示为L2、L2的斜率是m的相反数(-1/m),并且通过点P(x1,y1)。
垂线L2的方程为:L2:y=(-1/m)x+(y1+x1/m)我们可以通过求解L1和L2的交点坐标来确定点P到直线L1的距离。
交点的坐标为(x0,y0)。
距离点P到直线L1的距离利用勾股定理可以得到:d=√((x0-x1)²+(y0-y1)²)将交点的坐标(x0,y0)带入上式即可求得点P到直线L1的距离。
总结:直线的交点坐标与距离公式是解析几何中重要的工具。
两直线的交点坐标和距离公式
两直线的交点坐标和距离公式首先,让我们来看直线交点坐标公式。
设直线1的方程为y=m1x+c1,直线2的方程为y=m2x+c2、这里,m1和m2分别是直线1和直线2的斜率,c1和c2是它们的截距。
要计算两条直线的交点坐标,我们可以将直线1和直线2的方程联立,解出x和y的值。
具体步骤如下:1.将直线1和直线2的方程联立:m1x+c1=m2x+c22.移项得:m1x-m2x=c2-c13.合并同类项:(m1-m2)x=c2-c14.求解x的值:x=(c2-c1)/(m1-m2)5.将x的值带入直线的方程,求解y的值:y=m1x+c1或y=m2x+c2这样,我们就可以得到两条直线的交点坐标(x,y)。
下面,让我们来看直线之间的距离公式。
设直线1的方程为Ax+By+C1=0,直线2的方程为Ax+By+C2=0。
这里,A、B和C1、C2分别是直线1和直线2的系数。
要计算两条直线之间的距离,我们可以使用以下公式:d=,C2-C1,/√(A^2+B^2)其中,C2-C1,表示C2和C1的绝对值。
√(A^2+B^2)表示A^2+B^2的平方根。
需要注意的是,当A^2+B^2=0时,即直线1和直线2平行,此时它们没有交点。
接下来,我将给出两个实际应用的例子,以帮助读者更好地理解直线的交点坐标和距离公式。
例子1:两条直线的交点设直线1的方程为y=2x+3,直线2的方程为y=-x+1、我们需要计算这两条直线的交点坐标。
将直线1和直线2的方程联立,可得:2x+3=-x+1移项得:3x=-2解出x的值得到:x=-2/3将x的值带入直线的方程,可得:y=2*(-2/3)+3=-1/3所以,这两条直线的交点坐标为(-2/3,-1/3)。
例子2:两条直线的距离设直线1的方程为2x+3y-4=0,直线2的方程为4x-6y+8=0。
我们需要计算这两条直线之间的距离。
根据直线之间的距离公式,可以计算得到:d=,(-6)-3(4),/√(2^2+3^2)=6/√13所以,这两条直线之间的距离为6/√13通过以上例子,我们可以看到直线的交点坐标公式和距离公式的实际应用。
两条直线的交点坐标及两点间的距离公式
两条直线的交点坐标及两点间的距离公式要求出两条直线的交点坐标,可以将两条直线的方程联立,得到如下方程组:a1x+b1=a2x+b2(1)y=a1x+b1通过对方程组进行求解,可以得到两条直线的交点坐标。
首先,我们可以将方程(1)两边关于x进行整理,得到:(a1-a2)x=b2-b1再将这个结果代入方程y=a1x+b1中,可以求解出y的值。
现在,我们来看一个具体的实例来说明如何通过方程组来计算两条直线的交点坐标。
假设有两条直线分别为y=2x+1和y=-3x+4我们可以将这两条直线的方程联立,得到方程组如下:2x+1=-3x+4(2)y=2x+1将方程(2)两边关于x进行整理,得到:5x=3解方程5x=3,可以得到x=3/5再将这个结果代入方程y=2x+1中,可以求解出y的值。
代入x=3/5,可以得到y=2*(3/5)+1=6/5+1=11/5因此,两条直线的交点坐标为(3/5,11/5)。
接下来,我们来介绍一下两点间的距离公式。
两点间的距离公式可以通过勾股定理推导得到。
假设有平面上的两个点A(x1,y1)和B(x2,y2),则点A和点B之间的距离可以表示为:d=√((x2-x1)²+(y2-y1)²)这个公式可以通过勾股定理的推导得到。
假设有直角三角形ABC,其中角C为直角,AB为斜边,AC为边长为a,BC为边长为b,AB为边长为c。
根据勾股定理可以得到a²=b²+c²。
将直角三角形ABC的顶点A(x1,y1)和B(x2,y2)的坐标代入,可以得到:c²=(x2-x1)²+(y2-y1)²开方后可以得到两点间的距离d,即:d=√((x2-x1)²+(y2-y1)²)这就是两点间的距离公式。
通过这个公式,我们可以计算出平面上两个点之间的距离,进而可以用来计算两条直线的距离。
总结起来,要确定两条直线的交点坐标,可以通过解直线方程组来计算。
两直线的交点坐标和距离公式
两直线的交点坐标和距离公式直线是平面几何中最基本的图形之一,计算两条直线的交点坐标和距离是解决许多几何问题的基础。
在本文中,我们将详细介绍如何计算两条直线的交点坐标和距离的公式和方法。
首先,我们需要了解什么是直线。
在平面几何中,直线是由一组点组成的,这些点在同一条直线上,且直线上的任意两点可以确定直线的一条直线是由两个不同的点定义。
那么,如何计算两条直线的交点坐标呢?要计算两条直线的交点,我们需要利用直线的方程。
在平面几何中,直线可以由一般方程、点斜式方程和两点式方程表示。
1.一般方程:Ax+By+C=0。
其中A、B、C是常数。
2.点斜式方程:y-y1=m(x-x1)。
其中m是斜率,(x1,y1)是直线上的一个点。
3.两点式方程:(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。
其中(x1,y1)和(x2,y2)是直线上的两个点。
像这样,当我们有两条直线的方程时,我们可以通过求解方程组,找到两条直线的交点坐标。
解方程组的方法有多种,比如代入法、消元法和克莱姆法则等。
让我们通过一个具体的例子来说明如何计算两条直线的交点坐标。
例1:已知直线L1的方程为y=2x-1,直线L2的方程为y=-x+3,求两条直线的交点坐标。
解:将L1和L2的方程联立起来,得到方程组:y=2x-1y=-x+3通过消元法,我们可以先将方程组中的y消去。
将L1中的y代入L2的方程中,得到:2x-1=-x+3整理方程,得到:3x=4解方程,得到:x=4/3将x的值代入L1的方程中,得到:y=2*(4/3)-1y=8/3-1y=5/3所以,两条直线的交点坐标为(4/3,5/3)。
接下来,我们将介绍如何计算两条直线的距离。
两条直线的距离是两条直线之间最短的直线距离,也就是垂直于两条直线的连线段的长度。
计算两条直线的距离,我们可以利用点到直线的距离公式来求解。
点到直线的距离公式:d=,Ax+By+C,/√(A^2+B^2)其中,A、B、C是直线的方程中的常数。
高二数学课件:第八章 第二节 直线的交点坐标与距离公式
热点考向
2
距离公式的应用
【方法点睛】
1.两点间的距离的求法
两点间的距离,可利用两点间的距离公式求解;当两点连线平
行于x轴时,其距离等于这两点横坐标之差的绝对值;当两点连
线平行于y轴时,其距离等距离最大的直线l的方程,最大距离是 5 5.
5
(3)由(2)可知,过点A不存在到原点距离超过 5 的直线,因此
不存在过点A且与原点距离为6的直线.
【反思·感悟】 1.在解答本题时,直线斜率存在时,根据题设 条件,由点到直线的距离公式得关于斜率的方程,这是很关键 的问题,同时注意讨论斜率不存在的情况; 2.另外,求距离的最值时,除了考虑距离公式所要求的条件, 以防漏解、错解外,还要注意数形结合思想的应用.
1.对称中心的求法
若两点A(x1,y1)、B(x2,y2)关于点P(a,b)对称,则由中点坐标公 式求得a、b的值,即 a x1 x 2 ,b y1 y 2 ;
2 2
2.轴对称的两个公式
若两点M(x1,y1)、N(x2,y2)关于直线l:Ax+By+C=0(A≠0)对称,
则线段MN的中点在对称轴l上,而且连接MN的直线垂直于对称轴l. 故有
24 3
因此,过点P与AB平行的直线的方程为:
1 y 2 (x 1) ,即x+3y-5=0; 3
又因为A(2,3),B(-4,5)的中点坐标D(-1,4), 所以过点P及AB中点的直线方程为x=-1; 综上可知,所求直线方程为x=-1或x+3y-5=0.
热点考向 3
【方法点睛】
对称问题
利用到原点的距离为2列方程,解方程即可,但要注意对斜率不
两条直线的交点坐标、两点间的距离公式 课件
两条直线的交点坐标 两点间的距离公式
要点 两条直线的交点 (1)已知两条直线的方程分别是 l1:A1x+B1y+C1=0,l2:A2x +B2y+C2=0,当方程组 AA12xx+ +BB12yy+ +CC12= =00,有唯一解时,l1 与 l2 相交;有无穷多个解时,说明直线 l1 与 l2 重合;当方程组无解 时,l1 与 l2 平行.
②类似地,有 l1⊥l2⇔A1A2+B1B2=0.
(4)①设 P1(x1,y1),P2(x2,y2),则 |P1P2|= (x2-x1)2+(y2-y1)2. ②原点 O(0,0)与任一点 P(x,y)的距离|OP|= x2+y2.
如何设直线系方程?
答:(1)与直线 Ax+By+C=0 平行的直线系方程是 Ax+By+ m=0(m≠C);
(2)经过两直线交点的直线系方程:(A1x+B1y+C1)+λ(A2x +B2y+C2)=0(其中不包括直线 A2x+B2y+C2=0).
(3)已知 l1:A1x+B1y+C1=0 与 l2:A2x+B2y+C2=0,则 ①A1B2-A2B1≠0⇔l1 与 l2 相交;A1B2-A2B1=0 且 A1C2-A2C1 ≠0⇔l1∥l2;A1B2-A2B1=0 且 A1C2-A2C1=0⇔l1 与 l2 重合.
题型三 两点间的距离公式的应用
例 3 求函数 y= x2-8x+20+ x2+1的最小值. 【思路分析】 常规方法显然行不通,只有进行转化!根据结 构联想距离.
【 解 析 】 原 式 可 化 为 y = (x-4)2+(0-2)2 + (x-0)2+(0-1)2 ,考虑 两点间 的距 离 公式形 式得三点 A(4,2),B(0,1),P(x,0),则上述问题转化为:在 x 轴上求一 点 P(x,0),使得|PA|+|PB|最小.作点 A(4,2)关于 x 轴的对称点 A′(4,-2),可知|PA|+|PB|=|PA′|+|PB|≥|A′B|,故|PA|+|PB| 的最小值为|A′B|的长度.由两点间的距离公式,得|A′B|= 42+(-2-1)2=5,所以,函数 y= x2-8x+20+ x2+1的 最小值为 5.
直线的交点坐标与距离公式
直线的交点坐标与距离公式在平面几何中,直线是直角坐标系中的基本图形之一、直线的交点坐标和距离公式在解决直线的相关问题时非常有用。
接下来,我将详细介绍直线的交点坐标和距离公式。
1.直线的交点坐标公式:设直线L1的方程为y=k1x+b1,直线L2的方程为y=k2x+b2、若L1和L2有交点,则交点的坐标(x0,y0)满足以下等式:k1x0+b1=k2x0+b2解上述等式可以得到交点的横坐标x0。
将x0带入其中一个直线的方程,可以求得交点的纵坐标y0。
如果两条直线平行,则它们没有交点。
2.直线的距离公式:设点P到直线L的距离为d。
L的一般方程为Ax+By+C=0。
点P的坐标为(x0,y0)。
则点P到直线L的距离d可以由以下公式计算:d=,Ax0+By0+C,/√(A^2+B^2)以上就是直线的交点坐标和距离公式的基本内容。
下面我们将通过具体的例子来进一步理解和应用这些公式。
例1:求直线y=2x+3和y=-x+4的交点坐标。
解:将两个方程相等,得到:2x+3=-x+43x=1x=1/3将x=1/3带入其中一个方程,可以求得y的值:y=2*(1/3)+3=7/3因此,这两条直线的交点坐标为(1/3,7/3)。
例2:求点(1,-2)到直线3x-4y+5=0的距离。
解:由于A=3,B=-4,C=5,将这些值代入距离公式中,可以得到:d=,3*1-4*(-2)+5,/√(3^2+(-4)^2)=,3+8+5,/√(9+16)=16/√25=16/5因此,点(1,-2)到直线3x-4y+5=0的距离为16/5通过以上两个例子,我们可以看到直线的交点坐标和距离公式在解决直线相关问题时的重要性。
它们能够帮助我们简单、快速地求解直线的交点和距离,为我们的几何计算提供便利。
除了直线的交点坐标和距离公式,还有其他的直线相关的公式和定理,如直线的斜率公式、两直线垂直的判定等等。
通过深入学习和理解这些公式和定理,我们将能够更好地应用它们解决各种几何问题,提高我们的数学能力。
2.3.1 两条直线的交点坐标~2.3.2 两点间的距离公式(解析版)..
2.3直线的交点坐标与距离公式2.3.1两条直线的交点坐标2.3.2两点间的距离公式知识梳理知识点一两条直线的交点1.两直线的交点已知直线l 1:A 1x +B 1y +C 1=0;l 2:A 2x +B 2y +C 2=0.点A (a ,b ).(1)若点A 在直线l 1:A 1x +B 1y +C 1=0上,则有A 1a +B 1b +C 1=0.(2)若点A 是直线l 1与l 2的交点,则有A 1a +B 1b +C 1=0,A 2a +B 2b +C 2=0.2.两直线的位置关系方程组A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一组无数组无解直线l 1与l 2的公共点的个数一个无数个零个直线l 1与l 2的位置关系相交重合平行知识点二两点间的距离公式:点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.特别提醒:(1)此公式与两点的先后顺序无关.(2)原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2.题型探究题型一、求相交直线的交点坐标1.过两条直线1:30l x y -+=与2:20l x y +=的交点,倾斜角为π3的直线方程为()A .3320x y -++=B .33360x y -++=C .3340x y ---=D .333120x y ---=【答案】A【详解】由3020x y x y -=⎧⎨=⎩++解得12x y =-⎧⎨=⎩,故两直线交点为(-1,2),故直线方程是:()231y x -=+,即3230x y -=++.故选:A .2.经过两条直线2310x y ++=和2330x y -+=的交点,并且平行于直线y x =的直线的一般式方程为______.【答案】3340x y -+=【详解】由23102330x y x y ++=⎧⎨-+=⎩解得113x y =-⎧⎪⎨=⎪⎩,故交点坐标为11,3⎛⎫- ⎪⎝⎭,由平行于直线y x =可得斜率为1,故方程为113y x -=+,化为一般方程为3340x y -+=.故答案为:3340x y -+=.3.经过两条直线1:40l x y ++=和22:0x y l --=的交点,且与直线210x y --=垂直的直线方程为_______.【答案】270x y ++=【详解】由4020x y x y ++=⎧⎨--=⎩,解得13x y =-⎧⎨=-⎩,即直线1:40l x y ++=和22:0x y l --=的交点坐标为()1,3--,设与直线210x y --=垂直的直线方程为20x y n ++=,则()1230n -+⨯-+=,解得7n =,所以直线方程为270x y ++=;故答案为:270x y ++=4.设三直线1:3420l x y +-=;2:220l x y ++=;3:340l kx y +-=交于一点,则k 的值为______.【答案】1【详解】联立3420220x y x y +-=⎧⎨++=⎩,解得22x y =-⎧⎨=⎩,即1l 与2l 交于点(2,2)-,依题意可知,23240k -+⨯-=,解得1k =.故答案为:1.题型二、方程组解的个数与直线位置关系1.两条直线1110A x B y C ++=与2220A x B y C ++=的交点坐标就是方程组1112220,{0A xB yC A x B y C ++=++=的实数解,给出以下三种说法:①若方程组无解,则两直线平行;②若方程组只有一解,则两直线相交;③若方程组有无数多解,则两直线重合.其中说法正确的个数为()A .1B .2C .3D .0【答案】C【详解】①若方程组无解,则两条直线无交点,两直线平行;正确;②若方程组只有一解,说明两条直线只有一个交点,则两直线相交;正确;③若方程组有无数多解,说明两条直线有无数多个交点,则两直线重合.正确.故答案为C.【点睛】在同一平面内,两条直线有三种位置关系,即相交、平行、重合.相应地由直线的方程组成的二元一次方程组的解有三种情况,即有唯一解、无解、有无数解.当1112220,0A xB yC A x B y C ++=⎧⎨++=⎩的解只有一组时,这两条直线1l 和2l 有一个公共点,它们的位置关系为相交.当1112220,0A x B y C A x B y C ++=⎧⎨++=⎩的解有无数组时,这两条直线1l 和2l 有无数个公共点,它们的位置关系为重合.当1112220,0A x B y C A x B y C ++=⎧⎨++=⎩无解时,这两条直线1l 和2l 没有公共点,它们的位置关系为平行.2.若关于x 、y 的方程组46132x y ax y +=⎧⎨-=⎩无解,则实数=a ________【答案】2-【详解】由题意关于x 、y 的方程组46132x y ax y +=⎧⎨-=⎩无解,即直线461x y +=和直线32ax y -=平行,故4612603D a a ==--=-,所以2a =-,此时直线32ax y -=即464x y +=-,确实与461x y +=平行,故满足题意,所以实数2a =-.故答案为:-2.3.若关于x ,y 的方程组2436x y x ay +=⎧⎨+=⎩有唯一解,则实数a 满足的条件是________.【答案】6a ≠【详解】由2436x y x ay +=⎧⎨+=⎩,可得()660a y -+=,由关于x ,y 的方程组2436x y x ay +=⎧⎨+=⎩有唯一解,可得方程()660a y -+=有唯一解,则6a ≠故答案为:6a ≠4.若关于x 的二元一次方程组4200x my m mx y m +-+=⎧⎨++=⎩有无穷多组解,则m =______.【答案】2-【详解】依题意二元一次方程组4200x my m mx y m +-+=⎧⎨++=⎩有无穷多组解,即两个方程对应的直线重合,由41m m ⨯=⨯,解得2m =或2m =-.当2m =时,二元一次方程组为42020220220x y x y x y x y +=+=⎧⎧⇒⎨⎨++=++=⎩⎩,两直线不重合,不符合题意.当2m =-时,二元一次方程组为4240220220220x y x y x y x y -+=-+=⎧⎧⇒⎨⎨-+-=-+=⎩⎩,两直线重合,符合题意.综上所述,m 的值为2-.故答案为:2-题型三、由直线交点的个数求参数1.已知两定点()2,3M -,()3,2N --,直线l 过()1,2P 且与线段MN 相交,则l 的斜率k 的取值范围是()A .1k ³B .5k ≤-C .51k -≤≤D .1k ³或5k ≤-【答案】D【详解】如图所示:()()()23225,11213PM PN k k ----==-==---,因为直线l 过()1,2P 且与线段MN 相交,所以l 的斜率k 的取值范围是1k ³或5k ≤-.故选:D2.设点()2,3A -,()3,2B ,若直线20ax y -++=与线段AB 没有交点,则a 的取值范围是()A .45,32⎛⎫- ⎪⎝⎭B .54,,23⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭C .54,23⎛⎫- ⎪⎝⎭D .45,,32⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭【答案】C 【详解】直线20ax y -++=与线段AB 没有交点即直线2y ax =-与线段AB 没有交点对于直线2y ax =-,令0x =,则2y =-,则直线恒过点()0,2C -根据题意,作出如下图像:(0,2)C -,()2,3A -∴根据两点求斜率公式可得:直线AC 的斜率为32522AC k +==--(0,2)C -,()3,2B ∴根据两点求斜率公式可得:直线BC 的斜率为224303BC k +==-直线20ax y -++=的斜率为a若直线20ax y -++=与线段AB 没有交点,则5423a -<<故选:C.题型四、两点间的距离1.已知点()2,4A ,()5,4B ,那么A ,B 两点之间的距离等于()A .8B .6C .3D .0【答案】C【详解】因点()2,4A ,()5,4B ,则22||(25)(44)3AB =-+-=,所以A ,B 两点之间的距离等于3.故选:C2.已知点(1,2),(3,4),(5,0)A B C ,求证:ABC 是等腰三角形.【详解】∵22(31)(42)8AB =-+-=,22(53)(04)20BC =-+-=,22(51)(02)20AC =-+-=,∴AC BC =,∵421,31AB k -==-021512AC k -==--,∴AB AC k k ≠,∴,,A B C 三点不共线,∴ABC 是等腰三角形.3.已知点(1,3)A -,(2,6)B ,若在x 轴上存在一点P 满足PA PB =,则点P 的坐标为___________.【答案】()5,0【详解】设(),0P x ,则22(1)9(2)36x x ++=-+,解得5x =,∴点P 的坐标为()5,0,故答案为:()5,0.跟踪训练1.判断下列各对直线的位置关系.若相交,求出交点坐标:(1)l 1:2x +y +3=0,l 2:x -2y -1=0;(2)l 1:x +y +2=0,l 2:2x +2y +3=0.【答案】(1)相交,(-1,-1);(2)平行.【详解】(1)解方程组230210x y x y ++=⎧⎨--=⎩得11x y =-⎧⎨=-⎩所以直线l 1与l 2相交,交点坐标为(-1,-1).(2)解方程组202230x y x y ++=⎧⎨++=⎩①×2-②,得1=0,矛盾,方程组无解.所以直线l 1与l 2无公共点,即l 1//l 2.2.若直线2100x y --=经过直线43100x y +-=和280ax y ++=的交点,则=a ___________.【答案】1-【详解】由题意,直线2100x y --=,43100x y +-=,280ax y ++=交于一点,所以210043100x y x y --=⎧⎨+-=⎩,得42x y =⎧⎨=-⎩,所以直线280ax y ++=过点()4,2-,得()42280a +⨯-+=,求解得1a =-.故答案为:1-3.已知直线l :120()kx y k k R -++=∈,若直线l 与直线10x y -+=,2380x y +-=三线共点,求k 的值.【答案】13【详解】由102380x y x y -+=⎧⎨+-=⎩,得12x y =⎧⎨=⎩,所以直线10x y -+=,2380x y +-=的交点为()1,2,将()1,2代入()120R kx y k k -++=∈,解得13k =.4.若关于x ,y 的二元一次方程组96mx y m x my m +=+⎧⎨+=⎩无解,则实数m =__________.【答案】3-【详解】因为关于x ,y 的二元一次方程组96mx y m x my m +=+⎧⎨+=⎩无解,所以直线96mx y m +=+与直线+=x my m 平行,所以290m -=,解得3m =±,当3m =时,两直线重合,故答案为:3-.5.已知关于,x y 的方程组()222(1)1,(1)1a x a y a a x a y a ⎧--+=+⎪⎨-+=-⎪⎩有唯一解,则实数a 的取值范围是__________.【答案】1()a a R ≠-∈【详解】由方程组()222(1)1(1)1a x a y a a x a y a ⎧--+=+⎪⎨-+=-⎪⎩中的两个方程对应两条直线,则方程组的解就是两直线的交点,要使得两直线只有一个交点,则满足22(2)(1)(1)0a a a a -+-+≠,即2(1)0a -+≠,解得1()a a R ≠-∈.故答案为:1()a a R ≠-∈.6.关于x 、y 的二元一次方程组7352x by ax y -=⎧⎨+=⎩有无穷多组解,则a 与b 的积是_____.【答案】-35【详解】因为x 、y 的二元一次方程组7352x by ax y -=⎧⎨+=⎩有无穷多组解,所以直线73x by -=与直线52ax y +=重合,所以7352b a -==,解得1415,32a b ==-,所以35ab =-,故答案为:-357.已知直线l 过定点()1,2P -,且与以()2,3A --,()4,5B -为端点的线段(包含端点)没.有.交点,则直线l 的斜率k 的取值范围是()A .()(),15,-∞-+∞B .(][),15,-∞-⋃+∞C .()1,5-D .[]1,5-【答案】A【详解】如图,要使直线l 以()2,3A --,()4,5B -为端点的线段(包含端点)没有..交点,则PA k k >或PB k k <,因为23255,11214PA PB k k +-====--+-+,所以直线l 的斜率k 的取值范围是()(),15,-∞-+∞;故选:A8.已知线段AB 两端点的坐标分别为()2,3A -和()4,2B ,若直线:10l x my m ++-=与线段AB 有交点,则实数m 的取值范围是()A .()3,1,4⎛⎫-∞-+∞ ⎪⎝⎭B .31,4⎛⎫- ⎪⎝⎭C .31,4⎡⎤-⎢⎥⎣⎦D .(]3,1,4⎡⎫-∞-+∞⎪⎢⎣⎭【答案】C【详解】直线:10l x my m ++-=恒过的定点()1,1P -,4,13AP BP k k =-=.当0m =时,直线l 方程为1x =,与线段AB 有交点,符合题意.当0m ≠时,直线l 的斜率为1m-,则[)14,1,3m ⎛⎤-∈-∞-⋃+∞ ⎥⎝⎦,解得10m -≤<或304m <≤,综上,31,4m ⎡⎤∈-⎢⎥⎣⎦.故选:C9.已知三条直线1:440l x y +-=,2:0l mx y +=,3:2340l x my --=.(1)若直线1l ,2l ,3l 交于一点,求实数m 的值;(2)若直线1l ,2l ,3l 不能围成三角形,求实数m 的值.【答案】(1)1m =-或23;(2)1m =-或23或4或16-.【详解】(1)∵直线1l ,2l ,3l 交于一点,∴1l 与2l 不平行,∴4m ≠,由4400x y mx y +-=⎧⎨+=⎩,得4444x mm y m ⎧=⎪⎪-⎨-⎪=⎪-⎩,即1l 与2l 的交点为44,44m m m -⎛⎫ ⎪--⎝⎭,代入3l 的方程,得8434044m m m m--⋅-=--,解得1m =-或23.(2)若1l ,2l ,3l 交于一点,则1m =-或23;若12//l l ,则4m =;若13//l l ,则16m =-;若23//l l ,则不存在满足条件的实数m .综上,可得1m =-或23或4或16-.10.直线l 的倾斜角为135°,且过点(1,1),则这条直线被坐标轴所截得的线段长是()A .2B .2C .22D .4【答案】C【详解】由题设,直线:1(1)l y x -=--,整理得:20+-=l x y ,所以,直线l 与坐标轴交点为(2,0),(0,2),故直线被坐标轴所截得的线段长是22(20)(02)22-+-=.故选:C11.已知(1,2),(,6)A B a ,且||5AB =,则a 的值为()A .4B .4-或2C .2-D .2-或4【答案】D【详解】易知22(1)(62)5a -+-=,∴4a =或2a =-.故选:D.12.已知三角形ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点。
直线的交点坐标与距离公式
直线的交点坐标与距离公式首先,我们来看两条直线的交点坐标公式。
假设有两条直线L1和L2,它们的方程分别是:L1: ax + by = cL2: dx + ey = f其中a、b、c、d、e、f为已知常数,x和y为未知变量。
为了求解L1和L2的交点坐标(x0,y0),我们可以通过以下步骤进行计算:1.将L1和L2的方程联立,得到以下方程组:ax + by = cdx + ey = f2.使用消元法或代入法解方程组,求解出x和y的值。
-对于消元法,我们可以通过消去x或y来求解另一个变量。
例如,可以通过将L1的方程乘以e,将L2的方程乘以b,然后将它们相减,得到可解的方程。
-对于代入法,我们可以先求解出一个变量,然后将它代入到另一个方程中求解另一个变量。
3.将求解得到的x和y的值代入L1或L2中,验证它们是否满足直线的方程。
通过上述步骤,我们可以求解出直线L1和L2的交点坐标(x0,y0)。
接下来,我们来看点到直线的距离公式。
假设有一条直线L,它的方程为:L: ax + by + c = 0其中a、b、c为已知常数,x和y为未知变量。
设点P的坐标为(x1,y1),我们希望求出点P到直线L的距离d。
为了求解点到直线的距离d = ,ax1 + by1 + c,/ √(a^2 + b^2)使用上述公式,我们可以按照以下步骤来计算点到直线的距离:1. 将点P的坐标代入直线L的方程,计算得到ax1 + by1 + c的值。
2.将步骤1中计算得到的值代入到距离公式中,计算得到点P到直线L的距离d。
通过上述步骤,我们可以求解出点P到直线L的距离d。
总结起来,直线的交点坐标与距离公式是数学和几何问题求解的基本工具。
对于直线的交点坐标,我们通过联立直线的方程,并使用消元法或代入法来求解变量的值,从而得到交点的坐标。
对于点到直线的距离,我们使用距离公式,将点的坐标代入直线的方程,并进行运算,最后得到点到直线的距离。
这两个公式广泛应用于解决直线相关的几何和数学问题,例如计算两条直线的交点、判断点是否在直线上以及计算点到直线的最短距离等。
3.3直线的交点坐标与距离公式
两条平行线Ax+By+C1=0与Ax+By+C2=0的距离
设P(x0,y0)是Ax+By+C2=0上
O
的一点
则 Ax0+By0+C2=0 即 Ax0+By0=- C2
d | Ax0 By0 C1 | | C1 C2 |
A2 B2
A2 B2
l1 l2 x
两条平行线Ax+By+C1=0与Ax+By+C2=0
例 :已知ABC的三个顶点是A(1,0), B(1,0) C( 1 , 3 ), 试判断ABC的形状.
22
用代数方法证明几何问题.
例2:证明平行四边形四条边的平方和等于两条
对角线的平方和. y
D (b,c)
C (a+b,c)
A (0,0)
B (a,0) x
小结:用坐标的方法解决问题的方法叫坐标法 或者解析法.
练习:P110, 7
二、点到直线的距离公式
点P(x0,y0)到直线Ax+By+C=0的距离公式
d | Ax0 By0 C | A2 B2
(1)分子是P点坐标代入直线方程左边. (2)分母是未知量x、y系数平方和的算术根 (类似于勾股定理求斜边的长)
例1 求点P(-1,2)到下列直线的距离:
3.3直线的交点坐标 与距离公式
复习回顾:
直线 L1 :A1x+B1y+C1=0 ,L2 :A2x+B2y+C2=0
的L1位∥置L2关系的A判1B断2 : A2B1 0 (注意检验重合情况)
L1⊥L2 A1A2 B1B2 0
两条直线的交点坐标
设l1 : A1x+B1y+C1=0, l2 : A2x+B2y+C2=0,则
两直线的交点坐标和距离公式
两直线的交点坐标和距离公式首先,我们假设有两条直线分别为L1和L2,它们可以表示为以下形式的参数方程:L1:P1=P0+t1*d1L2:P2=P0+t2*d2其中,P1和P2分别是L1和L2上的两个点,P0是直线的起点,d1和d2是直线的方向向量。
t1和t2是参数,用来确定直线上的点的位置。
要求两条直线的交点坐标,我们需要找到使L1和L2重合的参数值t1和t2、我们可以通过两个参数方程组相等来解这个方程组:P1=P2=>P0+t1*d1=P0+t2*d2化简上述方程,我们可以得到:P0+t1*d1-P0=P0+t2*d2-P0即:t1*d1=t2*d2这个方程告诉我们,d1和d2这两个方向向量成比例,它们的比例系数即为两个参数t1和t2的比值。
所以,我们可以将其表示为:d1=k*d2其中,k为比例系数。
在上述方程中,我们可以用矩阵的形式来表示方程:[d1,-d2]*[t1;-t2]=0其中,[d1,-d2]和[t1;-t2]分别是一个2x1的矩阵和一个2x1的列向量。
我们可以将上述方程拓展为一个矩阵方程:[A]*[x]=0其中,[A]是一个2x2的矩阵,其元素为[d1,-d2]。
[x]是一个2x1的列向量,其元素为[t1;-t2]。
根据行列式的定义,只有当[A]的行列式为0时,方程[A]*[x]=0有非零解。
计算[A]的行列式可得:det([A]) = ad1 - bd2对于两条直线相交的情况,其中ad1 - bd2不等于0。
形式上,我们可以将[A]*[x]=0表示为:[U]*[S]*[V^T]*[x]=0其中,[U]和[V]是正交矩阵,[S]是一个对角矩阵,其对角线元素为奇异值。
通过奇异值分解,我们可以得到:[U]*[S]*[V^T]=[R]*[T]其中,[R]是一个旋转矩阵,[T]是一个平移矩阵。
我们可以将解表示为:[x]=[V]*[T[2,:]]其中,[T[2,:]]表示[T]矩阵的第二行。
高二寒假讲义07 直线的交点坐标与距离公式
直线的交点坐标与距离公式(含答案)知识梳理1、两直线相交直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应.相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解.2、距离公式(1)两点间的距离公式平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2)间的距离公式为21221221)()(||y y x x P P -+-= 特别地,原点O (0,0)与任一点P (x ,y )的距离|OP |=x 2+y 2. (2)点到直线的距离公式平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2. (3)两条平行线间的距离公式一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d =|C 1-C 2|A 2+B 2.知识典例题型一 交点问题例 1 直线230x y k +-=和120x ky -+=的交点在y 轴上,则k 的值为( ) A .-24 B .6C .6±D .-6【答案】C 【分析】通过直线的交点代入两条直线方程,然后求解k 即可.【详解】解:因为两条直线230x y k +-=和120x ky -+=的交点在y 轴上, 所以设交点为(0,)b ,所以30120b k kb -=⎧⎨-+=⎩,消去b ,可得6k =±.故选:C .巩固练习当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B 【分析】 解方程组12kx y k ky x k-=-⎧⎨-=⎩得两直线的交点坐标,由102k <<,判断交点的横坐标、纵坐标的符号,得出结论.【详解】解方程组12kx y k ky x k -=-⎧⎨-=⎩,得两直线的交点坐标为21,11k k k k -⎛⎫ ⎪--⎝⎭, 1210,0,0211k k k k k -<<∴--, 所以交点在第二象限,故选B.题型二 两点的距离例 2 已知点()2,1A --,(),3B a ,且5AB =,则a 的值为( ) A .1 B .5-C .1或5-D .1-或5【答案】C 【分析】利用两点间距离公式构造方程求得结果. 【详解】 由题意知:()()222315AB a =+++=,解得:1a =或5-本题正确结果:C巩固练习(多选)对于225x x ++,下列说法正确的是( ) A .可看作点(),0x 与点()1,2的距离 B .可看作点(),0x 与点()1,2--的距离 C .可看作点(),0x 与点()1,2-的距离 D .可看作点(),1x -与点()1,1-的距离 【答案】BCD 【分析】化简225x x ++=()()()()2222102111x x ++±=++--,结合两点间的距离公式,即可求解.【详解】由题意,可得()222514x x x ++=++=()()()()2222102111x x ++±=++--,可看作点(),0x 与点()1,2--的距离,可看作点(),0x 与点1,2的距离,可看作点(),1x -与点()1,1-的距离,故选项A 不正确, 故答案为:BCD.题型三 点到直线的距离例 3 已知点A(-3,-4),B(6,3)到直线l :ax +y +1=0的距离相等,则实数a 的值等于( )A .79B .13-C .79-或13-D .79-或13【答案】C 【分析】直接根据点到直线的距离公式列出关于a 的方程,求出方程的解,得到a 的值. 【详解】因为A 和B 到直线l 的距离相等, 由点A 和点B 到直线的距离公式, 2234163111a a a a --+++=++,化简得3364a a +=+|,()3364a a +=±+,解得实数79a =-或13-,故选C.巩固练习(多选)已知直线l 经过点(3,4),且点(2,2),(4,2)A B --到直线l 的距离相等,则直线l 的方程可能为( ) A .23180x y +-= B .220x y --= C .220x y ++= D .2360x y -+=【答案】AB 【分析】由题可知直线l 的斜率存在,所以设直线l 的方程为4(3)y k x -=-,然后利用点到直线的距离公式列方程,可求出直线的斜率,从而可得直线方程 【详解】当直线l 的斜率不存在时,显然不满足题意.当直线l 的斜率存在时,设直线l 的方程为4(3)y k x -=-,即430kx y k -+-=.由已知得2211k k =++,所以2k =或23k =-, 所以直线l 的方程为220x y --=或23180x y +-=. 故选:AB题型四 平行线间的距离例 4 已知直线3230x y +-=和610x my ++=互相平行,则它们之间的距离是( )A .4B .1313C 51326D 71326【答案】D 【解析】因为3x+2y-3=0和6x+my+1=0互相平行,所以3∶2=6∶m,所以m=4.直线6x+4y+1=0可以转化为3x+2y+12=0, 由两条平行直线间的距离公式可得:d=()2213232--+=7213=713.巩固练习若直线1:60l x ay ++=与()2:2320l a x y a -++=平行,则1l 与2l 间的距离为 【答案】823【分析】根据两直线平行求出a 的值,得出两条直线方程,再求直线之间的距离. 【详解】由题:直线1:60l x ay ++=与()2:2320l a x y a -++=平行, 则()32a a =-,即2230a a --=,解得3a =或1a =-, 当3a =时,直线1:360l x y ++=与2:360l x y ++=重合; 当1a =-时,直线1:60l x y -+=与22:03l x y -+=平行, 两直线之间的距离为268232-=.题型五 三角形的面积求解例 5 已知直线l 过点()2,3P 且与定直线0:2l y x =在第一象限内交于点A ,与x 轴正半轴交于点B ,记AOB 的面积为S (O 为坐标原点),点(),0B a . (1)求实数a 的取值范围;(2)求当S 取得最小值时,直线l 的方程.【答案】(1)12a >(2)33y x =- 【分析】(1)求出直线l 与直线0:2l y x =平行时,直线l 的斜率,由斜率公式以及题设条件确定实数a 的取值范围;(2)当直线l 的斜率不存在时,求出点,A B 坐标,得出4S =;当直线l 的斜率存在时,设出方程,求出斜率的范围,联立直线l 与直线0l 的方程求出点A 坐标,由三角形面积公式结合判别式法,得出S 取得最小值时直线l 的斜率,进而得出直线l 的方程. 【详解】(1)当直线l 与直线0:2l y x =平行时,如下图所示322BP k a==-,解得12a =,此时不能形成AOB ,则12a ≠又点(),0B a 在x 轴正半轴上,且直线l 与定直线0l 在第一象限内交于点A12a ∴>(2)当直线l 的斜率不存在时,即(2,0)B ,(2,4)A ,此时12442S =⨯⨯= 当直线l 的斜率存在时,设直线l 的方程为(2)3y k x =-+ 由于斜率存在,则12a >且2a ≠ 又32BP k a=-,2k ∴>或k 0< 由(2)32y k x y x =-+⎧⎨=⎩,得3264,22k k A k k --⎛⎫⎪--⎝⎭ 则22123644129222k k k k S k k k k---+=⨯⨯=-- 即2(4)(122)90S k S k ---+=由2(122)36(4)0S S ∆=---≥,整理得(3)0S S -则3S ≥,即S 的最小值为3此时2690k k -+=,解得3k =则直线l 的方程为3(2)333y x x =-+=-巩固练习已知△ABC 的两条高线所在直线方程为2x -3y +1=0和x +y =0,顶点A (1,2). 求:(1)BC 边所在的直线方程; (2)△ABC 的面积.【答案】(1) 2x +3y +7=0;(2)452. 【分析】(1)先判断A 点不在两条高线上,再利用垂直关系可得AB 、AC 的方程,进而通过联立可得解; (2)分别求|BC |及A 点到BC 边的距离d ,利用S △ABC =12×d ×|BC |即可得解. 【详解】(1)∵A 点不在两条高线上,由两条直线垂直的条件可设k AB =-,k AC =1. ∴AB 、AC 边所在的直线方程为3x +2y -7=0,x -y +1=0. 由得B (7,-7). 由得C (-2,-1).∴BC 边所在的直线方程2x +3y +7=0. (2)∵|BC |=,A 点到BC 边的距离d =,∴S △ABC =×d ×|BC |=××=.巩固提升1、直线5y x =-+与直线1y x =+的交点坐标是( ) A .()1,2 B .()2,3C .()3,2D .()2,1【答案】B 【分析】联立两直线方程,求出公共解,即可得出两直线的交点坐标. 【详解】联立两直线的方程51y x y x =-+⎧⎨=+⎩,解得23x y =⎧⎨=⎩,因此,两直线的交点坐标是()2,3.故选:B.2、两平行直线12,l l 分别过点()()1,3,2,1P Q --,它们分别绕,P Q 旋转,但始终保持平行,则12,l l 之间的距离的取值范围是( ) A .()0,∞+ B .[]0,5C .(]0,5D.(【答案】C 【分析】先判断当两直线1l ,2l 与直线PQ 垂直时,两平行直线1l ,2l 间的距离最大,计算得到最大值,进而得到范围. 【详解】5PQ ==当1PQ l ⊥时,1l 与2l 的最大距离为5, 因为两直线平行,则两直线距离不为0, 故选:C.3、“C =5”是“点(2,1)到直线3x +4y +C =0的距离为3”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件 【答案】B 【解析】试题分析:由题意知点(2,1)到直线340x y C ++=的距离为33=,解得5C =或25C =-,所以“5C =”是“点(2,1)到直线340x y C ++=的距离为3”的充分不必要条件,故选B. 4、两直线3x +y -3=0与6x +my +1=0平行,则它们之间的距离为( ) A.4 BCD 【答案】D 【分析】由两直线平行,可求得m 的值,代入两平行线距离公式,即可求解.【详解】因为两直线平行,所以361m ⨯=⨯,解得m =2, 将6x +2y +1=0化为3x +y +12=0, 由两条平行线间的距离公式得d==, 故选:D .5、直线l 经过原点,且经过另两条直线2380x y ++=,10x y --=的交点,则直线l 的方程为( ) A .20x y += B .20x y -=C .20x y +=D .20x y -=【答案】B 【分析】联立方程可解交点,进而可得直线的斜率,可得方程,化为一般式即可. 【详解】 联立方程238010x y x y ++=⎧⎨--=⎩,解得:12x y =-⎧⎨=-⎩所以两直线的交点为()1,2--,所以直线的斜率为20210--=--,则直线l 的方程为:2y x =,即20x y -=. 故选:B6、若直线0kx y -=和直线2360x y +-=的交点在第一象限,则k 的取值范围为__________.【答案】,3⎛⎫+∞ ⎪ ⎪⎝⎭【分析】由0,2360,kx y x y ⎧--=⎪⎨+-=⎪⎩解得交点坐标为x y ⎧=⎪⎪⎨⎪=⎪⎩根据交点位置得到0,0,>>解出即可.【详解】由0,2360,kx y x y ⎧--=⎪⎨+-=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩又∵直线0kx y --=和直线2360x y +-=的交点在第一象限,∴60,230,k ⎧+>⎪⎪+>解得3k >.故答案为3⎛⎫+∞ ⎪⎪⎝⎭. 7、已知直线1:l 3250x y +-=与直线2:l 4110x ay +-=,且12l l ⊥,则直线1l 与直线2l 的交点坐标是______. 【答案】12,2⎛⎫- ⎪⎝⎭【分析】由12l l ⊥得3420a ⨯+=,求出a ,再解方程组求交点坐标. 【详解】因为12l l ⊥,所以3420a ⨯+=,所以6a =-.联立3250,46110,x y x y +-=⎧⎨--=⎩解得2,1,2x y =⎧⎪⎨=-⎪⎩,故直线1l 与直线2l 的交点坐标是12,2⎛⎫- ⎪⎝⎭.故答案为:12,2⎛⎫-⎪⎝⎭8、点(,6)P m 到直线3420x y --=的距离不大于4,则m 的取值范围是________. 【答案】462,3⎡⎤⎢⎥⎣⎦【分析】根据点到直线的距离公式即可列出不等式,解出即可. 【详解】4≤,解得4623m ≤≤.故答案为:462,3⎡⎤⎢⎥⎣⎦.。
两直线的交点坐标及距离公式
3x y 4 0
如何求数轴上两点之间的距离?
A B
x1
x2
| AB || x2 x1 |
探究1:已知A( x1 , y1 ),B( x2 , y2 ).如何求 | AB | ?
(1)、y1 y2
y
(2)、x1 x2
y
A( x1 , y1 )
B( x2 , y2 ).
y1
A( x1 , y1 )
x1 o
x2
x
o
x
B( x2 , y 2 ).
y2
| AB || x2 x1 |
| AB || y2 y1 |
探究1:已知A( x1 , y1 ),B( x2 , y2 ).如何求 | AB | ?
(3) x1 x2 , y1 y2
o y
B( x2 , y2 ).
| y2 x y1 |
两点间的距离公式 A( x1 , y1|)x 2 x1 | P( x2 , y1 ).
| AB |
x2 x1 y2 y1
2
2
探究2:已知A( x1 , y1 ),B( x2 , y2 ).如何求 A, B中点的坐标?
144 25
已知平面上两点P1(x1,y1)和P2(x2,y2),直线P1P2 的斜率为k,则 y2-y1可怎样表示?从而点P1和P2的距 离公式可作怎样的变形?
y2 y1 k ( x2 x1 )
1 | P1 P2 | 1 k | x2 x1 | 1 2 | y2 y1 | k
y
B( x2 , y2 ).
x
M ( x0 , y0 ).
两条直线的交点坐标与距离公式
一、两直线的交点
已知两条直线l1:A1x+B1y+C1=0与 l2:A2x+B2y+C2=0的交点坐标对应的是方程组
{A1x+B1y+C1=0 A2x+B2y+C2=0
的解,
返回目录
其中①当A1B2-A2B1≠0时,两条直线 相交于一点 , ② 当条A直1线B2无-A交2B点1=,0即且A1C2-A2平C1行,≠0③(当或AB11BC22--AB22BC11=≠00且)A时1C,两2A即2C1=0(或重B合1C. 2-B2C1=0)时,两条直线有无数个公共点,
二、距离公式
1.两点间的距离
平面上两点P1(x1,y1),P2(x2,y2)间的距离 |P1P2|= (x 2-x1)2+(y 2-y1)2.
2.点到直线的距离
平| A面x0上+B一y点0 +PC(|x1,y1)到一条直线l:Ax+By+C=0的距离
d=
A2 +B2
.
返回目录
3.两平行线的距离 若l1,l2是平行线,求l1,l2距离的方法: (1)求一条直线上一点到另一条直线的距离. (2)设l1:Ax+By+C1=0,l2:Ax+By+C2=0,则
8 即m=0,n=8时,l1⊥l2,且l1在y轴上的截距为-1.
返回目录
考点二 距离公式的应用
已知直线l过点P(3,1)且被两平行线l1:x+y+1=0,l2: x+y+6=0截得的线段长为5,求直线l的方程.
【分析】可设点斜式方程,求与两直线的交点.利用两 点间距离公式求解.
【解析】解法一:若直线l的斜率不存在,则直线l的 方程为x=3,此时与l1,l2的交点分别是
两条直线的交点坐标及两点间的距离公式
两条直线的一般式方程分别为:Ax + By = C 和 Dx + Ey = F
将两个方程相减或相加,得到一个一元一次方程,解得交点的x或y坐标
将得到的x或y坐标代入任意一个原方程,解得另一个坐标
得到交点坐标为 (x1, y1) 和 (x2, y2)
特殊情况的处理
两条直线平行的情况:此时它们的交点坐标为无穷远点,即坐标为(∞, ∞)。
公式推导过程中涉及到的数学知识点包括向量、三角函数和代数运算
距离公式的应用场景
计算线段的中点坐标
计算两点间的距离
判断点与线之间的距离
计算多边形的面积
距离公式的几何意义
公式适用于平面和三维空间中的两点距离计算
几何意义是将两点的距离量化为一个数值
公式中的平方和表示线段的平方长度
两点间的距离公式是连接两点的线段的长度
公式中$(x_1,y_1)$和$(x_2,y_2)$分别表示两点的坐标
公式表示点$(x_1,y_1)$和$(x_2,y_2)$之间的距离
公式可用于计算任意两点间的距离
两点间距离公式的推导
两点间距离公式推导的起始点是欧几里得几何的基本假设
通过勾股定理和三角函数推导出两点间距离公式
公式形式为:d = √[(x2-x1)^2 + (y2-y1)^2]
两条直线垂直的情况:此时它们的交点坐标为原点(0, 0)。
两条直线重合的情况:此时它们的交点坐标为无穷多个,即任意坐标点。
两条直线相切的情况:此时它们的交点坐标为切点,需要根据具体情况计算。
03
两点间的距离公式
点坐标的表示方法
两点间的距离公式为:$\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$
两条直线的交点坐标与距离公式
两条直线的交点坐标与距离公式一、平面直线的交点坐标计算方法在平面几何中,两条直线的交点即为它们的方程组的解。
假设有两条直线,直线1的方程为a1x+b1y+c1=0,直线2的方程为a2x+b2y+c2=0。
其中a1、b1、c1、a2、b2和c2都是已知的常数。
要求两条直线的交点坐标,可以使用消元法和代入法进行计算。
1.消元法消元法是通过将一个方程乘以适当的系数,使得方程的其中一项系数与另一个方程的对应系数相等,以消去一个未知数。
然后将消去后的方程代入到另一个方程中解得另一个未知数,从而求得交点坐标。
首先选择一个方程,例如直线1的方程a1x+b1y+c1=0作为基准,通过乘以a2和b1使得两个方程的x系数相等,即a1*a2*x+b1*a2*y+c1*a2=a2*a1*x+b2*a1*y+c2*a1,然后再乘以b2和b1使得两个方程的y系数相等,即a1*a2*x*b2+b1*a2*y*b2+c1*a2*b2=a2*a1*x*b2+b2*a1*y*b2+c2*a1*b2、通过将两个方程相减消去x的系数,即得到一个只含有y的方程,然后通过解这个方程来求得y的值。
将求得的y的值代入到任意一个方程中,即可求得x的值。
进而得到交点坐标。
2.代入法代入法是通过将一个方程的未知数表示为另一个方程的函数,再将其代入到另一个方程中,求得另一个方程的解。
从而求得未知数的值。
假设直线1的方程为a1x+b1y+c1=0,直线2的方程为a2x+b2y+c2=0,选择其中一个方程(例如直线1的方程)中未知数x表示为y的函数,即x=(c1-b1y)/a1、将这个式子代入到另一个方程(例如直线2的方程)中,得到一个只含有y的方程。
然后解这个方程可以得到y的值。
将求得的y的值代入到x=(c1-b1y)/a1中,即可求得x的值。
从而得到交点坐标。
以上就是求解两条直线交点坐标的两种方法。
二、两条直线之间的距离公式两条直线之间的距离可以使用点到直线的距离公式进行计算。
直线的交点与距离
平行直线Ax+By+C1=0与Ax+By+C2=0之间的距离为
d C1 C2 A2 B2
3、特殊直线方程设法:
(1)与直线Ax+By+C=0平行的直线方程为 Ax+By+m=0
(2)与直线Ax+By+C=0垂直的直线方程为 Bx-Ay+m=0
注意: 1、两直线的位置关系判断时,要注意斜率不 存在的情况
(______)x(yp1
1)y a
A
0
(
1 c
1)x b
(
1 p
1)y a
0
FP E
BO
Cx
题型3:定点问题
例4、求证:不论m为何实数,直线l:(m-
1)x+(2m-1)y=m-5恒过一个定点,并求出此
定点坐标。
(9,-4)
注:变量分离法(主元已知m∈R直线l:mx(m2+1)y=4m和圆C:x2+y2-8x+4y+16=0. (Ⅰ)求直线l斜率的取值范围; (Ⅱ)直线l能否将圆C分割成弧长的比值为 1:2的两段圆弧?为什么?
1 ≤k ≤ 1
2
2
不可能
练习:过点M(2,4)作两条互相垂直的直线,分 别交x、y的正半轴于A、B,若四边形OAMB的 面积被直线AB平分,求直线AB方程。
(1+3λ)x+(1+2λ)y=2+5λ的距离为d,则d
的取值范围
。
B(1,1) 0 d 13
题型4:轨迹问题
例5、平面直角坐标系,O为坐标原点,已
知两点A(3,1)B(-1,3),若点C满足
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 2
AB h
.
y
4A
3
AB 3 12 1 32 2 2 .
AB边上的高 h就是点C到 AB的距
离.
2h
1
C
-1 O 1 2
B
3x
例2 已知点 A1,3,B3,1,C-1,0 ,求ABC
的面积.
解: AB边所在直线的方程为: y 3 x 1 , 13 31
y= - 1
x
o M(1, - 1)
代入:3x+2y-1+λ(2x-3y-5)= 0
得 0+λ·0=0
∴M点在直线上
结论:A1x+B1y+C1+λ(A2x+B2y+C2)=0是过直 线
例4、判断下列各对直线的位置关系,如 果相交,求出交点的坐标:
(1)l1:x-y=0, (2)l1:3x-y+4=0, (3)l1:3x+4y-5=0,
y=y1或x=x1的形式.
y y=y1
P (x0,y0)
y (x1,y0)
Q
P(x0,y0)
Q (x0,y1)
o
x
o
x
PQ = y0 - y1
x=x1 PQ = x0 - x1
例2 已知点 A1,3,B3,1,C-1,0,求 ABC
的面积.
解:如图,设AB边上的高为 h,则
SABC
y=-4.
即直线过定点(9,-4).
例3:求直线3x+2y-1=0和2x-3y-5=0的交点M的坐标,
并证明方程3x+2y-1+λ(2x-3y-5)=0(λ为任意常
数)表示过M点的所有直线(不包括直线2x-3y-5=0)。
y
3x+2y-1=0 证明:联立方程
2x-3y-5=0 x=1
解得:
即 M(1,- 1)
唯一解
直线l1 , l2解方程组无穷多解
l1, l1,
l 2 相交 l2重合
无解
l1, l2平行
例1:求下列两条直线的交点:l1:3x+4y-2=0;
解:解方程组
l2: 2x+y+2=0.
3x+4y-2 =0 得 2x+y+2 = 0
x= -2 y=2
∴l1与l2的交点是M(- 2,2)
∴所求直线的斜率是3
所求直线方程为y+1=3(x-3)即 3x-y-10=0
解法二:所求直线在直线系2x-y-7+λ(x+2y-1)=0中
经整理,可得(2+λ)x+(2λ-1)y-λ-7=0
∴ - ——22+λ—-λ —1 =3
解得 λ= 1/7
因此,所求直线方程为3x-y-10=0
3.3.2 两点间的距离
特别地,原点O(0,0)与任意一点P(x,y)的距离为
OP x2 y2
例1、已知点A(-1,2),B(2, 7 ),在x
轴上求一点P,使 PA PB ,并求 PA 的值。
例2、证明平行四边形四条边的平方和等于两 条对角线的平方和。
y
D(b,c)
C(a+b,c)
A(0,0) B(a,0)
y
P l1
l2
Q
o
x
例7、求证:两条平行线l1:Ax+By+C1=0与
l2: Ax+By+C2=0的距离是 d C1 - C2 A2 B2
例2: 求平行线2x-7y+8=0与2x-7y-6=0的距离。
3.3. 直线的交点与距离公式
3.3.1 两条直线的交点坐标
问题:如何根据两直线的方程系数之间的 关系来判定两直线的位置关系?
l1 : A1x B1 y C1 0 l2 : A2 x B2 y C2 0
对于两直线 l1:A1x+B1y+C1=0, l2:A2x+B2y+C2=0.
(1)l1∥l2 ⇔ A1B2-A2B1=0且A1C2-A2C1≠0(或B1C2-B2C1≠0). (2)l1⊥l2 ⇔ A1A2+B1B2=0. (3)l1与l2重合 ⇔ A1B2-A2B1=0且A1C2-A2C1=0(或B1C2-B2C1=0).
方程组解的情况与方程组所表示的两条直线的位 置关系有何对应关系?
某一定点. 分析:由题意知,不论m取什么值,直线总是通过定点,也就是
说与m的取值无关,因此可将方程变形为m的方程,令m的系
数为0,解方程组得出定点坐标. 证明: 方法1:把原方程变形得
(x+2y-1)m-(x+y-5)=0,
此式对于m的任意实数都成立,
∴
x+2y-1=0,
x+y-5=0. ∴ x=9,
即:x y 4 0 .
点C1,0 到x y 4 0的距离
y
4A
3
h 1 0 4 5 .
12 12
2
2h
1
C
因此,
1
S ABC
2 2
2
5
-1 O 5.
2
12
B
3x
3.3.4 两条平行直线间的距离:
两条平行直线间的距离是指夹在两条平行直线间
的公垂线段的长.
思考:已知平面上两点P1(x1,y1), P2(x2,y2),如 何求P1,P2的距离 P1P2 ?
y
在直角△P1QP2中,
P2
N2
P1P2 2 P1Q 2 QP2 2
P1Q M1M2 x2 x1
M1 O
M2 x
Q P2 N1N2 y2 y1
Q
N1
P1
P1P2 x2 x1 2 y2 y1 2
例2:求经过原点且经过以下两条直线的交点的
直线方程,l1:x-2y+2=0,l2:2x-y-2=0.
解:解方程组
x-2y+2=0 2x-y-2=0
得
x= 2 y=2
∴l1与l2的交点是ห้องสมุดไป่ตู้2,2)
设经过原点的直线方程为 y=k x
把(2,2)代入方程,得k=1,所求方程为 y= x
题型三 综合问题 例3:求证:不论m取什么实数,直线(m-1)x+(2m-1)y=m-5总过
l2:3x+3y-10=0; l2:6x-2y=0; l2:6x+8y-10=0;
例5:求经过两条直线x+2y-1=0和2x-y-7=0的交点, 且垂直于直线x+3y-5=0的直线方程。
解法一:解方程组
x+2y-1=0, 2x-y-7=0
得
x=3 y= -1
∴这两条直线的交点坐标为(3,-1)
又∵直线x+3y-5=0的斜率是-1/3
x
建立坐标系, 用坐标表示有 关的量。
进行有关的代 数运算。
把代数运算结 果“翻译”成 几何关系。
3.3.3 点到直线的距离
点到直线的距离公式;
点 P0 x0 , y0 到直线 l : Ax By C 0的距离:
yl
Q
d Ax0 By0 C
A2 B2
P0
O
x
当A=0或B=0时,直线方程为