平面任意力系平衡方程的应用教案
平面一般力系的平衡方程及其应用
MB 0
W1
l 2
W
l
x
FAyl
0
得
FAy 7k N
Y 0
F T
sin
FAy
W1
W
0
得
FT 34k N
X 0 FAx FT cos 0
得
FAx FT cos 29.44k N
目录
平面力系\平面一般力系的平衡方程及其应用
4) 讨论。 本题若列出对A、B两点的力矩方程 和在x轴上的投影方程,即
F,平衡锤重WQ,已知W、F、a、b、e、l,欲使起重机满载和空载
时均不致翻倒,求WQ的范围。
目录
力系的平衡\平面力系的平衡方程及其应用 【解】 1)考虑满载时的情况 受力如图所示。 列平衡方程并求解 MB=0 WQmin(a+b)WeFl=0
得 We F l
WQmin a b
目录
平面力系\平面一般力系的平衡方程及其应用
理论力学
平面力系\平面一般力系的平衡方程及其应用
平面一般力系的平衡方程及其应用
1.1 平面一般力系的平衡方程
1. 基本形式 如果平面力系的主矢和对平面内任一点的主矩均为零,则力系
平衡。反之,若平面力系平衡,则其主矢、主矩必同时为零(假如 主矢、主矩有一个不等于零,则平面力系就可以简化为合力或合力 偶,力系就不平衡)。因此,平面力系平衡的充要条件是力系的主 矢和对任一点的主矩都等于零,即
应用平面力系的平衡方程求解平衡问题的步骤如下: 1) 取研究对象。根据问题的已知条件和待求量,选择合适的研 究对象。 2) 画受力图。画出所有作用于研究对象上的外力。 3) 列平衡方程。适当选取投影轴和矩心,列出平衡方程。 4) 解方程。 在列平衡方程时,为使计算简单,通常尽可能选取与力系中多 数未知力的作用线平行或垂直的投影轴,矩心选在两个未知力的交 点上;尽可能多的用力矩方程,并使一个方程只含一个未知数。
平面任意力系平衡方程讲解课件
01
02
03
04
仅适用于小变形的情况
对于大变形或复杂的结构,需 要使用更高级的力学理论
仅适用于线性弹性材料
对于非线性弹性材料或塑性材 料,需要使用更高级的材料模
型
04
平面任意力系平衡方 程的优化与改进
优化求解算法
线性化求解
将平衡方程转化为线性方程,降 低求解难度,提高求解速度。
迭代法优化
采用更高效的迭代算法,如牛顿法 、拟牛顿法等,加快收敛速度。
03
平面任意力系平衡方 程的适用范围
适用场景与条件
适用于平面任意力系 的平衡问题
力的作用点可以不在 物体的重心上
物体处于平衡状态, 即没有加速度或速度
不适用场景与原因
不适用于空间力系的平衡问题
不适用于具有加速度或速度的 物体
力的作用点不在物体的重心上 时,需要考虑科氏力等因素
限制因素与局限性
平衡状态
物体在受到一组的力作用后,如果处 于静止或匀速直线运动状态,则称该 物体处于平衡状态。
平衡方程
对于平面任意力系,其平衡方程为合 力为零,即合力在x轴和y轴上的投影 分别为零。
02
平面任意力系的平衡 方程
平衡方程的推导
1 2 3
静力平衡
在无外力作用下,物体处于静止状态,此时物体 内部各部分之间无相对运动趋势,处于平衡状态 。
并行计算
利用多核CPU或分布式计算资源, 实现并行计算,大幅缩短求解时间 。
提高计算精度
精细化建模
采用更高精度的物理模型,提高 方程的准确性和精度。
高阶有限元方法
采用高阶有限元方法,降低误差 ,提高计算精度。
自适应步长控制
根据误差大小自动调整步长,确 保计算的稳定性和精度。
平面一般力系的平衡方程
-
-
-专业资料-
-
-
-
课时
教 学 容、方 法、步 骤
附
分配
记
(2)空载时 W=0,Q=Qmax,机架可能绕 A 点左翻,在临界平衡状态, B 处悬空,NB=0,受力图如图 3-10c 所示。则
故 平衡锤的范围应满足不等式
例 4-5 一简易起重机如图 4-11 所示。横梁 AB 的 A 端为固定铰支座,B 端用 拉杆 BC 与立柱相连。已知梁的重力 G1=4kN,载荷 G2=12kN,横梁长 L=6m, α=30°,求当载荷距 A 端距离 x=4m 时,拉杆 BC 的受力和铰支座 A 的约束 反力。
其中 A、B、C 三点不能在一条直线上。
20 二. 平面平行力系的平衡方程
-
-
-专业资料-
-
-
-
课时
教 学 容、方 法、步 骤
附
分配
记
在基本式中,坐标轴是任选的。现取 y 轴平行各力,则平面平行力系中 各力在 x 轴上的投影均为零,即∑Fx ≡0。于是平面平行力系只有两独立的平 衡方程,即
∑Fy=0 ∑MO(F)=0
和投影轴,合理的选用方程组的形式,尽量避免联立解方程组
的麻烦。另外,平面平行力系是平面任意力系的一种特殊情形。
复习思考题、 作业题
1、思考平面汇交力系的平衡方程中,可否取两个力矩方程,或 一个力矩方程和一个投影方程?这时,其矩心和投影轴的选 择有什么限制?
2、课本习题 4-7、4-6。
-
-
-专、方 法、步 骤
附
分配
记
40
§4.3 平面任意力系的平衡方程
一. 平面一般力系的平衡方程
1. 基本形式
平面一般力系的平衡方程及其应用简化及平衡方程名师公开课获奖课件百校联赛一等奖课件
FW 2 G FW1 FRA FRB 0
解得: FRB 870kN
FRA 210kN
17
3、平面力偶系旳平衡方程
因为平面力偶系合成旳成果为一合力偶,M=Σm,而力偶
在任一轴上投影旳代数和均为零。即平面一般力系旳平衡方
程旳基本形式旳两个投影方程均变成恒等式,故平面力偶系
旳平衡方程为:
G 10 FP 4 FRB 20sin 600 0
mB (F) 0
FRAy 20 FP 4 G 10 0
Fx 0 FRAx FRB cos 600 FP 0
解得:FRB 62.4kN
FRAy 46kN
FRAx
11.2kN 9
平面汇交力系、平面平行力系和平面力偶系,皆可看作平面 一般力系旳特殊力系,它们旳平衡方程皆可由平面一般力系 旳平衡方程导出。
1.平衡方程旳基本形式
FR' ( Fx )2 ( Fy )2
M o mo (F )
Fx 0 Fy 0
mo
(
F
)
0
2
由此可得结论,平面一般力系平衡旳解析条件是:全部各 力在两个任选旳坐标轴上旳投影旳代数和都等于零;力系 中全部各力对任一点旳力矩旳代数和等于零。
需要指出旳是,上述平衡方程是相互独立旳,用来求 解平面一般力系旳平衡问题时,能且最多只能求解三个未 知量。为了防止求解联立方程,应使所选旳坐标轴尽量垂 直于未知力,所选矩心尽量位于两个未知力旳交点(可在 研究对象之外)上。另外,列平衡方程时,既可先列投影 方程,也可先列力矩方程。总之,应尽量使每一方程式中 只含一种未知量,以便简化计算。
在研究对象上画出它受到旳全部主动力和约束反力。约束反力 根据约束类型来画。当约束反力旳指向未定时,能够先假设其指 向。假如计算成果为正,则表达假设指向正确;假如计算成果为 负,则表达实际旳指向与假设旳相反。
平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-8 b
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)按图示坐标列平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
(3)解方程 解方程,求得
负号说明图中所设方向与实际情况相反,即 MA 为顺时针转向。
理论力学 3-2平面任意力系的平衡条件和平衡方程
二、关于平面任意力系 的例题
理论力学 3-2平面任意力系的平衡条件和平衡方程
例3-2 起重机 P1 = 10 kN,可绕铅直轴AB转动;
起重机的挂钩上挂一重为 P2 = 40 kN 的重物, 如图 3-6 所示。
起重机的重心C到转动轴的距离为1.5 m, 其他尺寸如图所示。
求在止推轴承 A 和轴承 B 处的约束力。
理论力学 3-2平面任意力系的平衡条件和平衡方程
b.如果力系对另一点 B的主矩也同时为 零,则这个力系或一合力沿 A,B 两点的连 线,或者平衡(图3-9)。
c.如果再加上
,那么力系如
有合力,则此合力必与 x 轴垂直。
理论力学 3-2平面任意力系的平衡条件和平衡方程 图 3-9
理论力学 3-2平面任意力系的平衡条件和平衡方程
理论力学 3-2平面任意力系的平衡条件和平衡方程
解: (1)选梁AB为研究对象 梁 AB 所受的主动力有: 均布载荷 q,
重力 P 和矩为 M 的力偶。 梁AB所受的约束力有: 铰链 A 的两个分力 Fax 和 FAy ,滚动支
座 B 处铅直向上的约束力FB。
理论力学 3-2平面任意力系的平衡条件和平衡方程
(2)列平衡方程 取坐标系如图3-7所示,列出平衡方程:
理论力学 3-2平面任意力系的平衡条件和平衡方程
建筑力学平面一般力系的平衡方程及其应用
普通高等教育“十一五”国家级规划教材
满足平衡方程时,物体既不能移动,也不能 转动,物体就处于平衡状态。当物体在平面一般 力系的作用下平衡时,可用三个独立的平衡方程 求解三个未知量。 二、平衡方程的其它形式
1.二力矩形式的平衡方程 ∑FX= 0 ∑MA (F ) = 0 ∑MB (F ) = 0 式中x轴不可与A、B两点的连线垂直。
FAx
FNCD = 30kN (↗)
∑MD (F ) = 0
FNCD
- FAy×0.6 + 14 ×0.3 = 0
14kN 8kN
300
300 100
A 30° D B
FAy
C
FAy = 7kN (↑)
∑MC (F ) = 0
- FAx×0.6/ 3- 14 ×0.3
- 8 ×0.6 = 0 FAx = - 25.98kN (←)
5 + FAy= 0
普通高等教育“十一五”国家级规划教材
3kN·m 6kN
3m
6
A
B
5
5
3m
可取∑MB (F ) = 0这一未用过的方程进行校核: 3 + 5×3 - 6×3 = 0
说明计算无误。
普通高等教育“十一五”国家级规划教材
例4-4 梁AB一端是固定端支座,另一端无
约束,这样的梁称为悬臂梁。它承受荷载作用如
普通高等教育“十一五”国家级规划教材
在使用三力矩式计算出结果后,可用另外两 个投影方程之一进行校核。可知计算无误。
例4-6 外伸梁受荷载如图所示。已知均布荷载 集度q=20kN/m,力偶的力偶矩M=38kN·m,集中 力FP=10kN。试求支座A、B的反力。
10kN 20kN/m 38kN·m
平面任意力系的平衡方程及应用
FCDl
s in
G1
l 2
G2a
0
(a)
Fx 0 FAx FCD cos 0
(b)
Fy 0 FAy G1 G2 FCD sin 0
(c)
第2章 平面力系的平衡
C
A
D
C
l
2a
G 1
l
G2 (a)
y FAy A
FAx
图2.5
FCD
B x
G1
G2
(b)
FR'
Fx 2 Fy 2 0, MO MO (Fi ) 0
第2章 平面力系的平衡
由此可得平面任意力系的平衡方程为
Fx 0
Fy 0
Байду номын сангаас
MO (F ) 0
式(2.6)是平面任意力系平衡方程的基本形式,也称为一 力矩式方程。它说明平面任意力系平衡的解析条件是: 力系中各 力在平面内任选两个坐标轴上的投影的代数和分别为零,以及 各力对平面内任意一点之矩的代数和也等于零。这三个方程是 各自独立的三个平衡方程,只能求解三个未知量。
解(1) 选圆球为研究对象,取分离体画受力图。 主动力: 重力G。 约束反力: 绳子AB的拉力FT、斜面对球的约束力FN。 受力图如图2.6(b)所示。
第2章 平面力系的平衡
(2) 建立直角坐标系Oxy
∑Fx=0
FT-Gsin30°=0
FT=50N( ∑Fy=0
FN-G cos30°=0
FN=86.6N
解 (1)以横梁AB为研究对象,取分离体画受力图。
作用在横梁上的主动力: 在横梁中点的自重G1、起吊重量 G2。作用在横梁上的约束反力: 拉杆CD的拉力FCD、铰链A点的 约束反力FAx、FAy,如图2.5(b)所示。
工程力学-平面任意力系平衡方程
4)FR=0 M0=0 力系处于平衡状态。
例3-1 图示物体平面A、B、C三点构成一等边三角形,三点分别作
用F力,试简化该力系。
解:1.求力系的主矢
F x F F cos60o F cos60o 0
Fy 0 F sin 60o F sin 60o 0
y
C
F M0 F
上作用F力,集中力偶M0=Fa,=45°,试求杆件AB的约束力。
A
M0=Fa
C
B
F
解:1.取AB杆为研究对象画受力图
2.列平衡方程求约束力
Da a
FAx
A
M0=Fa
C
FAy FC
B F
aa
M A (F ) 0 : FC sin 45 a F 2a M 0 0
FC
2Fa a
Fa 2/2
MC (F) 0:
FAx
2
3a 3
F
a
M0
0
FAy 0 FAx 3F
C aa
一 矩
MA(F) 0: Fx 0 :
二 矩
MA(F) 0: MB(F) 0:
三 矩
MA(F) 0: MB(F) 0:
2 3a
式 Fy 0 :
式 Fx 0 :
式 M C (F8) 0 :
3
本课节小结
A F
B x
FR ( Fx )2 ( Fy )2 0
2.选A点为简化中心,求力系的主矩
M0
M A (F)
F
sin 60
AB
F
AB 2
简化结果表明该力系是一平面力偶系。
4
二、平面任意力系的平衡方程
平面一般力系—平面一般力系的平衡方程及其应用(建筑力学)
平面一般力系
(3) 列平衡方程求解未知量。
为简化计算,避免解联立方程:在应用投影方程时,选取 的投影轴应尽量与多个未知力相垂直;应用力矩方程时,矩 心应选在多个未知力的交点上,这样可使方程中的未知量减 少,使计算简化。
平面一般力系
例4-1 梁AB一端是固定端支座,另一端无约束,这样的 梁称为悬臂梁。它承受荷载作用如图所示。已知FP=2ql, α=60°,梁的自重不计。求支座A的反力。
特别注意,固定端的约束反力偶千万不能漏画。
平面一般力系
例4-2 钢筋混凝土刚架,受荷载及支承情况如图所示。 已知FP1=40, FP2= 10kN, M = 6kN·m,刚架自重不计。求支 座A、B的反力。
解 取刚架为研究对象,画其受力图如图示。
平面一般力系
Fx 0 FAx F2 0
FAx F2 10kN ()
平面一般力系
例4-3 管道支架的结构简图如图所示。 Fp=8kN,求支座 A的反力和杆CD所受的力。
容易判断:杆CD为二力杆,且为受压。
由
平面一般力系
解 取梁AB为研究对象,其受力图如图示。
M A(F ) 0 FNCD sin 30 60 F 30 F 60 0
FNCD
8 30 8 0.5 60
其中前两式称为投影方程,第三式称为力矩方程.
这三个方程是相互独立的,应用这三个独立的平衡方程可 求解三个未知量。
平面一般力系
2.二力矩式
Fx M
0
A F
0
M B F 0
式中x轴不可与A、B两点的连线垂直。
3.三力矩式
M M
A B
F F
0 0
MC F 0
式中A、B、C三点不共线。
1-4 平面力系的平衡方程及应用
【例 1—4—1】 试求图中所 示F1、F2、F3 各力在 X 轴及Y轴上 的投影。
力系
解题过程
2.平面一般力系的简化 设刚体上作用有平面一般力系(F1、F2…Fn) ,在平 面内任取一点 O作为简化中心。
这种画有隔离体及其所受的全部作用力的简图,称为物 体的受力图。
刚体受力的简化
得到一个平面汇交力系和一个附加力偶系:
§1 —4
平面力系的平衡方程及应用
1.会分析平面力系。 2.会建立平衡方程并计算未知力。
一、平面力系的分析方法
1. 力的分解与投影 力的分解——将一个力化作等效的两个或两个以上分 力的过程。 工程中最常用的是正交分解法, 即分解成两个互相垂直的分力。
注意:力的分解是矢量 分解的概念,分解后的力F1 和 F2 是矢量,既有大小, 又有方向 。 力的分解
【例 1—4—3】 铣床夹具上的压板AB如图所示,在 拧紧螺母后,螺母对压板的压力F=4kN,已知l1=50 mm, l2=75 mm,试求压板对工平面一般力系的平衡方程解题的步骤为:
选取研究对象→进行受力分析并画出受力图→选取
坐标系,计算各力的投影;选取矩心→计算各力的矩→ 列平衡方程,求解未知量。 恰当选取矩心的位置和坐标轴的方向,可使计算简 化。例如,矩心可选在两未知力的交点,坐标轴尽量与 未知力垂直或与多数力平行。
【例 1—4—2】 曲柄冲压机如图所示,冲压工件时冲 头B受到工件的阻力F=30 kN,试求当α=30°时连杆AB所受的 力及导轨的约束力。
平面一般力系平衡必须同时满足以下三个平衡方程式, 这三个方程彼此独立,可求解三个未知量。
基本形式 ∑FX=0 ∑FY=0 ∑FX=0 ∑M0(F)=0 前两个方程称为 投影方程,后一个 方程称为力矩方程 二力矩式 ∑FX=0 ∑MA(F)=0 ∑MB(F)=0 使用条件:X轴与AB 连线不垂直 前一个方程称为投影 方程,后两个方程称为 力矩方程 三力矩式 ∑MA(F)=0 ∑MB(F)=0 ∑MC(F)=0 使用条件:A、B、 C三点不共线 三个方程均为力 矩方程
平面力系的平衡方程及应用
各力的作用线都在同一平面内且 汇交于一点的力系。
正文
力在直角坐标轴上的投影
1
Fx=F·cosa ; Fy=F·sina = F ·cosb
说明: (1)力在坐标轴上的投影为代数量; (2)力的指向与坐标轴的正向一致时,力的投影为正值,否则为负。
正文
合力投影定理
推论1:力偶对刚体的作用与力偶在其作用面内的位置无关;
推论2:只要保持力偶矩的大小和力偶的转向不变,可以同时改变力偶中力的大小和力偶臂的长短,而不改变力偶对刚体的作用。
M
M
M
力偶表示方法
正文
思考:
力偶与力的异同
共同点:单位统一,符号规定统一。 差异点:1.力矩随矩心位置不同而变化;力 偶矩对物体作用效果与矩心选取无关。 2.力偶矩可以完全描述一个力偶;力对点之矩不能完全描述一个力。
′
F
M
单 手 攻 丝
正文
平面任意力系的简化
1
平面一般力系向平面内一点简化
F3
F1
F2
O
O
O
F
R′
MO
F
1′
M1
F1 =F1
′ M1=MO(F1)
F
2′
M2
F
3′
M3
F2 =F2
′ M2=MO(F2)
F3 =F3
′ M3=MO(F3)
简化中心
O
FR=F1+F2+F3= F1+F2+F3 MO=M1+M2+M3=MO(F1)+ MO(F2) + MO(F3)
正文
平面力偶系的合成与平衡
工程力学 第2版 第3章 平面力系的平衡方程及其应用
3.2 物系的平衡问题
物体系统:由若干个物体通过约束联系所组成的系统,简称为 物系。
系统平衡:当整个系统平衡时,组成该系统的每个物体也都 平衡。因此研究这类问题时,既可以取系统中的某一个物体为 分离体,也可以取几个物体的组合或者取整个系统为分离体。
1 静定和超静定问题
独立方程数目≥未知数数目时,是静定问题(可求解) 独立方程数目<未知数数目时,是静不定问题(超静定问题)
注意:不能漏画固定端的约束反力偶MA,力偶只参与力矩方程,将力偶矩的大小直接代入方程, 而不参与投影方程。
在需同的样不求建要的平的一的立指矩衡,样结平定心方求,果矩位程解但是衡心置是过最一方,列不程终样程不出一也所,时,的在们的不正结这 要 选 同 确果个 意 择 , 的就过 识 所 但 道是程 到 经 只 路正中 , 历 要 ,确同 不 的 选 最的学 同 就 择 后。
Fx 0
Fy
0
➢ 平面平行力系的平衡方程
Fx 0( Fy 0)
M0(F) 方程组,皆可解与其平衡方程数对 应的未知数。应用力系平衡方程可以确定工程中构件在平衡时 的未知力。
2 平面力系平衡方程的应用
步骤
1)确定研究对象,画受力图 2)建立直角坐标系,确定各力与坐标轴的夹角 3)确定该平面力系的种类,列出相应的平衡方程求解未知力。
第3章 平面力系的平衡方程及其应用
平面力系的平衡方程及其应用
单个物体的平衡问题 物系的平衡问题
考虑摩擦时物体的 平衡问题
3.1 单个物体的平衡问题 1 平面力系的平衡条件
平面力系平衡的充要条件是:合力为零
➢ 平面一般力系的平衡方程 ➢ 平面汇交力系的平衡方程
Fx 0 Fy 0
M O (F ) 0
1.4平面力系的平衡方程及应用教案
课题 1.4平面力系的平衡方程及应用
课时 1 班级21机电3/4班课型新课时间2021年10月22日
教学目标知识目标:熟记任意力系和汇交力系平衡的条件能力目标:能通过列平衡方程计算力的大小
德育目标:提高合作探究能力,增强合作意识
教学重点任意力系和汇交力系平衡的条件
教学难点根据平衡方程进行计算
教法直观教学法
学法小组合作探究
教学评价师生互评,小组互评
教具多媒体课件,教具,动画
教学过程及主要教学内容师生活动一、汇交力系平衡方程及图示:
所有的力都汇聚于一点的称为汇交力系。
二、平面任意力系及图示:教师:精讲
互问互答
学生:小组合作学生:组间竞赛
三、例题:
作业减速器中的齿轮轴受力如图所示,已知F、a,求:(1)绘制齿轮轴的受力图;(2)求支座A/B的约束力。
课后反思(教学收获、特色创新、存在不足、改进措施)。
平面任意力系的平衡教学设计
《平面任意力系的平衡》教学设计【课题】平面任意力系的平衡(中国劳动社会保障出版社《工程力学》第三版第四章第一节)【课时】第1课时(45分钟)【课型】新课【教材分析】静力学研究内容---物体受力分析方法和物体在力系作用下处于平衡条件在工程中应用很广。
工程中最常见的力系是平面任意力系,前述的平面汇交力系和平面力偶系以及后述的平面平行力系可看成是平面任意力系的特殊形式,许多实际问题都可以简化为平面任意力系问题来处理,分析和解决平面任意力系平衡问题在静力学中占有重要地位。
【学情分析】职高学生对工程结构缺乏感性认识,对于作用在工程结构上力的分析难以正确理解,尤其对如何应用平衡方程解决工程上的平衡问题感觉困惑,对所学知识点内容缺乏整合应用的能力。
但他们具有初步的分析和解决问题的能力,这就需要教师能合理设疑,引导学生进行自主探究,充分发挥学生学习主体的作用。
【教学目标分析】1.识记目标:理解平面任意力系的概念;掌握平面任意力系的平衡条件和平衡方程。
2.能力目标:能应用平面任意力系平衡方程解决工程上的平衡问题;培养学生严谨的逻辑思维能力和自主探索问题的能力;提高学生分析和解决问题的能力。
3.情感目标:培养学生勤于思考的好习惯和严谨、务实、细致的工作态度;通过小组讨论,培养学生的协作精神。
【重点、难点】重点:平面任意力系的平衡条件和平衡方程以及物体在平面任意力系作用下平衡问题的解法。
难点:应用平面任意力系平衡方程求解物体平衡问题的方法和步骤以及解题方法的优化。
【教学方法及策略】本节课运用创设问题情境---引导学生自主探究---小组合作讨论---练习总结---知识拓展的教学模式;采用启发式教学法,引导学生进行自主探究学习,通过对展示案例的合作讨论,进行解题方法的优化,以达到预期的教学目标。
【课件设计思路】为配合讲课需要,新课引入内容采用动态显示,各例题图及受力分析采用实时作图。
【教学过程设计分析】学生在前述课题中已经学习了物体的受力分析方法、静力学公理、运用平面汇交力系平衡的解析条件解决平面汇交力系作用下的物体平衡问题、力矩的平衡条件以及平面力偶系的平衡条件等力学知识,而正确地画出物体的受力图是分析、解决静力学平衡问题的基础。
理论力学第3章力系平衡方程及应用
a
分布力(均布载荷) 合力作用线位于AB
中点。
3.1 平面力系平衡方程
a
【解】
y M=qa2 a
2qa
F3
C
FAx
A
aFAy
45
B
D
x
2a FB a
F3 2qa
MA 0
q 2 2 a q a a F B 2 a 2 q sa 4 i 3 n a 5 0
FB 2qa
Fx 0 FAx2qcao4s50 FAx qa
C
【解】 F2
构件CGB( 图b)
F2
构件AED
(图c)
C
R
D
45
FC
FD
D
G
45
F1
E
a
F1
E
a
A
B
G 图b
FBy
图c A FAx
MA
FAy
构件CD(图a )
3个未知量 B FBx
4个未知量
F'C
3个独立方程
3个独立方程
【基本思路】
C R
杆CGB受力图计算FCAED受力图
计算A处的反力(偶);CGB受力图计算
3.2 平面物体系平衡问题
q
C
B
30
FC FBy
l
l
【解】 杆CB
FBx
MB 0
FCco3s0l qll/2 0
FC
3 ql 30.5kN/m 2m 0.577kN
3
3
3.2 平面物体系平衡问题
【解】整体
FAy
l
l
l
Fx 0
MA
A
FAx
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面任意力系平衡方程的应用教案
目的要求:掌握利用平面任意力系平衡方程基本形式求解平衡问题。
教学重点:平衡方程的正确运用。
教学难点:对平衡方程的理解。
教学内容:
平面任意力系的简化
一、平面任意力系向任一点(简化中心)平移。
1、力系的简化依据-力的平移定理
2、力系的简化过程:如图(a)所示平面任意力系
根据力的平移定理,力平移后要附加一个力偶,其力偶的大小等于该力对简化中心之矩。
这样,平移到简化中心的力组成一个平面汇交力系,所有附加的力偶组成一个平面力偶系。
3、平面汇交力系组成一个合力——主矢。
根据平面汇交力系求合力的公式可得主矢的大小和方向为
二、平面任意力系平衡方程的应用
1、平面任意力系的平衡方程:
当平面任意力系作用于物体上,并处于平衡时,平面任意力系向任一点简化所得的主矢和主矩都应该等于零,于是得到下列平衡方程的基本形式:
2、解题步骤和方法:
(1)确定研究对象,画受力图。
(2)选择座标轴和矩心,列平衡方程。
(3)解平衡方程,求出未知约束反力。
三、例题:
例1:如图所示悬臂梁,已知L=2m,F=100N,求固定端A处的约束反力。
解(1)、取梁AB为研
究对象。
(2)、画出AB梁的受
力图。
(3)、建立直角坐标系
Axy。
(4)、列出平衡方程:
∑F x=0 F AX-Fcos30˚=0
∑M A(F)=0 M A-FLsin30˚
=0
(5)、解平衡方程,求出
未知量。
联立求解平衡方程得
F Ax=86.6 N
F Ay=50 N
M A=100 N.m
说明:计算结果为正,
说明各未知力的实际方
向均与假设方向相同。
若计算结果为负,则未知力的实际方向与假设方向相反。