考点17 立体几何中的计算问题(解析版)

合集下载

立体几何(解析版)

立体几何(解析版)

立体几何(解析版)立体几何(解析版)立体几何是数学中的一个重要分支,研究物体的空间形状、尺寸以及相互关系。

通过立体几何的学习,我们可以更好地理解并描述物体的形状,并运用相关理论方法解决实际问题。

本文将以解析的方式介绍立体几何的基本概念、性质和定理,并探讨其在实际问题中的应用。

1. 点、线、面的基本概念在立体几何的世界中,点、线、面是最基本的几何元素。

点是没有大小的,只有位置的几何对象。

线由无数个点组成,是长度没有宽度的几何对象。

面是由无数个点和线组成,有着长度和宽度的几何对象。

了解这些基本概念是理解立体几何的第一步。

2. 空间几何关系的性质在立体几何中,物体之间有着各种各样的空间几何关系。

例如,平行是最基本的几何关系之一。

当两条直线或两个平面在空间中永远不相交时,我们称它们为平行。

此外,垂直、相交、共面等几何关系都在立体几何中发挥着重要作用。

通过研究这些几何关系的性质,可以更好地理解物体在空间中的位置和相互关系。

3. 空间几何图形的性质和分类空间几何图形是由点、线、面组成的。

常见的空间几何图形包括球、立方体、锥体等。

每种空间几何图形都有其独特的性质和分类标准。

例如,球是由所有距离圆心相等的点组成的,而立方体则有六个平面和八个顶点等。

通过深入研究这些性质和分类标准,我们能够更好地认识和应用空间几何图形。

4. 空间几何定理及其应用在立体几何中,有许多重要的定理和定律来描述和证明空间几何图形的性质。

例如,欧几里得空间中的平行公设和垂直公设是我们研究空间几何的基础。

此外,勾股定理、皮亚诺定理、欧拉公式等也为我们解决实际问题提供了强大的工具。

在实际问题中,我们可以通过运用这些定理和定律,推导出几何图形之间的关系,解决诸如面积、体积、距离等方面的问题。

5. 立体几何的应用立体几何的应用广泛而重要。

在建筑设计中,我们需要合理利用立体几何理论,确定房屋的尺寸和结构,确保建筑的稳定和美观。

在工程测量中,立体几何被用于计算地表面积和体积,指导建设工程的施工。

专题 立体几何中的计算

专题   立体几何中的计算

立体几何中的计算1、【2019年江苏数】.如图,长方体1111ABCD A B C D 的体积是120,E 为1CC 的中点,则三棱锥E -BCD 的体积是_____.2、【2018年高考江苏数】.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.3、【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________.4、【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)5、【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.6、【2019年高考北京卷文数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.7、【2019若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________.8、【2018年高考全国II 卷文数】已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.一、柱、锥、台和球的侧面积和体积注意:(1)分的处理.(2)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.二、在求解一些不规则的几何体的体积以及两个几何体的体积之比时,常常需要用到分割法.在求一个几何体被分成两部分的体积之比时,若有一部分为不规则几何体,则可用整个几何体的体积减去规则几何体的体积求出其体积.(1)解决空间几何体表面上的最值问题的根本思路是“展开”,即将空间几何体的“面”展开后铺在一个平面上,将问题转化为平面上的最值问题.(2)如果已知的空间几何体是多面体,则根据问题的具体情况可以将这个多面体沿多面体中某条棱或者两个面的交线展开,把不在一个平面上的问题转化到一个平面上.如果是圆柱、圆锥则可沿母线展开,把曲面上的问题转化为平面上的问题.三、方法与技巧(1)棱柱、棱锥要掌握各部分的结构特征,计算问题往往转化到一个三角形中进行解决.旋转体要抓住“旋转”特点,弄清底面、侧面及展开图形状.(2)要注意将空间问题转化为平面问题.(3)求几何体的体积,要注意分割与补形.将不规则的几何体通过分割或补形将其转化为规则的几何体求解.(4)一些几何体表面上的最短距离问题,常常利用几何体的展开图解决.四、失误与防范(1)几何体展开、折叠问题,要抓住前后两个图形间的联系,找出其中的量的关系.(2)与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.题型一 多面体的表面积与体积求多面体的表面积与体积常用方法:1、公式法:可以运用规则的几何体;2、割补法:把不规则的图形分割成规则的图形,或者把几何体补成熟悉的几何体。

立体几何难题解析附有答案详解

立体几何难题解析附有答案详解

立体几何难题解析(附有答案详解)一、解答题1.如图1,直角梯形ABCD 中,//,90AB CD ABC ∠=︒,42==AB CD ,2=BC .//AE BC 交CD 于点E ,点G ,H 分别在线段DA ,DE 上,且//GH AE .将图1中的AED ∆沿AE 翻折,使平面ADE ⊥平面ABCE (如图2所示),连结BD 、CD ,AC 、BE .HEGDCBA图1图2ABCG EHD(Ⅰ)求证:平面⊥DAC 平面DEB ;(Ⅱ)当三棱锥GHE B -的体积最大时,求直线BG 与平面BCD 所成角的正弦值.2.如图,在直三棱柱111ABC A B C -中,点D E 、分别在边11BC B C 、上,1CD B E AC ==,60ACD ∠︒=.求证:(1)BE 平面1AC D ;(2)平面1ADC ⊥平面11BCC B .3.如图,在直角梯形CD AB 中,D//C A B ,DC 90∠A = ,AE ⊥平面CD AB ,F//CD E ,1C CD F D 12B ==AE =E =A =.(1)求证:C //E 平面F AB ;(2)在直线C B 上是否存在点M ,使二面角D E -M -A 的大小为6π?若存在,求出C M 的长;若不存在,说明理由.4.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠= ,1AD DC ==,2AB =,E 、F 分别为PD 、PB 的中点.(1)求证:平面PCB ⊥平面PAC ;(2)若平面CEF 与底面ABCD 所成的锐二面角为4π,求PA 的长.5.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入棱长为2的正方体中,重合的底面与正方体的某一个面平行,各顶点均在正方体的表面上,将满足上述条件的八面体称为正方体的“正子体”.(1)若正子体的六个顶点分别是正方体各面的中心,求该八面体的表面积.(2)此正子体的表面积S 是否为定值?若是,求出该定值;若不是,求出表面积的取值范围.6.如图1,已知四边形ABCD 满足//AD BC ,12BA AD DC BC a ====,E 是BC 的中点,将BAE 沿着AE 翻折成1B AE △,形成四棱锥1B AECD -,F 为1B D 的中点,M 为AE 的中点,如图2所示.(1)求证:面1B DM ⊥面1B AE ;(2)当平面1B AE 与平面1B DC 所成角的余弦值为5时,求1B D 的长度;(3)当面1B AE ⊥面AECD 时,求平面1ADB 与平面1ECB 所成角的正弦值.7.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱1BB ,11A C 分别交于点F ,G.(1)若F 为1BB 的中点,求三棱柱被截面AGEF 分成上下两部分的体积比12V V ;(2)若四棱雉1A AGEF -求截面AGEF 与底面ABC 所成二面角的正弦值;(3)设截面AFEG 的面积为0S ,AEG ∆面积为1S ,AEF 面积为2S ,当点F 在棱1BB 上变动时,求2012S S S的取值范围.8.如图,在四棱锥B ACDE -中,平面ABC ⊥平面ACDE ,ABC 是等边三角形,在直角梯形ACDE 中,//AE CD ,AE AC ⊥,1AE =,2AC CD ==,P 是棱BD 的中点.(1)求证:EP ⊥平面BCD ;(2)设点M 在线段AC 上,若平面PEM 与平面EAB求MP 的长.9.如图,ABCD是块矩形硬纸板,其中2AB AD ==E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ;(2)如果()0AH HB λλ=> ,求二面角H AD E --的余弦值.10.如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别将△PAD,△PBC 沿PA,PB 所在直线折叠,使点C 与点D 重合于点O,如图2.在三棱锥P-OAB 中,E 为PB 中点.(Ⅰ)求证:PO⊥AB;(II)求直线BP 与平面POA 所成角的正弦值;(Ⅲ)求二面角P-AO-E 的大小.11.如图,在四棱锥P −ABCD 中,PA⊥平面Q 在PB 上,且满足PQ∶QB=1∶3,求直线CQ 与平面PAC 所成角的正弦值.12.已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点.(1)求证://平面;(2)求截面与底面所成二面角的大小.13.如图,已知四边形ABCD由Rt ABC∆拼接而成,其中∆和Rt BCDBAC BCD∠=∠=︒,3090∆沿着BC折起.=,BC=ABC∠=︒,AB ACDBC(1)若AD=,求异面直线AB与CD所成角的余弦值;(2)当四面体ABCD的表面积的最大时,求二面角A BC D--的余弦值.14.如图,ABCD与ADEF是两个边长为1的正方形,它们所在的平面互相垂直.(1)求异面直线AE 与BD 所成角的大小;(2)在线段BD 上取点M ,在线段AE 上取点N ,且BMx BD=,EN y EA =,试用x ,y 来表示线段MN 的长度;(3)在(2)的条件下,求MN 长度的最小值,并判断当MN 最短时,MN 是否是异面直线AE 与BD 的公垂线段?15.(本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面互相垂直,其中顶120BAE ∠= ,4AE AB ==,F 为线段AE 的中点.(1)若H 是线段BD 上的中点,求证://FH 平面CDE ;(2)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.16.如图所示,正方体ABCD A B C D -''''的棱长为1,E F 、分别是棱AA CC ''、的中点,过直线EF 的平面分别与棱BB DD ''、交于M N 、,设[]01BM x x =∈,,,求:(1)求EF 与面A B BA ''所成的角的大小;(2)求四棱锥C MENF '-的体积()V h x =,并讨论它的单调性;(3)若点P 是正方体棱上一点,试证:满足'2PA PC +=成立的点的个数为6.17.如图,在斜三棱柱111ABC A B C -中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面111A B C ⊥平面11ABB A ,异面直线1BC 与1AB 互相垂直.(1)求证:平面1//A DC 平面11BD C ;(2)若1CC 与平面11ABB A 的距离为x ,116AC AB ==,三棱锥1AACD -的体积为y ,试写出y 关于x 的函数关系式;(3)在(2)的条件下,当1CC 与平面11ABB A 的距离为多少时,三棱锥1A ACD -的体积取得最大值?并求出最大值.18.如图,四棱锥P ABCD -的底面为菱形且∠ABC=120°,PA ⊥底面ABCD,AB=1,PA E 为PC 的中点.(1)求直线DE 与平面PAC 所成角的大小;(2)求二面角E-AD-C 平面角的正切值;(3)在线段PC 上是否存在一点M ,使PC ⊥平面MBD 成立.如果存在,求出MC 的长;如果不存在,请说明理由参考答案1.(Ⅰ)见解析;(Ⅱ)BG 与平面BCD所成角的正弦值为6.【解析】(Ⅰ)由已知CD AB //,︒=∠90ABC ,42==AB CD 及BC AE //交CD 于点E .得到四边形ABCE 是边长为2的正方形.BE AC ⊥,AE DE ⊥.再据平面ADE ABCE ⊥平面,平面ADE ABCE AE ⋂=平面,得到DE ABCE ⊥平面,DE AC ⊥,AC DBE ⊥平面,得证.(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,EC AE ⊥,以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )由CE AB //,得到DAE AB 面⊥,从而2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ,根据1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.G 也是AD 的中点,求得)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.由⎪⎩⎪⎨⎧=-=-⋅=⋅=-=-⋅=⋅022)2,2,0(),,(02)0,0,2(),,(z y z y x DC n x z y x BC n ,令1=y ,得)1,1,0(=n ,设BG 与面BCD 所成角为θ,由||sin ||||BG n BG n θ⋅=即得.试题解析:(Ⅰ)∵CD AB //,︒=∠90ABC ,42==AB CD 又BC AE //交CD 于点E .∴四边形ABCE 是边长为2的正方形∴BE AC ⊥,AE DE ⊥.又∵平面ADE ABCE ⊥平面平面ADE ABCE AE = 平面∴DE ABCE⊥平面∵AC ABCE ⊂平面,∴DE AC ⊥又E BE DE = ∴AC DBE ⊥平面∵AC DAC ⊂平面∴平面DAC DEB⊥平面(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,ECAE ⊥以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.则)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )∵CE AB //,∴DAE AB 面⊥∴2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ∵20<<x ,∴1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.∵AE GH //,∴G 也是AD 的中点,∴)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.则(,,)(2,0,0)20(,,)(0,2,2)220n BC x y z x n DC x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩ 令1=y ,得)1,1,0(=n 设BG 与面BCD 所成角为θ则||sin 6||||BG n BG n θ⋅===∴BG 与平面BCD所成角的正弦值为6.2.(1)见详解;(2)见详解.【分析】(1)通过1BE C D 来证明BE 平面1AC D ;(2)通过AD ⊥平面11BCC B 来证明平面1ADC ⊥平面11BCC B .【详解】证明:(1)由三棱柱111ABC A B C -是直三棱柱,得11BC B C .因为点D E 、分别在边11BC B C 、上,1CD B E =,所以1BD C E =,1BD C E .所以四边形1BDC E 是平行四形,所以1BE C D 因为1C D ⊂平面1AC D ,BE ⊄平面1AC D 所以BE 平面1AC D .(2)由三棱柱111ABC A B C -是直三棱柱,得1CC ⊥平面ABC ,因为AD ⊂平面ABC ,所以1AD CC ⊥,在ACD ∆中,由12CD AC =,60ACD ∠︒=,得32AD AC ==,所以222AD CD AC +=,所以90ADC ∠︒=,即:AD BC ⊥,因为BC ⊂平面11BCC B ,1CC ⊂平面11BCC B ,1BC CC C = ,所以AD ⊥平面11BCC B ,因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B .3.(1)详见解析(2)C 3M =【解析】(1)证明线面平行,一般利用线面平行判定定理进行论证,即从平几出发,寻找线线平行:根据题意先将图形补全,再利用平行四边形得线线平行(2)研究二面角,一般方法为利用空间向量:先建立坐标系,利用坐标求二面角两个平面的法向量,因为AE ⊥平面D AM ,所以AE 为平面D AM 的一个法向量,而平面D EM 的一个法向量,则需联立方程组解出,再利用向量数量积求两法向量的夹角的余弦值,最后根据二面角与法向量夹角相等或互补关系,列等量关系确定点M ,同时根据向量的模求出C M 的长.解:(1)如图,作FG//EA ,G//F A E ,连接G E 交F A 于H ,连接BH ,G B ,F//CD E 且F CD E =,∴G//CD A ,即点G 在平面CD AB 内.由AE ⊥平面CD AB ,知G AE ⊥A ,∴四边形FG AE 为正方形,四边形CD G A 为平行四边形,∴H 为G E 的中点,B 为CG 的中点,∴//C BH E .BH ⊂平面F AB ,C E ⊄平面F AB ,∴C //E 平面F AB .(4分)(2)法一:如图,以A 为原点,G A 为x 轴,D A 为y 轴,AE 为z 轴,建立空间直角坐标系xyz A -.则()0,0,0A ,()0,0,1E ,()D 0,2,0,设()01,,0y M ,∴()D 0,2,1E =- ,()0D 1,2,0y M =-,设平面D EM 的一个法向量为(),,n x y z = ,则()0D 20D 20n y z n x y y ⎧⋅E =-=⎪⎨⋅M =+-=⎪⎩,令1y =,得2z =,02x y =-,∴()02,1,2n y =-.(10分)又 AE ⊥平面D AM ,∴()0,0,1AE =为平面D AM 的一个法向量,∴cos ,cos62n πAE ==,解得023y =±,∴在直线C B 上存在点M ,且33C 2233⎛M =-±= ⎝⎭.方法二:作D S A⊥M ,则SA ,由等面积法,得D 3M =,∴C 3M =.【分析】(1)本题首先可根据题意求出AC 、BC 的长度,然后根据222AC BC AB +=得出BC AC ⊥,再然后根据PA ⊥底面ABCD 得出PA BC ⊥,即可得出BC ⊥平面PAC ,最后根据BC ⊂平面PCB 即可证得平面PCB ⊥平面PAC ;(2)本题首先可结合图像构造空间直角坐标系,然后设PA a =,写出平面ABCD的法向量1n u r 以及平面CEF 的法向量2n u u r,最后根据平面CEF 与底面ABCD 所成的锐二面角为4π即可求出PA 的长.【详解】(1)因为1AD DC ==,2AB =,90CDA BAD ∠=∠=,所以AC BC ==因为222AC BC AB +=,所以BC AC ⊥,因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥,因为AC PA A ⋂=,所以BC ⊥平面PAC ,因为BC ⊂平面PCB ,所以平面PCB ⊥平面PAC .(2)如图,以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设(0)PA a a =>,则()0,2,0B =,()1,1,0C ,()1,0,0D ,()0,0,P a ,因为E 、F 分别为PD 、PB 的中点,所以1,0,22a E ⎛⎫ ⎪⎝⎭,0,1,2a F ⎛⎫ ⎪⎝⎭,1,1,22a CE ⎛⎫=-- ⎪⎝⎭ ,1,0,2a CF ⎛⎫=- ⎪⎝⎭ ,易知平面ABCD 的一个法向量1(0,0,1)n =,设平面CEF 的法向量为2(,,)n x y z =,则220,0,CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩ ,即10,220,2az x y az x ⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨取4z =,则2x a =,y a =,即2(2,,4)a a n=,因为平面CEF 与底面ABCD 所成的锐二面角为4π,所以121212cos,nnn nnn⋅=⋅解得a=,即PA【点睛】利用空间向量解决立体几何问题,关键是依托图形建立空间直角坐标系,将相关向量用坐标表示,通过向量运算判断或证明空间元素的位置关系及探究空间角、空间距离问题.建立空间直角坐标系的三种方法:(1)以几何体中共顶点且互相垂直的三条棱所在的直线作为坐标轴建系;(2)利用线面垂直关系找到三条互相垂直的直线建系;(3)利用面面垂直关系找到三条互相垂直的直线建系.5.(1).【分析】(1)根据题意,正子体的所有棱都是正方体相邻两个面中心的连线,则正子体每个面都是正三角形,进而求出表面积;(2)设平面ABCD截正方体所得截面为A B C D'''',设(01)AA x x'=≤≤,进而算出ADE的面积,从而算出正子体的表面积即可判断.【详解】(1)依题意,正子体任一棱都是正方体相邻两个面中心的连线,所以正子体所有棱的长均相等.因为AB=所以242ABES=⨯,故该八面体的表面积8=.(2)正子体的表面积S不是定值.如图1,设平面ABCD截正方体所得截面为A B C D'''',且A B C D''''的中心为O,过点O作OG A B''⊥,垂足为G.设(01)AA x x '=≤≤,则1AG x =-,222222(1)1123AE DE AO OE x x x ==+=-++=-+,()2222(2)224AD x x x x =-+=-+.设AD 的中点为H ,如图2,则()22212122AD AH x x ⎛⎫==-+ ⎪⎝⎭,()22221222EH AE AH x x =-=-+,所以()()()2222211122422442ADE S AD EH x x x x ⎡⎤⎡⎤=⋅=-+-+⎢⎥⎣⎦⎣⎦ ()()2221322242x x x x =-+-+.因为01x ≤≤,所以2120x x -≤-≤,则()()2223132222442x x x x ≤-+-+≤,ADE S ≤≤ S ≤≤,所以此正子体的表面积S 的取值范围为.6.(1)证明见解析;(2)5a ;(3)45.【分析】(1)要证面1B DM ⊥面1B AE ,只需证AE ⊥面1B DM 即可;(2)根据已知条件可知,1MB D ∠即为面1B AE 与面1B DC 所成角的平面角,进而可得1B D 的长度;(3)建立适当的空间直角坐标系进行求解即可.【详解】(1)证明:因为12BA AD DC BC a ====,E 是BC 的中点,所以AD CE a ==,又因为//AD BC ,所以四边形AECD 为菱形,所以ABE △为正三角形,又因为M 为AE 的中点,所以1B M AE ⊥,DM AE ⊥,又因为1B M DM M ⋂=,所以AE ⊥面1B DM ,又因为AE ⊆面1B AE ,所以面1B DM ⊥面1B AE ,(2)由(1)知:DM AE ⊥,1B M AE ⊥,又因为//AE CD ,所以1B M CD ⊥,CD DM ⊥,所以CD ⊥面1B DM ,所以面1B DC ⊥面1B DM ,又因为面1B DM ⊥面1B AE ,所以1MB D ∠即为面1B AE 与面1B DC所成角的平面角,即1cos 5MB D ∠=,在1MB D △中,1B M =,DM =,由余弦定理得:22211111cos 25B M B D DM MB D B M B D +-∠=⋅,解得:15B D =.(3)因为面1B AE ⊥面AECD ,1B M AE ⊥,所以1B M ⊥面AECD ,所以以M 为坐标原点,以向量ME,MD ,1MB 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,由题可得:,0,02aA ⎛⎫- ⎪⎝⎭,1B ⎛⎫⎪ ⎪⎝⎭,0,,02D ⎛⎫⎪ ⎪⎝⎭,,0,02aE ⎛⎫⎪⎝⎭,,,02C a ⎛⎫⎪ ⎪⎝⎭,则有:1,0,22a B A ⎛⎫=-- ⎪ ⎪⎝⎭,10,,22B D ⎛⎫=- ⎪ ⎪⎝⎭,1,0,22a B E ⎛⎫=- ⎪ ⎪⎝⎭ ,133,22B C a a a ⎛⎫= ⎪ ⎪⎝⎭,设平面1ADB 与平面1ECB 的法向量分别为()1111,,x n y z =,()2222,,n x y z = ,由111100n B A n B D ⎧⋅=⎪⎨⋅=⎪⎩,得11110220a x z y z ⎧--=⎪⎪=,令11z =,则1x =11y =,所以()1n =,由212100n B E n B C ⎧⋅=⎪⎨⋅=⎪⎩,得222220220ax z ax y z ⎧-=⎪⎪⎨⎪+=⎪⎩,令21z =,则1x =21y =-,所以)21,1n =-,设平面1ADB 与平面1ECB 所成角的平面角为θ,则:12123cos 5n n n n θ⋅==⋅ 所以4sin 5θ=.7.(1)121323V V =;(2)45;(3)94,2⎡⎤⎢⎣⎦.【分析】(1)连结EF ,并延长分别交1CC ,CB 于点M ,N ,连结AM 交11A C 于点G ,连结AN ,GE ,利用比例关系确定G 为11A C 靠近1C 的三等分点,然后先求出棱柱的体积,连结1A E ,1A F ,由11111A EFB G AA E F AA E V V V V ---=++和21V V V =-进行求解,即可得到答案;(2)求出点G 到平面1A AE 的距离,得到点G 为11A C 靠近1C 的四等分点,通过面面垂直的性质定理可得1AGA ∠即为截面AGEF 与底面ABC 所成的二面角,在三角形中利用边角关系求解即可;(3)设1GC m =,则[0m ∈,1],先求出12S S 的关系以及取值范围,然后将2012S S S 转化为1S ,2S 表示,求解取值范围即可.【详解】解:(1)连接EF ,并延长分别交1CC ,CB 延长线于点M ,N ,连接AM 交11A C 于点G ,连接AN ,GE .易得11113GC MC C E AC MC CN ===.故G 为11A C 靠近1C 的三等分点.11MC =,123GC =.下面求三棱柱被截面分成两部分的体积比.三棱柱111ABC A B C -的体积2224V =⨯=连接1A E ,1A F .由1//BB 平面1A AE 知,1F AA E V -为定值.11121323F AA E V -=⨯⨯=.11111A EFB G AA E F AA E V V V V ---=++1111211232323=⨯⨯⨯⨯⨯+=21V V V =-=121323V V =.(2)由111A AGEF G AA E F AA E V V V ---=+及1F AA E V -=1G AA E V -=又1113G AA E AA E V S h -=⨯⨯△,所以34h =.即点G 到1A E 的距离为34,G 为11A C 靠近1C 的四等分点.因为平面111//A B C 平面ABC ,所以截面AGEF 与平面ABC 所成角即为截面AGEF 与平面111A B C 所成角,在1GC E △中,112GC =,11C E =,故1EG GC ⊥.又因为平面11ACC A ⊥平面111A B C ,且平面11ACC A 平面11111A B C AC =,所以EG ⊥平面11ACC A .则1AGA ∠即为截面AGEF 与底面ABC 所成的二面角.在1Rt AGA △中,132A G =,12AA =,52AG =.故114sin 5AA A GA AG ∠==.因此,截面AGEF 与平面ABC 所成二面角的正弦值为45.(3)设1GC m =,则[]0,1m ∈,2MG mGA m=-.设MGE 的面积为S ,所以12S m S m=-.又因为21S S S =+,所以1222S mS -=.且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦故()21201212122212S S SS S S S S S S S +==++.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪⎝⎭,所以()94,2g t ⎡⎤∈⎢⎥⎣⎦,所以20121221924,2S S S S S S S ⎡⎤=++∈⎢⎥⎣⎦8.(1)证明见解析;(2)2M P =.【分析】(1)取BC 的中点Q ,连接PQ 、AQ ,由线面垂直判定定理可证AQ ⊥面BCD ,即可得证;(2)以Q 为原点建立坐标系,利用向量法建立关系可求出.【详解】(1)证明:如图,取BC 的中点Q ,连接PQ 、AQ ,因为ABC 是等边三角形,所以AQ BC ⊥,又平面ABC ⊥平面ACDE ,AE AC ⊥,平面ABC 平面ACDE =AC ,所以AE ⊥面ABC ,又AQ ⊂面ABC ,所以AE AQ ⊥,又//AE CD ,所以CD AQ ⊥,又CD BC C ⋂=,所以AQ ⊥面BCD ,因为2BP PD =,又P 是棱BD 的中点,所以112PQ DC ==,//PQ DC ,又//AE CD ,1AE =,所以//AE PQ ,AE PQ =,即四边形AEPQ 是一个平行四边形,所以//EP AQ ,所以EP ⊥平面BCD ;(2)由(1)得PQ ⊥平面ABC ,所以以点Q 为坐标原点,建立如图所示的空间直角坐标系,则()0,0,0Q ,)A ,()0,1,0B ,)E ,()0,0,1P ,设平面EAB 的法向量为()111,,m x y z =,由()111+00m AB y m m AE z ⎧⋅==⎪⇒=⎨⋅==⎪⎩,因为点M 在线段AC上,设其坐标为),0M t -,其中01t ≤≤,所以(),,1EM t =--,()EP = 设平面PEM 的法向量为()222,,n x y z =,由()222200,1,0n EM ty z n t n EP ⎧⋅=--=⎪⇒=-⎨⋅==⎪⎩,由题意,设平面PEM 与平面EAB 所成的锐二面角为θ,则1cos 2m n t m n θ⋅=⇒=-⋅或12t =,因为01t ≤≤,所以1,02M ⎫-⎪⎪⎝⎭,所以M P =.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何(7大题型)(解析版)2024年高考数学立体几何大题突破

立体几何立体几何是高考数学的必考内容,在大题中一般分两问,第一问考查空间直线与平面的位置关系证明;第二问考查空间角、空间距离等的求解。

考题难度中等,常结合空间向量知识进行考查。

2024年高考有很大可能延续往年的出题方式。

题型一:空间异面直线夹角的求解1(2023·上海长宁·统考一模)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)求证:AO⊥CD;(2)若BD⊥DC,BD=DC,AO=BO,求异面直线BC与AD所成的角的大小.【思路分析】(1)利用面面垂直的性质、线面垂直的性质推理即得.(2)分别取AB,AC的中点M,N,利用几何法求出异面直线BC与AD所成的角.【规范解答】(1)在三棱锥A-BCD中,由AB=AD,O为BD的中点,得AO⊥BD,而平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AO⊂平面ABD,因此AO⊥平面BCD,又CD⊂平面BCD,所以AO⊥CD.(2)分别取AB,AC的中点M,N,连接OM,ON,MN,于是MN⎳BC,OM⎳AD,则∠OMN是异面直线BC与AD所成的角或其补角,由(1)知,AO ⊥BD ,又AO =BO ,AB =AD ,则∠ADB =∠ABD =π4,于是∠BAD =π2,令AB =AD =2,则DC =BD =22,又BD ⊥DC ,则有BC =BD 2+DC 2=4,OC =DC 2+OD 2=10,又AO ⊥平面BCD ,OC ⊂平面BCD ,则AO ⊥OC ,AO =2,AC =AO 2+OC 2=23,由M ,N 分别为AB ,AC 的中点,得MN =12BC =2,OM =12AD =1,ON =12AC =3,显然MN 2=4=OM 2+ON 2,即有∠MON =π2,cos ∠OMN =OM MN =12,则∠OMN =π3,所以异面直线BC 与AD 所成的角的大小π3.1、求异面直线所成角一般步骤:(1)平移:选择适当的点,线段的中点或端点,平移异面直线中的一条或两条成为相交直线.(2)证明:证明所作的角是异面直线所成的角.(3)寻找:在立体图形中,寻找或作出含有此角的三角形,并解之.(4)取舍:因为异面直线所成角θ的取值范围是0,π2,所以所作的角为钝角时,应取它的补角作为异面直线所成的角.2、可通过多种方法平移产生,主要有三种方法:(1)直接平移法(可利用图中已有的平行线);(2)中位线平移法;(3)补形平移法(在已知图形中,补作一个相同的几何体,以便找到平行线).3、异面直线所成角:若n 1 ,n 2分别为直线l 1,l 2的方向向量,θ为直线l 1,l 2的夹角,则cos θ=cos <n 1 ,n 2 > =n 1 ⋅n 2n 1 n 2.1(2023·江西萍乡·高三统考期中)如图,在正四棱台ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点.(1)证明:EF ⎳平面AB1C 1D ;(2)若AB =2A 1B 1,且正四棱台的侧面积为9,其内切球半径为22,O 为ABCD 的中心,求异面直线OB 1与CC 1所成角的余弦值.【答案】(1)证明见解析;(2)45【分析】(1)根据中位线定理,结合线面平行判定定理以及面面平行判定定理,利用面面平行的性质,可得答案;(2)根据题意,结合正四棱台的几何性质,求得各棱长,利用线线角的定义,可得答案.【解析】(1)取CC 1中点G ,连接GE ,GF ,如下图:在梯形BB 1C 1C 中,E ,G 分别为BB 1,CC 1的中点,则EG ⎳B 1C 1,同理可得FG ⎳C 1D ,因为EG ⊄平面AB 1C 1D ,B 1C 1⊂平面AB 1C 1D ,所以EG ⎳平面AB 1C 1D ,同理可得GF ⎳平面AB 1C 1D ,因为EG ∩FG =G ,EG ,FG ⊆平面EFG ,所以平面EFG ⎳平面AB 1C 1D ,又因为EF ⊆平面EFG ,所以EF ⎳平面AB 1C 1D ;(2)连接AC ,BD ,则AC ∩BD =O ,连接A 1O ,A 1C 1,B 1O ,在平面BB 1C 1C 中,作B 1N ⊥BC 交BC 于N ,在平面BB 1D 1D 中,作B 1M ⊥BD 交BD 于M ,连接MN ,如下图:因为AB =2A 1B 1,则OC =A 1C 1,且OC ⎳A 1C 1,所以A 1C 1CO 为平行四边形,则A 1O ⎳CC 1,且A 1O =CC 1,所以∠A 1OB 1为异面直线OB 1与CC 1所成角或其补角,同理可得:B 1D 1DO 为平行四边形,则B 1O =D 1D ,在正四棱台ABCD -A 1B 1C 1D 1中,易知对角面BB 1D 1D ⊥底面ABCD ,因为平面ABCD ∩平面BB 1D 1D =BD ,且B 1M ⊥BD ,B 1M ⊂平面BB 1D 1D ,所以B 1M ⊥平面ABCD ,由内切球的半径为22,则B 1M =2,在等腰梯形BB 1C 1C 中,BC =2B 1C 1且B 1N ⊥BC ,易知BN =14BC ,同理可得BM =14BD ,在△BCD 中,BN BC=BM BD =14,则MN =14CD ,设正方形ABCD 的边长为4x x >0 ,则正方形A 1B 1C 1D 1的边长为2x ,MN =x ,由正四棱台的侧面积为9,则等腰梯形BB 1C 1C 的面积S =94,因为B 1M ⊥平面ABCD ,MN ⊂平面ABCD ,所以B 1M ⊥MN ,在Rt △B 1MN ,B 1N =B 1M 2+MN 2=2+x 2,可得S =12⋅B 1N ⋅B 1C 1+BC ,则94=12×2+x 2×4x +2x ,解得x =12,所以BC =2,B 1C 1=1,BN =14BC =12,B 1N =32,则A 1B 1=1,在Rt △BB 1N 中,BB 1=B 1N 2+BN 2=102,则CC 1=DD 1=102,所以在△A 1OB 1中,则cos ∠A 1OB 1=A 1O 2+B 1O 2-A 1B 212⋅A 1O ⋅B 1O=1022+102 2-12×102×102=45,所以异面直线OB 1与CC 1所成角的余弦值为45.2(2023·辽宁丹东·统考二模)如图,平行六面体ABCD -A 1B 1C 1D 1的所有棱长都相等,平面CDD 1C 1⊥平面ABCD ,AD ⊥DC ,二面角D 1-AD -C 的大小为120°,E 为棱C 1D 1的中点.(1)证明:CD ⊥AE ;(2)点F 在棱CC 1上,AE ⎳平面BDF ,求直线AE 与DF 所成角的余弦值.【答案】(1)证明见解析;(2)37【分析】(1)根据面面垂直可得线面垂直进而得线线垂直,由二面角定义可得∠D 1DC =120°,进而根据中点得线线垂直即可求;(2)由线面平行的性质可得线线平行,由线线角的几何法可利用三角形的边角关系求解,或者建立空间直角坐标系,利用向量的夹角即可求解.【解析】(1)因为平面CDD 1C 1⊥平面ABCD ,且两平面交线为DC ,AD ⊥DC ,AD ⊂平面ABCD , 所以AD ⊥平面CDD 1C 1,所以AD ⊥D 1D ,AD ⊥DC ,∠D 1DC 是二面角D 1-AD -C 的平面角,故∠D 1DC =120°.连接DE ,E 为棱C 1D 1的中点,则DE ⊥C 1D 1,C 1D 1⎳CD ,从而DE ⊥CD .又AD ⊥CD ,DE ∩AD =D ,DE ,AD ⊂平面AED ,所以CD ⊥平面AED ,ED ⊂平面AED ,因此CD ⊥AE .(2)解法1:设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.连AC 交BD 于点O ,连接CE 交DF 于点G ,连OG .因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =OG ,所以AE ∥OG ,因为O 为AC 中点,所以G 为CE 中点,故OG =12AE =72.且直线OG 与DF 所成角等于直线AE 与DF 所成角.在Rt △EDC 中,DG =12CE =72,因为OD =2,所以cos ∠OGD =722+72 2-(2)22×72×72=37.因此直线AE 与DF 所成角的余弦值为37.解法2;设AB =2,则DE =D 1D 2-12D 1C 1 2=3,所以CE =AE =AD 2+DE 2=7.取DC 中点为G ,连接EG 交DF 于点H ,则EG =DD 1=2.连接AG 交BD 于点I ,连HI ,因为AE ⎳平面BDF ,AE ⊂平面AGE ,平面AGE ∩平面BDF =IH ,所以AE ∥IH .HI 与DH 所成角等于直线AE 与DF 所成角.正方形ABCD 中,GI =13AG ,DI =13DB =223,所以GH =13EG ,故HI =13AE =73.在△DHG 中,GH =13EG =23,GD =1,∠EGD =60°,由余弦定理DH =1+49-1×23=73.在△DHI 中,cos ∠DHI =732+73 2-223 22×73×73=37.因此直线AE 与DF 所成角的余弦值为37.解法3:由(1)知DE ⊥平面ABCD ,以D 为坐标原点,DA为x 轴正方向,DA为2个单位长,建立如图所示的空间直角坐标系D -xyz .由(1)知DE =3,得A 2,0,0 ,B 2,2,0 ,C 0,2,0 ,E (0,0,3),C 1(0,1,3).则CC 1=(0,-1,3),DC =(0,2,0),AE =(-2,0,3),DB =(2,2,0).由CF =tCC 1 0≤t ≤1 ,得DF =DC +CF =(0,2-t ,3t ).因为AE ⎳平面BDF ,所以存在唯一的λ,μ∈R ,使得AE =λDB +μDF=λ2,2,0 +μ(0,2-t ,3t )=2λ,2λ+2μ-tμ,3μt ,故2λ=-2,2λ+2μ-tμ=0,3μt =3,解得t =23,从而DF =0,43,233 .所以直线AE 与DF 所成角的余弦值为cos AE ,DF =AE ⋅DF|AE ||DF |=37.题型二:空间直线与平面夹角的求解2(2024·安徽合肥·统考一模)如图,三棱柱ABC -A 1B 1C 1中,四边形ACC 1A 1,BCC 1B 1均为正方形,D ,E 分别是棱AB ,A 1B 1的中点,N 为C 1E 上一点.(1)证明:BN ⎳平面A 1DC ;(2)若AB =AC ,C 1E =3C 1N,求直线DN 与平面A 1DC 所成角的正弦值.【思路分析】(1)连接BE ,BC 1,DE ,则有平面BEC 1⎳平面A 1DC ,可得BN ⎳平面A 1DC ;(2)建立空间直角坐标系,利用空间向量进行计算即可.【规范解答】(1)连接BE ,BC 1,DE .因为AB ⎳A 1B 1,且AB =A 1B 1,又D ,E 分别是棱AB ,A 1B 1的中点,所以BD ⎳A 1E ,且BD =A 1E ,所以四边形BDA 1E 为平行四边形,所以A 1D ⎳EB ,又A 1D ⊂平面A 1DC ,EB ⊄平面A 1DC ,所以EB ⎳平面A 1DC ,因为DE ⎳BB 1⎳CC 1,且DE =BB 1=CC 1,所以四边形DCC 1E 为平行四边形,所以C 1E ⎳CD ,又CD ⊂平面A 1DC ,C 1E ⊄平面A 1DC ,所以C 1E ⎳平面A 1DC ,因为C 1E ∩EB =E ,C 1E ,EB ⊂平面BEC 1,所以平面BEC 1⎳平面A 1DC ,因为BN ⊂平面BEC 1,所以BN ⎳平面A 1DC .(2)四边形ACC 1A 1,BCC 1B 1均为正方形,所以CC 1⊥AC ,CC 1⊥BC ,所以CC 1⊥平面ABC .因为DE ⎳CC 1,所以DE ⊥平面ABC ,从而DE ⊥DB ,DE ⊥DC .又AB =AC ,所以△ABC 为等边三角形.因为D 是棱AB 的中点,所以CD ⊥DB ,即DB ,DC ,DE 两两垂直.以D 为原点,DB ,DC ,DE 所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系D -xyz .设AB =23,则D 0,0,0 ,E 0,0,23 ,C 0,3,0 ,C 10,3,23 ,A 1-3,0,23 ,所以DC =0,3,0 ,DA 1=-3,0,23 .设n=x ,y ,z 为平面A 1DC 的法向量,则n ⋅DC=0n ⋅DA 1 =0,即3y =0-3x +23z =0 ,可取n=2,0,1 .因为C 1E =3C 1N ,所以N 0,2,23 ,DN =0,2,23 .设直线DN 与平面A 1DC 所成角为θ,则sin θ=|cos ‹n ,DN ›|=|n ⋅DN ||n |⋅|DN |=235×4=1510,即直线DN 与平面A 1DC 所成角正弦值为1510.1、垂线法求线面角(也称直接法):(1)先确定斜线与平面,找到线面的交点B 为斜足;找线在面外的一点A ,过点A 向平面α做垂线,确定垂足O ;(2)连结斜足与垂足为斜线AB 在面α上的投影;投影BO 与斜线AB 之间的夹角为线面角;(3)把投影BO 与斜线AB 归到一个三角形中进行求解(可能利用余弦定理或者直角三角形)。

2020届高考数学专题:立体几何计算问题(答案不全)

2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。

高中几何体试题及答案解析

高中几何体试题及答案解析

高中几何体试题及答案解析试题一:立体几何基础题题目:已知一个长方体的长、宽、高分别为a、b、c,求该长方体的体积。

解析:长方体的体积可以通过其三个维度的乘积来计算,即体积V = a × b × c。

答案:V = abc。

试题二:空间向量在立体几何中的应用题目:在空间直角坐标系中,点A(1, 0, 0),点B(0, 1, 0),点C(0, 0, 1),求三角形ABC的面积。

解析:空间直角坐标系中,三角形的面积可以通过向量叉乘来求解。

设向量AB = (-1, 1, 0),向量AC = (-1, 0, 1),向量AB与向量AC 的叉乘结果为向量AB × AC = (1, -1, 1)。

该向量的模即为三角形ABC的面积的两倍。

答案:三角形ABC的面积为√3。

试题三:圆锥体的体积计算题目:已知圆锥的底面半径为r,高为h,求圆锥的体积。

解析:圆锥的体积可以通过公式V = (1/3)πr²h来计算。

答案:V = (1/3)πr²h。

试题四:球体的表面积与体积题目:已知球体的半径为R,求球体的表面积和体积。

解析:球体的表面积可以通过公式A = 4πR²来计算,球体的体积可以通过公式V = (4/3)πR³来计算。

答案:球体的表面积A = 4πR²,球体的体积V = (4/3)πR³。

试题五:旋转体的体积题目:已知圆柱的底面半径为r,高为h,求圆柱的体积。

解析:圆柱的体积可以通过公式V = πr²h来计算。

答案:V = πr²h。

结束语:通过上述试题及答案解析,我们可以看到高中几何体的计算涉及体积、面积和表面积等概念,这些计算在数学和物理等多个领域都有广泛的应用。

掌握这些基础知识对于解决更复杂的几何问题至关重要。

希望这些试题和解析能够帮助学生加深对立体几何概念的理解,并在解题过程中培养空间想象能力。

立体几何解答题汇总及答案

立体几何解答题汇总及答案

立体几何 1.如图,四边形ABCD 为正方形,PD⊥平面ABCD ,PD∥QA,QA=AB=12PD.(I )证明:平面PQC⊥平面DCQ (II )求二面角Q-BP-C 的余弦值.2.如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,122AA =,1C H ⊥平面11AA B B ,且1 5.C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值;(Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.3.在如图所示的几何体中,四边形ABCD 为平行四边形,∠ ACB=90︒,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(Ⅱ)若AC=BC=2AE,求二面角A-BF-C的大小.4.如图5,在椎体P ABCD -中,ABCD 是边长为1的棱形060DAB ∠=,2PA PD ==,2,PB =,E F 分别是,BC PC的中点,(1) 证明:AD DEF ⊥平面(2)求二面角P AD B--的余弦值。

5.如图,ABCDEFG 为多面体,平面ABED 与平面AGFD垂直,点O 在线段AD 上,1,2,OA OD ==OAB ,△OAC ,△ODE ,△ODF 都是正三角形。

(Ⅰ)证明直线BC ∥EF ;(II )求棱锥F-OBED 的体积。

6. 已知三棱柱,底面三角形ABC 为正三角形,侧棱1AA ⊥底面ABC , 4,21==AA AB ,E 为1AA 的中点,F 为BC 中111C B A ABC -点.(Ⅰ) 求证:直线//AF 平面1BEC ;(Ⅱ)求平面1BEC 和平面ABC 所成的锐二面角的余弦值.7. 如图,在矩形ABCD 中,AB =5,BC =3,沿对角线BD 把△ABD折起,使A 移到A 1点,过点A 1作A 1O ⊥平面BCD ,垂足O恰好落在CD 上.(1)求证:BC ⊥A 1D ;(2)求直线A 1B 与平面BCD 所成角的正弦值.8. 如图,PA ⊥平面ABCD ,ABCD 是矩形,PA=AB=1,PD 与平面ABCD 所成角是30°,点F 是PB 的中点,点E 在边BC 上移动.(Ⅰ)点E 为BC的中点时,试判断EF 与平面PAC 的位置关系,并说明理由;(Ⅱ)证明:无论点E 在边BC 的何处,都有PE ⊥AF ; (Ⅲ)当BE 等于何值时,二面角P-DE-A 的大小为45°.9. 如图,在四棱锥S ABCD -中,底面ABCD 为平行四边形,SA ⊥平面ABCD ,2,1,AB AD ==7SB =,120,BAD E ∠=在棱SD上.(I )当3SE ED =时,求证SD ⊥平面;AEC (II )当二面角S AC E --的大小为30时,求直线AE 与平面CDE 所成角的大小.10. 如图,在三棱柱111ABC A B C -中,AB AC ⊥,顶点1A 在底面上的 射影恰为点B ,且12AB AC A B ===.(Ⅰ)证明:平面1A AC ⊥平面1AB B ;(Ⅱ)求棱1AA 与BC 所成的角的大小;(Ⅲ)若点P 为11B C 的中点,并求出二面角1P AB A --的平面角的余弦值. 11. 已知平行四边形ABCD 中,AB =6,AD =10,BD =8,E 是线段AD 的中点.沿直线BD 将△BCD 翻折成△BC D ',使得平面BC D '⊥平面ABD .(Ⅰ)求证:C D '⊥平面ABD ;(Ⅱ)求直线BD 与平面BEC '所成角的正弦值;(Ⅲ)求二面角D BE C '--的余弦值. 12. 如图,四棱锥P ABCD -的底面是直角梯形,//AB CD ,AB AD ⊥,PAB ∆和PAD ∆是两个边长为2的正三角形,4DC =,O 为BD 的中点,E 为PA 的中点.(Ⅰ)求证:PO ⊥平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求直线CB 与平面PDC 所成角的正弦值. 13. 如图,已知菱形ABCD 的边长为6,60BAD ∠=,AC BD O =.将菱形ABCD 沿对角线AC 折起,使32BD =,得到三棱锥B ACD -.(Ⅰ)若点M 是棱BC 的中点,求证://OM 平面ABD ;(Ⅱ)求二面角A BD O --的余弦值;(Ⅲ)设点N 是线段BD 上一个动点,试确定N 点的位置,使得42CN =,并证明你的结论.CB A 1C 1B 1A A BD E C 'C ADO C P BE MAB C DEA 1B 1C 1 (第11题图) 14. 如图,在多面体ABCDEF 中,四边形ABCD 是矩形,AB ∥EF ,∠EAB=90º,AB=2,AD=AE=EF=1,平面ABFE ⊥平面ABCD 。

专题17立体几何解答题【2023高考】2013-2022十年全国高考数学真题分类汇编(解析版)

专题17立体几何解答题【2023高考】2013-2022十年全国高考数学真题分类汇编(解析版)

2013-2022十年全国高考数学真题分类汇编专题17 立体几何解答题一、解答题1.(2022年全国甲卷理科·第18题)在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.【答案】(1)证明见解析:; .解析:(1)证明:在四边形ABCD 中,作DE AB ⊥于E ,CF AB ⊥于F ,因为//,1,2CD AB AD CD CB AB ====,所以四边形ABCD 为等腰梯形,所以12AE BF ==,故DE =BD ==,所以222AD BD AB +=,所以AD BD ⊥,因为PD ⊥平面ABCD ,BD ⊂平面ABCD ,所以PD BD ⊥,又PD AD D ⋂=,所以BD ⊥平面PAD ,又因PA ⊂平面PAD ,所以BD PA ⊥;(2)解:如图,以点D 为原点建立空间直角坐标系,BD =,则()()(1,0,0,,A B P ,则(((,0,,AP BP DP =-== ,设平面PAB 的法向量(),,n x y z = ,则有0{0n AP x n BP ⋅=-=⋅=+=,可取)n = ,则cos ,n DP n DP n DP ⋅== ,所以PD 与平面PAB.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国甲卷理科·第18题2.(2022年全国乙卷理科·第18题ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面A B D 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面A B D所成的角的正弦值为解析:【小问1详解】因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD 中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .【小问2详解】连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,B E 因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,0,0,0,1A B D ,所以()()1,0,1,1,0AD AB =-=- ,设平面A B D 的一个法向量为(),,n x y z = ,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y()3n = ,又因为()31,0,0,4C F ⎛⎫- ⎪ ⎪⎝⎭,所以314CF ⎛⎫= ⎪ ⎪⎝⎭,所以cos ,n CF n CF n CF ⋅=== ,设CF 与平面A B D 所成的角的正弦值为02πθθ⎛⎫≤≤ ⎪⎝⎭,所以sin cos ,n CF θ== 所以CF 与平面A B D.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022年全国乙卷理科·第18题3.(2022新高考全国II 卷·第20题)如图,PO 是三棱锥P ABC -的高,PA PB =,AB AC ⊥,E 是PB的中点.(1)证明://OE 平面PAC ;(2)若30ABO CBO ∠=∠=︒,3PO =,5PA =,求二面角C AE B --正弦值.【答案】(1)证明见解析 (2)1113解析:(1)证明:连接BO 并延长交AC 于点D ,连接OA 、PD ,因为PO 是三棱锥P ABC -的高,所以PO ⊥平面ABC ,,AO BO ⊂平面ABC ,所以PO AO ⊥、PO BO ⊥,又PA PB =,所以POA POB ≅△△,即OA OB =,所以OAB OBA ∠=∠,的又AB AC ⊥,即90BAC ∠=︒,所以90OAB OAD ∠+∠=︒,90OBA ODA ∠+∠=︒,所以ODA OAD∠=∠所以AO DO =,即AO DO OB ==,所以O 为BD 的中点,又E 为PB 的中点,所以//OE PD ,又OE ⊄平面PAC ,PD ⊂平面PAC ,所以//OE 平面PAC(2)解:过点A 作//Az OP ,如图建立平面直角坐标系,因为3PO =,5AP =,所以4OA ==,又30OBA OBC ∠=∠=︒,所以28BD OA ==,则4=AD,AB =所以12AC =,所以()2,0O,()B,()2,3P ,()0,12,0C,所以32E ⎛⎫ ⎪⎝⎭,则32AE ⎛⎫= ⎪⎝⎭,()AB = ,()0,12,0AC =,设平面AEB 的法向量为(),,n x y z =,则3020n AE y z n AB ⎧⋅=++=⎪⎨⎪⋅==⎩ ,令2z =,则3y =-,0x =,所以()0,3,2n =- ;设平面AEC 的法向量为(),,m a b c =,则302120m AE b c m AC b ⎧⋅=++=⎪⎨⎪⋅==⎩,令a =6c =-,0b =,所以)6m =- ;所以cos ,n m n m n m⋅=== 设二面角C AE B --为θ,由图可知二面角C AE B --为钝二面角,所以cos θ=,所以11sin 13θ==故二面角C AE B --的正弦值为1113;【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国II 卷·第20题4.(2022新高考全国I 卷·第19题)如图,直三棱柱111ABC A B C -的体积为4,1A BC的面积为(1)求A 到平面1A BC 的距离;(2)设D 为1AC 的中点,1AA AB =,平面1A BC ⊥平面11ABB A ,求二面角A BD C --的正弦值.【答案】解析:(1)在直三棱柱111ABC A B C -中,设点A 到平面1A BC 的距离为h ,则111111111143333A A BC A A ABC A ABC A B BC C C B V S h V S A A V ---=⋅===⋅== ,解得h = 所以点A 到平面1A BC;(2)取1A B 的中点E ,连接AE ,如图,因为1AA AB =,所以1AE A B ⊥,又平面1A BC ⊥平面11ABB A ,平面1A BC 平面111ABB A A B =,且AE ⊂平面11ABB A ,所以AE ⊥平面1A BC ,在直三棱柱111ABC A B C -中,1BB ⊥平面ABC ,由BC ⊂平面1A BC ,BC ⊂平面ABC 可得AE BC ⊥,1BB BC ⊥,又1,AE BB ⊂平面11ABB A 且相交,所以BC ⊥平面11ABB A ,所以1,,BC BA BB 两两垂直,以B 为原点,建立空间直角坐标系,如图,由(1)得AE =,所以12AA AB ==,1A B =2BC =,则()()()()10,2,0,0,2,2,0,0,0,2,0,0A A B C ,所以1AC 的中点()1,1,1D ,则()1,1,1BD = ,()()0,2,0,2,0,0BA BC == ,设平面ABD 的一个法向量(),,m x y z = ,则020m BD x y z m BA y ⎧⋅=++=⎨⋅==⎩,可取()1,0,1m =- ,设平面BDC 的一个法向量(),,n a b c = ,则020m BD a b c m BC a ⎧⋅=++=⎨⋅==⎩ ,可取()0,1,1n =-r ,则1cos ,2m n m n m n⋅===⋅ ,所以二面角A BD C --=.【题目栏目】立体几何\立体几何的综合问题【题目来源】2022新高考全国I 卷·第19题5.(2021年新高考全国Ⅱ卷·第19题)在四棱锥Q ABCD -中,底面ABCD是正方形,若2,3AD QD QA QC ====.(1)证明:平面QAD ⊥平面;(2)求二面角B QD A --平面角的余弦值.【答案】解析:(1)取AD 的中点为O ,连接,QO CO .因为QA QD =,OA OD =,则QO ⊥AD ,而2,AD QA =2QO ==.在正方形ABCD 中,因为2AD =,故1DO =,故CO =,因为3QC =,故222QC QO OC =+,故QOC 为直角三角形且QO OC ⊥,因为OC AD O = ,故QO⊥的平面ABCD ,因为QO ⊂平面QAD ,故平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作//OT CD ,交BC 于T ,则OT AD ⊥,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间坐标系.则()()()0,1,0,0,0,2,2,1,0D Q B -,故()()2,1,2,2,2,0BQ BD =-=- .设平面QBD 的法向量(),,n x y z = ,则00n BQ n BD ⎧⋅=⎪⎨⋅=⎪⎩ 即220220x y z x y -++=⎧⎨-+=⎩,取1x =,则11,2y z ==,故11,1,2n ⎛⎫= ⎪⎝⎭ .而平面QAD 的法向量为()1,0,0m = ,故12cos ,3312m n ==⨯ .二面角B QD A --的平面角为锐角,故其余弦值为23.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考全国Ⅱ卷·第19题6.(2021年新高考Ⅰ卷·第20题)如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,AB AD =,O 为BD的中点.(1)证明:OA CD ⊥;(2)若OCD 是边长为1等边三角形,点E 在棱AD 上,2DE EA =,且二面角E BC D --的大小为45︒,求三棱锥A BCD -的体积.【答案】解析:(1)因为AB=AD,O 为BD 中点,所以AO ⊥BD 因为平面ABD 平面BCD =BD ,平面ABD ⊥平面BCD ,AO ⊂平面ABD ,因此AO ⊥平面BCD ,因为CD ⊂平面BCD ,所以AO ⊥CD(2)作EF ⊥BD 于F, 作FM ⊥BC 于M,连FM因为AO ⊥平面BCD ,所以AO ⊥BD, AO ⊥CD所以EF ⊥BD, EF ⊥CD, BD CD D ⋂=,因此EF ⊥平面BCD ,即EF ⊥BC 因为FM ⊥BC ,FM EF F =I ,所以BC ⊥平面EFM ,即BC ⊥MF 则EMF ∠为二面角E-BC-D 的平面角, 4EMF π∠=因为BO OD =,OCD 为正三角形,所以OCD 为直角三角形因为2BE ED =,1112(1)2233FM BF ∴==+=从而EF=FM=213AO ∴=AO ⊥Q 平面BCD,所以11111332BCD V AO S ∆=⋅=⨯⨯⨯=的【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年新高考Ⅰ卷·第20题7.(2020年新高考I 卷(山东卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l ⊥平面PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年新高考I 卷(山东卷)·第20题8.(2020新高考II 卷(海南卷)·第20题)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l.(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB ,求PB 与平面QCD 所成角的正弦值.【答案】(1)证明见解析;.解析:(1)证明: 在正方形ABCD 中,//AD BC ,因为AD ⊄平面PBC ,BC ⊂平面PBC ,所以//AD 平面PBC ,又因为AD ⊂平面PAD ,平面PAD 平面PBC l =,所以//AD l ,因为在四棱锥P ABCD -中,底面ABCD 是正方形,所以,,AD DC l DC ⊥∴⊥且PD ⊥平面ABCD ,所以,,AD PD l PD ⊥∴⊥因为CD PD D = ,所以l PDC ;(2)如图建立空间直角坐标系D xyz -,因为1PD AD ==,则有(0,0,0),(0,1,0),(1,0,0),(0,0,1),(1,1,0)D C A P B ,设(,0,1)Q m ,则有(0,1,0),(,0,1),(1,1,1)DC DQ m PB ===-,设平面QCD 的法向量为(,,)n x y z =,则00DC n DQ n ⎧⋅=⎨⋅=⎩ ,即00y mx z =⎧⎨+=⎩,令1x =,则z m =-,所以平面QCD 的一个法向量为(1,0,)n m =-,则cos ,n PB n PB n PB ⋅<>==根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线与平面所成角的正弦值等于|cos ,|n PB <>=r u ur==≤≤=1m =时取等号,所以直线PB 与平面QCD.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020新高考II 卷(海南卷)·第20题9.(2021年高考全国乙卷理科·第18题)如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,1PD DC ==,M 为BC 的中点,且PB AM ⊥.(1)求BC ;(2)求二面角A PM B --的正弦值.【答案】;解析:(1)PD ⊥ 平面ABCD ,四边形ABCD 为矩形,不妨以点D 为坐标原点,DA 、DC 、DP 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系D xyz -,设2BC a =,则()0,0,0D 、()0,0,1P 、()2,1,0B a 、(),1,0M a 、()2,0,0A a ,则()2,1,1PB a =- ,(),1,0AM a =-,PB AM ⊥ ,则2210PB AM a ⋅=-+=,解得a =2BC a ==;(2)设平面PAM 的法向量为()111,,m x y z =,则AM ⎛⎫= ⎪ ⎪⎝⎭,()AP = ,由11110m AM x y m AP z ⎧⋅=+=⎪⎨⎪⋅=+=⎩,取1x =,可得)2m = ,设平面PBM 的法向量为()222,,n x y z =,BM ⎛⎫= ⎪ ⎪⎝⎭,()1,1BP =- ,由222200n BM x nBP y z ⎧⋅==⎪⎨⎪⋅=-+=⎩ ,取21y =,可得()0,1,1n =r,cos ,m n m n m n⋅<>===⋅,所以,sin ,m n <>==因此,二面角A PM B --【点睛】思路点睛:利用空间向量法求解二面角的步骤如下:(1)建立合适的空间直角坐标系,写出二面角对应的两个半平面中对应的点的坐标;(2)设出法向量,根据法向量垂直于平面内两条直线的方向向量,求解出平面的法向量(注:若半平面为坐标平面,直接取法向量即可);(3)计算(2)中两个法向量的余弦值,结合立体图形中二面角的实际情况,判断二面角是锐角还是钝角,从而得到二面角的余弦值.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国乙卷理科·第18题10.(2021年高考全国甲卷理科·第19题)已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 中点,D 为棱11A B 上的点.11BF A B ⊥(1)证明:BF DE ⊥;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =解析:因为三棱柱111ABC A B C -是直三棱柱,所以1BB ⊥底面ABC ,所以1BB AB ⊥因为11//A B AB ,11BF A B ⊥,所以BF AB ⊥,又1BB BF B ⋂=,所以AB ⊥平面11BCC B .所以1,,BA BC BB 两两垂直.的以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ≤≤).(1)因为()()0,2,1,1,1,2BF DE a ==--,所以()()0121120BF DE a ⋅=⨯-+⨯+⨯-= ,所以BF DE ⊥.(2)设平面DFE 的法向量为(),,m x y z =,因为()()1,1,1,1,1,2EF DE a =-=--,所以00m EF m DE ⎧⋅=⎨⋅=⎩ ,即()0120x y z a x y z -++=⎧⎨-+-=⎩.令2z a =-,则()3,1,2m a a =+-因为平面11BCC B 的法向量为()2,0,0BA =,设平面11BCC B 与平面DEF 的二面角的平面角为θ,则cos m BA m BA θ⋅===⋅ .当12a =时,2224a a -+取最小值为272,此时cos θ=所以()minsin θ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ≤≤),在第二问中通过余弦值最大,找到正弦值最小是关键一步.【题目栏目】立体几何\立体几何的综合问题【题目来源】2021年高考全国甲卷理科·第19题11.(2020年高考数学课标Ⅰ卷理科·第18题)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC 是底面的内接正三角形,P 为DO上一点,PO .(1)证明:PA ⊥平面PBC ;(2)求二面角B PC E --的余弦值.【答案】(1)证明见解析;.【解析】(1)由题设,知DAE △为等边三角形,设1AE =,则DO =,1122CO BO AE ===,所以PO ==PC PB ====又ABC 为等边三角形,则2sin 60BA OA =,所以BA =,22234PA PB AB +==,则90APB ∠= ,所以PA PB ⊥,同理PA PC ⊥,又PC PB P = ,所以PA ⊥平面PBC ;(2)过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 为x 轴,ON 为y 轴建立如图所示的空间直角坐标系,则111(,0,0),((,244E P B C ---,1(,4PC =-,1(4PB =-,1(,0,2PE =- ,设平面PCB 的一个法向量为111(,,)n x y z =,由00n PC n PB ⎧⋅=⎨⋅=⎩,得11111100x x ⎧-=⎪⎨-=⎪⎩,令1x =,得111,0z y =-=,所以1)n =-,设平面PCE 的一个法向量为222(,,)m x y z =由00m PC m PE ⎧⋅=⎨⋅=⎩,得22222020x x ⎧-=⎪⎨--=⎪⎩,令21x =,得22z y ==,所以m =故cos ,||||n m m n n m ⋅<>===⋅设二面角B PC E --的大小为θ,则cos θ=【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅰ卷理科·第18题12.(2020年高考数学课标Ⅱ卷理科·第20题)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;解析:(1) ,M N 分别为BC ,11B C 的中点,1//MN BB ∴又11//AA BB 1//MN AA∴在ABC 中,M 为BC 中点,则BC AM ⊥又 侧面11BB C C 为矩形,1BC BB ∴⊥1//MN BB MN BC⊥由MN AM M ⋂=,,MN AM ⊂平面1A AMN∴BC ⊥平面1A AMN又 11//B C BC ,且11B C ⊄平面ABC ,BC ⊂平面ABC ,11//B C ∴平面ABC又 11B C ⊂平面11EB C F ,且平面11EB C F ⋂平面ABC EF=11//B C EF ∴//EF BC∴又BC ⊥ 平面1A AMN∴EF ⊥平面1A AMNEF ⊂ 平面11EB C F ∴平面11EB C F ⊥平面1A AMN(2)连接NP//AO 平面11EB C F ,平面AONP ⋂平面11EB C F NP =∴//AO NP根据三棱柱上下底面平行,其面1A NMA ⋂平面ABC AM =,面1A NMA ⋂平面1111A B C A N=∴//ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m >)可得:ON AP =,6NP AB m== O 为111A B C △的中心,且111A B C △边长为6m∴16sin 603ON =⨯⨯︒=故:ON AP ==//EF BC ∴AP EPAM BM =∴3EP =解得:EP m=在11B C 截取1B Q EP m ==,故2QN m= 1B Q EP =且1//B Q EP∴四边形1B QPE 是平行四边形,∴1//B E PQ由(1)11B C ⊥平面1A AMN故QPN ∠为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得:PQ ===sin QN QPN PQ ∴∠===∴直线1B E 与平面1A AMN 【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅱ卷理科·第20题13.(2020年高考数学课标Ⅲ卷理科·第19题)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【答案】(1)证明见解析;.解析:(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG、1C E 、1C F ,在在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG = ,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =,同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =-- ,()2,0,2AF =--,()10,1,2A E =- ,()12,0,1A F =- ,设平面AEF 的法向量为()111,,m x y z =,由00m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =- ,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,cos,m nm nm n⋅<>===⋅设二面角1A EF A--的平面角为θ,则cosθ=,sinθ∴==因此,二面角1A EF A--.【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.【题目栏目】立体几何\立体几何的综合问题【题目来源】2020年高考数学课标Ⅲ卷理科·第19题14.(2019年高考数学课标Ⅲ卷理科·第19题)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A 的大小.【答案】(1)见详解;(2)30 .【官方解析】(1)由已知得//AD DE ,//CG BE ,所以//AD CG ,故,AD CG 确定一个平面.从而,,,A C G D 四点共面.由已知得,AB BE AB BC ⊥⊥,故AB ⊥平面BCGE . 又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE .(2)作EH BC ⊥,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,60EBC ∠=︒,可求得1,BH EH ==.以H 为坐标原点,HC的方向为x 轴的的正方向,建立如图所示的空间直角坐标系H xyz -,则(1,1,0),(1,0,0),(2,1,0)A C G CG AC -==-.设平面ACGD 的法向量为(,,)n x y z =,则CG n AC n ⎧=⎪⎨=⎪⎩即0,20.x x y ⎧=⎪⎨-=⎪⎩所以可取(3,6,n =- .图2图1AA又平面BCGE 的法向量可取为(0,1,0)m =,所以cos ,n mn m |n||m|〈〉=因此二面角B - CG - A 的大小为30︒.【点评】很新颖的立体几何考题.首先是多面体粘合问题,考查考生在粘合过程中哪些量是不变的.再者粘合后的多面体不是直棱柱,建系的向量解法在本题中略显麻烦,突出考查几何方法.最后将求二面角转化为求二面角的平面角问题考查考生的空间想象能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标Ⅲ卷理科·第19题15.(2019年高考数学课标全国Ⅱ卷理科·第17题)如图,长方体1111ABCD A B C D -的底面ABCD 是正方形,点E 在棱1AA 上,1BE EC ⊥.()1证明:BE ⊥平面11EB C ;()2若1AE A E =,求二面角1B EC C --的正弦值.【答案】()1证明见解析;(2.【官方解析】证明:()1由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .()2由()1知190BEB ∠=︒.由题设知11Rt ABE Rt A B E ≅△△,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA的方向为x 轴正方向,DA 为单位长,建立如图所示的空间直角坐标系D xyz -,则()0,1,0C ,()1,1,0B ,()10,1,2C ,()1,0,1E ,()1,0,0CB = ,()1,1,1CE =- ,()10,0,2CC =.设平面EBC 的法向量为()111,,n x y z =,则00CB n CE n ⎧⋅=⎪⎨⋅=⎪⎩,即11110,0,x x y z =⎧⎨-+=⎩所以可取()0,1,1n =-- .设平面1ECC 的法向量为()222,,m x y z =,则100CC m CE m ⎧⋅=⎪⎨⋅=⎪⎩即222220,0z x y z =⎧⎨-+=⎩所以可取()1,1,0m = .于是1cos ,2n m n m n m⋅==-⋅.所以,二面角1B EC C --.【分析】()1利用长方体的性质,可以知道11B C ⊥侧面11A B BA ,利用线面垂直的性质可以证明出11B C EB ⊥,这样可以利用线面垂直的判定定理,证明出BE ⊥平面11EB C ;()2以点D 坐标原点,以1,,DA DC DD分别为,,x y z 轴,建立空间直角坐标系,设正方形ABCD 的边长为a ,1B B b =,求出相应点的坐标,利用1BE EC ⊥,可以求出,a b 之间的关系,分别求出平面EBC 、平面1ECC 的法向量,利用空间向量的数量积公式求出二面角1B EC C --的余弦值的绝对值,最后利用同角的三角函数关系,求出二面角1B EC C --的正弦值.【解析】()1因为1111ABCD A B C D -是长方体,所以11B C ⊥侧面11A B BA ,而BE ⊂平面11A B BA ,所以11BE B C ⊥,又1BE EC ⊥,1111B C EC C = ,111,B C EC ⊂平面11EB C ,因此BE ⊥平面11EB C ;()2以点B坐标原点,以1,,BA BC BB分别为,,x y z 轴,建立如下图所示的空间直角坐标系,1(0,0,0),(0,,0),(0,,),(,0,)2b B C a C a b E a ,因为1BE EC ⊥,所以2210(,0,(,,002224b b b BE EC a a a a b a ⋅=⇒⋅-=⇒-+=⇒= ,所以(,0,)E a a ,1(,,),(0,0,2),(,0,)EC a a a CC a BE a a =--==,设111(,,)m x y z =是平面BEC 的法向量,所以111110,0,(1,0,1)0.0.ax az m BE m ax ay az m EC +=⎧⎧⋅=⇒⇒=-⎨⎨-+-=⋅=⎩⎩,设222(,,)n x y z =是平面1ECC 的法向量,所以2122220,0,(1,1,0)0.0.az n CC n ax ay az n EC =⎧⎧⋅=⇒⇒=⎨⎨-+-=⋅=⎩⎩,二面角1B EC C --12,所以二面角1B EC C --=【点评】本题考查了利用线面垂直的性质定理证明线线垂直,考查了利用空间向量求二角角的余弦值,以及同角的三角函数关系,考查了数学运算能力.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅱ卷理科·第17题16.(2019年高考数学课标全国Ⅰ卷理科·第18题)如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60,,,AA AB BAD E M N ==∠=︒分别是BC ,1BB ,1A D的中点.D 1C 111(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.【答案】解:(1)连结1,B C ME .因为,M E 分别为1,BB BC 的中点,所以1//ME B C ,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =.由题设知11A B ,可得11B C A D ,故ME ND ,因此四边形MNDE 为平行四边形,//MN ED .又MN ⊄平面1C DE ,所以//MN 平面1C DE .(2)由已知可得DE DA ⊥.以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -,则1(2,0,0),(2,0,4),2),(1,0,2)A A M N ,1(0,0,4)A A =-,1(2)A M =-- ,1(1,0,2)A N =-,(0,MN =.设(,,)m x y z = 为平面1A MA 的法向量,则1100m A M m A A ⎧⋅=⎪⎨⋅=⎪⎩ ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取m =.设(,,)n p q r = 为平面1A MN 的法向量,则100n MN n A N ⎧⋅=⎪⎨⋅=⎪⎩ ,.所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)n =- .于是cos ,m n m n m n ⋅===⋅,所以二面角1A MA N --.【题目栏目】立体几何\立体几何的综合问题【题目来源】2019年高考数学课标全国Ⅰ卷理科·第18题17.(2018年高考数学课标Ⅲ卷(理)·第19题)(12分)如图,边长为2的正方形ABCD 所在平面与半圆弧CD所在的平面垂直,M 是弧CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】【官方解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD因为BC CD ⊥,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC DM⊥因为M 为 CD上异于,C D 的点,且DC 为直径,所以DM CM ⊥又BC CM C = ,所以DM ⊥平面BMC而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz-当三棱锥M ABC -体积最大时,M 为 CD的中点,由题设得()0,0,0D ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,1,1M ()2,1,1AM =- ,()0,2,0AB = ,()2,0,0DA = 设(),,n x y z = 是平面MAB 的法向量,则00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ ,即2020x y z y -++=⎧⎨=⎩可取()1,0,2n = 易知DA 是平面MCD的法向量,因此cos ,n DA n DA n DA⋅<>==⋅所以sin ,n DA <>== 所以面MAB 与面MCD【民间解析】(1)证明:因为面ABCD ⊥半圆面CMD ,且面ABCD 半圆面CMD CD=而四边形ABCD 为正方形,所以AD CD ⊥,所以AD ⊥平面MCD又CM ⊂平面MCD ,所以AD CM ⊥①又因为点M 在以CD 为直径的半圆上,所以CM MD ⊥②又MD 、AD ⊂面MAD ,且MD AD D = ③由①②③可得CM ⊥面MAD ,而CM ⊂平面BMC所以平面AMD ⊥平面BMC(2)如图,以DC 所在直线作为y 轴,以DC 中点为坐标原点O ,过点O 作DA 的平行线,作为x 轴,过点O 作面ABCD 的垂线,作为z轴,建立空间直角坐标系因为13M ABC ABC M ABC V S d --=⋅△,而12222ABC S =⨯⨯=△所以当点M 到平面ABCD 的距离最大时,三棱锥M ABC -的体积最大,此时MO CD⊥所以()0,0,1M ,()2,1,0AA -,()2,1,0B ;()0,1,0C ,()0,1,0D -设面MAB 的法向量为()111,,m x y z = ,易知面MCD 的法向量为()2,0,0n DA == 所以()2,1,1MA =-- ,()2,1,1MB =- 由00m MA m MB ⎧⋅=⎪⎨⋅=⎪⎩ 即1111112020x y z x y z --=⎧⎨+-=⎩,解得11102y z x =⎧⎨=⎩,可取()1,0,2m =所以cos ,m n m n m n ⋅<>=== 故所求面MAB 与面MCD==.【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅲ卷(理)·第19题18.(2018年高考数学课标Ⅱ卷(理)·第20题)(12分)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM所成角的正弦值.【答案】解析:(1)因为4AP CP AC ===,O 为AC 的中点,所以OP AC ⊥,且OP =.连接OB.因为AB BC AC ==,所以ABC ∆为等腰直角三角形,且OB AC ⊥,122OB AC ==.由222OP OB PB +=知PO OB ⊥.由OP OB ⊥,OP AC ⊥知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB u u u r 的方向为x 轴正方向,建立空间直角坐标系O xyz -.由已知得(0,0,0)O ,(2,0,0)B ,(0,2,0)A -,(0,2,0)C,P,AP =u u u r .取平面PAC 的法向量为(2,0,0)OB =u u u r .设(,2,0)(02)≤M a a a -<,则(,4,0)AM a a =-u u u r .设平面PAM 的法向量为(,,)x y z =n ,由0AP ⋅=u u u r n ,0AM ⋅=u u u r n得20(4)0y ax a y ⎧+=⎪⎨+-=⎪⎩,可取,)a a =--n ,所以cos ,OB <>=u u u r n,由已知可得cos ,OB <>=u u u r n PAB M COA=,解得4a =-(舍去),43a =.所以4()3n =-.又(0,2,PC =- ,所以cos ,n PC <>=u u u r .所以PC 与平面PAM .【题目栏目】立体几何\空间角\二面角【题目来源】2018年高考数学课标Ⅱ卷(理)·第20题19.(2018年高考数学课标卷Ⅰ(理)·第18题)(12分)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DCF ∆折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】解析:(1)由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH EF ⊥,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF 的方向为y 轴正方向,||BF 为单位长,建立如图所示的空间直角坐标系H xyz -.由(1)可得,DE PE ⊥.又2DP =,1DE =,所以PE =.又1PF =,2EF =,故PE PF ⊥.可得32PH EH ==.则33(0,0,0),(1,,0),(1,22H P D DP --= 32HP = 为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin ||||||HP DP HP DP θ⋅===⋅ .所以DP 与平面ABFD.【题目栏目】立体几何\空间角\直线与平面所成的角【题目来源】2018年高考数学课标卷Ⅰ(理)·第18题20.(2017年高考数学新课标Ⅰ卷理科·第18题)如图,在四棱锥中,,且.(1)证明:平面平面;(2)若,,求二面角的余弦值.【答案】(1)详见解析;(2)二面角的余弦值为. 【分析】(1)根据题设条件可以得出,,而,就可证明出平面.进而证明平面平面;(2)先找出的中点,找出相互垂直的线,建立以为坐标原点,的方向为轴的正方向,为单位长的空间直角坐标系,列出所需要的点的坐标,设是平面的法向量,是平面的法向量,根据垂直关系,求出和,利用数量积公式可求出二面角的平面角. 【解析】(1)由已知,得,由于,故,从而平面又平面,所以平面平面(2)在平面内做,垂足为,由(1)可知,平面,故,可得平面. P ABCD -//AB CD 90BAP CDP ∠=∠=︒PAB ⊥PAD PA PD AB DC ===90APD ∠=︒A PB C --A PB C --AB AP ⊥CD PD ⊥//AB CD AB ⊥ PAD PAB ⊥PAD AD F FA x AB (),,n x y z = PCB (),,m x y z = PAB (0,1,n =- ()1,0,1m = 90BAP CDP ∠=∠=︒AB AP ⊥CD PD ⊥//AB CD AB PD ⊥AB ⊥PAD AB ⊂PAB PAB ⊥PAD PAD PF AD ⊥F AB ⊥PAD AB PF ⊥PF ⊥ABCD以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角坐标系.由(1)及已知可得,,,. 所以,,,. 设是平面的法向量,则,即,可取. 设是平面的法向量,则,即,可取. 则,所以二面角的余弦值为. 【考点】面面垂直的证明,二面角平面角的求解.【点评】高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学新课标Ⅰ卷理科·第18题21.(2017年高考数学课标Ⅲ卷理科·第19题)如图,四面体中,是正三角形,是直角三角形,,.F FA x ||AB F xyz-APB (C(PC =CB =PA = (0,1,0)AB = (,,)x y z =n PCB 00PC CB ⎧⋅=⎪⎨⋅=⎪⎩ nn 00x y z ⎧+=⎪=(0,1,=-n (,,)x y z =m PAB 00PA AB ⎧⋅=⎪⎨⋅=⎪⎩ mm 00z y =⎪=⎩(1,0,1)=n cos ,||||⋅==<>n m n m n m A PB C --ABCD ABC ∆ACD ∆ABD CBD ∠=∠AB BD =(1)证明:平面平面;(2)过的平面交于点,若平面把四面体分成体积相等的两部分,求二面角的余弦值.【答案】(Ⅰ)证明略. 【解析】证明:(1)取的中点为,连接为等边三角形∴∴.∴,即为等腰直角三角形,为直角又为底边中点ACD ⊥ABC AC BD E AEC ABCD D AE C --AC O ,BO DO ABC ∆ BO AC ⊥AB BC =AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆AD CD =ACD ∆ADC ∠O AC∴ 令,则 易得:,∴由勾股定理的逆定理可得即又∵ 由面面垂直的判定定理可得(2)由题意可知即,到平面的距离相等即为中点以为原点,为轴正方向,为轴正方向,为轴正方向,设,建立空间直角坐标系则,,,,DO AC ⊥AB a =AB AC BC BD a ====OD a=OB =222OD OB BD +=2DOB π∠=OD OB ⊥OD AC OD OB AC OB OAC ABC OB ABC ⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩ 平面平面OD ABC ∴⊥平面OD ADC ⊂平面ADC ABC ⊥平面平面V V D ACE B ACE --=B D ACE E BD O OA x OB y OD z AC a =()0,0,0O ,0,02a A ⎛⎫ ⎪⎝⎭0,0,2a D ⎛⎫ ⎪⎝⎭,0B ⎛⎫ ⎪ ⎪⎝⎭,4a E ⎛⎫ ⎪ ⎪⎝⎭易得:,, 设平面的法向量为,平面的法向量为, 则,解得 ,解得 若二面角为,易知为锐角,则.【考点】二面角的平面角;面面角的向量求法【点评】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设m ,n 分别为平面α,β的法向量,则二面角θ与<m ,n >互补或相等,故有|cos θ|=|cos<m ,n>|=.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.【题目栏目】立体几何\空间角\二面角【题目来源】2017年高考数学课标Ⅲ卷理科·第19题22.(2017年高考数学课标Ⅱ卷理科·第19题)如图,四棱锥 中,侧面 为等比三角形且垂直于底面 , 是 的中点.(1)证明:直线 平面;(2)点 在棱上,且直线 与底面 所成锐角为 ,求二面角 的余弦值.【答案】(1)证明略;,24a a AE ⎛⎫=- ⎪ ⎪⎝⎭ ,0,22a a AD ⎛⎫=- ⎪⎝⎭ ,0,02a OA ⎛⎫= ⎪⎝⎭ AED 1n AEC 2n 1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩ 1n = 2200AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩ (20,1,n = D AE C --θθ1212cos n n n n θ⋅==⋅ ⋅m n m n P ABCD -PAD ABCD o 1,90,2AB BC AD BAD ABC =∠=∠=E PD //CE PAB M PC BM ABCD o 45M AB D --【基本解法1】(1)证明:取中点为,连接、因为,所以因为是的中点,所以,所以所以四边形为平行四边形,所以因为平面,平面所以直线平面(2)取中点为,连接因为△为等边三角形,所以因为平面平面,平面平面,平面所以平面因为,所以四边形为平行四边形,所以所以以分别为轴建立空间直角坐标系,如图设,则,所以设,则,因为点在棱上,所以,即所以,所以平面的法向量为因为直线与底面所成角为,所以解得设平面的法向量为,则令,则PA F EF AF90BADABC ∠=∠=︒12BC AD =BC 12AD E PD EF 12AD EF BCEFBC //EC BFBF ⊂PABEC ⊄PAB//CEPABAD O OC OP、PAD PO ⊥ADPAD ⊥ABCD PAD ABCD AD =PO ⊂PADPO ⊥ABCDAO BC OABC //AB OCOC AD⊥,,OC OD OP ,,x yz 1BC =(0,1,0),(1,1,0),(1,0,0)P A B C --(1,0,PC = (,,)M x y z (,,PM x y z =-(1,0,0)AB = M PC (01)PM PC λλ=≤≤ (,,(1,0,x y z λ=()M λ()BM λ=- ABCD (0,0,1)n = BM ABCD 45︒|||sin 45||cos ,|||||BM n BM n BM n ⋅︒=<>=== 1λ=-(BM = MAB (,,)m x y z = 00AB m x BM m x y z ⎧⋅==⎪⎨⋅=+=⎪⎩ 1z =m =所以所以求二面角【基本解法2】(1)证明:取中点为,连接因为,所以,即所以四边形为平行四边形,所以因为平面,平面所以直线平面因为是的中点,所以因为平面,平面所以直线平面因为,所以平面平面因为平面所以直线平面(2)同上【命题意图】线面平行的判定,线面垂直的判定,面面垂直的性质,线面角、二面角的求解【知识拓展】线面平行的证明一般有两个方向,线面平行的判定或面面平行的性质。

(天津专版)高考数学 母题题源系列 专题17 立体几何的基本问题 文-人教版高三全册数学试题

(天津专版)高考数学 母题题源系列 专题17 立体几何的基本问题 文-人教版高三全册数学试题
(I)求证:EF 平面 A1B1BA ; (II)求证:平面 AEA1 平面 BCB1 . (III)求直线 A1B1 与平面 BCB1 所成角的大小.
【答案】(I)见试题解析;(II)见试题解析;(III) 30 .
【解析】试题分析:(I)要证明 EF 平面 A1B1BA , 只需证明 EF BA1 且 EF 平面 A1B1BA ;(II)要
试题解析:
(1)连接 PQ , AQ . ∵ PDC 是正三角形,∴ PQ CD . ∵底面 ABCD是 ADC 60 的菱形,∴ AQ CD .
∴ PA 平面 CDM . 连接 QN,QA ,则 AQN 为 AQ 与平面 CDM 所成的角.
在 RtPQA 中, AQ PQ 3 ,
∴ AP 6 ,∴ AN 6 , sinAQN AN 2 .∴ AQN 45 .
第一步:根据线面垂直的判断定理和性质定理证明 因为 PA 与平面内的两条相交直线垂直,所以线与平面
垂直,再根据线面垂直的性质定理,线与平面垂直,线与平面内的任何一条直线垂直;
第二步:面面垂直的判断定理 根据条件可证明 BD 平面 PAC ,即证明平面 BDE 平面 PAC ;
6 / 32
word
从而 BB1 AE ,又 BC BB1 B ,所以 AE 平面 BCB1 ,又因为 AE 平面 AEA1 ,所以平面 AEA1 平
面 BCB1 .
5 / 32
word
【命题意图】高考对这类题的考查主要有两个方面:考查空间点、线、面的位置关系,高考对立体几何平行与垂 直的考查是高考的热点和重点,可以考查线面垂直的判定与性质、面面垂直的判定与性质,也可以考查线面平行 的判定与性质、面面平行的判定与性质,以 及空间几何体的体积. 【命题规律】高考对立体几何平行与垂直的考查是高考的热点和重点,可以考查线面垂直的判定与性质、面面垂 直的判定与性质,也可以考查线面平行的判定与性质、面面平行的判定与性质,解题思路为对判断定理和性质定 理的使用,或以 三 视 图 为 载 体 , 考 查 还 原 后 几 何 体 的 外 接 球 或 内 切 球 问 题 . 【答题模板】以 2017 年高考题为例,解 答本类题目,一般考虑如下三步:

陕西省2014届高三高考考前 数学30天保温训练17(立体几何)Word版含解析

陕西省2014届高三高考考前 数学30天保温训练17(立体几何)Word版含解析

2014年高三数学考前30天保温训练17(立体几何)一.选择题(共16小题)1.(2013•重庆)某几何体的三视图如图所示,则该几何体的体积为()B2.(2012•北京)某三棱锥的三视图如图所示,该三棱锥的表面积是()8+60+66+120+123.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为B5.(2013•和平区一模)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,B10.(2012•西城区二模)设m,n表示不同的直线,α,β表示不同的平面,且m,n⊂α.则11.(2014•上海模拟)已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下12.(2012•虹口区一模)正方体ABCD﹣A1B1C1D1中,E为线段B1D1上的一个动点,则下13.(2009•广东)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.15.(2014•茂名二模)设m,n是两条不同直线,α,β是两个不同的平面,下列命题正确的是()2014年高三数学考前30天保温训练17(立体几何)参考答案与试题解析一.选择题(共16小题)1.(2013•重庆)某几何体的三视图如图所示,则该几何体的体积为()BV==2002.(2012•北京)某三棱锥的三视图如图所示,该三棱锥的表面积是()8+60+66+120+12=,==6.3.已知正△ABC的边长为2,那么用斜二测画法得到的△ABC的直观图△A′B′C′的面积为BS==•==根据球的表面积公式算出它们的表面积之比为= =,由此结合球的体积公式即可算出这两个球的体积之比.∴==,解之得=(舍负)因此,这两个球的体积之比为=)5.(2013•和平区一模)已知正四棱柱ABCD﹣A1B1C1D1中,AA1=2AB,E为AA1中点,BBE=B=BE=10.(2012•西城区二模)设m,n表示不同的直线,α,β表示不同的平面,且m,n⊂α.则11.(2014•上海模拟)已知m和n是两条不同的直线,α和β是两个不重合的平面,那么下12.(2012•虹口区一模)正方体ABCD﹣A1B1C1D1中,E为线段B1D1上的一个动点,则下13.(2009•广东)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.15.(2014•茂名二模)设m,n是两条不同直线,α,β是两个不同的平面,下列命题正确的。

立体几何(解析版)

立体几何(解析版)

2017年高考真题分类汇编(理数):专题6 立体几何(解析版)一、单选题(共7题;共14分)1、(2017•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A、+1B、+3C、+1D、+32、(2017•浙江)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,= =2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()A、γ<α<βB、α<γ<βC、α<β<γD、β<γ<α3、(2017•北京卷)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A、3B、2C、2D、24、(2017•新课标Ⅰ卷)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A、10B、12C、14D、165、(2017•新课标Ⅱ)已知直三棱柱ABC﹣A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A、B、C、D、6、(2017•新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为()A、90πB、63πC、42πD、36π7、(2017•新课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A、πB、C、D、二、填空题(共5题;共5分)8、(2017•山东)由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为________.9、(2017·天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.10、(2017•江苏)如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则的值是________.11、(2017•新课标Ⅰ卷)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为________.12、(2017•新课标Ⅲ)a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:①当直线AB与a成60°角时,AB与b成30°角;②当直线AB与a成60°角时,AB与b成60°角;③直线AB与a所成角的最小值为45°;④直线AB与a所成角的最小值为60°;其中正确的是________(填写所有正确结论的编号)三、解答题(共9题;共60分)13、(2017•山东)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是的中点.(12分)(Ⅰ)设P是上的一点,且AP⊥BE,求∠CBP的大小;(Ⅱ)当AB=3,AD=2时,求二面角E﹣AG﹣C的大小.14、(2017·天津)如图,在三棱锥P﹣ABC中,PA⊥底面ABC,∠BAC=90°.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,PA=AC=4,AB=2.(Ⅰ)求证:MN∥平面BDE;(Ⅱ)求二面角C﹣EM﹣N的正弦值;(Ⅲ)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.15、(2017•浙江)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD ⊥AD,PC=AD=2DC=2CB,E为PD的中点.(Ⅰ)证明:CE∥平面PAB;(Ⅱ)求直线CE与平面PBC所成角的正弦值.16、(2017•北京卷)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD= ,AB=4.(14分)(1)求证:M为PB的中点;(2)求二面角B﹣PD﹣A的大小;(3)求直线MC与平面BDP所成角的正弦值.17、(2017•江苏)如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= ,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.18、(2017•江苏)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(Ⅰ)EF∥平面ABC;(Ⅱ)AD⊥AC.19、(2017•新课标Ⅱ)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.20、(2017•新课标Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(Ⅰ)证明:平面ACD⊥平面ABC;(Ⅱ)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D﹣AE﹣C 的余弦值.21、(2017•新课标Ⅰ卷)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.(12分)(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A﹣PB﹣C的余弦值.答案解析部分一、单选题1、【答案】A【考点】由三视图求面积、体积,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,故该几何体的体积为× ×π×12×3+ × × × ×3= +1,故选:A【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.2、【答案】B【考点】用空间向量求平面间的夹角,二面角的平面角及求法【解析】【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,= ,=(0,3,6 ),=(,5,0),= ,= .设平面PDR的法向量为=(x,y,z),则,可得,可得= ,取平面ABC的法向量=(0,0,1).则cos = = ,取α=arccos .同理可得:β=arccos .γ=arccos .∵>>.∴α<γ<β.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.则cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.∴cosα>cosγ>cosβ,α,β,γ为锐角.∴α<γ<β.故选:B.【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6 ),Q ,R ,利用法向量的夹角公式即可得出二面角.解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.可得cosα= = = .同理可得:cosβ= = ,cosγ= = .由已知可得:OE>OG>OF.即可得出.3、【答案】B【考点】由三视图求面积、体积,由三视图还原实物图【解析】【解答】解:由三视图可得直观图,再四棱锥P﹣ABCD中,最长的棱为PA,即PA= ==2 ,故选:B.【分析】根据三视图可得物体的直观图,结合图形可得最长的棱为PA,根据勾股定理求出即可.4、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图【解析】【解答】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形= ×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可5、【答案】C【考点】余弦定理的应用,异面直线及其所成的角【解析】【解答】解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),可知MN= AB1= ,NP= BC1= ;作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ= AC,△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,∴AC= ,∴MQ= ;在△MQP中,MP= = ;在△PMN中,由余弦定理得cos∠MNP= = =﹣;又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.【分析】设M、N、P分别为AB,BB1和B1C1的中点,得出AB1、BC1夹角为MN和NP夹角或其补角;根据中位线定理,结合余弦定理求出AC、MQ,MP和∠MNP的余弦值即可.6、【答案】B【考点】由三视图求面积、体积,组合几何体的面积、体积问题,由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,V=π•32×10﹣•π•32×6=63π,故选:B.【分析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,即可求出几何体的体积.7、【答案】B【考点】棱柱、棱锥、棱台的体积【解析】【解答】解:∵圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,∴该圆柱底面圆周半径r= = ,∴该圆柱的体积:V=Sh= = .故选:B.【分析】推导出该圆柱底面圆周半径r= = ,由此能求出该圆柱的体积.二、填空题8、【答案】2+【考点】由三视图还原实物图,棱柱、棱锥、棱台的体积【解析】【解答】解:由长方体长为2,宽为1,高为1,则长方体的体积V1=2×1×1=2,圆柱的底面半径为1,高为1,则圆柱的体积V2= ×π×12×1= ,则该几何体的体积V=V1+2V1=2+ ,故答案为:2+ .【分析】由三视图可知:长方体长为2,宽为1,高为1,圆柱的底面半径为1,高为1圆柱的,根据长方体及圆柱的体积公式,即可求得几何体的体积.9、【答案】【考点】球的体积和表面积【解析】【解答】解:设正方体的棱长为a,∵这个正方体的表面积为18,∴6a2=18,则a2=3,即a= ,∵一个正方体的所有顶点在一个球面上,∴正方体的体对角线等于球的直径,即a=2R,即R= ,则球的体积V= π•()3= ;故答案为:.【分析】根据正方体和球的关系,得到正方体的体对角线等于直径,结合球的体积公式进行计算即可.10、【答案】【考点】旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】【解答】解:设球的半径为R,则球的体积为:R3,圆柱的体积为:πR2•2R=2πR3.则= = .故答案为:.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.11、【答案】4 cm3【考点】棱锥的结构特征,棱柱、棱锥、棱台的体积【解析】【解答】解:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h= = = ,=3 ,则V= = = ,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤ =4 cm3,∴体积最大值为4 cm3.故答案为:4 cm3.【分析】由题,连接OD,交BC于点G,由题意得OD⊥BC,OG= BC,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h= ,求出S△ABC=3 ,V= = ,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.12、【答案】②③【考点】异面直线及其所成的角,用空间向量求直线间的夹角、距离【解析】【解答】解:由题意知,a、b、AC三条直线两两相互垂直,画出图形如图,不妨设图中所示正方体边长为1,故|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,则D(1,0,0),A(0,0,1),直线a的方向单位向量=(0,1,0),| |=1,直线b的方向单位向量=(1,0,0),| |=1,设B点在运动过程中的坐标中的坐标B′(cosθ,sinθ,0),其中θ为B′C与CD的夹角,θ∈[0,2π),∴AB′在运动过程中的向量,=(﹣cosθ,﹣sinθ,1),| |= ,设与所成夹角为α∈[0,],则cosα= = |sinθ|∈[0,],∴α∈[ ,],∴③正确,④错误.设与所成夹角为β∈[0,],cosβ= = = |cosθ|,当与夹角为60°时,即α= ,|sinθ|= = = ,∵cos2θ+sin2θ=1,∴cosβ= |cosθ|= ,∵β∈[0,],∴β= ,此时与的夹角为60°,∴②正确,①错误.故答案为:②③.【分析】由题意知,a、b、AC三条直线两两相互垂直,构建如图所示的边长为1的正方体,|AC|=1,|AB|= ,斜边AB以直线AC为旋转轴,则A点保持不变,B点的运动轨迹是以C为圆心,1为半径的圆,以C 坐标原点,以CD为x轴,CB为y轴,CA为z轴,建立空间直角坐标系,利用向量法能求出结果.三、解答题13、【答案】解:(Ⅰ)∵AP⊥BE,AB⊥BE,且AB,AP⊂平面ABP,AB∩AP=A,∴BE⊥平面ABP,又BP⊂平面ABP,∴BE⊥BP,又∠EBC=120°,因此∠CBP=30°;(Ⅱ)解法一、取的中点H,连接EH,GH,CH,∵∠EBC=120°,∴四边形BEGH为菱形,∴AE=GE=AC=GC= .取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,∴∠EMC为所求二面角的平面角.又AM=1,∴EM=CM= .在△BEC中,由于∠EBC=120°,由余弦定理得:EC2=22+22﹣2×2×2×cos120°=12,∴,因此△EMC为等边三角形,故所求的角为60°.解法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.由题意得:A(0,0,3),E(2,0,0),G(1,,3),C(﹣1,,0),故,,.设为平面AEG的一个法向量,由,得,取z1=2,得;设为平面ACG的一个法向量,由,可得,取z2=﹣2,得.∴cos<>= .∴二面角E﹣AG﹣C的大小为60°.【考点】旋转体(圆柱、圆锥、圆台),直线与平面垂直的判定,直线与平面垂直的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)由已知利用线面垂直的判定可得BE⊥平面ABP,得到BE⊥BP,结合∠EBC=120°求得∠CBP=30°;(Ⅱ)法一、取的中点H,连接EH,GH,CH,可得四边形BEGH为菱形,取AG中点M,连接EM,CM,EC,得到EM⊥AG,CM⊥AG,说明∠EMC为所求二面角的平面角.求解三角形得二面角E﹣AG﹣C 的大小.法二、以B为坐标原点,分别以BE,BP,BA所在直线为x,y,z轴建立空间直角坐标系.求出A,E,G,C的坐标,进一步求出平面AEG与平面ACG的一个法向量,由两法向量所成角的余弦值可得二面角E﹣AG ﹣C的大小.14、【答案】(Ⅰ)证明:取AB中点F,连接MF、NF,∵M为AD中点,∴MF∥BD,∵BD⊂平面BDE,MF⊄平面BDE,∴MF∥平面BDE.∵N为BC中点,∴NF∥AC,又D、E分别为AP、PC的中点,∴DE∥AC,则NF∥DE.∵DE⊂平面BDE,NF⊄平面BDE,∴NF∥平面BDE.又MF∩NF=F.∴平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)解:∵PA⊥底面ABC,∠BAC=90°.∴以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.∵PA=AC=4,AB=2,∴A(0,0,0),B(2,0,0),C(0,4,0),M(0,0,1),N(1,2,0),E(0,2,2),则,,设平面MEN的一个法向量为,由,得,取z=2,得.由图可得平面CME的一个法向量为.∴cos<>= .∴二面角C﹣EM﹣N的余弦值为,则正弦值为;(Ⅲ)解:设AH=t,则H(0,0,t),,.∵直线NH与直线BE所成角的余弦值为,∴|cos<>|=| |=| |= .解得:t=4.∴当H与P重合时直线NH与直线BE所成角的余弦值为,此时线段AH的长为4.【考点】异面直线及其所成的角,平面与平面平行的判定,平面与平面平行的性质,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)取AB中点F,连接MF、NF,由已知可证MF∥平面BDE,NF∥平面BDE.得到平面MFN∥平面BDE,则MN∥平面BDE;(Ⅱ)由PA⊥底面ABC,∠BAC=90°.可以A为原点,分别以AB、AC、AP所在直线为x、y、z轴建立空间直角坐标系.求出平面MEN与平面CME的一个法向量,由两法向量所成角的余弦值得二面角C﹣EM﹣N的余弦值,进一步求得正弦值;(Ⅲ)设AH=t,则H(0,0,t),求出的坐标,结合直线NH与直线BE所成角的余弦值为列式求得线段AH的长.15、【答案】证明:(Ⅰ)∵四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,设PC=AD=2DC=2CB=2,则C(0,1,0),D(0,0,0),P(1,0,1),E(),A(2,0,0),B(1,1,0),=(),=(1,0,﹣1),=(0,1,﹣1),设平面PAB的法向量=(x,y,z),则,取z=1,得=(1,1,1),∵= =0,CE⊄平面PAB,∴CE∥平面PAB.解:(Ⅱ)=(﹣1,1,﹣1),设平面PBC的法向量=(a,b,c),则,取b=1,得=(0,1,1),设直线CE与平面PBC所成角为θ,则sinθ=|cos<>|= = = .∴直线CE与平面PBC所成角的正弦值为.【考点】直线与平面平行的判定,直线与平面所成的角,向量方法证明线、面的位置关系定理,用空间向量求直线与平面的夹角【解析】【分析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,利用向量法能证明CE∥平面PAB.(Ⅱ)求出平面PBC的法向量和,利用向量法能求出直线CE与平面PBC所成角的正弦值.16、【答案】(1)证明:如图,设AC∩BD=O,∵ABCD为正方形,∴O为BD的中点,连接OM,∵PD∥平面MAC,PD⊂平面PBD,平面PBD∩平面AMC=OM,∴PD∥OM,则,即M为PB的中点;(2)解:取AD中点G,∵PA=PD,∴PG⊥AD,∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,由G是AD的中点,O是AC的中点,可得OG∥DC,则OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,由PA=PD= ,AB=4,得D(2,0,0),A(﹣2,0,0),P(0,0,),C(2,4,0),B(﹣2,4,0),M(﹣1,2,),,.设平面PBD的一个法向量为,则由,得,取z= ,得.取平面PAD的一个法向量为.∴cos<>= = .∴二面角B﹣PD﹣A的大小为60°;(3)解:,平面PAD的一个法向量为.∴直线MC与平面BDP所成角的正弦值为|cos<>|=| |=| |= .【考点】直线与平面平行的性质,平面与平面垂直的性质,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1.)设AC∩BD=O,则O为BD的中点,连接OM,利用线面平行的性质证明OM∥PD,再由平行线截线段成比例可得M为PB的中点;(2.)取AD中点G,可得PG⊥AD,再由面面垂直的性质可得PG⊥平面ABCD,则PG⊥AD,连接OG,则PG⊥OG,再证明OG⊥AD.以G为坐标原点,分别以GD、GO、GP所在直线为x、y、z轴距离空间直角坐标系,求出平面PBD与平面PAD的一个法向量,由两法向量所成角的大小可得二面角B﹣PD﹣A的大小;(3.)求出的坐标,由与平面PBD的法向量所成角的余弦值的绝对值可得直线MC与平面BDP 所成角的正弦值.17、【答案】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1= ,∠BAD=120°,∴A(0,0,0),B(),C(,1,0),D(0,2,0),A1(0,0,),C1().=(),=(),,.(Ⅰ)∵cos<>= = .∴异面直线A1B与AC1所成角的余弦值为;(Ⅱ)设平面BA1D的一个法向量为,由,得,取x= ,得;取平面A1AD的一个法向量为.∴cos<>= = .∴二面角B﹣A1D﹣A的正弦值为,则二面角B﹣A1D﹣A的正弦值为.【考点】异面直线及其所成的角,直线与平面垂直的性质,用空间向量求直线间的夹角、距离,二面角的平面角及求法【解析】【分析】在平面ABCD内,过A作Ax⊥AD,由AA1⊥平面ABCD,可得AA1⊥Ax,AA1⊥AD,以A 为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.结合已知求出A,B,C,D,A1,C1的坐标,进一步求出,,,的坐标.(Ⅰ)直接利用两法向量所成角的余弦值可得异面直线A1B与AC1所成角的余弦值;(Ⅱ)求出平面BA1D与平面A1AD的一个法向量,再由两法向量所成角的余弦值求得二面角B﹣A1D﹣A 的余弦值,进一步得到正弦值.18、【答案】证明:(Ⅰ)因为AB⊥AD,EF⊥AD,且A、B、E、F四点共面,所以AB∥EF,又因为EF⊊平面ABC,AB⊆平面ABC,所以由线面平行判定定理可知:EF∥平面ABC;(Ⅱ)在线段CD上取点G,连结FG、EG使得FG∥BC,则EG∥AC,因为BC⊥BD,所以FG⊥BC,又因为平面ABD⊥平面BCD,所以FG⊥平面ABD,所以FG⊥AD,又因为AD⊥EF,且EF∩FG=F,所以AD⊥平面EFG,所以AD⊥EG,故AD⊥AC.【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定【解析】【分析】(Ⅰ)利用AB∥EF及线面平行判定定理可得结论;(Ⅱ)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.19、【答案】(Ⅰ)证明:取PA的中点F,连接EF,BF,因为E是PD的中点,所以EF AD,AB=BC= AD,∠BAD=∠ABC=90°,∴BC∥AD,∴BCEF是平行四边形,可得CE∥BF,BF⊂平面PAB,CF⊄平面PAB,∴直线CE∥平面PAB;(Ⅱ)解:四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.取AD的中点O,M在底面ABCD上的射影N在OC上,设AD=2,则AB=BC=1,OP= ,∴∠PCO=60°,直线BM与底面ABCD所成角为45°,可得:BN=MN,CN= MN,BC=1,可得:1+ BN2=BN2,BN= ,MN= ,作NQ⊥AB于Q,连接MQ,所以∠MQN就是二面角M﹣AB﹣D的平面角,MQ== ,二面角M﹣AB﹣D的余弦值为:= .【考点】直线与平面平行的判定,二面角的平面角及求法【解析】【分析】(Ⅰ)取PA的中点F,连接EF,BF,通过证明CE∥BF,利用直线与平面平行的判定定理证明即可.(Ⅱ)利用已知条件转化求解M到底面的距离,作出二面角的平面角,然后求解二面角M﹣AB﹣D的余弦值即可.20、【答案】(Ⅰ)证明:如图所示,取AC的中点O,连接BO,OD.∵△ABC是等边三角形,∴OB⊥AC.△ABD与△CBD中,AB=BD=BC,∠ABD=∠CBD,∴△ABD≌△CBD,∴AD=CD.∵△ACD是直角三角形,∴AC是斜边,∴∠ADC=90°.∴DO= AC.∴DO2+BO2=AB2=BD2.∴∠BOD=90°.∴OB⊥OD.又DO∩AC=O,∴OB⊥平面ACD.又OB⊂平面ABC,∴平面ACD⊥平面ABC.(Ⅱ)解:设点D,B到平面ACE的距离分别为h D,h E.则= .∵平面AEC把四面体ABCD分成体积相等的两部分,∴= = =1.∴点E是BD的中点.建立如图所示的空间直角坐标系.不妨设AB=2.则O(0,0,0),A(1,0,0),C(﹣1,0,0),D(0,0,1),B(0,,0),E .=(﹣1,0,1),= ,=(﹣2,0,0).设平面ADE的法向量为=(x,y,z),则,即,取= .同理可得:平面ACE的法向量为=(0,1,).∴cos = = =﹣.∴二面角D﹣AE﹣C的余弦值为.【考点】平面与平面垂直的判定,用空间向量求平面间的夹角,二面角的平面角及求法【解析】【分析】(Ⅰ)如图所示,取AC的中点O,连接BO,OD.△ABC是等边三角形,可得OB⊥AC.由已知可得:△ABD≌△CBD,AD=CD.△ACD是直角三角形,可得AC是斜边,∠ADC=90°.可得DO= AC.利用DO2+BO2=AB2=BD2.可得OB⊥OD.利用线面面面垂直的判定与性质定理即可证明.(Ⅱ)设点D,B到平面ACE的距离分别为h D,h E.则= .根据平面AEC把四面体ABCD分成体积相等的两部分,可得= = =1,即点E是BD的中点.建立如图所示的空间直角坐标系.设AB=2.利用法向量的夹角公式即可得出.21、【答案】(1)证明:∵∠BAP=∠CDP=90°,∴PA⊥AB,PD⊥CD,∵AB∥CD,∴AB⊥PD,又∵PA∩PD=P,且PA⊂平面PAD,PD⊂平面PAD,∴AB⊥平面PAD,又AB⊂平面PAB,∴平面PAB⊥平面PAD;(2)解:∵AB∥CD,AB=CD,∴四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,∴AB⊥AD,则四边形ABCD为矩形,在△APD中,由PA=PD,∠APD=90°,可得△PAD为等腰直角三角形,设PA=AB=2a,则AD= .取AD中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,则:D(),B(),P(0,0,),C().,,.设平面PBC的一个法向量为,由,得,取y=1,得.∵AB⊥平面PAD,AD⊂平面PAD,∴AB⊥AD,又PD⊥PA,PA∩AB=A,∴PD⊥平面PAB,则为平面PAB的一个法向量,.∴cos<>= = .由图可知,二面角A﹣PB﹣C为钝角,∴二面角A﹣PB﹣C的余弦值为.【考点】平面与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1.)由已知可得PA⊥AB,PD⊥CD,再由AB∥CD,得AB⊥PD,利用线面垂直的判定可得AB⊥平面PAD,进一步得到平面PAB⊥平面PAD;(2.)由已知可得四边形ABCD为平行四边形,由(1)知AB⊥平面PAD,得到AB⊥AD,则四边形ABCD为矩形,设PA=AB=2a,则AD= .取AD 中点O,BC中点E,连接PO、OE,以O为坐标原点,分别以OA、OE、OP所在直线为x、y、z轴建立空间直角坐标系,求出平面PBC的一个法向量,再证明PD⊥平面PAB,得为平面PAB的一个法向量,由两法向量所成角的余弦值可得二面角A﹣PB﹣C的余弦值.。

高考数学复习基础知识专题讲解与练习17 立体几何外接球与内切球(解析版)

高考数学复习基础知识专题讲解与练习17 立体几何外接球与内切球(解析版)

高考数学复习基础知识专题讲解与练习专题17 立体几何外接球与内切球一、单选题1.已知正四棱锥P ABCD -的所有顶点都在球O 的球面上,且正四棱锥P ABCD -的底面面积为6,侧面积为O 的体积为()A .323πBC .1254πD 【答案】A【分析】根据几何体的性质,转化为平面问题,利用勾股定理求解得出球的半径即可求出球的体积【详解】设底面边长为a ,侧棱长为b ,因为底面面积为6,所以26a =,得a =因为侧面积为所以142⨯=b = 连接,AC BD 交于点1O ,连接1PO ,则可得1PO ⊥平面ABCD ,,所以四棱锥P ABCD -的高13PO =,点O 在1PO 上,连接OA ,设球的半径为R ,则222(3)R R =-+,解得2R =,所以球O 的体积为3344322333R πππ=⨯=, 故选:A2.《九章算术》中将四个面都为直角三角形的三棱锥称之为鳖臑,若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,4PA BC,3AB =,AB BC ⊥,若三棱锥P ABC -的所有顶点都在球O 上,则球O 的半径为()A B .34 C .38 D .32【答案】A【分析】将鳖臑补形为长方体,求出长方体的外接球的半径即可.【详解】由题意,将鳖臑补形为长方体如图,则三棱锥P ABC -的外接球即为长方体的外接球. 外接球的半径为12R PC ===故选:A3.已知ABC∆是以BC为斜边的直角三角形,P为平面ABC外一点,且平面PBC⊥平面ABC,3 BC=,PB=PC=P ABC-外接球的体积为()A.10πBC.53πD【答案】D【分析】由ABC为直角三角形,可知BC中点M为ABC外接圆的圆心,又平面PBC⊥平面ABC,所以球心在过M与平面ABC垂直的直线上,且球心为PBC的外心.利用正余弦定理求出PBC外接圆的半径即为球的半径,从而求出球的体积.【详解】解:取BC中点M,过点M做直线l垂直BC,因为ABC为直角三角形,所以点M为ABC 外接圆的圆心,又平面PBC⊥平面ABC,所以l⊂平面ABC,根据球的性质,球心一定在垂线l上,且球心为PBC的外心.在PBC中,222 cos2PB BC PCPBCPB BC+-∠==⋅所以sin PBC∠=,则PBC外接圆的半径为12V=故选:D4.三棱锥A BCD -中,60ABC CBD DBA ∠=∠=∠=︒,1BC BD ==,ACD △此三棱锥外接球的表面积为()A .4πB .16πC .163πD .323π 【答案】A【分析】 利用三角形全等和三角形的面积公式求出高AE ,求解直角三角形得,AC AD ,利用余弦定理得出90ACB ADB ∠=∠=,可得AB 为三棱锥外接球的直径,即可求出外接球的表面积.【详解】1BC BD ==,60CBD ∠=︒,1CD ∴=,又,60,AB AB ABC DBA BC BD ====,ABC ABD ∴≅,则AC AD =,取CD 中点E ,连接AE ,又由ACD △ACD △的高AE =则可得AC AD ==在ABC 中,由余弦定理2222cos60AC AB BC AB BC ⋅⋅-=+,2131212AB AB ∴=+-⨯⨯⨯,解得2AB =, 则222AC BC AB +=,可得90ACB ∠=,90ADB ∴∠=,,AC BC AD BD ∴⊥⊥,根据球的性质可得AB 为三棱锥外接球的直径,则半径为1,故外接球的表面积为2414ππ⨯=.故选:A.5.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(biē nào ).已知在鳖臑M ABC -中,MA ⊥平面ABC ,4MA AB BC ===,则该鳖臑的外接球的表面积为() A .12πB .24πC .48πD .96π【答案】C【分析】将问题转化为棱长为4的正方体的外接球的求解问题,根据正方体外接球半径为体对角线长一半可得所求外接球半径,根据球的表面积公式可求得结果.【详解】如图所示,鳖臑M ABC -的外接球即为棱长为4的正方体的外接球,∴该鳖臑的外接球半径R == ∴该外接球表面积2448S R ππ==.故选:C .6.已知三棱锥B ACD -中,2AB BC AC ===,CD BD ==BC 的中点为E ,DE 的中点恰好为点A 在平面BCD 上的射影,则该三棱锥外接球半径的平方为()A .1415BC .2511D .1511【答案】D【分析】如图,设点A 在面BCD 上的射影为点F ,根据题意和勾股定理求出BF 、AF , 设球心到平面BCD 的距离为h ,利用勾股定理求出h ,进而可得出结果.【详解】由题意知,如图,BCD △为等腰直角三角形,E 是外接圆的圆心,设点A 在面BCD 上的射影为点F ,则点F 为DE 的中点,所以BF =,所以2AF =, 设球心到平面BCD 的距离为h ,由BO =AO ,在Rt BOE △和Rt AOM 中,可得2211)4h h +=+,解得h =2215111r h =+=. 故选:D7.如图,把两个完全相同的直三角尺SBC ,SAC 斜边重合,沿其斜边SC 折叠形成一个120°的二面角,其中2SA SB ==,且AB =SABC 外接球的表面积为()A .4πB .163πC .3πD .203π 【答案】B【分析】 过点B 作BD SC ⊥于D ,连接DA ,证得BDA ∠为二面角B SC A --的平面角,进而求出SC 的长度,然后取SC 的中点O ,证得O 为空间四边形SABC 外接球的球心,从而可知SC 为球直径,从而结合球的表面积的公式即可求出结果.【详解】过点B 作BD SC ⊥于D ,连接DA ,由于Rt SBC △和Rt SAC △全等,所以AD SC ⊥,AD BD =,所以BDA ∠为二面角B SC A --的平面角,即120BDA ∠=,在ABD △中,结合余弦定理得2222cos AB BD AD BD AD BDA =+-⋅⋅∠,即221322BD BD BD BD ⎛⎫=+-⋅⋅- ⎪⎝⎭,因此233BD =,因为0BD >,所以1BD =,在Rt SBD △中,1sin 2BSD ∠=,从而6BSD ∠=π,在Rt SBC △中,cos SB BSD SC∠==,又因为2SB =,所以SC =SC 的中点O ,连接,OB OA ,由于SC 是Rt SBC △和Rt SAC △的斜边,所以OB OA OS OC ===,故O 为空间四边形SABC 外接球的球心,SC 为球直径,所以空间四边形SABC SABC 外接球的表面积为21643ππ⨯=⎝⎭, 故选:B.8.已知直三棱柱的各棱长都相等,三棱柱的所有顶点都在球O 的表面上,若球O 的表面积为28π,则该三棱柱的体积为()A .6B .18C .D .【答案】B【分析】根据球的表面积求出外接球的半径,设出三棱柱的棱长,确认球心位置,结合勾股定理列出方程,解之即可求出结果.【详解】设球O 的半径为r ,则2428r ππ=,则r =设三棱柱111ABC A B C -的棱长为a ,连接111,A A C C B B 的外心21,O O ,则21O O 的中点O 即为球心,且22,2a O C OO ==,则2222a r ⎫⎛⎫+=⎪ ⎪⎪⎝⎭⎝⎭,则a =2318V a =⨯==. 故选:B.9.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,则过A ,B ,C ,D 四点的球的表面积为()A .3πB .4πC .5πD .6π 【答案】C【分析】首先对平面图形进行转换,进一步求出外接球的半径,最后带入表面积公式求解.【详解】边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕进行折叠,使折后的2BDC π∠=,构成以D 为顶点的三棱锥,且三条侧棱互相垂直,可构造以其为长宽高的长方体,其对角线即为球的直径,三条棱长分别为1,12R =245S ππ==, 故选:D.10.已知正四面体ABCD 的表面积为A 、B 、C ,D 四点都在球O 的球面上,则球O 的体积为()A .B C D .3π【答案】C【分析】由正四面体的性质特征,可知它的各面都是全等的等边三角形,设正四面体的棱长为a ,则根据正四面体ABCD 的表面积即可得出a =1,而正方体的外接球即为该正四面体的外接球,由正方体的外接球性质可得出外接球的半径. 【详解】解:正四面体各面都是全等的等边三角形,设正四面体的棱长为a ,所以该正四面体的表面积为2142S a =⨯⨯== 所以a =,可得正方体的棱长为1,所以正方体的外接球即为该正四面体的外接球,O 的体积为343π⨯=⎝⎭. 故选:C .11.在四棱锥P ABCD -中,底面是边长为4的正方形,且2,PA PB PD ===外接球的表面积为()A .4πB .8πC .36πD .144π【答案】C【分析】利用勾股定理判断PA ⊥平面ABCD ,过正方形ABCD 的中心O '作垂线,再过PA 中点作此垂线的垂线,交点O 即为外接球的球心,求出外接球半径,由表面积公式即可求解.【详解】由题意可知222PA AB PB +=,222PA AD PD +=,所以PA ⊥AB ,PA ⊥AD ,又AB AD A ⋂=,所以PA ⊥平面ABCD ,过正方形ABCD 的中心O '作垂线,再过PA 中点作此垂线的垂线,交点为O ,此点即为外接球的球心,则外接球半径R =3OA , 所以四棱锥外接球的表面积2436S R ππ==.故选:C12.三棱锥D -ABC 中,AB =DC =3,AC =DB =2,AC ⊥CD ,AB ⊥DB .则三棱锥D -ABC 外接球的表面积是().A .9πB .13πC .36πD .52π【答案】B【分析】 由题可得球心为AD 的中点,即求.【详解】OC OB,因为AC⊥CD,AB⊥DB取AD的中点为O,连接,∴OC OA OD OB===即O为棱锥D-ABC外接球的球心,又AB=DC=3,AC=DB=2,∴AD∴三棱锥D-ABC外接球的表面积为13π.故选:B.13.已知一个圆锥的母线长为的扇形,则该圆锥的外接球的体积为()A.36πB.48πC.36D.【答案】A【分析】先利用圆锥的侧面展开图为扇形求出圆锥的底面半径r和圆锥的高h,设该圆锥的外接球的球心为O,半径为R,利用勾股定理求出R,即可求出球的体积.【详解】设圆锥的底面半径为r2r π=,解得:r =作出圆锥的轴截面如图所示:设圆锥的高为h ,则4h ==.设该圆锥的外接球的球心为O ,半径为R ,则有R =即R =R =3, 所以该圆锥的外接球的体积为334433633R πππ==. 故选:A.14.已知三棱柱111ABC A B C -的6个顶点全部在球O 的表面上,AB AC =,120BAC ∠=︒,三棱柱111ABC A B C -的侧面积为8+O 表面积的最小值是()A .4πB .16πC .163πD .323π 【答案】B【分析】设三棱柱111ABC A B C -的高为h ,AB AC a ==,根据题意得出4ah =,设ABC 的外接圆半径为r 、球O 的半径为R ,根据勾股定理得出2R 的表达式,结合基本不等式即可得出结果.【详解】设三棱柱111ABC A B C -的高为h ,AB AC a ==.因为120BAC ∠=︒,所以BC =,则该三棱柱的侧面积为(28ah =+4ah =.设ABC 的外接圆半径为r ,则2sin BC r a BAC==∠. 设球O 的半径为R ,则2222222164244h h h R r a h ⎛⎫=+=+=+≥ ⎪⎝⎭(当且仅当h =等号成立), 故球O 的表面积为2416R ππ≥.故选:B15.三棱锥P ABC -的顶点均在一个半径为4的球面上,ABC 为等边三角形且其边长为6,则三棱锥P ABC -体积的最大值为()A.B .C .D .【答案】B【分析】根据球的性质,结合线面垂直的性质、三棱锥的体积公式进行求解即可.【详解】如图所示:点M 为三角形ABC 的中心,E 为AC 中点,当PM ⊥平面ABC 时,三棱锥P ABC -体积最大,此时,4OP OB R ===,因为6AB =,所以24ABCS AB == 点M 为三角形ABC 的中心,23BM BE ∴===Rt OMB ∴中,有2OM =,426PM OP PM ∴=+=+=,()max 163P ABC V -∴=⨯= 故选:B.第II 卷(非选择题)二、填空题16.已知D ,E 分别是边长为2的等边ABC 边AB ,AC 的中点,现将ADE 沿DE 翻折使得平面ADE ⊥平面BCDE ,则棱锥A BCDE -外接球的表面积为_________. 【答案】133π 【分析】取BC 的中点G ,连接,DG EG ,可得G 为等腰梯形BCED 的外接圆的圆心,再过折起后的ADE 的外心作平面ADE 的垂线,得出两垂线的交点O 为棱锥A BCDE -外接球的球心,求出半径,利用球的表面积公式即可求解.【详解】取BC 的中点G ,连接,DG EG ,可知DG EG BG CG ===,则G 为等腰梯形BCED 的外接圆的圆心,过G 作平面BCED 的垂线,再过折起后的ADE 的外心作平面ADE 的垂线,设两垂线的交点为O ,则O 为四棱锥A BCDE -外接球的球心,ADE 的边长为1,OG HK ∴=则四棱锥A BCDE -外接球的半径OB =,∴四棱锥A BCDE -外接球的表面积为21343ππ⨯=⎝⎭. 故答案为:133π 17.如图,矩形ABCD 中,M 为BC 的中点,1AB BM ==,将ABM 沿直线AM 翻折成1AB M (1B 不在平面AMCD 内),连结1B D ,N 为1B D 的中点,则在翻折过程中,下列说法中正确的是_________.①//CN 平面1AB M ;②存在某个位置,使得CN AD ⊥;③当三棱锥1B AMD -的体积最大时,三棱锥1B AMD -的外接球的表面积是4π.【答案】①③【分析】取1AB 中点,可判断①;通过1AD B D ⊥不成立,可判断②;当平面1AB M ⊥平面ADM 时,体积最大,此时AD 中点为外接球球心,可判断③.【详解】取1AB 中点P ,连接PM ,PN ,故//PN AD ,//PN MC ,四边形PMCN 为平行四边形, 故//NC PM ,即//CN 平面1AB M ,①正确;由底面ABCD 为矩形,可知AD CD ⊥,若CN AD ⊥,则需1AD B D ⊥,由已知可得1AD B D ⊥不成立,故②错误;当平面1AB M ⊥平面ADM 时,体积最大,此时AD 中点O 为外接球球心,则该球的半径1r =,表面积244S r ππ==,故③正确;故答案为:①③.18.如图,半球内有一内接正方体,正方体的一个面在半球的底面圆内,若正方体的边长为2,则半球的表面积为____________.【答案】18π【分析】过正方体与半球底面垂直的对角面作截面α,将问题转化为半圆与矩形的内接问题,进而求出半球的半径r,再利用球的表面积公式进行求解.【详解】设该半球的半径为r,过正方体与半球底面垂直的对角面作截面α,则面α截半球面得半圆,截正方体得一个矩形,且矩形内接于半圆(如图所示),在矩形ABCD中,2AB=,BC==,则r所以半球的表面积为2222ππ3π18πS r r r=+==.故答案为:18π.19.已知球面上有四个点A,B,C,D,球心为点O,O在CD上,若三棱锥A BCD-的体积的最大值为83,则该球O的体积为________.【答案】32 3π【分析】易知CD为该球的直径,由顶点A在底面的射影为球心O,且底面BCD为等腰直角三角形时,三棱锥A BCD-体积最大求解.【详解】如图所示:因为球心O在CD上,所以CD 为该球的直径,由此易知,当顶点A 在底面的射影为球心O 时,且底面BCD 为等腰直角三角形时,三棱锥A BCD -体积最大, 所以1182323R R R ⨯⋅⋅⨯=, 解得2R =,故所求球O 的体积为343233S R ππ==. 故答案为:323π. 20.圆台的上、下底面的圆周都在一个直径为6的球面上,上、下底面半径分别为1和3,则该圆台的体积为_______.【答案】3【分析】由题意首先确定几何体的空间结构特征,求得圆台的高,然后利用圆台的体积公式即可求得其体积. 【详解】圆台的下底面半径为3,故下底面在外接球的大圆上,如图所示,设球的球心为O ,圆台上底面的圆心为'O ,则圆台的高'OO =据此可得圆台的体积:()22133113V π=⨯+⨯+=.故答案为:3. 21.已知三棱锥S -ABC 中,SA ⊥平面ABC ,且SA =4,AB =AC =2,∠BAC =120︒,则三棱锥S -ABC 的外接球的表面积为_____. 【答案】32π 【分析】把三棱锥S -ABC 中补形成一个直三棱柱,找出球心,求出球的半径即可求解. 【详解】如图,把三棱锥S -ABC 中补形成一个直三棱柱,设上、下底面外接圆的圆心分别为21,O O ,球的半径为R ,则外接球的球心O 为12O O 的中点, 由正弦定理11224,2sin 30O A O A ⋅==∴=,又112,2OO SA OA R ==∴==,则其外接球的表面积为224432R πππ==. 故答案为:32π.22.一个正四棱锥的顶点都在同一球面上,若该棱锥的高为2,底面边长为2,则该球的表面积为_________. 【答案】9π 【分析】易知球心O '在正四棱锥的高OP 上,可利用勾股定理构造出关于外接球的半径R ,解方程求得R 后,利用球的表面积公式可得结果. 【详解】如图所示,O 为底面正方形的中心,则2OP =,2AB =,则正四棱锥的外接球的球心O '在OP 上,则外接球的半径R 满足()2222R R -+=,解得:32R =,∴该球的表面积249S R ππ==.故答案为:9π.23.已知在四面体ABCD 中,AB CD AD AC BC BD ======ABCD 的外接球表面积为______. 【答案】9π 【分析】把四面体ABCD 补成为一个长方体,利用长方体求出外接球的半径,即可求出外接球表面积. 【详解】对于四面体ABCD 中,因为AB CD AD AC BC BD ====== 所以可以把四面体ABCD 还原为一个长方体,如图:设从同一个顶点出发的三条边长分别为x 、y 、z ,则有:222222855x y x z y z ⎧+=⎪+=⎨⎪+=⎩,解得:221x y z =⎧⎪=⎨⎪=⎩ 点A 、B 、C 、D 均为长、宽、高分别为2,2,1的长方体的顶点, 且四面体ABCD 的外接球即为该长方体的外接球, 于是长方体的体对角线即为外接球的直径, 不妨设外接球的半径为R,∴2R , ∴外接球的表面积为224ππ(2)9πR R ==. 故答案为:9π.24.已知四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面BCD ,又324AB BC BD ===,,,且60CBD ∠=,则球O 的体积为__________【答案】1256π 【分析】由题可证AB ⊥平面,BCD BC CD ⊥,因此可把四面体ABCD 放入长方体中,则易求其外接球的体积. 【详解】∵四面体ABCD 的四个顶点都在球O 的表面上,AB ⊥平面BCD , 又324AB BC BD ===,,,且60CBD ∠=, ∴cos6023CD = ∴222BC CD BD +=, ∴AB ⊥平面,BCD BC CD ⊥,∴以BC CD AB 、、为长方体的长、宽、高构造长方体,则球O 的半径为522AD =, ∴球O 的体积为345=632125ππ⎛⎫⨯ ⎪⎝⎭. 故答案为:1256π. 25.在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑.已知在鳖臑A BCD -中,满足AB ⊥平面BCD ,且有,2,1BD CD AB BD CD ⊥===,则此时它外接球的体积为_______. 【答案】9π2. 【分析】根据题意,将图形还原成长方体,进而求该长方体外接球的体积即可. 【详解】因为AB ⊥平面BCD ,所以AB ⊥CD ,AB ⊥BD ,又BD ⊥CD ,即AB ,BD ,CD 三条直线两两垂直,如图,将鳖臑还原为长方体111BMCD AM C D -,则问题转化为求该长方体外接球的体积.设外接球的半径为R ,则32R 3R 2=⇒=.所以外接球的体积3439π×π322V ⎛⎫== ⎪⎝⎭.故答案为:9π2.26.已知S ,A ,B ,C 是球O 表面上的点,SA ⊥平面,,1,ABC AB BC SA AB BC ⊥===,则球O 的表面积是_______; 【答案】4π 【分析】先确定外接球的球心,再根据勾股定理得到半径,进而计算表面积得到答案. 【详解】如图,取AC 中点H ,则H 为ABC ∆的外接圆的圆心 易知球心O 在点H 的上方,且12OH =,此时球的半径1r OC ====, 244S r ππ∴==球.故答案为:4π27.一个正四面体表面积为1S ,其内切球表面积为S 2.则12S S =___________.【分析】设正四面体的棱长为a ,用a 表示正四面体表面积为1S ,求得正四面体的高,再利用等体积法求得其内切球的半径为r 即可. 【详解】 如图所示:设正四面体的棱长为a , 因为正四面体表面积为1S ,所以221142S =⨯=,正四面体的高为h , 设正四面体的内切球的半径为r ,则正四面体的体积为2211433V r ==⨯⨯,解得r =, 所以22246a S r ππ==,所以126S S28.已知四面体ABCD 中,AB =AD =6,AC =4,CD =AB ⊥平面ACD ,则四面体ABCD 外接球的表面积为______. 【答案】88π. 【分析】首先四面体补体为长方体,借助长方体求外接球的半径,求四面体的外接球的表面积. 【详解】解:因为AD =6,AC =4,CD =222AD AC CD +=, 所以AD AC ⊥又因为AB ⊥平面ACD , 由题意可知几何体是长方体的一部分,如图,长方体的对角线的长为l所以球的表面积为:2488ππ⋅=⎝⎭.故答案为:88π29.设体积为P ABC -外接球的球心为O ,其中O 在三棱锥P ABC -内部.若球O 的半径为R ,且球心O 到底面ABC 的距离为3R,则球O 的半径R =__________. 【答案】3 【分析】根据等边三角形的性质,结合球的几何性质、棱锥的体积公式进行求解即可. 【详解】 取ABC 的中心G .连接PG ,则PG ⊥平面ABC 且球心O 在PG 上.由条件知,3R OG =,连接OA ,AG ,则AG =,设等边ABC 的边长为a ,所以等边ABC ,因此23AG ==,所以有R a 362=,于是ABC R .又OP R =, 故三棱锥P ABC -的高是:1433R R R +=,所以223148)333P ABC V R R R -=⋅⋅=⋅==3R =.故答案为:330.在边长为6的菱形ABCD 中,60ABC ∠=︒,将菱形ABCD 沿对角线AC 折起成直二面角,则所得三棱锥D ABC -外接球的表面积等于___________.【答案】60π【分析】过ABC 的外心1O 作平面ABC 的垂线,过ADC 的外心2O 作平面ADC 的垂线,两垂线交于O ,则点O 为三棱锥D ABC -外接球的球心,然后根据已知的数据求出球的半径,从而可求得球的表面积【详解】解:如图,取AC 的中点E ,连接,BE DE , 因为边长为6的菱形ABCD 中,60ABC ∠=︒,所以ABC 和ADC 均为正三角形, 所以,BE AC DE AC ⊥⊥,因为二面角B AC D --为直二面角,所以BE DE ⊥, 设1O ,2O 分别是ABC 和ADC 的外心,过1O 作平面ABC 的垂线,过2O 作平面ADC 的垂线,两垂线交于O ,则O 到,,,A B C D 的距离相等,所以点O 为三棱锥D ABC -外接球的球心,因为2111633OO O E BE ====, 222633DO DE ===所以OD =所以三棱锥D ABC -外接球的表面积为2460ππ=,故答案为:60π。

高考数学二轮复习 核心考点特色突破 专题13 立体几何中的计算问题(含解析)-人教版高三全册数学试题

高考数学二轮复习 核心考点特色突破 专题13 立体几何中的计算问题(含解析)-人教版高三全册数学试题

专题13 立体几何中的计算问题【自主热身,归纳总结】1、若正三棱锥的底面边长为2,侧棱长为1,则此三棱锥的体积为 . 【答案】:61【解析】:设此正三棱锥的高为h ,则,所以312=h ,33=h , 故此三棱锥的体积.2、 如图,在长方体ABCDA 1B 1C 1D 1中,AB =AD =3 cm ,AA 1=2 cm ,则三棱锥AB 1D 1D 的体积为________cm 3.【答案】 3【解析】VAB 1D 1D =VB 1AD 1D =13S △ADD 1×A 1B 1=13×12×AD ×D 1D ×A 1B 1=13×12×3×2×3=3.3、将一个正方形绕着它的一边所在的直线旋转一周,所得圆柱的体积为27π cm 3,则该圆柱的侧面积为________cm 2. 【答案】:18π【解析】:设正方形的边长为x cm ,则圆柱的体积为πx 2·x =27π,解得x =3,所以该圆柱的侧面积为2π×3×3=18π(cm 2).4、如图,正四棱锥PABCD 的底面一边AB 的长为2 3 cm ,侧面积为8 3 cm 2,则它的体积为________cm 3.【答案】 4【解析】:如图,过点P 作PO 垂直于底面ABCD ,且垂足为O ,在平面ABCD 中,过点O 作直线AB 的垂线,垂足为E ,连结PE.由正四棱锥的性质知,PE ⊥AB ,所以S 侧=(12×23×PE )×4=83,解得PE =2,在Rt △POE 中,PO =PE 2-EO 2=22-3=1,所以正四棱锥的体积为13×(23)2×1=4.5、已知正四棱柱的底面边长为3 cm ,侧面的对角线长是35cm ,则这个正四棱柱的体积是________cm 3. 【答案】54【解析】:设该正四棱柱的侧棱长为h cm ,则(35)2=32+h 2,解得h =6(负值舍去),从而这个正四棱柱的体积是V =32×6=54(cm 3).6、若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________.【答案】 223π7、现有一正四棱柱形铁块,底面边长为高的8倍,将其熔化锻造成一个底面积不变的正四棱锥形铁件(不计材料损耗).设正四棱柱与正四棱锥的侧面积分别为1S ,2S ,则12S S 的值为 . 【答案】25【解析】设正四棱柱得高为a ,所以底面边长为8a ,根据体积相等,且高相等,所以正四棱锥的高为3a ,则正棱锥侧面的高为,所以.8、以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________. 【答案】22【解析】:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.9、如图,正三棱柱ABCA 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥AA 1EF 的体积是________.【答案】:23【解法1】过B 点作BE AC ⊥,垂足为E ,平面ABC ⊥平面11ACC A ,且平面ABC ⋂平面11ACC A =AC ,所以BE ⊥平面11ACC A ,又因为梯形1ACC D 的面积为=6,所以.【解法2】,而=1323⨯⨯,所以四棱锥1B ACC D -的体积为23.【关联1】、如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm (不计损耗).【答案】. 210 由题意知,熔化前后的体积相等,熔化前的体积为6×34×42×4-93×4=603,设所求正三棱柱的底面边长为x cm ,则有34x 2·6=603,解得x =210,所以所求边长为210cm .【关联2】、在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥D MBC -的体积为 . 【答案】:29思路分析:解决空间几何体的体积计算问题常常有两个途径:一是直接利用体积公式求解,另一种是利用等体积转化的思想进行计算.解题过程:连结MB ,MC ,MN ,过点D 作MN DH ⊥于H ,因为BP BA =,M 为PA 的中点,所以BM PA ⊥,同理CM PA ⊥,又因为,所以,又因为,所以MN PA ⊥,又因为MN DH ⊥,所以PA DH //,从而,故DH 为点D 到平面MBC 的高.在MBC ∆中,MC MB =,N 为BC 的中点,则,MBC ∆的面积,在NPM ∆中,因为PM DH //,2PD DN =,所以,从而三棱锥D MBC -的体积.【关联3】、如图,在正三棱柱中,已知,点P 在棱1CC 上,则三棱锥1P ABA -的体积为 .【答案】.439 【解析】: 因为正三棱柱中,11//CC AA ,因为,,所以,因为点P 在棱1CC 上,所以点C 到平面B B AA 11的距离就是点P 到平面B B AA 11的距离.作AB CD ⊥,垂直为点D ,因为正三棱柱中,⊥1AA 面ABC ,⊂CD 面ABC ,所以1AA CD ⊥,而,,,所以.因为正三棱柱中,,所以233=CD ,1ABA ∆的面积,所以三棱锥1ABA P -的体积.例2、已知矩形ABCD 的边AB =4,BC =3,若沿对角线AC 折叠,使平面DAC ⊥平面BAC ,则三棱锥DABC 的体积为________. 【答案】. 245【解析】:在平面DAC 内作DO ⊥AC ,垂足为点O ,因为平面DAC ⊥平面BAC ,且平面DAC ∩平面BAC =AC ,所以DO ⊥平面BAC ,因为AB =4,BC =3,所以DO =125,S △ABC =12×3×4=6,所以三棱锥DABC 的体积为V =13×6×125=245.【变式1】、.已知一个空间几何体的所有棱长均为1 cm ,其表面展开图如图所示,则该空 间几何体的体积V= cm 3.【答案】216+【解析】空间几何体为一正方体和一正四棱锥的组合体,显然,正方体的体 积为1,正四棱锥的底面边长为1,侧棱长为1,所以,棱锥的高为22,所以,正四棱锥的体积为26,即组合体的体积为216+【变式2】、已知△ABC 为等腰直角三角形,斜边BC 上的中线AD = 2,将△ABC 沿AD 折成60°的二面角,连结BC ,则三棱锥CABD 的体积为 .【答案】:233易错警示 由于二面角平面角的概念在必做部分考查较少形成了复习中的知识盲点在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),【关联1】、折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1)(图2)【答案】:. 43【解析】:连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12+22= 5.SO =SE 2-OE 2=5-1=2,故正四棱锥SEFGH 的体积为13×(2)2×2=43.【关联2】、已知圆锥的底面半径和高相等,侧面积为42 ,过圆锥的两条母线作截面,截面为等边三角形,则圆锥底面中心到截面的距离为【答案】233【解析】设底面半径为r ,由题意可得:母线长为2r .又侧面展开图面积为,所以2r =.又截面三角形ABD 为等边三角形,故,又,故BOD 为等角直角三角形.设圆锥底面中心到截面的距离为d ,又,所以.又,2OBDS=,2AO r ==,故.【关联3】、 如图,在圆锥VO 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为________.【答案】:33思路分析 在立体几何求点到平面的距离问题中,往往有两种途径:(1) 利用等体积法,这种方法一般不需要作出高线;(2) 利用面面垂直的性质作出高线,再进行计算.解法1 因为VO ⊥平面AOB ,OA ⊂平面AOB ,所以VO ⊥OA ,同理VO ⊥OB ,又因为OA ⊥OB ,OA =VO =OB =1,所以VA =VB =AB =2,所以S △VAB =12VA ×AB sin60°=32.设O 到平面VAB 的距离为h ,由V VAOB =V OVAB ,得13S△AOB×VO =13S △VAB ×h ,得12OA ×OB ×VO =32h ,解得h =33.解法2 取AB 中点M ,连结VM ,过点O 作OH ⊥VM 于H .因为OA =OB ,M 是AB 中点,所以OM ⊥AB ,因为VO ⊥平面AOB ,AB ⊂平面AOB ,所以VO ⊥AB ,又因为OM ⊥AB ,VO ∩OM =O ,所以AB ⊥平面VOM ,又因为AB ⊂平面VAB ,所以面VAB ⊥平面VOM ,又因为OH ⊥VM ,OH ⊂平面VOM ,平面VAB ∩平面VOM =VH ,所以OH ⊥平面VAB ,所以OH 为点O 到平面VAB 的距离,且OH =VO ×OM VM =33.例3、如图,在直三棱柱A 1B 1C 1ABC 中,AB ⊥BC ,E ,F 分别是A 1B ,AC 1的中点. (1) 求证:EF ∥平面ABC ; (2) 求证:平面AEF ⊥平面AA 1B 1B ;(3) 若A 1A =2AB =2BC =2a ,求三棱锥FABC 的体积.)【解析】 (1) 连结A 1C .因为直三棱柱A 1B 1C 1ABC 中,四边形AA 1C 1C 是矩形,所以点F 在A 1C 上,且为A 1C 的中点.在△A 1BC 中,因为E ,F 分别是A 1B ,A 1C 的中点,所以EF ∥BC .(2分) 又因为BC ⊂平面ABC ,EF ⊄平面ABC ,所以EF ∥平面ABC .(4分) (2) 因为在直三棱柱A 1B 1C 1ABC 中,B 1B ⊥平面ABC ,所以B 1B ⊥BC . 因为EF ∥BC ,AB ⊥BC ,所以AB ⊥EF ,B 1B ⊥EF .(6分) 因为B 1B ∩AB =B ,所以EF ⊥平面ABB 1A 1.(8分) 因为EF ⊂平面AEF ,所以平面AEF ⊥平面ABB 1A 1.(10分) (3) V FABC =12VA 1ABC =12×13×S △ABC ×AA 1(12分)=12×13×12a 2×2a =a36.(14分)【变式1】、如图,在五面体ABCDEF 中,已知DE ⊥平面ABCD ,//AD BC ,o 60BAD ∠=,2AB =,1DE EF ==.(1)求证://BC EF ; (2)求三棱锥B DEF -的体积.【解析】(1)因为//AD BC ,AD ⊂平面ADEF ,BC ⊄平面ADEF , 所以//BC 平面ADEF , (3分) 又BC ⊂平面BCEF ,平面BCEF平面ADEF EF =,所以//BC EF . (6分) (2)如图,在平面ABCD 内过点B 作BH AD ⊥于点H .因为DE ⊥平面ABCD ,BH ⊂平面ABCD ,所以DE BH ⊥.又AD ,DE ⊂平面ADEF ,,所以BH ⊥平面ADEF ,所以BH 是三棱锥B DEF -的高. (9分) 在直角三角形ABH 中,o 60BAD ∠=,2AB =,所以3BH =. 因为DE ⊥平面ABCD ,AD ⊂平面ABCD ,所以DE AD ⊥.又由(1)知,//BC EF ,且//AD BC ,所以//AD EF ,所以DE EF ⊥, (12分) 所以三棱锥B DEF -的体积. (14分)易错警示 在证明线线、线面、面面的位置关系时,一定要注意条件的完备性,不能少写条件.另外,在求几何体的体积时, 一定要证明某条线为高的原因,即证明它与某个平面垂直,否则将导致丢分. 【变式2】、如图,在矩形ABCD 中,AD =2,AB =4,E ,F 分别为边AB ,AD 的中点.现将△ADE 沿DE 折起,得四棱锥ABCDE. (1)求证:EF ∥平面ABC ;(2)若平面ADE ⊥平面BCDE ,求四面体FDCE 的体积.【解析】 (1) 证法1 如图1,取线段AC 的中点M ,连结MF ,MB. 因为F ,M 为AD ,AC 的中点, 所以MF ∥CD ,且MF =12CD.图1在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.所以MF ∥BE ,且MF =BE.所以四边形BEFM 为平行四边形,故EF ∥BM. 又EF ⊄平面ABC ,BM ⊂平面ABC , 所以EF ∥平面ABC.证法2 如图2,延长DE 交CB 的延长线于点N ,连结AN.在折叠前,四边形ABCD 为矩形,E 为AB 的中点,所以BE ∥CD ,且BE =12CD.图2所以∠NBE =∠NCD ,∠NEB =∠NDC. 所以△NEB ∽△NDC.所以NE ND =BE CD =12,即E 为DN 的中点.又F 为AD 的中点,所以EF ∥NA. 又EF ⊄平面ABC ,NA ⊂平面ABC , 所以EF ∥平面ABC.证法3 如图3,取CD 的中点O ,连结OE ,OF.图3(2) 解法1 在折叠前,四边形ABCD 为矩形,AD =2,AB =4,E 为AB 的中点,所以△ADE ,△CBE 都是等腰直角三角形,且AD =AE =EB =BC =2. 所以∠DEA =∠CEB =45°,且DE =EC =2 2.又∠DEA +∠DEC +∠CEB =180°,所以∠DEC =90°,即DE ⊥CE.又平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,CE ⊂平面BCDE ,所以CE ⊥平面ADE ,即CE 为三棱锥CEFD 的高.因为F 为AD 的中点,所以 S △EFD =12×12×AD×AE=14×2×2=1.所以四面体FDCE 的体积V =13×S △EFD ×CE=13×1×22=223. 解法2 如图4,过F 作FH ⊥DE ,H 为垂足.图4因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,FH ⊂平面ADE ,所以FH ⊥平面BCDE ,即FH 为三棱锥FECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点,所以△ADE 是等腰直角三角形. 又F 为AD 的中点,所以DF =1. 所以FH =DF·sin45°=22. 又S △EDC =12×CD×BC=12×4×2=4,所以四面体FDCE 的体积V =13×S △EDC ×FH=13×4×22=223. 解法3 如图5,过A 作AG ⊥DE ,G 为垂足.图5因为平面ADE ⊥平面BCDE ,平面ADE∩平面BCDE =DE ,AG ⊂平面ADE ,所以AG ⊥平面BCDE ,即AG 为三棱锥AECD 的高.在折叠前,四边形ABCD 为矩形,且AD =2,AB =4,E 为AB 的中点, 所以△ADE 是等腰直角三角形. 所以AG =AD·sin45°= 2. 又S △EDC =12×DC×BC=12×4×2=4,所以三棱锥AECD 的体积V AECD =13×S △EDC ×AG=13×4×2=423.因为F 为AD 的中点,所以S △EFD =12S △EAD .所以V CEFD =12V CEAD =12V AECD =223.即四面体FDCE 的体积为223.【关联】、如图,直四棱柱ABCD-A 1B 1C 1D 1的底面ABCD 是菱形,∠ADC =120°,AA 1=AB =1,点O 1,O 分别是上、下底面菱形的对角线的交点.(1)求证:A 1O ∥平面CB 1D 1; (2)求点O 到平面CB 1D 1的距离.【解析】 (1) 因为AA 1∥C C 1且AA 1=C C 1,所以四边形A 1ACC 1是平行四边形,所以AC∥A1C1且AC=A1C1.因为O1,O分别是A1C1,AC的中点,故O C∥A1O1且O C=A1O1. 所以四边形A1O1C O为平行四边形,所以A1O∥O1C.又A1O⊄平面CB1D1,O1C⊂平面CB1D1,所以A1O∥平面CB1D1.(2)解法1 等体积法.设点O到平面CB1D1的距离为h.因为D1D⊥平面ABCD,所以D1D⊥C O.因为AC,BD为菱形ABCD的对角线,所以C O⊥BD.因为D1D∩BD=D,所以C O⊥平面BB1D1D.在菱形ABCD中,BC=1,∠BCD=60°,C O=3 2.解法2 作垂线.因为AA 1⊥平面A 1B 1C 1D 1,所以AA 1⊥B 1D 1.因为A 1C 1,B 1D 1为菱形A 1B 1C 1D 1的对角线,所以B 1D 1⊥A 1C 1. 因为AA 1∩A 1C 1=A 1,所以B 1D 1⊥平面AA 1C 1C. 因为B 1D 1⊂平面CB 1D 1,所以平面CB 1D 1⊥平面AA 1C 1C.在平面AA 1C 1C 内,作OH ⊥C O 1,H 为垂足,而平面CB 1D 1∩平面AA 1C 1C =CO 1, 所以OH ⊥平面CB 1D 1,即线段OH 的长为点O 到平面CB 1D 1的距离. 在矩形AA 1C 1C 中,∠O CH =∠C O 1C 1,sin ∠CO 1C 1=C C 1C O 1=172=27,sin ∠OCH =OH O C =OH 32=2OH 3,所以27=2OH 3,故OH =217.因此,点O 到平面CB 1D 1的距离为217.。

专题17 立体几何中的最值问题【解析版】

专题17 立体几何中的最值问题【解析版】

第四章立体几何专题17 立体几何中的最值问题【压轴综述】在立体几何中,判定和证明空间的线线、线面以及面面之间的位置关系(主要是平行与垂直的位置关系),计算空间图形中的几何量(主要是角与距离)是两类基本问题.在涉及最值的问题中主要有三类,一是距离(长度)的最值问题;二是面(体)积的最值问题;三是在最值已知的条件下,确定参数(其它几何量)的值.从解答思路看,有几何法(利用几何特征)和代数法(应用函数思想、应用基本不等式等)两种,都需要我们正确揭示空间图形与平面图形的联系,并有效地实施空间图形与平面图形的转换.要善于将空间问题转化为平面问题:这一步要求我们具备较强的空间想象能力,对几何体的结构特征要牢牢抓住,有关计算公式熟练掌握.一、涉及几何体切接问题最值计算求解与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径等.通过作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.这样才能进一步将空间问题转化为平面内的问题;二.涉及角的计算最值问题1. 二面角的平面角及其求法有:定义法、三垂线定理及其逆定理、找公垂面法、射影公式、向量法等,依据题目选择方法求出结果.2.求异面直线所成角的步骤:一平移,将两条异面直线平移成相交直线.二定角,根据异面直线所成角的定义找出所成角.三求角,在三角形中用余弦定理或正弦定理或三角函数求角.四结论.3.线面角的计算:(1)利用几何法:原则上先利用图形“找线面角”或者遵循“一做----二证----三计算”. (2)利用向量法求线面角的方法(i分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(ii)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角(钝角时取其补角),取其余角就是斜线和平面所成的角.下面通过例题说明应对这类问题的方法与技巧.【压轴典例】例1.(2018·全国高考真题(理))已知正方体的棱长为1,每条棱所在直线与平面 所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .4B C .4D 【答案】A 【解析】根据相互平行的直线与平面所成的角是相等的, 所以在正方体1111ABCD A B C D -中,平面11AB D 与线11111,,AA A B A D 所成的角是相等的,所以平面11AB D 与正方体的每条棱所在的直线所成角都是相等的, 同理平面1C BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面11AB D 与1C BD 中间的,,所以其面积为26(424S =⨯⋅=,故选A. 例2.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为( )A .B .C .D .【答案】B 【解析】 如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大 此时,OD OB R 4===2ABCSAB == AB 6∴=,点M 为三角形ABC 的中心2BM 3BE ∴==Rt OMB ∴中,有OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=故选B.例3.(2017·全国高考真题(理))a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________.(填写所有正确结论的编号) 【答案】②③ 【解析】由题意知,a 、b 、AC 三条直线两两相互垂直,画出图形如图, 不妨设图中所示正方体边长为1, 故|AC |=1,|AB|=斜边AB 以直线AC 为旋转轴,则A 点保持不变,B 点的运动轨迹是以C 为圆心,1为半径的圆,以C 坐标原点,以CD 为x 轴,CB 为y 轴,CA 为z 轴,建立空间直角坐标系, 则D (1,0,0),A (0,0,1),直线a 的方向单位向量a =(0,1,0),|a |=1, 直线b 的方向单位向量b =(1,0,0),|b |=1,设B 点在运动过程中的坐标中的坐标B ′(cos θ,sin θ,0), 其中θ为B ′C 与CD 的夹角,θ∈[0,2π),∴AB ′在运动过程中的向量,'AB =(cos θ,sin θ,﹣1),|'AB|=设'AB 与a 所成夹角为α∈[0,2π], 则cos α()()10102'cos sin a AB θθ--⋅==⋅,,,,|sin θ, ∴α∈[4π,2π],∴③正确,④错误. 设'AB 与b 所成夹角为β∈[0,2π],cos β()()'1100''AB b cos sin AB bbAB θθ⋅-⋅===⋅⋅,,,,θ|, 当'AB 与a 夹角为60°时,即α3π=,|sin θ|3πα===, ∵cos 2θ+sin 2θ=1,∴cos β2=|cos θ|12=,∵β∈[0,2π],∴β3π=,此时'AB 与b 的夹角为60°, ∴②正确,①错误. 故答案为:②③.例4.(2017·全国高考真题(理))如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△FAB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△FAB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为______.【答案】【解析】如下图,连接DO 交BC 于点G ,设D ,E ,F 重合于S 点,正三角形的边长为x (x >0),则13OG x =x =.∴5FG SG x ==-,SO h ====,∴三棱锥的体积21133ABC V S h x =⋅==.设()455n x x x =-,x >0,则()3420n x x x '=,令()0n x '=,即4340x =,得x =()n x 在x =处取得最大值.∴max 48V ==例5.(2016·浙江高考真题(理))如图,在ABC中,AB=BC=2,∠ABC=120°.若平面ABC外的点P和线段AC上的点D,满足PD=DA,PB=BA,则四面体PBCD的体积的最大值是 .【答案】【解析】中,因为,所以.由余弦定理可得,所以.设,则,.在中,由余弦定理可得.故.在中,,.由余弦定理可得,所以.由此可得,将ABD沿BD翻折后可与PBD重合,无论点D在任何位置,只要点D的位置确定,当平面PBD⊥平面BDC时,四面体PBCD的体积最大(欲求最大值可不考虑不垂直的情况).过作直线的垂线,垂足为.设,则,即,解得.而 的面积.当平面PBD⊥平面BDC 时:四面体的体积.观察上式,易得,当且仅当,即时取等号,同时我们可以发现当时,取得最小值,故当时,四面体的体积最大,为例6.(2019·安徽芜湖一中高三开学考试)在Rt AOB ∆中,6OAB π∠=,斜边4AB =.Rt AOC ∆可以通过Rt AOB ∆以直线AO 为轴旋转得到,且二面角B AO C --是直二面角.动点D 的斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)求直线CD 与平面AOB 所成角的正弦的最大值.【答案】(1)详见解析;(2【解析】(1)AOB ∆为直角三角形,且斜边为AB ,2AOB π∴∠=.将Rt AOB ∆以直线AO 为轴旋转得到Rt AOC ∆,则2AOC π∠=,即OC AO ⊥.二面角B AO C --是直二面角,即平面AOC ⊥平面AOB .又平面AOC I 平面AOB AO =,OC ⊂平面AOC ,OC ∴⊥平面AOB .OC ⊂Q 平面COD ,因此,平面COD ⊥平面AOB ;(2)在Rt AOB ∆中,6OAB π∠=,斜边4AB =,122OB AB ∴==且3OBA π∠=. 由(1)知,OC ⊥平面AOB ,所以,直线CD 与平面AOB 所成的角为ODC ∠.在Rt OCD ∆中,2COD π∠=,2OC OB ==,CDsin OC ODC CD ∴∠==当⊥OD AB 时,OD 取最小值,此时sin ODC ∠取最大值,且sin3OD OB π==因此,sin 7OC ODC CD ∠==≤=,即直线CD 与平面AOB 所成角的正弦的最大值为7. 例7.(2019·深圳市高级中学高三月考(文))如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直于圆O 所在的平面,且PO =OB =1.(1)若D 为线段AC 的中点,求证:AC⊥平面PDO ; (2)求三棱锥P -ABC 体积的最大值; (3)若,点E 在线段PB 上,求CE +OE 的最小值.【答案】(1)见解析;(2);(3)【解析】(1)证明:在△AOC中,因为OA=OC,D为AC的中点,所以AC⊥DO.又PO垂直于圆O所在的平面,所以PO⊥AC.因为DO∩PO=O,所以AC⊥平面PDO.(2)解:因为点C在圆O上,所以当CO⊥AB时,C到AB的距离最大,且最大值为1.又AB=2,所以△ABC面积的最大值为.又因为三棱锥P-ABC的高PO=1,故三棱锥P-ABC体积的最大值为.(3)解:在△POB中,PO=OB=1,∠POB=90°,所以.同理,所以PB=PC=BC.在三棱锥P-ABC中,将侧面BCP绕PB旋转至平面BC′P,使之与平面ABP共面,如图所示.当O,E,C′共线时,CE+OE取得最小值.又因为OP=OB,,所以垂直平分PB,即E为PB的中点.从而,即CE+OE的最小值为.例8.(2016·江苏高考真题)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.(1)若则仓库的容积是多少? (2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?【答案】(1)312(2)【解析】(1)由PO 1=2知OO 1=4PO 1=8. 因为A 1B 1=AB=6,所以正四棱锥P-A 1B 1C 1D 1的体积正四棱柱ABCD-A 1B 1C 1D 1的体积所以仓库的容积V=V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a (m ),PO 1=h (m ),则0<h<6,OO 1=4h.连结O 1B 1.因为在中,所以,即于是仓库的容积,从而.令,得或(舍).当时,,V 是单调增函数;当时,,V 是单调减函数.故时,V 取得极大值,也是最大值.因此,当m 时,仓库的容积最大.【压轴训练】1.(2019·四川石室中学高三开学考试(文))在ABC △中,已知AB =BC =045ABC ∠=,D 是边AC 上一点,将ABD △沿BD 折起,得到三棱锥A BCD -.若该三棱锥的顶点A 在底面BCD 的射影M 在线段BC 上,设BM x =,则x 的取值范围为( )A.(B.C.D.(【答案】B 【解析】由将ABD △沿BD 折起,得到三棱锥A BCD -,且A 在底面BCD 的射影M 在线段BC 上, 如图2所示,AM ⊥平面BCD ,则AM BD ⊥, 在折叠前图1中,作AM BD ⊥,垂足为N ,在图1中过A 作1AM BC ⊥于点1M ,当运动点D 与点C 无限接近时,折痕BD 接近BC ,此时M 与点1M 无限接近,在图2中,由于AB 是直角ABM ∆的斜边,BM 为直角边,所以BM AB <, 由此可得1BM BM AB <<,因为ABC ∆中,045ABC AB BC ∠===,由余弦定理可得AC =所以1BM ==BM <<由于BM x =,所以实数x 的取值范围是,故选B .2.(2019·四川高三月考(文))已知球O 表面上的四点A ,B ,C ,P 满足AC BC ==2AB =.若四面体PABC 体积的最大值为23,则球O 的表面积为( ) A .254πB .254π C .2516π D .8π【答案】A 【解析】当平面ABP 与平面ABC 垂直时,四面体ABCP 的体积最大.由AC BC ==2AB =,得90ACB ︒∠=.设点Р到平面ABC 的距离为h,则112323h ⨯=,解得2h =. 设四面体ABCP 外接球的半径为R ,则()22221R R =-+,解得5R=4.所以球O 的表面积为2525444ππ⎛⎫⨯= ⎪⎝⎭. 故选:A .3.(2019·湖南雅礼中学高三月考(理))圆锥的母线长为2,其侧面展开图的中心角为θ弧度,过圆锥顶点的截面中,面积的最大值为2,则θ的取值范围是( ) A.),2π B.π⎡⎤⎣⎦C.}D.,2π⎫⎪⎪⎣⎭【答案】A 【解析】设轴截面的中心角为α,过圆锥顶点的截面的顶角为β,且βα≤ 过圆锥顶点的截面的面积为:122sin β2sin β2⨯⨯⨯=, 又过圆锥顶点的截面中,面积的最大值为2, 故此时β2π=,故απ2π≤<圆锥底面半径r )2sin22α=∈ ∴侧面展开图的中心角为θ弧度2sin222πsin22απα⨯⨯==∈),2π 故选:A.4.(2019·安徽高考模拟(理))如图,已知四面体ABCD 为正四面体,1AB =,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A .14B C D .1【答案】A 【解析】将正四面体补成正方体,如下图所示:EF α⊥ ∴截面为平行四边形MNKL ,可得1NK KL +=又//KL BC ,//KN AD ,且AD BC ⊥ KN KL ∴⊥ 可得2124MNKLNK KL S NK KL +⎛⎫=⋅≤=⎪⎝⎭四边形(当且仅当NK KL =时取等号) 本题正确选项:A5.(2019·湖北高三月考(理))若一个四棱锥底面为正方形,顶点在底面的射影为正方形的中心,且该四棱锥的体积为9,当其外接球表面积最小时,它的高为( )A .3B .C .D .【答案】A 【解析】设正方形的边长为a ,则四棱锥的高为227h a =,则其外接圆的半径r =.设球的半径为R ,则()222h R r R -+=,解得44222272727210844108a a R a a a =+=++94≥=,当且仅当42274108a a =,即3a =时等号成立,此时,四棱锥的高为2272739h a ===.故选A. 6.(2019·四川雅安中学高三开学考试(文))已知三棱锥D ABC -四个顶点均在半径为R 的球面上,且AB BC ==2AC =,若该三棱锥体积的最大值为1,则这个球的表面积为( )A.50081πB.1009πC.259πD.4π【答案】B 【解析】AB BC ==2AC = 222AB BC AC ∴+= AB BC ∴⊥112ABC S AB BC ∆∴=⋅= 如下图所示:若三棱锥D ABC -体积最大值为1,则点D 到平面ABC 的最大距离:3d = 即:3DO '=设球的半径为R ,则在Rt OAO '∆中:()22213R R =+-,解得:53R =∴球的表面积:210049S R ππ==本题正确选项:B7.(2017·山西高三(理))两球1O 和2O 在棱长为1的正方体1111ABCD A B C D -的内部,且互相外切,若球1O 与过点A 的正方体的三个面相切,球2O 与过点1C 的正方体的三个面相切,则球1O 和2O 的表面积之和的最小值为( )A .(32pB .(42pC .(32p +D .(42p【答案】A 【解析】设球1O 与球2O 的半径分别为r 1,r 2,∴r 1+r 2r 1+r 2)= r 1+r 2=32-,r 1+r 2⩾球1O 与球2O 的面积之和为: S =4π(21r+21r)=4π(r 1+r 2)2−8π12r r ⩾()212π1+−2π()231+=(6−)π,当且仅当r 1=r 2时取等号其面积最小值为(6−π. 故选A.8.(2019·广东高考模拟(理))平面四边形ABCD 中,AD AB ==CD CB ==且AD A B ⊥,现将ABD ∆沿对角线BD 翻折成A BD '∆,则在A BD '∆折起至转到平面BCD 的过程中,直线A C '与平面BCD 所成最大角的正切值为( )A .2B .12C D 【答案】D 【解析】 取BD 的中点O,则,,,A B A D BC CD A O BD CO BD '''==∴⊥⊥即BD ⊥平面A OC ',从而平面BCD ⊥平面A OC ',因此A '在平面BCD 的射影在直线OC 上,即A CO '∠为直线A C '与平面BCD 所成角,因为AD AB ==CD CB ==AD AB ⊥,所以111,2sin sin sin 22A O A O OC A CO OA C OA C OC '''''==∴∠=∠=∠≤,即A CO '∠最大值为π6,因此直线A C '与平面BCD 所成最大角的正切值为πtan63=,选D.9.(2019·云南省玉溪第一中学高二月考(理))已知底面边长为,侧棱长为S ABCD -内接于球1O .若球2O 在球1O 内且与平面ABCD 相切,则球2O 的直径的最大值为__________. 【答案】8 【解析】如图所示,正四棱锥S ABCD -内接于球1O ,1SO 与平面ABCD 交于点O ,正方形ABCD 中,4AB AO ==,在直角三角形SAO 中,2SO ===,设球1O 的半径为R ,则在直角三角形1OAO 中,222(2)4R R -+=, 解得5R =, 所以球1O 的直径为10,当求2O 与平面ABCD 相切且与球1O 相切时,球2O 的直径最大, 又因为球2SO =,所以球2O 的直径的最大值为1028-=.10.(2019·山西高三月考)已知三棱锥P ABC -的四个顶点都在半径为3的球面上,AB AC ⊥,则该三棱锥体积的最大值是__. 【答案】323【解析】如图所示,设,AB m AC n ==,则12ABCS mn ∆=,ABC ∆3,三棱锥P ABC -的体积公式为221113)3)3234m n mn +⨯≤⨯,设224m n t +=,则1()3f t t =,1()33f t '⎫=+⎪⎭,令()0f t '=,解得8t =,()f t 在()0,8单增,[]8,9单减,max 32()(8)3f t f ∴==, 所以三棱锥P ABC -体积最大值为32311.(2019·云南师大附中高三月考)在直三棱柱111ABC A B C -中,90BAC ∠=︒且14BB =,设其外接球的球心为O ,已知三棱锥O -ABC 的体积为2,则球O 的表面积的最小值是_____________. 【答案】28π 【解析】 如图,在Rt ABC △中,设AB c =,=AC b ,则BC =, 取BC ,11B C 的中点分别为2O ,1O ,则2O ,1O 分别为Rt ABC △和111Rt A B C △的外接圆的圆心,连接2O 1O ,又直三棱柱111ABC A B C -的外接球的球心为O ,则O 为2O 1O 的中点,连接OB ,则OB 为三棱柱外接球的半径.设半径为R ,因为直三棱柱111ABC A B C -,所以1214BB O O ==,所以三棱锥O ABC -的高为2,即22OO =,又三棱锥O ABC -体积为2,所以1122632O ABC V bc bc -=⨯⨯=⇒=.在2Rt OO B △中,22222221()4424b c R BC OO +⎛⎫=+=+=+ ⎪⎝⎭⎝⎭, 所以2=4πS R =球表22224π4π()16π2π16π12π16π28π4b c b c bc ⎛⎫++=+++=+=⎪⎝⎭≥,当且仅当b c =时取“=”,所以球O 的表面积的最小值是28π,故答案为28π.12.(2019·湖南高三月考(文))已知三棱锥A BCD -满足3AB BD DC CA ====,则该三棱锥体积的最大值为________.【答案】【解析】取AD 中点E ,连接BE ,CE ,因为3AB BD DC CA ====, 所以BE AD ⊥,CE AD ⊥,且BE CE =,由题意可得,当平面⊥BAD 平面CAD 时,棱锥的高最大,等于BE ,此时体积也最大; 所以此时该三棱锥体积为113sin sin 362-∆=⋅⋅=⋅⋅⋅∠⋅=⋅∠A BCD ACD V S BE CA CD ACD BE CE ACD ,设ACD θ∠=,则sin 3cos 22πθθ-⎛⎫=⋅=⎪⎝⎭CE CD , 所以239cos sin 9sin cos 9sin sin 222222θθθθθθ-⎛⎫=⋅=⋅=- ⎪⎝⎭A BCD V , 令sin2θ=x ,因为0θπ<<,所以0sin12θ<<,设3()=-f x x x ,01x <<,则2()13'=-f x x ,由2()130'=->f x x 得03x <<;由2()130'=-<f x x 得13x <<;所以函数3()=-f x x x 在⎛ ⎝⎭上单调递增,在⎫⎪⎪⎝⎭上单调递减;所以max ()33279⎛==-= ⎝⎭f x f ,因此三棱锥体积的最大值为99-=⋅=A BCD V故答案为13.(2019·河南高三月考(文))已知三棱锥P ABC -的四个顶点均在同一个球面上,底面ABC ∆满足BA BC ==2ABC π∠=,若该三棱锥体积的最大值为3.则其外接球的体积为________.【答案】323π 【解析】 如图所示:设球心为O ,ABC △所在圆面的圆心为1O ,则1OO ⊥平面ABC ;因为BA BC ==2ABC π∠=,所以ABC △是等腰直角三角形,所以1O 是AC 中点;所以当三棱锥体积最大时,P 为射线1O O 与球的交点,所以113p ABC ABC V PO S -=⋅⋅;因为132ABCS==,设球的半径为R ,所以11PO PO OO R R =+==+(1333R ⋅⋅=,解得:2R =,所以球的体积为:343233R ππ=.14.(2019·四川双流中学高三月考(文))已知球的直径4DC =,A ,B 是该球面上的两点,6ADC BDC π∠=∠=,则三棱锥A BCD -的体积最大值是______.【答案】2 【解析】因为球的直径4DC =,且6ADC BDC π∠=∠=,所以2AC BC ==,AD BD ==13A BCD BCD V S h -∆=⨯⨯(其中h 为点A 到底面BCD 的距离),故当h 最大时,A BCD V -的体积最大,即当面ADC ⊥面BDC 时,h 最大且满足42h =⨯h =112232A BCD V -=⨯⨯⨯=.15.(2019·河北高三月考)在四棱锥P ABCD -中,PD AC ⊥,AB ⊥平面PAD ,底面ABCD 为正方形,且3CD PD +=,若四棱锥P ABCD -的每个顶点都在球O 的球面上,则球O 的表面积的最小值为_____. 【答案】6π 【解析】∵AB ⊥平面PAD ,∴AB PD ⊥,又PD AC ⊥,∴PD ⊥平面ABCD ,则四棱锥P ABCD -可补形成一个长方体,球O 的球心为PB 的中点,设()03CD x x =<<,则3PD x =-.从而球O 的表面积为()2243126x πππ⎡⎤=-+≥⎣⎦⎝⎭. 故答案为6π 16.(2016·浙江高考真题(文))如图,已知平面四边形ABCD ,AB=BC=3,CD=1,直线AC 将ACD 翻折成ACD',直线AC 与BD' 所成角的余弦的最大值是______.【解析】试题分析:如图,连接BD′,设直线AC 与'BD 所成的角为θ.O 是AC 的中点.由已知得AC =,以OB 为x 轴, OA 为y 轴,过O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系,则0,2A ⎛⎫ ⎪ ⎪⎝⎭, 2B ⎛⎫ ⎪ ⎪⎝⎭, 0,2C ⎛⎫- ⎪ ⎪⎝⎭.作DH AC ⊥于H ,连接D′H翻折过程中, 'D H 始终与AC 垂直, 则2CD CH CA ===则3OH = DH ==因此'cos ,sin 636D αα⎛⎫-- ⎪ ⎪⎝⎭(设∠DHD′=α),则'BD αα⎛⎫= ⎪ ⎪⎝⎭,与CA 平行的单位向量为()0,1,0n =,所以cos cos ',BD n θ= ''BD n BD n⋅==,所以cos 1α=-时, cos θ.17.(2019·重庆一中高三开学考试(理))已知正方形ABCD 的边长为ABC ∆沿对角线AC 折起,使平面ABC ⊥平面ACD ,得到如图所示的三棱锥B-ACD .若O 为AC 的中点,点M ,N 分别为DC ,BO 上的动点(不包括端点),且BN CM =,则当三棱锥N-AMC 的体积取得最大值时,点N 到平面ACD 的距离为______.【答案】1【解析】由题意知,BO AC ⊥,而平面ABC ⊥平面ACD ,所以BO ⊥平面ACD ,易知BO =2,设BN x =,三棱锥N AMC -的高为NO ,则2NO x =-,由三棱锥体积公式得211=(2)(1)3233N AMC V y x x -=⨯⨯⨯-=--+,∴x =1时,y max =3.此时,211NO =-=. 故本题正确答案为1.18.(2019·浙江高三开学考试)如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 中点,动点P 在底面ABCD 内(不包括边界),使四面体1A BMP 体积为23,则1C P 的最小值是___________.【解析】由已知得四面体1A BMP 体积1122,33A MBP MBP V S -∆=⨯⨯=所以1,MBP S ∆=设P 到BM 的距离为h ,则11,2MBP S h ∆==解得h =所以P 在底面ABCD 内(不包括边界)与BM 的线段l 上, 要使1C P 的最小,则此时P 是过C 作BM 的垂线的垂足.点C 到BM 的距离为,5所以5CP =此时()1min 5C P ==19.(2019·安徽合肥一中高考模拟(文))如图,在棱长为 1 的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1//B P 平面1A BM ,则1C P 的最小值是____.【解析】 取BC 中点N ,连结11,,B D B N DN ,作CO DN ⊥,连1C O ,因为面1//B DN 面面1A BM ,所以动点P 在底面ABCD 内的轨迹为线段DN , 当点P 与点O 重合时,1C P 取得最小值,因为1112252DN CO DC NC CO ⋅=⋅⇒==,所以1min 1()5C P C O ====. 20.(2019·湖南高三期末(文))点P 在正方体1111ABCD A B C D -的侧面11BCC B 及其边界上运动,并保持1AP BD ⊥,若正方体边长为2,则PB 的取值范围是__________.【答案】2⎤⎦【解析】连结1AB ,AC ,1CB ,易知平面11ACB BD ⊥,故P 点的轨道为线段1CB ,当P 在1CB 当P 与C 或1B 重合时:最大值为2则PB 的取值范围是2⎤⎦.故答案为:2⎤⎦。

高中数学立体几何专题:空间距离的各种计算(含答案)

高中数学立体几何专题:空间距离的各种计算(含答案)

高中数学立体几何 空间距离1.两条异面直线间的距离和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.2.点到平面的距离从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离.题型一:两条异面直线间的距离【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离;【规范解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线.(2)在Rt △BEF 中,BF =a 23,BE =a 21, 所以EF 2=BF 2-BE 2=a 212,即EF =a 22.由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为a 22. 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED .∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB .∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离.∵CE =23,∴CF =FD =21,∠EFC =90°,EF =22212322=⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛. ∴AB 、CD 的距离是22. 【解后归纳】 求两条异面直线之间的距离的基本方法:(1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度.(2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离.例1题图例2题图(3)如果两条异面直线分别在两个互相平行的平面内,可以转化为求两平行平面的距离.题型二:两条异面直线间的距离【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO =32BE =332332=⨯. 又AB =1,且∠AOB =90°,∴AO =36331222=⎪⎪⎭⎫ ⎝⎛-=-BO AB .∴A 到平面BCD 的距离是36. 【例4】在梯形ABCD 中,AD ∥BC ,∠ABC =2π,AB =a ,AD =3a 且sin ∠ADC =55,又P A ⊥平面ABCD ,P A =a ,求:(1)二面角P —CD —A 的大小; (2)点A 到平面PBC 的距离.【规范解答】 (1)作AF ⊥DC 于F ,连结PF , ∵AP ⊥平面ABCD ,AF ⊥DC ,∴PF ⊥DC , ∴∠PF A 就是二面角P —CD —A 的平面角. 在△ADF 中,∠AFD =90°,∠ADF =arcsin55,AD =3a ,∴AF =53a , 在Rt △P AF 中tan ∠PF A =3535==a a AF PA ,∴∠PF A =arc tan 35. (2)∵P A ⊥平面ABCD ,∴P A ⊥BC ,又BC ⊥AB ,∴BC ⊥平面P AB ,作AH ⊥PB ,则BC ⊥AH ,∴AH ⊥平面PBC ,∵P A ⊥AB ,P A =AB =a ,∴PB =2a ,∴AH =a 22.【例5】如图,所示的多面体是由底面为ABCD 的长方体被截面AEC 1F 所截面而得到的,其中AB=4,BC=2,CC 1=3,BE=1.(Ⅰ)求BF 的长;(Ⅱ)求点C 到平面AEC 1F 的距离.解法1:(Ⅰ)过E 作EH//BC 交CC 1于H ,则CH=BE=1,EH//AD ,且EH=AD. ∵AF ∥EC 1,∴∠FAD=∠C 1EH. ∴Rt △ADF ≌Rt △EHC 1.∴DF=C 1H=2. .6222=+=∴DF BD BF (Ⅱ)延长C 1E 与CB 交于G ,连AG , 则平面AEC 1F 与平面ABCD 相交于AG . 过C 作CM ⊥AG ,垂足为M ,连C 1M ,由三垂线定理可知AG ⊥C 1M.由于AG ⊥面C 1MC , 且AG ⊂面AEC 1F ,所以平面AEC 1F ⊥面C 1MC.在Rt △C 1CM 中,作CQ ⊥MC 1,垂足为Q ,则CQ 的长即为C 到面AEC 1F 的距离..113341712317123,17121743cos 3cos 3,.17,1,2211221=+⨯=⨯=∴=⨯===∠=∠=+===MC CC CM CQ GAB MCG CM MCG GAB BG AB AG BG CGBGCC EB 知由从而可得由解法2:(I )建立如图所示的空间直角坐标系,则D (0,0,0),B (2,4,0), A (2,0,0),C (0,4,0),E (2,4,1),C 1(0,4,3).设F (0,0,z ).∵AEC 1F 为平行四边形,例3题图B ACD1A1B 1C1A .62,62||).2,4,2().2,0,0(.2),2,0,2(),0,2(,,11的长为即于是得由为平行四边形由BF BF EF F z z EC AF F AEC =--=∴∴=∴-=-=∴∴(II )设1n 为面AEC 1F 的法向量,)1,,(,11y x n ADF n =故可设不垂直于平面显然⎩⎨⎧=+⨯+⨯-=+⨯+⨯⎪⎩⎪⎨⎧=⋅=⋅02020140,0,011y x y x AF n AE n 得由⎪⎩⎪⎨⎧-==∴⎩⎨⎧=+-=+.41,1,022,014y x x y 即111),3,0,0(n CC CC 与设又=的夹角为a ,则11114cos 33||||CC n CC n α⋅==⋅ ∴C 到平面AEC 1F 的距离为.11334333343cos ||1=⨯==αCC d【例6】正三棱柱111C B A ABC -的底面边长为8,对角线101=C B ,D 是AC 的中点。

高中数学《立体几何》大题及答案解析

高中数学《立体几何》大题及答案解析

5
AD 5 5
4、【解法 1】(Ⅰ)∵四边形 ABCD 是正方形,∴ AC ⊥ BD ,
∵ PD 底面 ABCD ,
∴PD⊥AC ,∴ AC ⊥平面 PDB,
∴平面 AEC 平面 PDB .
(Ⅱ)设 AC∩BD=O O,
∴∠ AEO 为 AE 与平面 PDB 所的角, ∴ O, E 分别为 DB 、 PB 的中点,
求证: PM ∥ 平面 BCE ( III )求二面角 F BD A 的大小。
10. ( 2009 重庆卷文)如题( 18 )图,在五面体 ABCDEF 中, AB ∥ DC , BAD

2
CD AD 2 ,四边形 ABFE 为平行四边形, FA 平面 ABCD , FC 3, ED 7 .求:
(Ⅰ)直线 AB 到平面 EFCD 的距离; (Ⅱ)二面角 F AD E 的平面角的正切值.
连接 CH,则∠ ECH为 B1C 与平面 BCD所成的角。
因 ADEF为正方形, AD= 2 ,故 EH=1,又 EC=1 B1C =2, 2
所以∠ ECH=300,即 B1C 与平面 BCD所成的角为 300.
解法二: (Ⅰ)以 A 为坐标原点,射线 AB 为 x 轴的正半轴,建立如图所示 的直角坐标系 A— xyz 。
点 F 为 AM 的中点,取 SA 的中点 G,连 GF,易证 GF AM ,则 GFB 即为所求二面角 .
解法二、 分别以 DA 、 DC 、 DS 为 x 、 y 、 z 轴如图建立空间直角坐标系
D— xyz ,则
A( 2,0,0), B ( 2,2,0), C ( 0,0,2), S( 0,0,2) 。
设 AC=2,则
2
AG=

立体几何大题(解析版)

立体几何大题(解析版)

立体几何大题1.空间中的平行关系(1)线线平行(2)线面平行的判定定理:平面外一直线与平面内一直线平行,则线面平行(3)线面平行的性质定理若线面平行,经过直线的平面与该平面相交,则直线与交线平行(4)面面平行的判定定理判定定理1:一个平面内有两条相交直线分别平行于另一个平面,则面面平行判定定理2:一个平面内有两条相交直线分别于另一个平面内两条相交直线平行,则面面平行(5)面面平行的性质定理性质定理1:两平面互相平行,一个平面内任意一条直线平行于另一个平面性质定理2:两平面互相平行,一平面与两平面相交,则交线互相平行6.空间中的垂直关系(1)线线垂直(2)线面垂直的判定定理一直线与平面内两条相交直线垂直,则线面垂直(3)线面垂直的性质定理性质定理1:一直线与平面垂直,则这条直线垂直于平面内的任意一条直线性质定理2:垂直于同一个平面的两条直线平行(4)面面垂直的判定定理一个平面内有一条直线垂直于另一个平面,则两个平面垂直(或:一个平面经过另一个平面的垂线,则面面垂直)(5)面面垂直的性质定理两平面垂直,其中一个平面内有一条直线与交线垂直,则这条直线垂直于另一个平面6.异面直线所成角cos θ=cos a ,b =|a ⋅b ||a |⋅|b |=|x 1x 2+y 1y 2+z 1z 2|x 12+y 12+z 12⋅x 22+y 22+z 22(其中θ(0°<θ≤90°)为异面直线a ,b 所成角,a ,b 分别表示异面直线a ,b 的方向向量)7.直线AB 与平面所成角,sin β=AB ⋅m |AB ||m |(m 为平面α的法向量).8.二面角α-l -β的平面角cos θ=m ⋅n |m ||n |(m ,n 为平面α,β的法向量).9.点B 到平面α的距离d =|AB ⋅n | |n |(n 为平面α的法向量,AB 是经过面α的一条斜线,A ∈α).模拟训练一、解答题1(22·23下·湖南·二模)如图,在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,AC =BB ,点D 为棱BB 的中点,AE =13AC .(1)求DE 的长度;(2)求平面CDE 与平面BDE 夹角的余弦值.【答案】(1)393(2)34【分析】(1)在△ABC 中,用余弦定理可得到AC =23,在△ABE 中,用余弦定理可得BE =233,即可求得DE =DB 2+BE 2=393;(2)以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立空间直角坐标系,求出平面CDE 与平面BDE 的法向量,即可求解【详解】(1)因为在直三棱柱ABC -A B C 中,∠ABC =120°,AB =BC =2,在△ABC 中,由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ⋅BC=22+22-AC 22×2×2=-12,解得AC =23,则AE =13AC =233,在△ABE 中,由余弦定理得cos ∠BAE =AB 2+AE 2-BE 22AB ⋅AE =22+233 2-BE 22×2×233=32,解得BE =233,又AC =BB =23,所以BD =12BB =3,因为BB ⊥平面ABC ,BE ⊂平面ABC ,所以BB ⊥BE ,在直角三角形DBE 中,DE =DB 2+BE 2=(3)2+233 2=393;(2)因为AE =BE =233,所以∠ABE =∠BAE =30°,则∠CBE =∠ABC -∠ABE =120°-30°=90°,则BE ,BC ,BB 两两互相垂直,以B 为原点,分别以BE ,BC ,BB 所在的直线为x ,y ,z 轴建立如下图所示的空间直角坐标系:则点C 0,2,0 ,D 0,0,3 ,E 233,0,0 ,则CD =0,-2,3 ,CE =233,-2,0 ,设平面CDE 的法向量为n =x ,y ,z ,由n ⋅CD =x ,y ,z ⋅0,-2,3 =-2y +3z =0n ⋅CE =x ,y ,z ⋅233,-2,0 =233x -2y =0 ,得z =233y x =3y,令y =3,得平面CDE 的一个法向量为n =3,3,2 ;平面BDE 的一个法向量为m =0,1,0 .设平面CDE 与平面BDE 夹角的大小为θ,则cos θ=m ⋅n m n =0,1,0 ⋅3,3,2 1×4=34,故平面CDE 与平面BDE 夹角的余弦值为34.2(22·23下·绍兴·二模)如图,在多面体ABCDE 中,DE ⊥平面BCD ,△ABC 为正三角形,△BCD 为等腰Rt △,∠BDC =90°,AB =2,DE =2.(1)求证:AE ⊥BC ;(2)若AE ⎳平面BCD ,求直线BE 与平面ABC 所成的线面角的正弦值.【答案】(1)证明见解析(2)63【分析】(1)由线面垂直的性质定理和判定定理即可证明;(2)法一:由分析可知,∠EBH 就是直线BE 与平面ABC 所成的线面角,设∠AFD =α,当α<90°时,O 与D 重合,可得A ,E 两点重合,不符合题意,当α>90°时,求出EH ,BE ,即可得出答案;法二:建立空间直角坐标系,求出直线BE 的方向向量与平面ABC 的法向量,由线面角的向量公式代入即可得出答案.【详解】(1)设F 为BC 中点,连接AF ,EF ,则由△ABC 为正三角形,得AF ⊥BC ;DE ⊥平面BCD ,且△BCD 为等腰直角三角形,计算可得:BE =CE =2,∴EF ⊥BC .EF ∩AF =F ,EF ,AF ⊂面AEF ,于是BC ⊥面AEF ,AE ⊂面AEF ,从而BC ⊥AE .(2)法一:由(1)可知,过点E 作EH ⊥AF ,垂足为H ,则∠EBH 就是直线BE 与平面ABC 所成的线面角.当AE ⎳平面BCD 时,可得A 到平面BCD 的距离为 2.设∠AFD =α,所以AF ⋅sin α=2,可得sin α=63,当α<90°时,cos α=33,不妨设A 在底面BCD 射影为O ,则FO =1,此时O 与D 重合,可得A ,E 两点重合,不符合题意,舍去;当α>90°时,FO =1,此时O 在DF 的延长线上,作EH ⊥AF ,由于AODE 为矩形,可得AE =DO =2,AE ∥OD ,可得sin ∠EAH =63,可得EH =263.于是sin ∠EBH =EH BE=63.法二:建立如图坐标系,可得F 0,0,0 ,B 1,0,0 ,C -1,0,0 ,D 0,1,0 ,E 0,1,2 ,A 0,a ,b由AF =3,解得a 2+b 2=3,又∵AE ⎳平面BCD ,令n =0,0,1 ,可得AB ⋅n =0,解得b =2,a =±1.当a =1时A ,E 重合,所以a =-1,此时A 0,-1,2 .不妨设平面ABC 的法向量为m =x ,y ,z ,则CB ⋅m =0CA ⋅m =0代入得x -y +2z =02x =0 ,令z =1,则y =2,所以m =0,2,1 .由于BE =-1,1,2 ,不妨设所成角为θ,则sin θ=∣cos BE ,m |=63.3(22·23·张家口·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,∠CBB 1=60°,AB =BC =2,AC =AB 1=2.(1)证明:平面ACB 1⊥平面BB 1C 1C ;(2)求平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值.【答案】(1)证明见解析;(2)57.【分析】(1)利用面面垂直的判定定理进行证明;(2)利用垂直关系建立空间直角坐标系,用向量法进行求解.【详解】(1)如图,连接BC 1,交B 1C 于O ,连接AO .因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1,且O 为BC 1的中点.又AC =AB 1=2,故AO ⊥B 1C .又AB =BC =2,且∠CBB 1=60°,所以CO =1,BO =3,所以AO =AC 2-CO 2=1.又AB =2,所以AB 2=BO 2+AO 2,所以AO ⊥BO .因为BO ,CB 1⊂平面BB 1C 1C ,BO ∩CB 1=O ,所以AO ⊥平面BB 1C 1C .又AO ⊂平面ACB 1,所以平面ACB 1⊥平面BB 1C 1C .(2)由(1)知,OA ,OB ,OB 1两两互相垂直,因此以O 为坐标原点,OB ,OB 1,OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O -xyz ,则A (0,0,1),B (3,0,0),C (0,-1,0),C 1(-3,0,0).故CC 1 =(-3,1,0),CA =(0,1,1),CB =(3,1,0).设n =(x 1,y 1,z 1)为平面ACC 1A 1的一个法向量,则有n ⋅CC 1 =0n ⋅CA =0 ,即-3x 1+y 1=0y 1+z 1=0 ,令x 1=1,则n =(1,3,-3).设m =(x 2,y 2,z 2)为平面ABC 的一个法向量,则有m ⋅CA =0m ⋅CB =0,即y 2+z 2=03x 2+y 2=0 ,令x 2=1,则m =(1,-3,3).因为平面A 1B 1C 1∥平面ABC ,所以m =(1,-3,3)也是平面A 1B 1C 1的一个法向量.所以cos <n ,m > =n ⋅m n m=1-3-3 7×7=57.所以平面ACC 1A 1与平面A 1B 1C 1夹角的余弦值57. 4(22·23·湛江·二模)如图1,在五边形ABCDE 中,四边形ABCE 为正方形,CD ⊥DE ,CD =DE ,如图2,将△ABE 沿BE 折起,使得A 至A 1处,且A 1B ⊥A 1D .(1)证明:DE ⊥平面A 1BE ;(2)求二面角C -A 1E -D 的余弦值.【答案】(1)证明见解析(2)63【分析】(1)由已知易得DE ⊥BE ,即可证明线面垂直;(2)建立空间直角坐标系,用坐标公式法求解即可.【详解】(1)由题意得∠BEC =∠CED =π4,∠BED =π2,DE ⊥BE ,因为AB ⊥AE ,则A 1B ⊥A 1E ,又A 1B ⊥A 1D ,A 1E ∩A 1D =A 1,A 1E ,A 1D ⊂面A 1ED ,所以A 1B ⊥面A 1ED ,又DE ⊂面A 1ED ,则DE ⊥A 1B ,又DE ⊥BE ,A 1B ∩BE =B ,A 1B ⊂平面A 1BE ,BE ⊂平面A 1BE ,所以DE ⊥平面A 1BE .(2)取BE 的中点O ,可知BE =2CD ,OE =CD ,由DE ⊥BE ,且CD ⊥DE 可得OE ⎳CD ,所以四边形OCDE 是平行四边形,所以CO ∥DE ,则CO ⊥平面A 1BE ,设BE =2,以点O 为坐标原点,OB ,OC ,OA 1所在直线为坐标轴建立空间直角坐标系,如图,则A 1(0,0,1),E (-1,0,0),B (1,0,0),C (0,1,0),D (-1,1,0),EA 1 =(1,0,1),EC =(1,1,0),ED =(0,1,0),设平面A 1EC 的一个法向量为n 1 =(x 1,y 1,z 1),则n 1 ⋅EA 1 =0n 1 ⋅EC =0 ,即x 1+z 1=0x 1+y 1=0 ,取x 1=1,则n 1 =(1,-1,-1),设平面A 1ED 的一个法向量为n 2 =(x 2,y 2,z 2),则n 2 ⋅E 1A =0n 2 ⋅ED =0 ,即x 2+z 2=0y 2=0 ,取x 2=1,则n 2 =(1,0,-1),所以cos n 1 ,n 2 =n 1 ⋅n 2 n 1 n 2=63,由图可知,二面角C -A 1E -D 为锐角,所以面角C -A 1E -D 的余弦值为63.5(22·23下·长沙·三模)如图,在多面体ABCDE 中,平面ACD ⊥平面ABC ,BE ⊥平面ABC ,△ABC 和△ACD 均为正三角形,AC =4,BE =3,点F 在AC 上.(1)若BF ⎳平面CDE ,求CF ;(2)若F 是AC 的中点,求二面角F -DE -C 的正弦值.【答案】(1)CF =1(2)8517【分析】(1)记AC 中点为M ,连接DM 、BM ,依题意可得DM ⊥AC ,根据面面垂直的性质得到DM ⊥平面ABC ,如图建立空间直角坐标系,求出平面CDE 的法向量,设F a ,0,0 ,a ∈2,-2 ,依题意可得BF ⋅n =0求出a 的值,即可得解;(2)依题意点F 与点M 重合,利用空间向量法计算可得.【详解】(1)记AC 中点为M ,连接DM 、BM ,△ACD 为正三角形,AC =4,则DM ⊥AC ,且DM =2 3.因为平面ACD ⊥平面ABC ,平面ACD ∩平面ABC =AC ,DM ⊂平面ACD ,所以DM ⊥平面ABC ,又△ABC 为正三角形,所以BM ⊥AC ,所以BM =23,如图建立空间直角坐标系,则B 0,23,0 ,C -2,0,0 ,D 0,0,23 ,E 0,23,3 ,所以CD =2,0,23 ,CE =2,23,3 ,设平面CDE 的法向量为n =x ,y ,z ,则n ⋅CD =2x +23z =0n ⋅CE =2x +23y +3z =0,令x =3,则z =-3,y =-32,则n =3,-32,-3 ,设F a ,0,0 ,a ∈-2,2 ,则BF =a ,-23,0 ,因为BF ⎳平面CDE ,所以BF ⋅n =3a +-23 ×-32+0×-3 =0,解得a =-1,所以F 为CM 的中点,此时CF =1.(2)若F 是AC 的中点,则点F 与点M 重合,则平面FDE 的一个法向量可以为m =1,0,0 ,设二面角F -DE -C 为θ,显然二面角为锐角,则cos θ=m ⋅n m ⋅n=332+-32 2+-3 2=651,所以sin θ=1-cos 2θ=1-651 2=8517,所以二面角F -DE -C 的正弦值为8517.6(22·23下·湖北·二模)如图,S 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 内接于⊙O ,AC ⊥BC ,AC =BC =322,AM =2MS ,AS =3,PQ 为⊙O 的一条弦,且SB ⎳平面PMQ .(1)求PQ 的最小值;(2)若SA ⊥PQ ,求直线PQ 与平面BCM 所成角的正弦值.【答案】(1)22(2)3010【分析】(1)作出辅助线,找到符合要求的PQ ,并利用垂径定理得到最小值;(2)在第一问基础上,得到当PQ 取得最小值时,SA ⊥PQ ,并建立空间直角坐标系,利用空间向量求解线面角.【详解】(1)过点M 作MH ⎳SB 交AB 于点H ,过点H 作PQ ⊥AB ,此时满足SB ⎳平面PMQ ,由平面几何知识易知,PQ =2r 2-d 2,当弦心距d 最大时,d =OH ,弦长最短,即PQ 取得最小值,因为AM =2MS ,AS =3,所以AH =2HB ,因为AC ⊥BC ,AC =BC =322,由勾股定理得AB =322⋅2=3,故AH =2,HB =1,连接OQ ,则OQ =32,由勾股定理得HQ =OQ 2-OH 2=94-14=2,所以PQ =2HQ =22;(2)连接OS ,则OS ⊥平面ACB ,因为PQ ⊂平面ACB ,故OS ⊥PQ ,而SA ⊥PQ ,OS ∩SA =S ,所以PQ ⊥平面AOS ,即有PQ ⊥AB .以O 为坐标原点,过点O 且平行PQ 的直线为x 轴,OB 所在直线为y 轴,OS 所在直线为z 轴,建立空间直角坐标系,则P -2,12,0 ,Q 2,12,0 ,B 0,32,0 ,C 32,0,0 ,M 0,-12,3 ,设平面BCM 的法向量为m =x ,y ,z ,则m ⋅CB =x ,y ,z ⋅-32,32,0 =-32x +32y =0m ⋅MB =x ,y ,z ⋅0,2,-3 =2y -3z =0,令x =1,则y =1,z =233,故m =1,1,233,设直线PQ 与平面BCM 所成角的大小为θ,则sin θ=cos PQ ,m =PQ ⋅m PQ ⋅m =22,0,0 ⋅1,1,233 22×1+1+43=3010.故直线PQ与平面BCM所成角的正弦值为30 10.7(22·23·深圳·二模)如图,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA= AD=2AB,点M是PD的中点.(1)证明:AM⊥PC;(2)设AC的中点为O,点N在棱PC上(异于点P,C),且ON=OA,求直线AN与平面ACM所成角的正弦值.【答案】(1)证明见解析(2)1510【分析】(1)由等腰三角形的性质可得AM⊥PD,由面面垂直的性质可得CD⊥平面PAD,则CD⊥AM,所以由线面垂直的判定可得AM⊥平面PCD,从而可得结论;(2)以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,利用空间向量求解即可.【详解】(1)证明:因为PA=AD,点M是PD的中点,所以AM⊥PD.因为PA⊥平面ABCD,PA⊂平面PAD,所以平面PAD⊥平面ABCD,因为四边形ABCD为矩形,所以CD⊥AD,因为平面PAD∩平面ABCD=AD,CD⊂平面ABCD,所以CD⊥平面PAD,所以CD⊥AM,因为PD∩CD=D,PD,CD⊂平面PCD,所以AM⊥平面PCD,因为PC⊂平面PCD,所以AM⊥PC.(2)解:由题意可得AB,AD,AP两两垂直,设AB=1,如图,以AB,AD,AP所在直线分别为x,y,z轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2),因为点M是PD的中点,所以M0,22,22,所以AM =0,22,22 ,AC =1,2,0 ,设平面ACM 的法向量为n =x ,y ,z ,则AM ⋅n =22y +22z =0AC ⋅n =x +2y =0,令y =-1可得x =2,z =1,所以平面ACM 的一个法向量n =2,-1,1 .PC =1,2,-2 ,设N x N ,y N ,z N ,PN =λPC =λ,2λ,-2λ (0<λ<1),即x N ,y N ,z N -2 =λ,2λ,-2λ ,所以N λ,2λ,2-2λ .又O 12,22,0 ,ON =OA =32,所以λ-12 2+2λ-22 2+(2-2λ)2=34,化简得5λ2-7λ+2=0,解得λ=25或λ=1(舍去).所以AN =25,225,325,设直线AN 与平面ACM 所成的角为θ,则sin θ=n ⋅AN n ⋅AN=3252+1+1×425+825+1825=1510,所以直线AN 与平面ACM 所成角的正弦值为1510.8(22·23下·温州·二模)已知三棱锥D -ABC 中,△BCD 是边长为3的正三角形,AB =AC =AD ,AD 与平面BCD 所成角的余弦值为33.(1)求证:AD ⊥BC ;(2)求二面角D -AC -B 的平面角的正弦值.【答案】(1)证明见解析(2)223【分析】(1)取BC 的中点E ,连接AE ,DE ,证明BC ⊥平面ADE ,即可得证;(2)取正三角形BCD 的中心O ,连接OA ,从而可得OA ⊥平面BCD ,则∠ODA 即为AD 与平面BCD 所成角的平面角,进而可得AB =AC =AD =3,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,解△BDH 即可得解.【详解】(1)取BC 的中点E ,连接AE ,DE ,因为AB =AC ,所以AE ⊥BC ,因为△BCD 是边长为3的正三角形,所以DE ⊥BC ,又AE ∩DE =E ,AE ,DE ⊂平面ADE ,所以BC ⊥平面ADE ,因为AD ⊂平面ADE ,所以AD ⊥BC ;(2)取正三角形BCD 的中心O ,连接OA ,则点O 在DE 上,且OD =23DE ,由AB =AC =AD ,△BCD 是正三角形,得三棱锥A -BCD 为正三棱锥,则OA ⊥平面BCD ,故∠ODA 即为AD 与平面BCD 所成角的平面角,又AD 与平面BCD 所成角的余弦值为33,所以OD AD =3×32×23AD=33,即AB =AC =AD =3,即三棱锥A -BCD 是正四面体,取AC 中点为H ,连接DH ,BH ,则DH ⊥AC ,BH ⊥AC ,故∠BHD 即为二面角D -AC -B 的平面角,在△BDH 中,BH =DH =332,BD =3,则cos ∠BHD =BH 2+DH 2-BD 22⋅BH ⋅DH =274+274-92×332×332=13,所以sin ∠BHD =1-cos 2∠BHD =223,所以二面角D -AC -B 的平面角的正弦值223.9(22·23下·浙江·二模)如图,四面体ABCD ,AD ⊥CD ,AD =CD ,AC =2,AB =3,∠CAB =60°,E 为AB 上的点,且AC ⊥DE ,DE 与平面ABC 所成角为30°,(1)求三棱锥D -BCE 的体积;(2)求二面角B -CD -E 的余弦值.【答案】(1)答案见解析;(2)答案见解析.【分析】(1)取AC 中点F ,可证明AC ⊥平面DEF ,得平面ABC ⊥平面DEF ,DE 在平面ABC 内的射影就是直线EF ,∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,由正弦定理求得∠FDE ,有两个解,在∠FDE =60°时可证DF ⊥平面ABC ,在∠FDE =120°时,取FE 中点H 证明DH ⊥平面ABC ,然后由棱锥体积公式计算体积;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.【详解】(1)取AC 中点F ,连接FE ,FD ,因为AD =CD ,所以DF ⊥AC ,又AC ⊥DE ,DE ∩DF =D ,DE ,DF ⊂平面DEF ,所以AC ⊥平面DEF ,而FE ⊂平面DEF ,所以AC ⊥FE ,由已知AF =1,∠BAC =60°,所以EF =3,AE =2,BE =1,由AC ⊥平面DEF ,AC ⊂平面ABC 得平面ABC ⊥平面DEF ,因此DE 在平面ABC 内的射影就是直线EF ,所以∠DEF 是DE 与平面ABC 所成的角,即∠DEF =30°,AD =CD ,AC =2,因此DF =12AC =1,在△DEF 中,由正弦定理EF sin ∠FDE =DF sin ∠DEF 得1sin30°=3sin ∠FDE ,sin ∠FDE =32,∠FDE 为△DEF 内角,所以∠FDE =60°或120°,S △ABC =12AB ×AC ×sin ∠BAC =12×3×2×sin60°=333,S △CBE =BE BAS △ABC =3-23×332=32,若∠FDE =60°,则∠DFE =90°,即DF ⊥FE ,AC ∩FE =F ,AC ,FE ⊂平面ABC ,所以DF ⊥平面ABC ,V D -BCE =13S △BCE ⋅DF =13×32×1=36;若∠FDE =120°,则∠DFE =30°,DF =DE =1,取EF 中点H ,连接DH ,则DH ⊥EF ,因为平面ABC ⊥平面DEF ,平面ABC ∩平面DEF =EF ,而DH ⊂平面DEF ,所以DH ⊥平面ABC ,DH =DF sin ∠DFE =1×sin30°=12,所以V D -BCE =13S △BCE ⋅DF =13×32×12=312;(2)若∠FDE =60°,以FA ,FE ,FD 为x ,y ,z 轴建立如图所示的空间直角坐标系F -xyz ,则D (0,0,1),C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =(1,0,1),CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-33,即m =(33,-1,-33),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+955×7=19385385,所以二面角B -CD -E 的余弦值是19385385;若∠FDE =120°,以FA 为x 轴,FE 为y 轴,过F 且平行于HD 的直线为z 轴建立如图所示的空间直角坐标系F -xyz ,FH =12FE =32,则D 0,32,12 ,C (-1,0,0),A (1,0,0),E (0,3,0),AE =(-1,3,0),EB =12AE =-12,32,0 ,所以B 点坐标为-12,332,0 ,CD =1,32,12 ,CB =12,332,0 ,CE =(1,3,0),设平面DBC 的一个法向量是m =(x 1,y 1,z 1),则m ⋅CD =x 1+32y 1+12z 1=0m ⋅CB =12x 1+332y 1=0,取y 1=-1,则x 1=33,z 1=-53,即m =(33,-1,-53),设平面DEC 的一个法向量是n =(x 2,y 2,z 2),则n ⋅CD =x 2+32y 2+12z 2=0n ⋅CE =x 2+3y 2=0,取y 2=-1,则x 2=3,z 2=-3,即m =(3,-1,-3),cos m ,n =m ⋅n m n =9+1+15103×7=25721721,所以二面角B -CD -E 的余弦值是25721721.10(22·23下·襄阳·三模)如图,在三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为矩形,∠BAC =90°,AB =AC =2,AA 1=4,A 1在底面ABC 的射影为BC 的中点N ,M 为B 1C 1的中点.(1)求证:平面A 1MNA ⊥平面A 1BC ;(2)求平面A 1B 1BA 与平面BB 1C 1C 夹角的余弦值.【答案】(1)证明见解析(2)23015【分析】(1)利用线面垂直和面面垂直的判定定理证明;(2)利用空间向量的坐标运算求面面夹角的余弦值.【详解】(1)如图,∵A 1N ⊥面ABC ,连AN ,则AN ⊥A 1N ,又AB =AC =2,∴AN ⊥BC ,又AN ∩BC =N ,A 1N ⊂面A 1BC ,BC ⊂面A 1BC ,于是AN ⊥面A 1BC ,又AN ⊂面A 1MN ,,所以面A 1BC ⊥面A 1MNA .(2)由(1)可得,以NA ,NB ,NA 1 为x ,y ,z 轴,建系如图,∠BAC =90°,AB =AC =2,BC =22则A (2,0,0),B (0,2,0),C (0,-2,0),因为AA 1=4,AN =2,所以A 1N =14,则A 1(0,0,14),因为NB 1 =NB +BB 1 =NB +AA 1 =0,2,0 +-2,0,14 =-2,2,14 ,所以B 1-2,2,14 ,设平面A 1BB 1的一个法向量为m =(x ,y ,z ),因为A 1B =(0,2,-14),B 1B =(2,0,-14),所以A 1B ⋅m =2y -14z =0B 1B ⋅m =2x -14z =0 ,令y =7,则x =7,z =1,所以m =(7,7,1),设平面BCC 1B 1的一个法向量为n =(a ,b ,c ),因为BC =(0,-22,0),BB 1 =(-2,0,14),所以BC ⋅n =-22b =0BB 1 ⋅n =-2a +14c =0,令a =7,则b =0,c =1,所以n =(7,0,1),设平面A 1BB 1与平面BCC 1B 1夹角为θ,则cos θ=cos <m ,n >=m ⋅n m n=7+0+17+7+1×7+0+1=23015,所以平面A 1BB 1与平面BCC 1B 1夹角的余弦值为23015.11(22·23·唐山·二模)如图,在三棱柱ABC -A 1B 1C 1中,△ABC 是等边三角形,侧面ACC 1A 1⊥底面ABC ,且AA 1=AC ,∠AA 1C 1=120°,M 是CC 1的中点.(1)证明:A 1C ⊥BM .(2)求二面角A 1-BC -M 的正弦值.【答案】(1)证明见解析(2)45【分析】(1)根据菱形的性质、结合面面垂直的性质,线面垂直的判定定理进行证明即可;(2)建立空间直角坐标系,运用空间向量夹角公式进行求解即sk .【详解】(1)取AC 的中点O ,连接OM ,OB ,AC 1.在三棱柱ABC -A 1B 1C 1中,由AA 1=AC ,得四边形ACC 1A 1为菱形,所以A 1C ⊥AC 1,易知OM ∥AC 1,则A 1C ⊥OM .由△ABC 是等边三角形,知OB ⊥AC ,又平面ACC 1A 1⊥平面ABC ,平面ACC 1A 1∩平面ABC =AC ,OB ⊂平面ABC ,知OB ⊥平面ACC 1A 1,则OB ⊥A 1C ,又OB ∩OM =O ,OB ,OM ⊂平面OBM ,得A 1C ⊥平面OBM ,又BM ⊂平面OBM ,故A 1C ⊥BM ..(2)连接OA 1,因为侧面ACC 1A 1为菱形,∠AA 1C 1=120°,则∠A 1AC =60°,则△A 1AC 为等边三角形,所以A 1O ⊥AC ,又由(1)易知OA 1,OB ,AC 两两垂直,故以O 为坐标原点,分别以OB ,OC ,OA 1 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系.不妨设AB =2,则O 0,0,0 ,B 3,0,0 ,C 0,1,0 ,A 10,0,3 ,C 10,2,3 ,BA 1 =-3,0,3 ,BC =-3,1,0 ,CC 1 =0,1,3 ,设平面A 1BC 的法向量为n =x ,y ,z ,则n ⋅BC =-3x +y =0n ⋅BA 1 =-3x +3z =0 ,令x =1,得n =1,3,1 ,设平面BCC 1的法向量为m =a ,b ,c ,则m ⋅BC =-3a +b =0m ⋅CC 1 =b +3c =0,令a =1,得m =1,3,-1 ,所以cos n ,m =n ⋅m n ⋅m=35⋅5=35,即二面角A 1-BC -M 的正弦值为45.12(22·23下·盐城·三模)如图,该几何体是由等高的半个圆柱和14个圆柱拼接而成,点G 为弧CD 的中点,且C ,E ,D ,G 四点共面.(1)证明:平面BDF ⊥平面BCG ;(2)若平面BDF 与平面ABG 所成二面角的余弦值为155,且线段AB 长度为2,求点G 到直线DF 的距离.【答案】(1)证明见解析(2)62【分析】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,有HBCG 为平行四边形,根据题设可得FB ⊥HB ,即FB ⊥CG ,再由线面垂直的性质可得CB ⊥FB ,最后根据线面、面面垂直的判定即可证结论.(2)构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,确定相关点坐标,进而求平面BDF 、平面ABG 的法向量,利用空间向量夹角的坐标表示及已知条件可得h =2r ,即可求出点G 到直线DF 的距离.【详解】(1)过G 作GH ⎳CB ,交底面弧于H ,连接HB ,易知:HBCG 为平行四边形,所以HB ⎳CG ,又G 为弧CD 的中点,则H 是弧AB 的中点,所以∠HBA =45°,而由题设知:∠ABF =45°,则∠HBF =∠HBA +∠ABF =90°,所以FB ⊥HB ,即FB ⊥CG ,由CB ⊥底面ABF ,FB ⊂平面ABF ,则CB ⊥FB ,又CB ∩CG =C ,CB ,CG ⊂平面BCG ,所以FB ⊥平面BCG ,又FB ⊂平面BDF ,所以平面BDF ⊥平面BCG .(2)由题意,构建如下图示空间直角坐标系A -xyz ,令半圆柱半径为r ,高为h ,则B 0,2r ,0 ,F 2r ,0,0 ,D 0,0,h ,G -r ,r ,h ,所以FD =-2r ,0,h ,BD =0,-2r ,h ,AB =0,2r ,0 ,AG =-r ,r ,h ,若m =x ,y ,z 是面BDF 的一个法向量,则m ⋅FD =-2rx +hz =0m ⋅BD =-2ry +hz =0 ,令z =2r ,则m =h ,h ,2r ,若n =a ,b ,c 是面ABG 的一个法向量,则n ⋅AB =2rb =0n ⋅AG =-ra +rb +hc =0 ,令c =r ,则n =h ,0,r ,所以cos m ,n =m ⋅n m n=h 2+2r 22h 2+4r 2×h 2+r 2=155,整理可得h 2-4r 2 h 2+2r 2 =0,则h =2r ,又AB =2,由题设可知,此时点G -1,1,2 ,D 0,0,2 ,F 2,0,0 ,则DF =2,0,-2 ,DG =-1,1,0 ,所以点G 到直线DF 的距离d =DG 2-DG ⋅DF 2DF2=62.13(22·23下·江苏·三模)如图,圆锥DO 中,AE 为底面圆O 的直径,AE =AD ,△ABC 为底面圆O 的内接正三角形,圆锥的高DO =18,点P 为线段DO 上一个动点.(1)当PO =36时,证明:PA ⊥平面PBC ;(2)当P 点在什么位置时,直线PE 和平面PBC 所成角的正弦值最大.【答案】(1)证明见解析;(2)P 点在距离O 点36处【分析】(1)利用勾股定理证明出AP ⊥BP 和AP ⊥CP ,再用线面垂直的判定定理证明出PA ⊥平面PBC ;(2)建立空间直角坐标系,利用向量法求解.【详解】(1)因为AE =AD ,AD =DE ,所以△ADE 是正三角形,则∠DAO =π3,又DO ⊥底面圆O ,AE ⊂底面圆O ,所以DO ⊥AE ,在Rt △AOD 中,DO =18,所以AO =DO 3=63,因为△ABC 是正三角形,所以AB =AO ×32×2=63×3=18,AP =AO 2+PO 2=92,BP =AP ,所以AP 2+BP 2=AB 2,AP ⊥BP ,同理可证AP ⊥CP ,又BP ∩PC =P ,BP ,PC ⊂平面PBC ,所以PA ⊥平面PBC .(2)如图,建立以O 为原点的空间直角坐标系O -xyz .设PO =x ,(0≤x ≤18),所以P 0,0,x ,E -33,9,0 ,B 33,9,0 ,C -63,0,0 ,所以EP =33,-9,x ,PB =33,9,-x ,PC =-63,0,-x ,设平面PBC 的法向量为n =a ,b ,c ,则n ⋅PB =33a +9b -cx =0n ⋅PC =-63a -cx =0,令a =x ,则b =-3x ,c =-63,故n =x ,-3x ,-63 ,设直线PE 和平面PBC 所成的角为θ,则sin θ=cos EP ,n =33x +93x -63x 108+x 2⋅x 2+3x 2+108=63x 108+x 2⋅4x 2+108=634x 2+1082x 2+540≤6324x 2⋅1082x 2+540=13,当且仅当4x 2=1082x 2,即PO =x =36时,直线PE 和平面PBC 所成角的正弦值最大,故P 点在距离O 点36处.14(22·23下·镇江·三模)如图,四边形ABCD 是边长为2的菱形,∠ABC =60°,四边形PACQ 为矩形,PA =1,从下列三个条件中任选一个作为已知条件,并解答问题(如果选择多个条件分别解答,按第一个解答计分).①BP ,DP 与平面ABCD 所成角相等;②三棱锥P -ABD 体积为33;③cos ∠BPA =55(1)平面PACQ ⊥平面ABCD ;(2)求二面角B -PQ -D 的大小;(3)求点C 到平面BPQ 的距离.【答案】(1)证明见解析(2)2π3(3)32【分析】(1)若选①,则作PA ⊥面ABCD ,证明A 和A 重合从而得到PA ⊥面ABCD ,从而得到面面垂直;若选②,计算得到P 到面ABD 的距离h =1=PA ,得到PA ⊥面ABCD ,从而得到面面垂直;若选③,通过余弦定理计算得到PA ⊥AB ,再通过PA ⊥面ABCD ,从而得到面面垂直;(2)通过建立空间直角坐标系,求出两个平面的法向量,结合二面角计算公式计算即可;(3)通过点面距离的计算公式直接计算即可.【详解】(1)选①,连接BD ,作PA ⊥面ABCD ,垂足为A .∵BP ,DP 与平面ABCD 所成角相等,∴A B =A D ,∴A 在BD 的中垂线AC 上,∵在平面PACQ 内,PA ⊥AC ,PA ⊥AC ,∴A 和A 重合,∴PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD若选②,设P 到面ABD 的距离为h ,∵V P -ABD =13S △ABD ⋅h =13×3⋅h =33,得h =1=PA ,∴PA 即为P 到面ABD 的距离,即PA ⊥面ABCD ,又PA ⊂面PACQ ,∴面PACQ ⊥面ABCD .若选③,由余弦定理得,cos ∠BPA =PB 2+PA 2-AB 22PB ⋅PA =55,∴BP =5,∴BP 2=AP 2+AB 2∴PA ⊥AB ,又PA ⊥AC ,AC ∩AB =A ,AC ,AB ⊂面ABCD∴PA ⊥面ABCD ,又PA ⊂面PACQ∴面PACQ ⊥面ABCD(2)因为PA ⊥面ABCD ,OB ,OC ⊂面ABCD ,所以PA ⊥OB ,PA ⊥OC ,取PQ 中点G ,则OG ⎳PA ,所以OG ⊥OB ,OG ⊥OC ,又因为OB ⊥OC ,所以建立如下图所示空间直角坐标系,∵B 3,0,0 ,P 0,-1,1 ,D -3,0,0 ,Q 0,1,1 ,∴BQ =-3,1,1 ,DQ =3,1,1 ,DP =3,-1,1 ,设平面BPQ 的一个法向量为m =x ,y ,z ,则m⋅BP =0m ⋅BQ =0 ,即-3x -y +z =0-3x +y +z =0 ,令x =3,则y =0,z =3,∴m =3,0,3 ,设平面DPQ 的一个法向量为n =x 1,y1,z 1 ,则n ⋅DP=0n ⋅DQ =0 ,即3x 1-y 1+z 1=3x 1+y 1+z 1=0,令x1=3,则y 1=0,z 1=-3,∴n =3,0,-3 ,∴cos m ,n =m ⋅n m ⋅ n =-623×23=-12,∵m ,n ∈0,π ,∴m ,n =2π3,由图可知二面角B -PQ -D 是钝角,所以二面角B -PQ -D 的大小为2π3.(3)∵C 0,1,0 ,Q 0,1,1 ,∴CQ =0,0,1 ,∵平面BPQ 的一个法向量为m =3,0,3 ,∴点C 到平面BPQ 的距离d =CQ ⋅m m=323=32.15(22·23下·江苏·一模)在三棱柱ABC -A 1B 1C 1中,平面A 1B 1BA ⊥平面ABC ,侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB 1⊥AC ,AB =AC =2,E 是AC 的中点.(1)求证:A 1B ⊥平面AB 1C ;(2)点P 在线段A 1E 上(异于点A 1,E ),AP 与平面A 1BE 所成角为π4,求EP EA 1的值.【答案】(1)证明见解析(2)EP EA 1=25【分析】(1)作B 1O ⊥AB 交AB 于O 点,由面面垂直的性质可得B 1O ⊥平面ABC ,可得B 1O ⊥AC ,再由线面垂直的判定定理得AC ⊥平面A 1B 1BA ,从而得到AC ⊥A 1B ,再由线面垂直的判定定理可得答案;(2)以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,设EP =λEA 1 ,可得AP =-λ,1-λ,3λ ,求出平面A 1BE 的一个法向量,由线面角的向量求法可得答案.【详解】(1)因为侧面A 1B 1BA 为菱形,∠ABB 1=π3,AB =AC =2,所以△ABB 1、△AA 1B 1为边长为2的等边三角形,作B 1O ⊥AB 交AB 于O 点,则O 点为AB 的中点,因为平面A 1B 1BA ⊥平面ABC ,平面A 1B 1BA ∩平面ABC =AB ,B 1O ⊂平面A 1B 1BA ,所以B 1O ⊥平面ABC ,AC ⊂平面ABC ,可得B 1O ⊥AC ,又AB 1⊥AC ,B 1O ∩AB 1=B 1,B 1O 、AB 1⊂平面A 1B 1BA ,可得AC ⊥平面A 1B 1BA ,因为A 1B ⊂平面A 1B 1BA ,所以AC ⊥A 1B ,因为侧面A 1B 1BA 为菱形,所以B 1A ⊥A 1B ,AB 1∩AC =A ,AB 1、AC ⊂平面AB 1C ,所以A 1B ⊥平面AB 1C ;(2)由(1)知,AC ⊥平面A 1B 1BA ,∠BAC =π2,取做A 1B 1的中点O 1,连接AO 1,则B1O ⎳AO 1,所以AO 1⊥平面ABC ,以A 为原点,AB 、AC 、AO 1所在的直线分别为x 、y 、z 轴,建立空间直角坐标系,则A 0,0,0 ,A 1-1,0,3 ,B 2,0,0 ,E 0,1,0 ,A 1B =3,0,-3 ,EA 1 =-1,-1,3 ,设EP =λEA 1 ,可得P -λ,1-λ,3λ ,所以AP =-λ,1-λ,3λ ,设平面A 1BE 的一个法向量为n=x ,y ,z ,则A 1B ⋅n=0EA 1 ⋅n =0,即3x -3z =0-x -y +3z =0 ,令z =3,可得n =1,2,3 ,可得sin π4=cos n ,AP =n ⋅AP n AP=-λ+2-2λ+3λ 1+4+3λ2+1-λ 2+3λ2,解得λ=0舍去,或λ=25,所以EP EA 1=25.16(22·23下·河北·三模)如图,四棱锥P -ABCD 的底面ABCD 是菱形,其对角线AC ,BD 交于点O ,且PO ⊥平面ABCD ,OC =1,OD =OP =2,M 是PD 的中点,N 是线段CD 上一动点.(1)当平面OMN ⎳平面PBC 时,试确定点N 的位置,并说明理由;(2)在(1)的前提下,点Q 在直线MN 上,以PQ 为直径的球的表面积为214π.以O 为原点,OC ,OD ,OP 的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz ,求点Q 的坐标.【答案】(1)N 是CD 的中点(2)12,1,0 ,-1310,1,185 【分析】(1)根据面面平行的性质证明MN ⎳PC ,即可得解;(2)先根据球的体积求出PQ ,然后根据空间中两点间的距离公式即可得解.【详解】(1)因为平面OMN ⎳平面PBC ,平面OMN ∩平面PCD =MN ,平面PBC ∩平面PCD =PC ,所以MN ⎳PC ,因为M 是PD 的中点,所以N 是CD 的中点;(2)由题意4π×PQ 22=214π,解得PQ =212,设MQ =λMN,λ∈R ,由题意,P 0,0,2 ,M 0,1,1 ,N 12,1,0 ,则PM =0,1,-1 ,MN =12,0,-1 ,则PQ =PM +MQ =0,1,-1 +λ12,0,-1 =λ2,1,-λ-1 ,则λ24+1+-λ-1 2=212,解得λ=1或λ=-135,当λ=1时,MQ =MN ,则Q 12,1,0 ,当λ=-135时,MQ =-135MN =-1310,0,135,设Q x ,y ,z ,则MQ =x ,y -1,z -1 =-1310,0,135,所以x =-1310y -1=0z -1=135 ,解得x =-1310y =1z =185 ,则Q -1310,1,185 ,综上所述点Q 的坐标为12,1,0,-1310,1,185 .17(22·23·汕头·三模)如图,圆台O 1O 2的轴截面为等腰梯形A 1ACC 1,AC =2AA 1=2A 1C 1=4,B 为底面圆周上异于A ,C 的点.(1)在平面BCC 1内,过C 1作一条直线与平面A 1AB 平行,并说明理由;(2)若四棱锥B -A 1ACC 1的体积为23,设平面A 1AB ∩平面C 1CB =l ,Q ∈l ,求CQ 的最小值.【答案】(1)作图见解析,理由见解析(2)7【分析】(1)根据线面平行的判定和中位线定理即可求解;(2)根据几何关系或空间向量方法即可求解.【详解】(1)取BC 中点P ,作直线C 1P 即为所求,取AB 中点H ,连接A 2H ,PH ,则有PH ∥AC ,PH =12AC ,如图,在等腰梯形A 1ACC 1中,A 1C 1=12AC ,有HP ∥A 1C 1,HP =A 1C 1,则四边形A 1C 1PH 为平行四边形,即有C 1P ∥A 1H ,又A 1H ⊂平面A 1AB ,C 1P⊄平面A 1AB ,所以C 1P ∥平面A 1AB .(2)法一:延长AA 1,CC 1交于点O ,故O ∈AA 1⊂平面ABA 1,O ∈CC 1⊂平面CC 1B故平面A 1AB ∩平面C 1CB =BO ,BO 即l ,在△OBC 中,OC ,OB 均为圆锥母线.过点B 作BO ⊥AC 于O .在等腰梯形A 1ACC 1中,AC =2AA 1=2A 1C 1=4,此梯形的高h =AA 21-AC -A 1C 122=3,∴等腰梯形A 1ACC 1的面积为S =122+4 3=33,所以四棱锥B -A 1ACC 1的体积V =13S ×BO =13×33×BO =23,解得BO =2,故点O 与O 2重合,BC =22由AC =2AA 1=2A 1C 1,得OC =2CC 1,且∠C 1CA =60°,故OC =AC =4=OB .△OBC 中,O 到BC 距离h 1=OB 2-BC 22=14.则△OBC 面积=12OB ⋅CQ min =12BC ⋅h 1,得:CQ 的最小值为:CQ min =22⋅144=7.法二:同法一求出B 的位置.以O 2为原点,OB ,OC ,O 2O 1方向为x ,y ,z 轴正向建立空间直角坐标系,C 0,2,0 ,B 2,0,0 ,AA 1 =0,1,3 ,AB =2,2,0 ,CC 1 =0,-1,3 ,BC=-2,2,0设面A 1AB 的法向量为a=x 1,y 1,z 1a ⋅AA 1=y 1+3z 1=0a ⋅AB=2x 1+2y 1=0,取z 1=1,有a=3,-3,1 ;同理可得面C 1CB 的法向量为β=3,3,1 ,由l =面C 1CB ∩面A 1AB ,可知B ∈l ,设l 的方向向量为l=x ,y ,z ,故l ⋅a =3x -3y +z =0,l ⋅β=3x +3y +z =0取l=1,0,3 ,下面分2个方法求|CQ |min求|CQ |min 方法1:BQ =l=t ,0,3t ,,∵B 2,0,0 ,∴Q t -2,0,3t∴CQ =(t -2)2+22+(3t )2=4t 2-4t +8,当t =12时,CQ 取最小值为7.求CQ min 方法2:BC 在l 上的投影向量的模为BC ⋅l l =-2×1+2×0+0×32=1故CQ 的最小值即C 到l 的距离为BC 2-12=7.法三:在三角形△BCO 中,BO =CO =4,BC =22,cos ∠CBO =42+(22)2-422×4×22=122⋅sin ∠CBO =1-1222=722,所以CQ ≥CB sin ∠CBO =722×22=7.18(19·20下·临沂·二模)如图①,在Rt △ABC 中,B 为直角,AB =BC =6,EF ∥BC ,AE =2,沿EF 将△AEF 折起,使∠AEB =π3,得到如图②的几何体,点D 在线段AC 上.(1)求证:平面AEF ⊥平面ABC ;(2)若AE ⎳平面BDF ,求直线AF 与平面BDF 所成角的正弦值.【答案】(1)证明见解析;(2)64.【分析】(1)由余弦定理计算证明EA ⊥AB ,再利用线面垂直的判定、性质,面面垂直的判定推理作答.(2)以A 为原点,建立空间直角坐标系,利用空间向量求线面角的正弦作答.【详解】(1)在△ABE 中,AE =2,BE =4,∠AEB =π3,由余弦定理得:AB 2=AE 2+BE 2-2AE ⋅BE cos ∠AEB =4+16-2×2×4×12=12,则AB =23,有EB 2=EA 2+AB 2,于是∠EAB =π2,即有EA ⊥AB ,又EF ⊥EB ,EF ⊥EA ,EA ∩EB =E ,EA ,EB ⊂平面ABE ,因此EF ⊥平面ABE ,而AB ⊂平面ABE ,则EF ⊥AB ,又因为EA ∩EF =E ,EA ,EF ⊂平面AEF ,从而AB ⊥平面AEF ,而AB ⊂平面ABC ,所以平面AEF ⊥平面ABC .(2)以A 为原点,以AB ,AE 分别为x ,y 轴,过点A 垂直于平面ABE 的直线为z 轴,建立空间直角坐标系,如图,由(1)知,EF ⊥平面ABE ,而EF ⎳BC ,则有BC ⊥平面ABE ,则A (0,0,0),B (23,0,0),E (0,2,0),F (0,2,2),C (23,0,6),AF =(0,2,2),FB =(23,-2,-2),AC=(23,0,6),连接EC 与FB 交于点G ,连接DG ,因为AE ⎳平面BDF ,AE ⊂平面AEC ,平面AEC ∩平面BDF =DG ,则AE ⎳GD ,有GC GE =DCDA,在四边形BCFE 中,由EF ⎳BC ,得GC GE =BC EF =3,即DC DA=3,AD =14AC =32,0,32 ,FD =AD -AF =32,-2,-12,设平面BDF 的法向量为n =(x ,y ,z ),则n ⋅FD =32x -2y -12z =0n ⋅FB =23x -2y -2z =0,令x =1,得n =(1,0,3),设直线AF 与平面BDF 所成角为θ,于是sin θ=|cos ‹n ,AF ›|=|n ⋅AF ||n ||AF |=2322×2=64,所以直线AF 与平面BDF 所成角的正弦值为64.19(22·23下·广州·三模)如图,四棱锥P -ABCD 的底面为正方形,AB =AP =2,PA ⊥平面ABCD ,E ,F 分别是线段PB ,PD 的中点,G 是线段PC 上的一点.(1)求证:平面EFG ⊥平面PAC ;(2)若直线AG 与平面AEF 所成角的正弦值为13,且G 点不是线段PC 的中点,求三棱锥E -ABG 体积.【答案】(1)证明见解析(2)19【分析】(1)由线面垂直判定可证得BD ⊥平面PAC ,由中位线性质知EF ⎳BD ,从而得到EF ⊥平面PAC ,由面面垂直判定可得结论;(2)以A 为坐标原点可建立空间直角坐标系,设PG =λPC ,λ∈0,12 ∪12,1 ,由线面角的向量求法可构造方程求得λ,结合垂直关系可得G 平面PAB 的距离为16BC =13,利用棱锥体积公式可求得结果.【详解】(1)连接BD ,∵E ,F 分别是线段PB ,PD 的中点,∴EF ⎳BD ,∵底面四边形ABCD 为正方形,∴BD ⊥AC ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA ⊥BD ,又PA ∩AC =A ,PA ,AC ⊂平面PAC ,∴BD ⊥平面PAC ,∵EF ⎳BD ,∴EF ⊥平面PAC ,又EF ⊂平面EFG ,∴平面EFG ⊥平面PAC .(2)以A 为坐标原点,分别以AB ,AD ,AP 所在直线为x ,y ,z 轴建立空间直角坐标系,则A 0,0,0 ,E 1,0,1 ,F 0,1,1 ,P 0,0,2 ,C 2,2,0 ,设PG =λPC ,λ∈0,12 ∪12,1 ,则AG =AP +PG =0,0,2 +2λ,2λ,-2λ =2λ,2λ,2-2λ ,AE =1,0,1 ,AF =0,1,1 ,设平面AEF 的一个法向量为n=x ,y ,z ,则n ⋅AE=x +z =0n ⋅AF=y +z =0,令z =-1,解得:x =1,y =1,∴n =1,1,-1 ;设直线AG 与平面AEF 所成角为θ,sin θ=cos n ,AG =n ⋅AGn ⋅AG=6λ-2 3⋅4λ2+4λ2+2-2λ 2=13,解得:λ=16或λ=12(舍),∴PG =16PC ,∵PA ⊥平面ABCD ,BC ⊂平面ABCD ,∴PA ⊥BC ;∵BC ⊥AB ,PA ∩AB =A ,PA ,AB ⊂平面PAB ,∴BC ⊥平面PAB ,∴G 到平面PAB 的距离为16BC =13,∴V E -ABG =V G -ABE =13S △ABE ⋅16BC =13×12×12×2×2×13=19.20(22·23下·长沙·一模)斜三棱柱ABC -A 1B 1C 1的各棱长都为2,∠A 1AB =60°,点A 1在下底面ABC 的投影为AB 的中点O .(1)在棱BB 1(含端点)上是否存在一点D 使A 1D ⊥AC 1若存在,求出BD 的长;若不存在,请说明理由;(2)求点A 1到平面BCC 1B 1的距离.【答案】(1)存在,BD =25(2)2155【分析】(1)连接OC ,以O 点为原点,如图建立空间直角坐标系,设BD =tBB 1 ,t ∈0,1 ,根据AC 1 ⋅A 1D=0,求出t 即可;(2)利用向量法求解即可.【详解】(1)连接OC ,因为AC =BC ,O 为AB 的中点,所以OC ⊥AB ,由题意知A 1O ⊥平面ABC ,又AA 1=2,∠A 1AO =60°,所以A 1O =3,以O 点为原点,如图建立空间直角坐标系,则A 10,0,3 ,A 1,0,0 ,B -1,0,0 ,C 0,3,0 ,由AB =A 1B 1得B 1-2,0,3 ,同理得C 1-1,3,3 ,设BD =tBB 1,t ∈0,1 ,得D -1-t ,0,3t ,又AC 1 =-2,3,3 ,A 1D =-1-t ,0,3t -3 ,由AC 1 ⋅A 1D=0,得-2-1-t +33t -3 =0,得t =15,又BB 1=2,∴BD =25,∴存在点D 且BD =25满足条件;(2)设平面BCC 1B 1的法向量为n=x ,y ,z ,BC =1,3,0 ,CC 1 =-1,0,3 ,则有n ⋅BC=x +3y =0n ⋅CC 1=-x +3z =0,可取n =3,-1,1 ,又BA 1=1,0,3 ,∴点A 1到平面BCC 1B 1的距离为d =BA 1 cos BA 1 ,n =BA 1 ×3+0+3BA 1×5=2155,∴所求距离为2155.21(22·23下·长沙·三模)如图,三棱台ABC -A 1B 1C 1,AB ⊥BC ,AC ⊥BB 1,平面ABB 1A 1⊥平面ABC ,AB =6,BC =4,BB 1=2,AC 1与A 1C 相交于点D ,AE =2EB,且DE ∥平面BCC 1B 1.(1)求三棱锥C -A 1B 1C 1的体积;(2)平面A 1B 1C 与平面ABC 所成角为α,CC 1与平面A 1B 1C 所成角为β,求证:α+β=π4.【答案】(1)2(2)证明见解析【分析】(1)通过证明线线和线面垂直,并结合已知条件即可得出三棱锥C -A 1B 1C 1的体积;(2)建立空间直角坐标系,表达出各点的坐标,求出所成角为α与β的正余弦值,即可证明结论.【详解】(1)由题意,∵平面ABB 1A 1⊥平面ABC ,且平面ABB 1A 1∩平面ABC =AB ,AB ⊥BC ,BC ⊂平面ABC ∴BC ⊥平面ABB 1A 1,∵BB 1⊂平面ABB 1A 1,∴BC ⊥BB 1,又AC ⊥BB 1,BC ∩AC =C ,BC ,AC ⊂平面ABC ∴BB 1⊥平面ABC ,连接C 1B ,∵DE ⎳平面BCC 1B 1,DE ⊂平面ABC 1,平面ABC 1∩平面BCC 1B 1=C 1B ,∴DE ∥C 1B ,∵AE =2EB ,∴AD =2DC 1 ,∴A 1C 1=12AC .∴三棱锥C -A 1B 1C 1底面A 1B 1C 1的面积S 1=12×2×3=3,高h =BB 1=2,。

立体几何专题解答题(含解析)

立体几何专题解答题(含解析)

《立体几何》专题训练(解答题)空间向量在立体几何的运用:(1)异面直线所成的角:设a ,b 分别为异面直线a ,b 的方向向量,则两异面直线所成的角满足cos θ=|a ·b ||a ||b |. (2)线面角:设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角满足sin θ=|l ·n ||l ||n |.(3)二面角:①如图(1),AB ,CD 是二面角α-l -β的两个半平面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.②如图(2)(3),n 1,n 2分别是二面角a -l -β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=-cos 〈n 1,n 2〉或cos 〈n 1,n 2〉.一.利用空间向量证明平行与垂直(厦门模拟)如图,在直三棱柱ADE -BCF 中,面ABFE 和面ABCD 都是正方形且互相垂直,点M 为AB 的中点,点O 为DF 的中点.运用向量方法证明:(1)OM ∥平面BCF ; (2)平面MDF ⊥平面EFCD .由题意,得AB ,AD ,AE 两两垂直,以A 为原点建立如图所示的空间直角坐标系.设正方形边长为1,则A (0,0,0),B (1,0,0),C (1,1,0),D (0,1,0),F (1,0,1),M ⎝⎛⎭⎫12,0,0,O ⎝⎛⎭⎫12,12,12.(1)OM →=⎝⎛⎭⎫0,-12,-12,BA →=(-1,0,0),所以OM →·BA →=0, 所以OM →⊥BA →.因为棱柱ADE -BCF 是直三棱柱,所以AB ⊥平面BCF ,所以BA →是平面BCF 的一个法向量,且OM ⊄平面BCF ,所以OM ∥平面BCF . (2)设平面MDF 与平面EFCD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). 因为DF →=(1,-1,1),DM →=⎝⎛⎭⎫12,-1,0,DC →=(1,0,0), 由n 1·DF →=n 1·DM →=0,得⎩⎪⎨⎪⎧x 1-y 1+z 1=0,12x 1-y 1=0,解得⎩⎨⎧y 1=12x 1,z 1=-12x 1.令x 1=1,则n 1=⎝⎛⎭⎫1,12,-12. 同理可得n 2=(0,1,1). 因为n 1·n 2=0,所以平面MDF ⊥平面EFCD .二.利用空间向量求线线角、线面角、二面角命题 角度一 利用空间向量求线线角、线面角【典例1】 (新课标Ⅰ高考)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .(1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.【解】 (1)证明:连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF . 在菱形ABCD 中,不妨设GB =1.由∠ABC =120°,可得AG =GC = 3.由BE ⊥平面ABCD ,AB =BC ,可知AE =EC .又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt △EBG 中,可得BE =2,故DF =22. 在Rt △FDG 中,可得FG =62. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322, 从而EG 2+FG 2=EF 2,所以EG ⊥FG . 又AC ∩FG =G ,可得EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →|为单位长,建立空间直角坐标系Gxyz .由(1)可得A (0,-3,0),E (1,0,2),F ⎝⎛⎭⎫-1,0,22,C (0,3,0),所以AE →=(1,3,2),CF →=⎝⎛⎭⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33.[一题多变]若题(2)变为:求直线AE 与平面ACF 所成的角. 【解】 设平面ACF 的法向量为n 0=(x 0,y 0,z 0), 则AC →=(0,23,0),CF →=(-1,-3,22).由n 0·AC →=0得,23y 0=0,即y 0=0. 由n 0·CF →=0得,-x 0-3y 0+22z 0=0,所以x 0=22z 0, 所以n 0=(22z 0,0,z 0). 令z 0=2,则n 0=(2,0,2). 所以cos 〈AE →,n 0〉=AE →·n 0|AE →|·|n 0|=1×2+3×0+2×21+32+22·22+02+22=22. 所以〈AE →,n 0〉=45°.所以直线AE 与平面ACF 所成的角为45°. 命题角度二 利用空间向量求二面角【典例2】 山东高考)如图,在三棱台DEF ABC 中,AB =2DE ,G ,H 分别为AC ,BC 的中点.(1)求证:BD∥平面FGH;(2)若CF⊥平面ABC,AB⊥BC,CF=DE, ∠BAC=45°,求平面FGH与平面ACFD所成的角(锐角)的大小.(1)证明:连接DG,CD,设CD∩GF=O,连接OH.在三棱台DEF ABC中,AB=2DE,G为AC的中点,可得DF∥GC,DF=GC,所以四边形DFCG为平行四边形.则O为CD的中点,又H为BC的中点,所以OH∥BD.又OH⊂平面FGH,BD⊄平面FGH,所以BD∥平面FGH.(2)设AB=2,则CF=1.在三棱台DEF ABC中,G为AC的中点,由DF=12AC=GC,可得四边形DGCF为平行四边形,因此DG ∥FC ,又FC ⊥平面ABC ,所以DG ⊥平面ABC .连接GB ,在△ABC 中,由AB ⊥BC ,∠BAC =45°,G 是AC 中点. 所以AB =BC ,GB ⊥GC ,因此GB ,GC ,GD 两两垂直. 以G 为坐标原点,建立如图所示的空间直角坐标系Gxyz . 所以G (0,0,0),B (2,0,0),C (0,2,0),D (0,0,1). 可得H ⎝⎛⎭⎫22,22,0,F (0,2,1). 故GH →=⎝⎛⎭⎫22,22,0,GF →=(0,2,1).设n =(x ,y ,z )是平面FGH 的法向量, 则由⎩⎪⎨⎪⎧n ·GH →=0,n ·GF →=0,可得⎩⎪⎨⎪⎧x +y =0,2y +z =0.可得平面FGH 的一个法向量n =(1,-1,2). 因为GB →是平面ACFD 的一个法向量,GB →=(2,0,0). 所以cos 〈GB →,n 〉=GB →·n |GB →|·|n|=222=12.所以平面FGH 与平面ACFD 所成角(锐角)的大小为60°. 三、转化与化归思想求解空间垂直与平行关系及空间角问题【典例】 (天津模拟)如图,在四棱锥P -ABCD 中,底面为直角梯形ABCD ,AD ∥BC ,∠BAD =90°,AP ⊥底面ABCD ,且P A =AD =AB =2BC ,M ,N 分别为PC ,PB 的中点.(1)求证:PB ⊥DM ;(2)求CD 与平面ADMN 所成角的正弦值;【解】 (1)证明:如图以A 为原点建立空间直角坐标系,设BC =1,A (0,0,0),B (2,0,0),C (2,1,0),D (0,2,0),M ⎝⎛⎭⎫1,12,1,N (1,0,1),P (0,0,2). PB →=(2,0,-2),DM →=⎝⎛⎭⎫1,-32,1, 所以PB →·DM →=0,所以PB ⊥DM .(2)CD →=(-2,1,0),设平面ADMN 的法向量为n =(x ,y ,z ), AD →=(0,2,0),AN →=(1,0,1), 由⎩⎪⎨⎪⎧n ·AD →=0,n ·AN →=0,得⎩⎪⎨⎪⎧2y =0,x +z =0,令x =1,得n =(1,0,-1),设CD 与平面ADMN 所成的角为α, 则sin α=|CD →·n ||CD →||n |=25×2=105.专题训练:1.(安徽高考)如图所示,在多面体A 1B 1D 1­DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(1)证明:EF ∥B 1C ;(2)求二面角E -A 1D ­B 1的余弦值.【解】 (1)证明:由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ⊂面A 1DE ,B 1C ⊄面A 1DE ,于是B 1C ∥面A 1DE .又B 1C ⊂面B 1CD 1.面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C .(2)因为四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,所以AA 1⊥AB ,AA 1⊥AD ,AB ⊥AD 且AA 1=AB =AD .以A 为原点,分别以AB →,AD →,AA 1→为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标A (0,0,0),B (1,0,0),D (0,1,0),A 1(0,0,1),B 1(1,0,1),D 1(0,1,1),而E 点为B 1D 1的中点,所以E 点的坐标为⎝⎛⎭⎫12,12,1.设面A 1DE 的法向量n 1=(r 1,s 1,t 1),而该面上向量A 1E →=⎝⎛⎭⎫12,12,0,A 1D →=(0,1,-1),由n 1⊥A 1E →, n 1⊥A 1D →得r 1,s 1,t 1应满足的方程组⎩⎪⎨⎪⎧12r 1+12s 1=0,s 1-t 1=0,(-1,1,1)为其一组解,所以可取n 1=(-1,1,1).设面A 1B 1CD 的法向量n 2=(r 2,s 2,t 2),而该面上向量A 1B 1→=(1,0,0),A 1D →=(0,1,-1),由此同理可得n 2=(0,1,1).所以结合图形知二面角E -A 1D ­B 1的余弦值为|n 1·n 2||n 1|·|n 2|=23×2=63.2(天津高考)如图,在四棱柱ABCDA 1B 1C 1D 1中,侧棱A 1A ⊥底面ABCD ,AB ⊥AC ,AB =1,AC =AA 1=2,AD =CD =5,且点M 和N 分别为B 1C 和D 1D 的中点.(1)求证:MN ∥平面ABCD ; (2)求二面角D 1ACB 1的正弦值;【解】如图,以A 为原点建立空间直角坐标系,依题意可得A (0,0,0),B (0,1,0),C (2,0,0),D (1,-2,0),A 1(0,0,2),B 1(0,1,2),C 1(2,0,2),D 1(1,-2,2).又因为M ,N 分别为B 1C 和D 1D 的中点, 得M ⎝⎛⎭⎫1,12,1.N (1,-2,1). (1)证明:依题意,可得n =(0,0,1)为平面ABCD 的一个法向量.MN →=⎝⎛⎭⎫0,-52,0.由此可得MN →·n =0,又因为直线MN ⊄平面ABCD ,所以MN ∥平面ABCD .(2)AD 1→=(1,-2,2),AC →=(2,0,0). 设n 1=(x 1,y 1,z 1)为平面ACD 1的法向量,则⎩⎪⎨⎪⎧n 1·AD 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧x 1-2y 1+2z 1=0,2x 1=0. 不妨设z 1=1,可得n 1=(0,1,1). 设n 2=(x 2,y 2,z 2)为平面ACB 1的法向量,则 ⎩⎪⎨⎪⎧n 2·AB 1→=0,n 2·AC →=0,又AB 1→=(0,1,2),得⎩⎪⎨⎪⎧y 2+2z 2=0,2x 2=0.不妨设z 2=1,可得n 2=(0,-2,1). 因此有cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-1010,于是sin 〈n 1,n 2〉=31010,所以,二面角D 1ACB 1的正弦值为31010.3.(福建高考)如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC 的中点.(1)求证:GF ∥平面ADE ;(2)求平面AEF 与平面BEC 所成锐二面角的余弦值. 【解】 (1)证明:如图,取AE 的中点H ,连接HG ,HD , 又G 是BE 的中点, 所以GH ∥AB ,且GH =12AB .又F 是CD 的中点,所以DF=12CD.由四边形ABCD是矩形得,AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.(2)如下图,在平面BEC内,过B点作BQ∥EC.因为BE⊥CE,所以BQ⊥BE.又因为AB⊥平面BEC,所以AB⊥BE,AB⊥BQ.以B为原点,分别以BE→,BQ→,BA→的方向为x轴,y轴,z轴的正方向建立空间直角坐标系,则A(0,0,2),B(0,0,0),E(2,0,0),F(2,2,1).因为AB⊥平面BEC,所以BA→=(0,0,2)为平面BEC的法向量.设n=(x,y,z)为平面AEF的法向量.又AE→=(2,0,-2),AF→=(2,2,-1),由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧2x -2z =0,2x +2y -z =0.取z =2,得n =(2,-1,2).从而cos 〈n ,BA →〉=n ·BA →|n |·|BA →|=43×2=23,所以平面AEF 与平面BEC 所成锐二面角的余弦值为23.4.(山东聊城二模)如图(1)所示,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(如图(2))(1)试判断直线AB 与平面DEF 的位置关系,并说明理由; (2)求二面角E -DF -C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC的值;如果不存在,请说明理由.【解】 (1)平行.在△ABC 中,由E 、F 分别是AC 、BC 中点,得EF ∥AB ,又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB 、DC 、DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF →=(1,3,0),DE →=(0,3,1),DA →=(0,0,2).平面CDF 的法向量为DA →=(0,0,2),设平面EDF 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DF →·n =0,DE →·n =0,即⎩⎪⎨⎪⎧x +3y =0,3y +z =0,取n =(3,-3,3), cos 〈DA →,n 〉=DA →·n |DA →||n |=217,所以二面角E -DF -C 的余弦值为217. (3)存在.设P (s ,t ,0),有AP →=(s ,t ,-2), 则AP →·DE →=3t -2=0,∴t =233,又BP →=(s -2,t ,0),PC →=(-s ,23-t ,0), ∵BP →∥PC →,∴(s -2)(23-t )=-st , ∴3s +t =2 3.把t =233代入上式得s =43,∴BP →=13·BC →,∴在线段BC 上存在点P ,使AP ⊥DE .此时,BP BC =13.5(浙江高考)如图,在三棱柱ABCA1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.(1)证明:A1D⊥平面A1BC;(2)求二面角A1BDB1的平面角的余弦值.证明:设E为BC的中点,连结A1E,AE,DE,由题意得A1E⊥平面ABC,所以A1E⊥AE.因为AB=AC,所以AE⊥BC.故AE⊥平面A1BC.(3分)由D,E分别为B1C1,BC的中点,得DE∥B1B且DE=B1B,从而DE∥A1A且DE=A1A,所以四边形A1AED为平行四边形.故A1D∥AE.又因为AE⊥平面A1BC,所以A1D⊥平面A1BC.(6分)(2)以CB的中点E为原点,分别以射线EA,EB为x,y轴的正半轴,建立空间直角坐标系Exyz,如图所示.由题意知各点坐标如下:A 1(0,0,14),B (0,2,0),D (-2,0,14),B 1(-2,2,14). 因此A 1B →=(0,2,-14),BD →=(-2,-2,14), DB 1→=(0,2,0).(9分)设平面A 1BD 的法向量为m =(x 1,y 1,z 1),平面B 1BD 的法向量为n =(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧m ·A 1B →=0,m ·BD →=0,即⎩⎪⎨⎪⎧2y 1-14z 1=0,-2x 1-2y 1+14z 1=0,可取m =(0,7,1).由⎩⎪⎨⎪⎧n ·DB 1→=0,n ·BD →=0,即⎩⎪⎨⎪⎧2y 2=0,-2x 2-2y 2+14z 2=0,可取n =(7,0,1).(12分) 于是|cos 〈m ,n 〉|=|m ·n ||m |·|n |=18. 6.(新课标Ⅱ高考)如图,长方体ABCDA 1B 1C 1D 1中,AB =16,BC =10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F =4.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 【解】 (1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM =A 1E =4,EM =AA 1=8.因为EHGF 为正方形,所以EH =EF =BC =10.于是MH =EH 2-EM 2=6,所以AH =10.以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE →=(10,0,0),HE →=(0,-6,8).设n =(x ,y ,z )是平面EHGF 的法向量,则⎩⎪⎨⎪⎧n ·FE →=0,n ·HE →=0,即⎩⎪⎨⎪⎧10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF→=(-10,4,8),故|cos 〈n ,AF →〉|=|n ·AF →||n ||AF →|=4515.所以AF 与平面EHGF 所成角的正弦值为4515.7.(河北衡水中学二模)如图,四棱锥P -ABCD 的底面是边长为1的正方形,P A ⊥底面ABCD ,E 、F 分别为AB 、PC 的中点.(1)求证:EF ∥平面P AD ;(2)若P A =2,试问在线段EF 上是否存在点Q ,使得二面角Q -AP -D 的余弦值为55?若存在,确定点Q 的位置;若不存在,请说明理由.【解】 (1)证明:取PD 中点M ,连结MF ,MA ,则MF ∥CD 且MF =12CD ,又AE ∥CD 且AE =12AB=12CD ,∴MF 綊CD , 故四边形EFMA 为平行四边形,∴EF ∥AM . 又∵EF ⊄平面P AD ,AM ⊂平面P AD , ∴EF ∥平面P AD .(2)如图,以点A 为坐标原点建立空间直角坐标系,则P (0,0,2),B (0,1,0),C (1,1,0),E ⎝⎛⎭⎫0,12,0,F ⎝⎛⎭⎫12,12,1. 由题易知平面P AD 的一个法向量为m =(0,1,0),假设存在Q 满足条件.设EQ →=λEF →(0≤λ≤1),因为EF →=⎝⎛⎭⎫12,0,1,E ⎝⎛⎭⎫0,12,0,所以Q =⎝ ⎛⎭⎪⎫λ2,12,λ.因为AP →=(0,0,2),AQ →=⎝ ⎛⎭⎪⎫λ2,12,λ,设平面P AQ 的法向量为n =(x ,y ,z ), 则⎩⎨⎧λ2x +12y +λz =0,z =0,取x =1,则y =-λ,∴n =(1,-λ,0). ∴cos 〈m ,n 〉=m ·n|m ||n |=-λ1+λ2,由已知得λ1+λ2=55. 解得λ=12,则存在满足条件的Q ,其是EF 的中点.8.(重庆高考)已知如图,三棱锥P ABC 中,PC ⊥平面ABC ,PC =3,∠ACB =π2.D ,E 分别为线段AB ,BC上的点,且CD =DE =2,CE =2EB =2.(1)证明:DE ⊥平面PCD ; (2)求二面角APDC 的余弦值.【解】 (1)证明:由PC ⊥平面ABC ,DE ⊂平面ABC ,故PC ⊥DE . 由CE =2,CD =DE =2得△CDE 为等腰直角三角形,故CD ⊥DE . 由PC ∩CD =C ,DE 垂直于平面PCD 内两条相交直线,故DE ⊥平面PCD .(2)由(1)知,△CDE 为等腰直角三角形,∠DCE =π4.如图,过D 作DF 垂直CE 于F ,易知DF =FC =FE =1,又已知EB =1,故FB =2.由∠ACB =π2得DF ∥AC ,DF AC =FB BC =23,故AC =32DF =32.以C 为坐标原点,分别以CA →,CB →,CP →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则C (0,0,0),P (0,0,3),A ⎝⎛⎭⎫32,0,0,E (0,2,0),D (1,1,0), ED →=(1,-1,0),DP →=(-1,-1,3),DA →=⎝⎛⎭⎫12,-1,0. 设平面P AD 的法向量为n 1=(x 1,y 1,z 1),由n 1·DP →=0,n 1·DA →=0,得⎩⎪⎨⎪⎧-x 1-y 1+3z 1=0,12x 1-y 1=0,故可取n 1=(2,1,1).由(1)可知DE ⊥平面PCD ,故平面PCD 的法向量n 2可取为ED →,即n 2=(1,-1,0). 从而法向量n 1,n 2的夹角的余弦值为 cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=36,故所求二面角APDC 的余弦值为36.9.(江苏高考)如图,在四棱锥P ABCD 中,已知P A ⊥平面ABCD ,且四边形ABCD 为直角梯形,∠ABC =∠BAD =π2,P A =AD =2,AB =BC =1.(1)求平面P AB 与平面PCD 所成二面角的余弦值;(2)点Q 是线段BP 上的动点,当直线CQ 与DP 所成的角最小时,求线段BQ 的长.【解】 以{AB →,AD →,AP →}为正交基底建立如图所示的空间直角坐标系Axyz ,则各点的坐标为B (1,0,0),C (1,1,0),D (0,2,0),P (0,0,2).(1)因为AD ⊥平面P AB ,所以AD →是平面P AB 的一个法向量,AD →=(0,2,0). 因为PC →=(1,1,-2),PD →=(0,2,-2). 设平面PCD 的法向量为m =(x ,y ,z ), 则m ·PC →=0,m ·PD →=0,即⎩⎪⎨⎪⎧x +y -2z =0,2y -2z =0.令y =1,解得z =1,x =1. 所以m =(1,1,1)是平面PCD 的一个法向量. 从而cos 〈AD →,m 〉=AD →·m |AD →||m |=33,所以平面P AB 与平面PCD 所成二面角的余弦值为33. (2)因为BP →=(-1,0,2),设BQ →=λBP →=(-λ,0,2λ)(0≤λ≤1), 又CB →=(0,-1,0),则CQ →=CB →+BQ →=(-λ,-1,2λ), 又DP →=(0,-2,2),从而cos 〈CQ →,DP →〉=CQ →·DP →|CQ →||DP →|=1+2λ10λ2+2.设1+2λ=t ,t ∈[1,3],则cos 2〈CQ →,DP →〉=2t 25t 2-10t +9=29⎝⎛⎭⎫1t -592+209≤910.当且仅当t =95,即λ=25时,|cos 〈CQ →,DP →〉|的最大值为31010.因为y =cos x 在⎝ ⎛⎭⎪⎫0,π2上是减函数,此时直线CQ 与DP 所成角取得最小值.又因为BP =12+22=5,所以BQ =25BP =255.10(广东高考)如图所示,三角形PDC 所在的平面与长方形ABCD 所在的平面垂直,PD =PC =4,AB =6,BC =3.点E 是CD 边的中点,点F ,G 分别在线段AB ,BC 上,且AF =2FB ,CG =2GB .(1)证明:PE ⊥FG ;(2)求二面角P-AD-C 的正切值;(3)求直线P A 与直线FG 所成角的余弦值.【解】 以E 为坐标原点,建立如图所示的空间直角坐标系,则E (0,0,0),P (0,0,7),F (3,1,0),G (2,3,0),A (3,-3,0),D (0,-3,0).(1)证明:EP →=(0,0,7),FG →=(-1,2,0),EP →·FG →=0,∴PE ⊥FG .(2)平面ADC 的一个法向量为n 1=(0,0,1),设平面P AD 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧DP →·n 2=(0,3,7)·(x ,y ,z )=3y +7z =0,AP →·n 2=(-3,3,7)·(x ,y ,z )=-3x +3y +7z =0,取y =1,则x =0,z =-37,∴n 2=(0,1,-37)为平面P AD 的一个法向量.∴cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-371×1+97=-34.记所求二面角的大小为θ,显然θ为锐角, ∴cos θ=34,tan θ=73.(3)∵AP →=(-3,3,7),FG →=(-1,2,0),∴cos 〈AP →,FG →〉=AP →·FG →|AP →|·|FG →|=3+6+09+9+7×5=9525, ∴直线P A 与直线FG 所成角的余弦值为9525.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点17 立体几何中的计算问题【知识框图】【自主热身,归纳总结】1、(2019扬州期末) 底面半径为1,母线长为3的圆锥的体积是________. 【答案】 22π3【解析】圆锥的高为h =32-12=22,圆锥的体积V =13×π×12×22=22π3.2、(2019镇江期末)已知一个圆锥的底面积为π,侧面积为2π,则该圆锥的体积为________. 【答案】3π3【解析】思路分析 先求出圆锥的底面半径和高.设圆锥的底面半径、高、母线长分别为r ,h ,l ,则⎩⎪⎨⎪⎧πr 2=π,πrl =2π,解得⎩⎪⎨⎪⎧r =1,l =2.所以h = 3.圆锥的体积V =13Sh =3π3. 3、(2019宿迁期末)设圆锥的轴截面是一个边长为2 cm 的正三角形,则该圆锥的体积为________ cm 3. 【答案】33π 【解析】 圆锥的底面半径R =1,高h =22-12=3,故圆锥的体积为V =13×π×12×3=33π.4、(2019南通、泰州、扬州一调)已知正四棱柱的底面长是3 cm ,侧面的对角线长是3 5 cm ,则这个正四棱柱的体积为________cm 3. 【答案】 54【解析】由题意知,正四棱柱的高为(35)2-32=6,所以它的体积V =32×6=54,故答案为54. 5、(2019南京学情调研) 如图,在正三棱柱ABCA 1B 1C 1中,AB =2,AA 1=3,则四棱锥A 1B 1C 1CB 的体积是________.【答案】2 3【解析】如图,取B 1C 1的中点E ,连结A 1E ,易证A 1E ⊥平面BB 1C 1C ,所以A 1E 为四棱锥A 1B 1C 1CB 的高,所以V 四棱锥A 1B 1C 1CB =13S 矩形BB 1C 1C ×A 1E =13×(2×3)×3=2 3.6、(2018盐城三模)若一圆锥的底面半径为1,其侧面积是底面积的3倍,则该圆锥的体积为 .【答案】3【解析】设圆锥的高为h ,母线为l ,由2=,=S rl S r ππ侧底得,21=31l ππ⨯⨯⨯,即=3l ,h ==故该圆锥的体积为2113π⨯⨯⨯=.7、(2017无锡期末) 已知圆锥的侧面展开图是一个圆心角为120°且面积为3π的扇形,则该圆锥的体积等于________. 【答案】223π【解析】设圆锥的底面半径为r ,高为h ,母线长为l .则⎩⎪⎨⎪⎧2πr =l ×2π3,3π=12×2πr ×l ,解得⎩⎪⎨⎪⎧r =1,l =3,故h =l 2-r 2=22,所以圆锥的体积V =13×πr 2×h =13×π×12×22=223π. 解后反思 解决立体几何问题的基本思想是将空间问题转化为平面问题,在解题过程中要注意明确展开图中各个元素和几何体中元素的对应关系.8、(2016南京、盐城、连云港、徐州二模)如图,正三棱柱ABCA 1B 1C 1中,AB =4,AA 1=6.若E ,F 分别是棱BB 1,CC 1上的点,则三棱锥AA 1EF 的体积是________.【答案】 8 3【解析】 因为在正三棱柱ABCA 1B 1C 1中,AA 1∥BB 1,AA 1⊂平面AA 1C 1C ,BB 1⊄平面AA 1C 1C ,所以BB 1∥平面AA 1C 1C ,从而点E 到平面AA 1C 1C 的距离就是点B 到平面AA 1C 1C 的距离,作BH ⊥AC ,垂足为点H ,由于△ABC 是正三角形且边长为4,所以BH =23,从而三棱锥AA 1EF 的体积VAA 1EF =VEA 1AF =13S △A 1AF ·BH =13×12×6×4×23=8 3.解题反思 一般地,三棱锥的体积求解都需要通过换底来求解,基本原则是换底以后的三棱锥的底面积和高均容易求解.9、(2016无锡期末) 如图,在圆锥VO 中,O 为底面圆心,半径OA ⊥OB ,且OA =VO =1,则O 到平面VAB 的距离为________.【答案】33【解析】思路分析 在立体几何求点到平面的距离问题中,往往有两种途径:(1) 利用等体积法,这种方法一般不需要作出高线;(2) 利用面面垂直的性质作出高线,再进行计算.解法1 因为VO ⊥平面AOB ,OA ⊂平面AOB ,所以VO ⊥OA ,同理VO ⊥OB ,又因为OA ⊥OB ,OA =VO =OB =1,所以VA =VB =AB =2,所以S △VAB =12VA ×AB sin60°=32.设O 到平面VAB 的距离为h ,由V VAOB =V OVAB ,得13S △AOB ×VO =13S △VAB ×h ,得12OA ×OB ×VO =32h ,解得h =33. 解法2 取AB 中点M ,连结VM ,过点O 作OH ⊥VM 于H .因为OA =OB ,M 是AB 中点,所以OM ⊥AB ,因为VO ⊥平面AOB ,AB ⊂平面AOB ,所以VO ⊥AB ,又因为OM ⊥AB ,VO ∩OM =O ,所以AB ⊥平面VOM ,又因为AB ⊂平面VAB ,所以面VAB ⊥平面VOM ,又因为OH ⊥VM ,OH ⊂平面VOM ,平面VAB ∩平面VOM =VH ,所以OH ⊥平面VAB ,所以OH 为点O 到平面VAB 的距离,且OH =VO ×OM VM =33.【问题探究,变式训练】 题型一 柱、锥的面积与体积知识点拨: 求空间几何体的体积的本质就是找几何体的高(即找线面垂直),常见的空间几何体体积的求法有:作高法、转换顶点法、割补法.例1、(2019南京、盐城一模)如图,PA ⊥平面ABC ,AC ⊥BC ,PA =4,AC =3,BC =1,E ,F 分别为AB ,PC 的中点,则三棱锥BEFC 的体积为________.【答案】36【解析】V BEFC =V FBEC =12V PBEC =12·(13·S △BEC ·PA)=12×13×34×4=36.【变式1】(2019泰州期末)如图,在直三棱柱ABCA 1B 1C 1中,点M 为棱AA 1的中点,记三棱锥A 1MBC 的体积V 1,四棱锥A 1BB 1C 1C 的体积为V 2,则V 1V 2的值是________.【答案】 14【解析】解法1(割补法) 设△ABC 的面积为S ,三棱柱的高为h ,则V 1=VA 1ABC -V MABC =13Sh -13S ×12h =16Sh ,V 2=VABCA 1B 1C 1-VA 1ABC =Sh -13Sh =23Sh ,所以V 1V 2=Sh 6·32Sh =14.解法2(等积转换) V 1=VBA 1MC =12VBA 1AC =12VA 1ABC ,V 2=2VA 1BC 1B 1=2VBA 1B 1C 1=2VA 1ABC ,所以V 1V 2=14.【变式2】(2018常州期末) 已知圆锥的高为6,体积为8.用平行于圆锥底面的平面截圆锥,得到的圆台体积是7,则该圆台的高为________. 【答案】 3【解析】设截得的小圆锥的高为h 1,底面半径为r 1,体积为V 1=13πr 21h 1;大圆锥的高为h =6,底面半径为r ,体积为V =13πr 2h =8.依题意有r 1r =h 1h ,V 1=1,V 1V =13πr 21h 113πr 2h =⎝ ⎛⎭⎪⎫h 1h 3=18,得h 1=12h =3,所以圆台的高为h-h 1=3.【变式3】(2018镇江期末) 已知正四棱锥的底面边长为2,侧棱长为6,则该正四棱锥的体积为________. 【答案】 83【解析】正四棱锥的底面边长为 2,可知底面正方形对角线长为22,所以正四棱锥的高为(6)2-(2)2=2,所以正四棱锥的体积V =13×4×2=83.【变式4】(2018扬州期末) 若圆锥的侧面展开图是面积为3π且圆心角为2π3的扇形,则此圆锥的体积为________. 【答案】 223π【解析】设圆锥的底面半径为r ,高为h ,母线为l ,则由12·2π3·l 2=3π,得l =3,又由2π3·l =2πr ,得r =1,从而有h =l 2-r 2=22,所以V =13·πr 2·h =223π.【变式5】(2018南京、盐城、连云港二模)在边长为4的正方形ABCD 内剪去四个全等的等腰三角形(如图1中阴影部分),折叠成底面边长为2的正四棱锥SEFGH(如图2),则正四棱锥SEFGH 的体积为________.(图1)(图2)【答案】 43【解析】连结EG ,HF ,交点为O ,正方形EFGH 的对角线EG =2,EO =1,则点E 到线段AB 的距离为1,EB =12+22= 5.SO =SE 2-OE 2=5-1=2,故正四棱锥SEFGH 的体积为13×(2)2×2=43.【变式6】(2018苏锡常镇调研(二)) 在棱长为2的正四面体P ABC -中,M ,N 分别为PA ,BC 的中点,点D 是线段PN 上一点,且2PD DN =,则三棱锥D MBC -的体积为 .【答案】【解析】思路分析:解决空间几何体的体积计算问题常常有两个途径:一是直接利用体积公式求解,另一种是利用等体积转化的思想进行计算.解题过程:连结MB ,MC ,MN ,过点D 作MN DH ⊥于H ,因为BP BA =,M 为PA 的中点,所以BM PA ⊥,同理CM PA ⊥,又因为M CM BM = ,所以MBC PA 面⊥,又因为MBC MN 面⊂,所以MN PA ⊥,又因为MN DH ⊥,所以PA DH //,从而MBC DH 面⊥,故DH 为点D 到平面MBC 的高.在MBC ∆中,MC MB =,N 为BC 的中点,则222=-=NB MB MN ,MBC ∆的面积2222121=⨯⨯=⨯=MN BC S ,在NPM ∆中,因为PM DH //,2PD DN =,所以3131==PM DH ,从而三棱锥D MBC -的体积923123131=⨯⨯=⨯=∆-DH S V MBC MBCD .【变式7】(2017徐州、连云港、宿迁三检)如图,在正三棱柱111ABC A B C -中,已知13AB AA ==,点P在棱1CC 上,则三棱锥1P ABA -的体积为 .【答案】439 【解析】 因为正三棱柱111C B A ABC -中,11//CC AA ,因为B B AA AA 111面⊂,B B AA CC 111面⊄, 所以B B AA CC 111//面,因为点P 在棱1CC 上,所以点C 到平面B B AA 11的距离就是点P 到平面B B AA 11的距离.作AB CD ⊥,垂直为点D ,因为正三棱柱111C B A ABC -中,⊥1AA 面ABC ,⊂CD 面ABC ,所以1AA CD ⊥,而B B AA AB 11面⊂,B B AA AA 111面⊂,11A AA AB = ,所以B B AA CD 11面⊥.因为正三棱柱111C B A ABC -中,31==AA AB ,所以233=CD ,1ABA ∆的面积293321=⨯⨯=S ,所以三棱锥1ABA P -的体积439233293131=⨯⨯=⋅⋅=CD S V . 【变式8】(2017南京三模)如图,在直三棱柱ABC -A 1B 1C 1中,AB =1,BC =2,BB 1=3,∠ABC =90°,点D 为侧棱BB 1上的动点.当AD +DC 1最小时,三棱锥D -ABC 1的体积为 .ABC PA 1B 1C 1(第10题)【答案】13【解析】将侧面展开如下图,所以由平面几何性质可得:11AD DC AC +≥,当且仅当1,,A D C 三点共线取到.此时1BD =,所以1122ABDSAB BD =⨯⨯=.在直三棱柱ABC -A 1B 1C 1中有1BB CB ⊥,又AB CB ⊥,易得CB ⊥平面ABD ,所以11C B ⊥平面ABD ,即11C B 是三棱锥1C ABD-的高,所以1111111123323D ABC C ABD ABDV V C B S --==⨯⨯=⨯⨯=【解后反思】对于求空间几何体中在两个侧面上两个有公共点距离之和最小值的问题,一般都可以转化为同一个平面上问题.本题也是数学中最有名的“将军饮马”的问题,有兴趣的同科可以用网络搜索查阅这个问题. 题型二 球的面积与体积知识点拨:解决空间几何体的外接球问题的关键是确定球心的位置,求得球半径.多数试题中几何体的外接球通常可以考虑转化为相应长方体的外接球模型,这一类题在各类考题中常有出现,同学们一定要掌握其方法.例1、(2019苏州期末)如图,某种螺帽是由一个半径为2的半球体挖去一个正三棱锥构成的几何体,该正三棱锥的底面三角形内接于半球底面大圆,顶点在半球面上,则被挖去的正三棱锥体积为________.ACB A 1B 1C 1D【答案】 2 3【解析】正三棱锥的底面正三角形的边长为a=23,面积S=34a2=33,高h=2.所以正三椎锥的体积V=13Sh=2 3.【变式1】(2019苏州三市、苏北四市二调)设P,A,B,C为球O表面上的四个点,PA,PB,PC两两垂直,且PA=2 m,PB=3 m,PC=4 m,则球O的表面积为________m2.【答案】 29π【解析】根据题意,可知三棱锥PABC是长方体的一个角,如图所示,该长方体的外接球就是经过P,A,B,C四点的球,因为PA=2,PB=3,PC=4,所以长方体的体对角线的长为PA2+PB2+PC2=29,即外接球的直径2R=29,可得R=292,因此外接球的表面积为S=4πR2=4π×⎝⎛⎭⎪⎫2922=29π,【变式2】(2018无锡期末)直三棱柱ABCA 1B 1C 1中,已知AB⊥BC,AB =3,BC =4,AA 1=5,若三棱柱的所有顶点都在同一球面上,则该球的表面积为________. 【答案】 50π【解析】 根据条件可知该直三棱柱的外接球即三棱锥B 1ABC 的外接球,也就是以BA ,BC ,BB 1为棱的长方体的外接球,设其半径为R ,则2R =BA 2+BC 2+BB 21=32+42+52,得R =522,故该球的表面积为S =4πR 2=50π.【变式3】(2017南通、扬州、淮安、宿迁、泰州、徐州六市二调) 现有一个底面半径为3 cm ,母线长为5 cm 的圆锥状实心铁器,将其高温融化后铸造成一个实心铁球(不计损耗),则该铁球的半径是________cm. 【答案】 39【解析】思路分析 圆锥的体积等于球的体积.圆锥的高为4 cm ,体积为V 圆锥=13π×32×4=12π(cm 3).设球的半径为r cm ,则43πr 3=12π,即r 3=9,所以r =39.题型三、立体几何中的综合问题知识点拨:立体几何中的综合问题往往涉及到求体积的最值问题或者涉及到复杂的几何体的问题,常用的方法是涉及复杂的几何体进行简化,最值问题运用不等式或者求导进行解决。

相关文档
最新文档